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Abstract

We present a lightweight fully convolutional network for color constancy (LHCC).
The network uses multiple 2-D projections of the 3-D log RGB histogram of an image in
order to predict the color correction coefficients.

In developing the network, we explored whether to use linear RGB or log RGB data,
the network structure (width and depth), how to handle dark pixels, how to generate the
2-D mappings of the 3-D histogram, and how to normalize or transform the bin counts
in order to preserve the fine histogram structure. Our results show that attention to each
of these details makes a difference in overall performance.

Our most significant findings are that using log RGB outperforms linear RGB for this
task, and that using a log transformation of the bin counts outperforms thresholding, a
hyperbolic tangent, and linear normalization.

Our exploration resulted in a fully convolutional network with 0.5M parameters that
sets a new performance standard on SimpleCube++ with a surprising 2.72° angular error
on the worst 25%. It is also competitive on older data sets such as Gehler-Shi and NUS-8.

1 Introduction

Color constancy, or white balancing, is a core task that occurs early in the image processing
pipeline. The goal of color constancy is to adjust the color channel gains to make surfaces
with neutral reflection appear neutral in the resulting image. While not strictly necessary for
computer vision, it is a necessary step for making images appear correct to people.

Color constancy is built on a model of the response of a camera /... 1. is the product of
the color of the illumination L(A ), the color of the reflectance R(1), and the sensitivity of

the camera for color channel ¢, S.(A) integrated over the visible wavelengths A.

L= /A S.(A)L(L)R(A)dA
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Most models of appearance assume sharp sensors, simplifying the integral to a product
term for each color channel. Following the von Kries model [30], the task of color constancy
is to estimate the relative values of K. = S.L. across color channels to create a scalar for each
channel such that if R, is uniform across channels then /.. is also uniform.

I. = SCLCRC = (SCLC)RC = KR (2)

The correction factor is 7 /K., where T is a constant that sets the brightness of the resulting
image, such as T = K, which maintains the original green channel values.

Color constancy is one of the few vision tasks based on linear RGB data instead of
sRGB. While there is some work in color constancy for processed imagery, most data sets
and methods use the raw sensor data, taking into account both the sensor response function
and the illuminant. Almost all color constancy algorithms use linear RGB as their input.
Two exceptions are the Fast-Fourier Color Constancy (FFCC) approach [2], and Afifi and
Brown [1], both of which use 2-D histograms of a log of chromaticity space (e.g. {u,v} =
log({R/G,B/G})), first suggested and used by Finlayson [8]. These are not 2-D projections
of 3-D spaces, but inherently 2-D spaces. It is not possible to estimate the original color
values from multiple log of chromaticity values because the overall intensity of the colors is
lost in the ratio calculation.

As far as we know, no color constancy method has yet used the plain logarithm of RGB
(log RGB) as an input space, either for semantic analysis (image as input) or histogram-
based analysis. The potential benefits of log RGB for image analysis were first noted in [20].
Under a Lambertian image model, taking the log RGB separates the reflectance and illumi-
nation into additive terms rather than multiplicative terms. As illumination varies in color
or intensity on a surface, the direction of those changes is independent of the reflectance.
This fact has been used in classic intrinsic imaging to enable linear optimization methods for
separating reflectance and illumination (e.g. [11]). It has also used for shadow removal on
road surfaces [21].

In addition to exploring semantic log RGB and linear RGB input spaces, we also explore
2-D projections of 3-D histograms. These 2-D projections maintain the intensity channel of
the data, and 3-D information can be inferred from multiple 2-D projections.

Our primary hypothesis is that the separation of reflectance and illumination character-
istics in log space will make identifying the primary illuminant direction simpler. We also
hypothesize that histogram-based analysis has the potential to be faster and more robust than
semantic approaches.

Our contributions include the following. (1) We evaluate the use of log RGB for color
constancy using both semantic and histogram-based deep network architectures. (2) We
present a novel architecture for histogram-based color constancy that takes as input multiple
2-D projections of 3-D histograms. (3) We provide a potential explanation for why log RGB
makes the color constancy problem simpler. (4) We demonstrate new state-of-the-art results
on the SimpleCube++ data set and competitive results on Gehler-Shi and NUS-8 with a small
convolutional network.

2 Related Work

Classical color constancy methods are well summarized by Gijsenij et al. [13]. Of particular
relevance to the later discussion is the grey-world method of Buchsbaum, which proposes
that the mean color of a typical natural image should be grey [4].
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2.1 Semantic-based Color Constancy

Prior work has included using standard network architectures that take an image as the in-
put, such as GoogleNet [27]. Sidhorov used a GoogleNet pre-trained on ImageNet with an
angular loss function to achieve competitive results on the SFU Greyball and the Gehler-Shi
ColorChecker data sets [26]. Lo et al. used a SqeezeNet pre-trained on ImageNet to imple-
ment a contrastive learning approach to color constancy with strong results on the NUS-8
and ColorChecker data sets [19].

Hu, Wang, and Lin developed a fully convolutional network FC4, that estimates confi-
dence maps for computing the correction coefficients [14]. Yu et al. enhanced performance
by building a cascading convolutional network [32]. Both networks build on standard back-
bone architectures such as AlexNet or SqueezeNet. While both show good performance, the
standard SqueezeNet architecture is 1.2M parameters, with C4 using a cascade of networks,
making them less suitable for edge devices than smaller networks.

2.2 Histogram-based Color Constancy

Cardei et al. proposed the first ANN for color constancy using a binarized rg chromaticity
histogram as input [5]. Bianco et al. demonstrated the first deep network approach to color
constancy. While the input to the Bianco network was a 32x32 patch of the image, the first
layer effectively learned a histogram with 240 bins, making it a histogram-like approach [3].

Fast Fourier Color Constancy (FFCC) by Barron and Tsai is a computationally lightweight
and high performing histogram-based approach to color constancy [2]. It uses a log of chro-
maticity histogram with the axes u = log(B/R) and v = log(G/R). Its unique approach is to
map the histogram onto a torus, compressing the analysis space and enabling fast complex
filtering in the Fourier domain.

Afifi and Brown proposed an alternative histogram method that uses a pre-network to
estimate an image-specific transformation of the color space to normalize the data across
cameras, followed by a second network that estimates the color correction coefficients [1].
They use all six possible log of chromaticity histograms as a stacked input, but also use
pixel intensity as a modifier on the weight of each pixel added to the histogram, emphasizing
brighter pixels in the histogram building process. This approach discounts the contribution
of darker materials, which may be important indicators of the actual color distribution.

More recently, Ershov er al. proposed a different approach to color constancy by re-
annotating the Cube++ data set to take into account all of the colors on a chrome ball attached
to the calibration cube [7]. Using the enhanced data, they learned to estimate a histogram
of plausible illuminants instead of a single set of correction coefficients. Their network
learns the conversion from a 128x128 2-D rg chromaticity histogram to a 2-D distribution
of plausible illuminants, from which the user can select the most pleasing. The approach
suggests a new definition of the meaning of color constancy for interactive editing.

Our CNN network design uses multiple 2-D projections of 3-D log RGB or linear RGB
histograms. Since we use multiple views of a 3-D space, we explored several different
approaches to combine the views and found that a slow-fusion style approach, as proposed
by Karpathy et al. for video analysis, gave the best results [15].
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2.3 Data Sets

SimpleCube++ is a subset of Cube++ [6] and contains images that have a single primary
illuminant, defined by the two sides of the calibration cube having values within 1°. It
contains 2,234 images with a recommended train/test split. SimpleCube++ offers a larger
and more recent collection of images, although it has fewer results reported in the literature.

Gehler-Shi, or ColorChecker, contains 568 images [12]. This data set had a major revi-
sion by Shi and Funt, which provided a re-processed version [25]. Given the small size of
this data set, papers typically report the results of 3-fold cross-validation (CV).

NUS-8 contains 1,736 total images taken by 8 cameras. Most reported results train a
model per camera with 3-fold CV and report the geometric mean across all cameras. A few
approaches have developed camera-independent models [1] that train on the whole data set.

3 Methods and Background

We chose to explore both linear and log RGB due to recent work showing it provided benefits
for other computer vision tasks [10, 22, 23]. The basis for why log RGB is potentially inter-
esting comes from the Bi-Illuminant Dichromatic Reflection (BIDR) Model, which models
the appearance of surfaces and showed that the ambient term is essential to understanding
appearance under varying illumination in natural environments [20].

In log RGB space—given reflectance R;,, ambient illuminant L, direct illuminant L;, and
direct illuminant visibility y—the body reflection model in (3) shows that the appearance of
the surface / from shadow to lit is an almost linear cylinder as ¥ goes from O to 1. Further-
more, the direction of the cylinders in log space is the same for all materials under the same
ambient and direct illumination pair.

logl = log Ry +log(La + YLa) 3)

The plane defined by this vector, called the illumination spectral direction (ISD), enables
an illumination invariant chromaticity space. Therefore, the distribution of points on the log
space chromaticity plane defines the gamut of material colors within the scene, independent
of how they are illuminated.

The von Kries model assumes that color correction requires a single scalar multiplier per
color channel [30]. In linear space, this represents a scaling of the RGB dimensions. Scaling
changes the relative locations of colors in linear RGB. In log space, however, color balance
is a translation of the RGB values and, therefore, the relative positions of the image colors
do not change. The goal of color constancy in log space is to center the distribution of colors
in the correct location, not to scale it to best fit a particular shape.

The center of a color distribution is dependent on the illumination color unless there is
an illumination-invariant method of computing the distribution. If we define the proper cor-
rection to be the one that makes a fully-lit neutral surface appear neutral, then including
shadowed pixels in the statistical computation—e.g. the mean value of each color channel—
implies that the resulting correction is biased by the ambient illumination color.

Figure 1A and D show an uncorrected scene of a neutral surface with and without a
shadow. Figure 1B and C show the corresponding rg chromaticity histograms (r = R/(R+
G+ B) and g = G/(R+ G+ B). Note the increased spread of colors that occurs in the
half-shadowed image. Figure 1C exhibits two overlapping ellipses which correspond to the
distribution of colors for each of the two illuminants in the scene (yellow direct and blue
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(B) rg of Lit (C) rg of Half-shadow

(D) Half-shadow (E) log rg of Lit (F) log rg of Half-shadow

(G) Corrected (H) ISD plane of Lit  (I) ISD plane of Half-shadow

(A) Lit

Figure 1: Left column: uncorrected images of the same neutral material (A) fully Lit, (D)
Half-shadow, and (G) corrected Lit image. Middle Column: histograms of the Lit image.
Right Column: histograms of the Half-shadow image

ambient). The histograms also show the average color as a white dot. The average colors of
the lit rg histogram and the half-shadow rg histogram are over 6° degrees apart.

Figure 1E and F show histograms of the same images projected onto the (1, 1, 1) plane in
log RGB space. These histograms are more compact, but they also show a bigger spread of
colors for the half-shadow image. The log space histogram averages are also over 6° apart.

Gamut-based color constancy methods assume that there is a wide distribution of colors
in an image, and that the lack of certain colors provides a guide as to the illuminant color
[9]. The presence of shadows or shading causes the gamut of linear colors to expand beyond
what would occur under only the direct illuminant, as can be clearly seen in figure 1C.

In log space, shadows and shading also bias the distribution of points in a scene. How-
ever, the bias occurs along a single dimension: the ISD. Any statistic computed on the plane
defined by the ISD will be illuminant invariant and represent only the gamut of material col-
ors in the image. The challenge with using the ISD is that it is unique to the direct-ambient
pair in the image: it is image-specific. However, the information necessary to compute an
ISD is in the log RGB histogram and available to a network learning with this input space.

For our example images, we can build a histogram on the plane perpendicular the ISD
(computed manually), shown in figure 1H and I. Note the similarity of the log space chro-
maticity histograms for the fully lit and half-shadowed images. Furthermore, the difference
in the means for the two ISD log chromaticity planes is only 0.6°, an order of magnitude
smaller than the difference using the other two projections.

The visualizations and differences in the means demonstrate the impact of a shadow
on statistical and gamut distributions. If a network can estimate the spectral ratio of the
scene, perhaps by identifying structure in the histogram, it may be able to better estimate the
color correction factors independently of shadows and shading in the image. We believe this
constitutes at least part of the value of using log RGB data as an input to color constancy.
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3.1 Implementation Details

Noise Thresholding: One issue with log RGB is that very dark pixels exhibit large changes
in their log value for small changes in their linear value. For example, the difference between
the log of 2 and the log of 1 is the same as the difference between the log of 20 and the
log of 10. Therefore, camera noise is significant in log RGB when the values are very
small. In linear RGB, the effect of camera noise is roughly constant across intensities. Based
on measurements of dark areas across the cameras in the SimpleCube++ data set we build
histograms from 8-bit data in the range [1,255], and for 16-bit data in [257, 65535].

Histogram Saturation: In image histograms, the difference between bin counts can be
extremely large, hiding smaller structure. We compared three methods of reducing the range
of the histogram bins: thresholding, a hyperbolic tangent, and a log transformation. We also
tested applying no transform as a control. All three saturation methods demonstrated supe-
rior performance to to the control, with the log transformation of the bin counts producing
the best results, as seen in our ablation study in table 4. Unless otherwise specified, all results
use histograms with a log transformation applied to the bin counts before analysis.

Planar Projections: We explored two methods of capturing the 3-D structure of linear
and log histograms using multiple 2-D mappings. The first method used 128x128 histograms
of the 2-D projections onto the R-G, R-B, G-B, and (1, 1, 1) planes.

Eigenvector-Based Histogram Slicing: Our second method used slices of the 3-D his-
togram space. Using a randomly selected 100 RAW images from a personal image library of
6k diverse images, we calculated the eigenvectors of the aggregate histogram in both linear
and log RGB space. In both cases, the primary eigenvector tracked intensity, and the results
were similar across multiple subsets. We generated four slices perpendicular to the second
eigenvector, projecting the bins within each slice onto the plane formed by the first and third
eigenvectors. We examined the distribution of pixels along the second eigenvector to select
slices with similar proportions of pixels. Given the central tendency of the distribution, this
led to slice widths of (0.47, 0.03, 0.03, 0.47) for linear, and (0.45, 0.025, 0.025, 0.50) for log.

4 Experiments and Results

We developed our network design using the suggested training set for SimpleCube++, tuning
the network structure and histogram processing methods mentioned in 3.1 using a randomly
selected subset of 1,310 images for a training set and 462 images for a validation set. We then
evaluated the network design on the 462 SimpleCube++ recommended test images, training
the network using all 1,772 available SimpleCube++ recommended training images. We also
evaluated the Gehler-Shi Color Checker and NUS-8 data sets using 3-fold cross-validation.

We used a linear, multi-pass tuning process to develop the LHCC structure. All structural
tuning used the SimpleCube++ data set with four 2D projections, log RGB color space, dark
thresholding, and a log transformation applied to the bin counts, with images downscaled to
0.75 size. The structural tuning explored the complexity of both the per-histogram blocks
and the post-concatenation block, testing numbers of layers and kernel sizes.

The tuning process used stride-2 convolutions to reduce the spatial size of the layers.
After tuning, we fixed the architecture to compare the use of 2x2 max-pooling layers to the
stride-2 convolutions, but found that stride-2 convolutions produced better results. We then
fine-tuned the number of channels per layer and the specific location of the second pooling
layer in the per-histogram blocks. Our final network design is shown in figure 2.
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Figure 2: Diagram of the LHCC network architecture. The network contains four input
convolution stacks, one per histogram. The structure concatenates the outputs of the per-
histogram blocks to pass to the post-concatenation block. The corrected image is generated
by scaling to the 8 bit range, dividing each color channel by its correction value (the "Fully
connected three channel output"), multiplying by the pre-correction maximum green value
divided by the maximum RGB value, and finally converting to 8 bit SRGB.

4.1 Results

We used the Adam optimizer, running for 200 epochs, for all reported results [17]. We tuned
learning rate and batch size separately for linear RGB and log RGB. We also scaled colors
to 16-bits prior to processing and downscaled all input images to 0.75 their original size.
Table 1 shows the results on SimpleCube++. The LHCC network achieves a new state-
of-the-art, with a mean angular error of 1.03° and a worst 25% error under 2.75°. Both
the LHCC using linear RGB and the LHCC using slices of log RGB produce comparatively
excellent results, but do not perform as well as log RGB data with histogram projections.

SimpleCube++ 25% 25%

Method Mean Med Tri Best Worst Parameters
Gray World [31] 318 200 237 - - -
Grey World 20E [31] 306 1.75 2.08 - - -
FFCC (train/test) 264 175 185 0.52 6.35 12,288
FFCC (3-fold) 1.26 0.59 0.69 0.18 3.55 12,288
FC4 (log) [14] [24] 283 1.17 151 0.35 8.31 1,705,284
FC4 (default) [14] [24] 1.65 1.03 1.15 0.32 4.02 1,705,284
Afifi & Brown (SIIE, Cube) [1] 1.98 1.36 - 040 4.64 1,008,044
Afifi & Brown (SIIE, Cube+ ) [1] 2.14 144 - 044 5.06 1,008,044
CCMNet (Cube+) [16] 1.68 1.16 126 0.38 3.89 -
CauNet (Cube+) [18] 1.61 097 1.08 - 4.08 -
GoogLeNet (linear, ours) 1.53 095 1.05 0.25 3.90 6,797,700
GooglLeNet (log, ours) 1.35 075 0.88 0.22 3.52 6,797,700
LHCC (log, slices, ours) 1.12  0.63 0.69 0.19 2.93 490,895
LHCC (linear, proj, ours) 1.11 060 0.66 0.18 2.99 490,895
LHCC (log, proj, ours) 1.03 0.57 0.64 0.18 2.72 490,895

Table 1: Results on SimpleCube++. All results are given in degrees. We used available code
to test FFCC and FC4, since the authors did not originally report results for SimpleCube++.
Afifi & Brown, CCMNet, and CaulNet are shown for Cube or Cube+, which are similar to
SimpleCube++
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To evaluate the impact of log RGB on a semantic network, we also trained a GooglLeNet
on linear and log data [27]. The GoogLeNet achieves excellent performance (with 6M+
parameters), and log inputs work better than linear inputs (even with a network pre-trained
on sRGB ImageNet). But it does not match the performance of the smaller LHCC.

One interesting result is that FFCC showed very different performance between 3-fold
cross-validation and the train/test set splits for SimpleCube++. The result suggests that
FFCC may be easily tunable but not as good at generalizing as the LHCC network.

Gehler-Shi 25% 25%

Method Mean Med Tri Best Worst Parameters
Grey World [4] 6.36 628 6.28 2.33 10.58

Grey World 20E [29] 513 444 462 2.11 9.26

Afifi & Brown (SIIE) [1] 277 193 - 0.55 6.53 1,008,044
Bianco [3] 2.63 1.98 - - -

GoogLeNet [26] 255 169 192 0.39 6.03 6,797,700
CCMNet [16] 223 153 1.62 0.36 5.46 -
FFCC [2] 1.61 086 1.02 0.23 4.27 61,480
FC4 (SqueezeNet-FC) [14] 1.65 1.18 127 0.38 3.78 1,705,284
TLCC [28] 1.51 098 1.07 0.33 3.52 6,406,549
CLCC [19] 144 092 1.04 0.27 3.48 -
C4 (SgNet) [32] 1.35 088 099 0.28 3.21 1.2M+
GooglLeNet (log, ours) 232 164 179 045 5.27 6,797,700
LHCC (pretrained, linear, ours) 226 170 1.81 046 5.15 490,895
LHCC (pretrained, log, ours) 1.96 131 142 0.36 4.74 490,895

Table 2: Results Gehler-Shi. Our log GooglLeNet results are on a randomly selected 70%
training set and 30% test set. All other results are the averages of 3-fold cross-validation.

For Gehler-Shi and NUS-8, due to the small amount of data in each data set, we ini-
tialized the LHCC using the pre-trained best network from the SimpleCube++ data set and
trained an additional 200 epochs. The pre-trained network matched the network’s color space
(e.g. the log RGB data results used a SimpleCube++ network pre-trained on log RGB data,
and linear data results used a SimpleCube++ network pre-trained on linear data).

NUS-8 25% 25%

Method Mean Med Tri Best Worst Parameters
Grey World [2] 459 346 381 1.16 9.85 -
Grey World 20E [2] 336 270 280 0.89 7.14 -
CCMNet [16] 232 171 183 0.53 5.18

FC4 (SqueezeNet-FC) [14] 223 157 172 047 5.15 1,705,284
Afifi & Brown (SqNet) [1] 2.05 1.50 - 052 4.48 1,008,044
FFCC [2] 199 131 143 035 4.75 61,480
C4 (SqNet) [32] 196 142 153 048 4.40 1.2M+
TLCC [28] 1.61 127 133 044 3.35 6,406,549
LHCC (pretrained, linear, ours) 209 151 163 049 4.68 490,895
LHCC (pretrained, log, ours) 205 146 158 046 4.64 490,895

Table 3: Results on NUS-8. All results are the averages of a geometric mean of a 3-fold
cross-validation per-camera.

LHCC returns competitive results for both data sets as seen in tables 2 and 3, with a
mean angular error near 2° and a worst 25% error under 5°. Notably, we achieve competitive
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Original Ground Truth LHCC FC4 Gray World
Error 0.02° 2.53° 0.96°

Error

1.97° 2.64° 5.45°

Error 2.94° 2.21° 9.55°
Figure 3: Qualitative results for three images in the SimpleCube++ data set, with angular

errors from various models’ estimated corrections. Originally linear images are corrected to
sRGB for easier visualization.

results with fewer parameters than any model besides FFCC, with half or fewer parameters
compared to other state-of-the-art models.

Importantly, across all data sets we see that an LHCC network trained on log RGB data
outperforms an equivalent LHCC network that uses linear data, suggesting the value of a log
RGB transformation before training.

4.2 Ablation Study

As mentioned in section 3.1, in histograms the difference between bin counts can vary
greatly, hiding smaller structures. To address this, we compared five methods of reduc-
ing the range of histograms bins: thresholding/clipping the upper bound of the bin counts,
a hyperbolic tangent, and a log transformation. We also tested applying no transform as a
control (the "linear" test). All tests used the same learning parameters and log RGB input
data from SimpleCube++.

Table 4 shows that all of the proposed methods of reducing the range of bin counts im-
prove training when compared to our linear control (without thresholding). The best results
by far come from using a log transformation on the bin counts, which results in superior
performance to any of the alternative methods.
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SimpleCube++ 25% 25%
Method Mean Med Tri  Best Worst
linear 128 064 074 0.21 3.46

clipped (1023) 126 068 0.76 0.20 3.41
clipped (255) 1.18 064 071 022 3.09
tanh 1.12 068 0.73 0.20 2.89
log 1.03 057 0.64 0.18 2.72

Table 4: Ablation study on normalizing histogram bin values. The values next to "clipped"
indicate the maximum allowed bin value, if relevant.

5 Discussion and Summary

In this paper, we present a novel, fully convolutional, histogram-based neural network that
uses multiple 2-D projections of the 3-D log RGB histogram of an image to generate state-
of-the-art color constancy results.

As seenin tables 1, 2, and 3, both semantic and histogram-based networks using log RGB
inputs outperform an equivalent network that learns using linear inputs. This is the first time
that result has been demonstrated for the task of color constancy. The LHCC network also
outperforms the other two histogram-based networks that use log of chromaticity.

In log space, the reflectance anchors the body reflection cylinder, and illumination change
occurs in a fixed direction for all materials. Our results support the hypothesis that giving a
network direct access to log RGB data enables it to more effectively learn the relationship
between the image or histogram properties and the proper color correction factors.

The benefits of using log RGB data support our second primary result, which is that our
simple LHCC network is outperforming much larger models. Compared to networks with
more than 2-10x the number of parameters, the LHCC network delivers either state-of-the-art
or competitive error metrics at a much smaller size.

Finally, in table 4 we show the importance of details such as using an appropriate sat-
uration transform on the histogram bin counts in order to preserve and highlight smaller
details in the histogram. Using a log transform on the bin counts was a significant part of the
improvement in performance achieved by LHCC.

Anyone working on color constancy should consider the potential benefits of using the
information accessible in log RGB histograms, especially vision researchers and developers
working on edge devices with easy access to linear sensor data. If using histograms, they
should also carefully consider how to handle the range of values in the histogram buckets to
ensure that the potentially large differences in bin counts don’t overwhelm the fine histogram
structures that represent important information about the image.
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