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ABSTRACT

Large-scale pretrained models, especially those trained from vision-language data
have demonstrated the tremendous value that can be gained from both larger train-
ing datasets and models. Thus, in order to benefit from these developments, there
is renewed interest in transfer learning and adapting models from large-scale gen-
eral pretraining to particular downstream tasks. However, the continuously in-
creasing size of the models means that even the classic approach of finetuning
is becoming infeasible for all but big institutions. Prompt leaning has emerged
as a flexible way to adapt models by solely learning additional inputs to a model
that is kept frozen, but so far performances remained inferior to finetuning. To
address this, we propose the Prompt Generation Network (PGN) that generates
input-dependent prompts by sampling from a learned library of tokens. We show
the PGN is effective in adapting pretrained models to various new datasets. It
surpasses previous prompt-learning methods by a large margin and even full-
finetuning on 5 out of 12 datasets while requiring 100x less parameters. PGN
can even be used for training and inferring on multiple datasets simultaneously
and learns to allocate tokens between domains. Given these findings, we conclude
that PGN is a viable and scalable approach for downstream adaptation of frozen
models.

1 INTRODUCTION

Large-scale pretrained models, such as those obtained from self-supervised or image-text training
have shown remarkable performance gains for various visual tasks. Particularly models such as
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) have demonstrated that large and diverse
multi-modal datasets can yield models that exhibit novel abilities in robustness and few- and zero-
shot learning. However, the requirements in terms of dataset size and compute infrastructure are
exceedingly prohibitive, such that these models are and will likely remain limited in terms of their
diversity and availability. Therefore, in order to still benefit from the capabilities of such models,
multiple approaches have recently been developed.

The classic approach of finetuning the whole or parts of the model has been carried over to these
models, with innovations such as ensembling (Wortsman et al., 2022a), or limited finetuning Cai
et al. (2020); Jia et al. (2022). Yet, both the transfer learning paradigm, as well as these novel
approaches entangle adaptation and computation phase, reducing the applicability in production
settings or where the pretrained model is optimized in hardware. Furthermore, these approaches
also face the risk of catastrophic forgetting (Kirkpatrick et al., 2017), whereby models potentially
unlearn multiple useful properties stemming from the large-scale training.

An alternative strategy that has recently gained more importance is learning only new inputs to the
frozen models, called prompts. These are typically learned per domain and downstream task and
have shown promising results for adapting to image domains (Bahng et al., 2022) or to video (Ju
et al., 2022; Luo et al., 2022). However the resulting performance often fall short compared to
finetuning.

In this paper we argue that the main reason for this shortfall is the arbitrary definition of a domain and
with it, a limited modeling capacity, as prompts are shared and always used as inputs. In contrast,
we propose a new method that allows to adapt to every single input image via a Prompt Generation
Network (PGN). This model learns to generate prompts by combining items from a common learned
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library of tokens, which allows for efficient, yet flexible modeling capabilities. Furthermore, as
these prompts’ purpose is to only aid the large-scale model, the PGN can be kept lightweight. On
a benchmark covering 12 datasets, we show that our PGN approach achieves performances that can
match those of fully finetuning models, while being two orders of magnitude more efficient in terms
of additional parameters.

Overall, this paper makes three main contributions:

• We develop a simple, yet effective framework for learning input-dependent visual prompts
via a Prompt Generation Networks that combines items from a Token Library

• We provide extensive ablations and comparisons that demonstrate the generalizability of
the proposed method across 12 datasets, architectures and settings such as multi-dataset
inference

• Finally, via quantitative and qualitative analyses, we showcase how our method allows a
“division of labor” between the frozen vision transformer and the PGN

2 RELATED WORKS

2.1 LARGE-SCALE PRETRAINED MODELS

Multi-modal Pretraining. While alignment of modalities as a learning signal has been proposed
early on (de Sa, 1993), Srivastava & Salakhutdinov (2012) were the first to train a Deep Boltzmann
machine on unified image-text representations for image classification. Learning joint representa-
tions was further popularized in the context image captioning, using an encoder-decoder pipeline
with a common embedding space for the image and text features (Kiros et al., 2014). Most mod-
ern works in vision-language modeling are inspired by the recent trend of large-scale pretraining,
involving data-hungry transformer architectures (Vaswani et al., 2017) fed by web-scale datasets.
Two recent approaches are CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), which use a
contrastive objective to jointly optimize an image and text encoder to align the embeddings and are
trained on datasets with hundreds of millions of image-text pairs.

Visual-only Pretraining. Another source for obtaining strong visual encoders is to apply self-
supervised learning on visual inputs. Here, typically a pretext task such as clustering (Caron et al.,
2018; Asano et al., 2020) or contrastive discrimination (Wu et al., 2018; He et al., 2020; Chen et al.,
2020) is used to train on large datasets without any annotations. More recently, DINO (Caron et al.,
2021), based on training an L2 loss between a fast-updated student network and a slowly-updated
teacher network, has shown the potential for training Vision Transformers architectures (Dosovitskiy
et al., 2020) using self-supervision.

2.2 ADAPTATION METHODS

While pretrained vision models generally need to be finetuned to any specific downstream task,
vision-language models can perform zero-shot transfer by prompting the text encoder to perform
downstream tasks. However, for most datasets there is still a significant performance gap with
respect to full-finetuning, which is computationally expensive and yields models that lack robustness
against distribution shift. A range of alternative methods have been proposed to address these issues.

Adapters and partial finetuning. Inspired by previous works in NLP (Houlsby et al., 2019; Pfeif-
fer et al., 2020), lightweight feature adapters (made of trainable parts in between frozen ones) have
shown performance gains (Gao et al., 2021; Zhang et al., 2021). Requiring very few additional pa-
rameters, only finetuning the bias parameters of pretrained models has also been proposed Zaken
et al. (2021); Cai et al. (2020). In contrast, (Jia et al., 2022) learns both additional inputs to mul-
tiple layers in a pretrained vision transformer and also finetunes a linear classifier on top. Another
finetuning-based approach proposed in (Wortsman et al., 2022b) is to ensemble the weights between
zero-shot and finetuned models and (Zhang et al., 2020) which trains additional networks that are
fused via summation. Specific to vision-language models, (Zhou et al., 2022b) learn an adaptation
network between CLIP’s vision and text encoders.
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Figure 1: We propose the Prompt Generation Network (PGN), a simple yet effective method
that generates prompts conditioned on the input images that benefits the domain adaptation process,
while keeping the whole pretrained transformer frozen. (a): the overall prompt learning pipeline
including PGN, denoted by fθ,L: the learned prompt vectors are fed into the pretrained transformer
encoder together with image patches for the task or domain of interest. (b): the detailed structure
of PGN, a lightweight neural network gθ learns probability distributions to select multiple prompt
vectors from a Token Library L.

While our goal is also to adapt a pretrained model, we aim to separate the adaption stage from the
computation stage. This has advantages when the frozen model is either hard to interfere with (e.g.
application specific integrated circuits, or served via an API) or sensitive to changes (e.g. due to
quantization).

Input prompt learning and reprogramming. Optimizing solely in the input-space, prompt learn-
ing originates from language modeling in NLP and is a lightweight approach to adapting a model
to perform a downstream task (Radford et al., 2019; Brown et al., 2020; Li & Liang, 2021). For
computer vision, initial efforts focused on learning continuous prompts (as opposed to prompt sen-
tences/words) for the text encoder of pretrained vision-language models to perform image (Zhou
et al., 2022a; Yao et al., 2021) and video tasks (Ju et al., 2022).

Most related to our work is the concurrent work of Bahng et al. (2022) that proposes visual prompt-
ing through the addition of learnable pixels, effectively learning prompts in the data space. This is
the same setting as adversarial reprogramming (Elsayed et al., 2018; Kloberdanz et al., 2021), where
pretrained CNNs are repurposed to classify images from different datasets, or even achieve entirely
different goals such as counting. The reprogramming is restricted to transformations of the input,
making it distinct from classic transfer learning.

Although these works show significant gains, they do not match classic model adaptation techniques
like finetuning and linear probing. We aim to bridge the gap by learning more flexible input prompts
that, unlike previous works, are adapted to each image.

3 METHODS

The key idea of our method is to generate input-dependent visual prompts that benefit the domain
adaptation process. In this section, we first briefly review the recent prompt learning methods in
Section 3.1, then introduce the proposed Prompt Generator Network in Section 3.2.

3.1 REVIEW OF PROMPTING LEARNING METHODS

In NLP, prompt learning offers a lightweight approach to tune large-scale pretrained models
for performing downstream tasks. Let ΦT (.) denote the pretrained language model and xT =
[a1, a2, ..., an] denote the input language tokens. Traditionally, the model is trained to produce a
latent language embedding for the given input as zT = ΦT (xT ;CLS), where ‘;’ denotes concate-
nation and CLS is the special token for classification. The latent embedding zT can be used for
downstream tasks. In order to adapt the model on different tasks or different datasets, one would
have to finetune the large-scale pretrained model ΦT , which is potentially very resource demanding
and could be infeasible for models with billions of parameters.
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As its name suggests, prompt learning provides a set of learnable vectors hT = [h1
T , ..., h

k
T ] called

prompt vectors, that are fed to the pretrained model and encourage it to produce desirable outputs.
Formally, the prompt learning process can be written as

ẑT = ΦT (hT ;xT ;CLS), (1)

The prompted language embedding ẑT can also be used for downstream tasks. Due to the flexibility
of the prompt learning method, one can adapt the model on new tasks or new datasets by only
training the lightweight prompt vectors hT , rather than finetuning the heavy pretrained model ΦT .
This method was originally proposed in the NLP community (Li & Liang, 2021; Lester et al., 2021),
and it was later used to prompt the language branch in pretrained visual-language models Ju et al.
(2022); Zhou et al. (2022a).

Recently, the prompt learning technique has also been applied to large-scale pretrained visual mod-
els. Similarly, let ΦV (.) denote the pretrained visual model – typically a variant of the Vision
Transformer (Dosovitskiy et al., 2020), xV = [E(c1), E(c2), ..., E(cm)] denote the encoded input
image or video patches, and hV = [h1

V , ..., h
k
V ] denote the visual prompt vectors. Visual prompt

learning can be formalized as
ẑV = ΦV (hV ;xV ;CLS). (2)

The previous works (Jia et al., 2022; Bahng et al., 2022) apply visual prompt learning in this way.
Note that the prompt vectors hV in (Jia et al., 2022) are in the feature space whereas those in (Bahng
et al., 2022) are in the pixel space.

3.2 PROMPT GENERATOR NETWORK

Although learning prompt vectors brings flexibility to the pretrained model, a key limitation of
the classic prompt learning method is that the prompt vectors are shared within the dataset and
task. In other words, the prompt vectors are conditioned on the domain. However, what exactly
constitutes a domain is somewhat arbitrary, e.g., ImageNet both contains fine-grained distinctions
(such as different dog breeds) and very course ones (such as mushroom). Having a single set of
learned vectors for adaptation therefore results in modeling capacity being wasted on items that
might already be well encoded. In this section we introduce our Prompt Generator Network as a
more flexible alternative to this.

Fig. 1 shows an overview of our method. Given the input image Ii ∈ R3×H×W and the pretrained
vision model ΦV , we first cut the image to s× s patches {c1, c2, ..., cH′×W ′}, where cj ∈ R2×s×s,
H ′ = H/s and W ′ = W/s, and then encode with a linear layer E(.) To construct the visual inputs
xV = [E(c1), E(c2), ..., E(cH′×W ′)]. Rather than introducing a set of shared prompt vectors as
described in Section 3.1, we propose to use a set of input-dependent prompt vectors. Formally, we
use a function f(.) to learn the dependency

ĥi
V = f(Ii), (3)

where the function f(.) is typically learned by a neural network. While it is possible to directly
transform the inputs continuously to the prompt vectors, in practice this results in a high number of
parameters due to the fully-connected layers being proportional to the large input dimensionalities
of transformers.

Instead, we propose to use a Token Library L ∈ RN×C that consists of N learnable feature vectors
with channel dimension C. Compared to works that use memory (Sukhbaatar et al., 2015; Han
et al., 2020; Kumar et al., 2016), the Token Library’s purpose is not to learn characteristics of the
dataset, but instead to steer the pretrained model towards a certain dataset, therefore saving modeling
capacity. The prompt generation network learns to generate K prompt vectors ĥV = [ĥ1

V , ..., ĥ
K
V ],

each of which is a combination of the feature vectors from the Token Library L. In detail,

ĥi
V = fθ,L(Ii) = Softmax(gθ(Ii)) · L ∈ R1×C , (4)

where the function gθ(.) learns a mapping {R3×H×W 7→ R1×N}, learned by a lightweight neural
network parameterized with θ. Finally all prompt vectors are fed into the frozen transformer encoder,

ẑV = ΦV (ĥV ;xV ;CLS). (5)

The prompted visual features ẑV act as input to a classifier for downstream classification tasks.
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. In our experiments we cover 12 public image datasets: CIFAR100 & CI-
FAR10 (Krizhevsky et al., 2009), Oxford Flowers (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), EuroSAT (Helber et al., 2019), SUN397 (Xiao et al., 2010),
UCF101 (Soomro et al., 2012), SVHN (Netzer et al., 2011), Oxford-IIIT Pets (Parkhi et al., 2012),
DTD (Cimpoi et al., 2014), RESISC (Cheng et al., 2017) and CLEVR (Johnson et al., 2017). Out
of these, we chose CIFAR100 and SUN397 for ablations in Section 4.3, as they vary in resolution,
difficulty and the degree of spatial distribution of relevant image features. Please refer to Appendix
for the statistics for each dataset.

Architectures. We use the pretrained CLIP (Radford et al., 2021) weights (ViT-B-32) and keep it
frozen during our experiments. In the PGN, we experiment with the lightweight ResNet-based ar-
chitectures (He et al., 2016), namely ResNet10 and ResNet18. We obtain the ResNet10 architecture
by reducing the layers at each residual block from ResNet18 and also reducing the depth of the first
layer to 16. Please refer to Appendix for the architectural details.

Training details. We train the PGN with a learning rate of 0.1 and apply a cosine decay learning
schedule ending at zero learning rate with a linear warmup for the first 50 epochs. We use SGD
optimizer with 0.9 momentum. Except when specified, we use a batch size of 128 images on one
Nvidia-1080TI GPU, and the network is trained for 500 epochs by default in Section 4.2 and 4.3.
Inspired by the concurrent work (Bahng et al., 2022) that trains for 1500 epochs, in Table 5 we train
the network for 1000 epochs and we find extra epochs do not bring significant performance gain.

4.2 PROOF OF PRINCIPLE

Table 1: Comparison of prompting methods. We show
performances of prompting CLIP ViT-B32 using input
independent prompts (IIP), Visual Prompts (VP) (Bahng
et al., 2022) and our PGN. The top row shows the super-
vised performance of the PGN backbone. We find that
our PGN outperforms existing methods with the help of a
light-weight and otherwise not strong backbone.

Method Accuracy

ResNet-10 superv. 63.7

CLIP + TP 63.1

CLIP + TP + IIP 73.5
CLIP + TP + VP 75.3
CLIP + TP + PGN (Ours) 79.3

Figure 2: Feature similarities. We
show the mutual information between
the clustered representations of the var-
ious components and the ground-truth
labels (details in Appendix). PGN
learns very different embeddings to
CLIP but when combined achieves
strong alignment with the ground-truth
labels.

In this section we investigate the basic feasibility of our proposed method for generating input-
dependent prompts via PGNs. For this, in Table 1, we compare the results of prompting a CLIP
ViT-B32 model to correctly select the right text prompts (TP) that are automatically generated as
“This is a photo of a [class name]”. We observe that compared to the zero-shot baseline of CLIP,
training a common set of input independent tokens (IIP) either directly or as pixel based visual
prompts (VP) already adds around 10% in terms of performance. Despite these large gains, our
proposed method further surpasses these by 4-5%. In the first row we also show that the supervised
performance of our light-weight ResNet10 which we use as the backbone to the PGN on its own is
relatively weak, and does not even surpass the basic CLIP+VP baseline. Yet, when utilised in our
method the two models symbiotically increase the performance to beyond each individual one.

This is further demonstrated in Fig. 2, where we compare the similarities of the representations of
the various components. For this we cluster the outputs of each visual encoder (PGN, CLIP and
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Table 3: Ablations for our PGN method. We vary the number of prompts provided to the frozen
model, the size of the Token Library and the PGN backbone. Default settings are in gray.

(a) Number of prompts.

Num. CIFAR100 SUN397

1 75.8 68.3
4 77.8 69.6
8 77.9 70.6

16 78.3 70.0
64 77.3 68.9

(b) Size of the token library.

Size CIFAR100 SUN397

8 75.3 69.0
16 76.4 69.6
64 77.9 70.6
256 78.4 70.6
1024 78.6 69.9

(c) PGN backbone.

Model (resolution) CIFAR100 SUN397

IIP 72.1 69.6
MLP (10×10) 73.5 69.6
ResNet10 (64×64) 77.9 70.6
ResNet10 (224×224) 79.3 70.6
ResNet18 (224×224) 79.3 69.6

CLIP+PGN) unsupervisedly and measure the pairwise alignment using normalised mutual informa-
tion (see Appendix for details). We find that PGN+CLIP’s features are closest to the ground-truth
(NMI of 70.1%) compared to both PGN (29.5%) and standalone CLIP (58.1%), confirming the re-
sults from Table 1. The low performance of only the PGN also demonstrates that it is not the PGN
that is doing the “heavy-lifting”, as its outputs are least aligned to the ground-truth labels. Instead,
the fact that PGN and CLIP’s outputs share the lowest similarity of only 27.5%, the superior perfor-
mance of the combined model might be a result of the PGN learning features that are quite dissimilar
and therefore more informative to the frozen CLIP model.

4.3 ABLATION STUDIES

Next, we ablate and analyze the various choices of the PGN architecture and setting. We conduct
ablation studies on CIFAR100 and SUN397 in Table 3. Unless otherwise stated, we learn 8 prompts
and a Token Library of size 64 to speed up computations.

Number of Prompts. In Table 3a, we vary the number of prompts that the vision transformer
receives as output from the PGN. We find that increasing the number of prompts generally yields a
better performance, yet, the gains decrease when moving beyond 4 prompts. This shows that even a
modest number of 4-8 additional tokens – when added to the 49 spatial plus 1 CLS token – can yield
significant benefits.

Token Library Size. Next, in Table 3b, we compare the size of the Token Library’s number of
items. We find that larger Token Library generally leads to better performance, although no further
improvement is observed beyond 256 tokens. We conjecture the additional library items beyond 256
tokens only learn redundant information, therefore do not benefit the performance.

Architectures. In Table 3c, we ablate the backbone used for the PGN with input-independent
prompts (IIP), where the prompts are simply fixed items in the Token Library. With this as a base-
line, we compare against input-dependent prompting methods including a 2-layer MLP operating on
the center 10×10 pixels of an image, a ResNet10 at resolutions of 64×64 and 224×224, as well as
a heavier ResNet18 at resolutions of 224×224. First, we observe that even a simple model such as a
2-layer MLP obtains a small performance benefit over the IIP. This might be explained by IIP being
a strict subset of the input-dependent methods, as these could zero-out the input and instead supply
constant prompts. The benefits of input-dependency is further demonstrated by using convolutional
neural networks as backbones with gains of up to +5.8% for CIFAR100 (77.9 vs. 72.1). Increas-
ing input resolution from 64 to 224 also slightly improve +1.4% accuracy for CIFAR100. Finally,
we observe that the overall performance saturates even when using a ResNet18 compared to the
ResNet10, suggesting that the PGN backbone can be lightweight and that the method automatically
divides the labor between fine-grained recognition and providing the right prompts as cues.

Token Library vs Direct Learning. In Fig. 3 and Table 2 we study the approach of obtaining the
prompts. We compare our token library (TL) with the more direct approach that obtains the prompts
through a linear transformation of the image features. While from Table 2, we observe that both
methods can be made to achieve similar performances, Fig. 3 clearly demonstrates the superiority
of the TL in terms of parameter efficiency.

Scaling to different frozen transformer models. Finally, in Table 4, we explore the use of dif-
ferent pretrained ViT backbones, from supervised training (Dosovitskiy et al., 2020) and from
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Figure 3: Parameter efficiency. We vary the number of gener-
ated tokens. A Token Library achieves higher performances at
significantly less parameters compared to obtaining prompts di-
rectly. The library size used here is 8× the number of prompts.

Table 2: Similar performances.
The Token Library (TL) achieves
comparable results compared to
direct generation of prompts, but
only requires a fraction of the
added parameters. Reported re-
sults are obtained for 8 prompts
and a token library of 64.

Direct TL

CIFAR100 79.0 79.3
SUN397 70.8 70.6
#parameters 3.2M 0.3M

Table 4: Different pretrained models.
We compare using PGN with two other
ViT-B32 backbones from self-supervised
DINO (Caron et al., 2021) and from super-
vised training Dosovitskiy et al. (2020). Best
results for each frozen backbone bolded.

DINO ViT sup.

IIP PGN IIP PGN

CIFAR100 13.2 53.0 18.8 50.7
SUN397 2.6 14.2 2.3 3.2
EuroSAT 85.8 94.6 91.9 96.1

Figure 4: Attention value histograms. We show
the individual attention values from the CLS token
to the supplied prompts of PGN and IIP. We find
that while PGN has an overall lower average atten-
tion, the input-dependency successfully yields a
wider distribution in adapting the original model.

self-supervised training using DINO (Caron et al., 2021). First, we find that generally the per-
formances are lower compared to those obtained from the CLIP backbone in Table 5. This means
that adapting these networks are more challenging, potentially owing to the vastly larger pretraining
dataset of CLIP. Second, we find that both IIP and PGN struggle with adapting the backbones to
the SUN397 dataset. This might be explained by: (i) the difference in image contents – while SUN
contains scene images, the pretraining datasets of the supervised ViT and DINO are strongly object-
centric (Kuznetsova et al., 2020) – and (ii) the relatively few image per class (≈190). Third, we find
that the PGN approach vastly outperforms the baseline IIP approach in adapting these models to the
datasets, e.g., showing gains of 40% for CIFAR100.

4.4 LARGE-SCALE COMPARISONS

Table 5: Performance across 12 datasets. We compare using CLIP with text prompting (TP),
visual prompting (VP), linear or full-finetuning (ft.) and our PGN method. The green shade
indicates cases where PGN outperforms or matches full-finetuning performance the bolding refers
to best performance on a given dataset. We also report the additional number of parameters of the
visual encoder for these 12 experiments for each configuration.

Method CIFAR100 CIFAR10 Flowers Food EuroSAT SUN UCF SVHN Pets DTD RESISC CLEVR Avg. Σ params

CLIP+TP 63.1 89.0 61.9 79.8 40.0 60.0 59.9 5.1 85.9 43.0 42.4 20.2 54.2 -
+ VP 75.3 94.2 70.3 78.9 96.4 60.6 66.1 88.4 85.0 57.1 84.5 81.4 78.2 0.94M

+ PGN (ours) 79.3 96.1 94.0 82.5 98.0 70.9 77.6 94.2 91.5 71.5 92.1 95.1 86.9 12.4M

Linear ft. 80.0 95.0 96.9 84.6 95.3 75.0 83.3 65.4 89.2 74.6 92.3 66.0 83.1 0.75M
full-ft. 82.1 95.8 97.4 80.5 97.9 64.0 80.9 95.7 88.5 72.3 93.3 94.4 86.9 1032M

We next compare prompt learning with PGNs to other domain adaptation techniques on a wide
range of vision datasets. Based on the findings of our ablation study, we choose the ResNet10 as the
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PGN’s backbone, outputting 8 prompts from a Token Library of size 256 feeding into a pretrained
CLIP ViT-B/32 image encoder. The results are shown in Table 5 and are directly comparable to the
concurrent work of Bahng et al. (2022) on visual prompts (VP), from which we adapted the results
of the first three rows. From Table 5, we first find that both linear finetuning, full-finetuning and
our method achieve the best performances on 4 out of 12 datasets each. However, when comparing
the overall averaged accuracies, we find that our method achieves 86.9%, matching the performance
of the full-finetuning adaptation, and surpassing both VP and linear ft by 8-3%. In the last column
of Table 5, we show the number of additional parameters required for adapting to each dataset.
From this we find that our PGN method requires almost two orders of magnitude less parameters
than full-finetuning, while retaining the same overall performance.

4.5 EFFICIENT MULTI-DATASET PGN

Table 6: Training a multi-dataset PGN. Here we
show the result of adapting and inferring jointly (J)
over multiple datasets compared to individual (I), per-
dataset training (for PGN) and evaluation. While giv-
ing more text prompts (TP) for joint inference leads to
a strong decrease in accuracy, joint training of the PGN
retains a strong performance while reducing the num-
ber of additional parameters by 75%.

Method EuroSAT UCF Pets RESISC Avg. ∆ Σ params

CLIP+TP (I) 40.0 59.9 85.9 42.4 57.1 -7.7% -
CLIP+TP (J) 4.4 59.7 85.8 47.7 49.4 -

+ PGN (I) 98.0 77.6 91.5 92.1 89.8 -3.7% 5M
+ PGN (J) 96.9 72.7 89.0 85.7 86.1 1M

Figure 5: Automatic domain discovery.
t-SNE visualisation of PGN outputs. PGN
trained on a mixture of datasets automati-
cally allocates the tokens in a manner that
recovers the individual training domains.

Encouraged by the large-scale comparisons of the earlier section, we investigate whether PGNs can
be made even more efficient. For this, we train a PGN on multiple datasets at the same time. More
specifically, we retain the same setting as in Section 4.4 and train it with batches that contain sam-
ples from the four datasets in Table 6. The model is thus forced to allocate the token library items
in a manner that best supports this task and the overall number of additionally adapted parameters is
reduced by 75%. From Table 6, we find that despite this reduction in parameters, the overall perfor-
mance only decreases by a small amount of 3.7%, despite the fact that the classification problem is
now 193-way and thus much more difficult.

In Fig. 5 we show a t-SNE visualisation of the CLIP+PGN model that was trained jointly on four
datasets. First, we find that the PGN learns features that are well-correlated with the domains. This
is particularly interesting as the model did not receive any signal with regards to individual items’
dataset origin and shows that such a procedure could be used for adapting to mixed domain or
unsorted datasets. Second, we observe that some domains contain images that have similar PGN
outputs, notably between UCF and Pets. These are potentially explained by overlaps in depicted
objects, e.g., UCF contains classes such as “walking a dog”, while Pets contains multiple dog classes.

4.6 QUALITATIVE ANALYSIS

From Table 1, we observed that the CLIP zero-shot and the PGN backbone model’s performance
on their own are low with 63-64%. However, when combined, we reach performance increases of
+15% yielding up to 79% on CIFAR100. In this section, we analyse how the simple mechanism
behind PGN is allowing the combined model to achieve superior performances.

What do the individual Token Library items stand for? First we analyse what the individual
learned items in the Token Library stand for. For this we pass the validation sets through the trained
PGN model and pick individual tokens that we wish to visualize. We then pick the top four input
samples that have the highest softmax values for the selected item. The result is shown in Fig. 6
for three datasets. We find that while some tokens are fairly category specific, such as those for a
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Figure 6: Token Library example items. We show 4 samples that maximally activate one of
three selected items in the token library for three datasets. Each row in the grid corresponds to one
token library item. We find that the items can stand for whole objects such as apples and trees for
CIFAR100, and also for lower level features such as light warmth or net structures as in UCF101.

tree or an apple, some cover much broader categories such as lighting conditions or even geometric
structures. Note however that the PGN is not doing the heavy-lifting in terms of classifying the
images by itself, as its output is not well-aligned with the ground-truth, as demonstrated in Fig. 2. It
rather supplies the frozen transformer model with orthogonal information that helps the task.

Figure 7: Modification of CLS attention maps. We show the attention map of the CLS token for
various inputs (left) with the spatial patches for both the original CLIP model’s (middle) and the
PGN-modified CLIP’s final layer (right). Below the PGN attention map, we show the attention to
PGN’s additional prompts. We observe both the modification of the attention map as well as the
diverse activation patterns of the supplied tokens.

How is the computation changed by PGN prompts? Next, we analyse the effect of the PGN
prompts to the internal computations of the frozen vision transformer. In Fig. 7, we visualize the
CLS token’s attention map at the final layer of the transformer with or without our PGN. Even
though we only show the effect of the prompts on the last layer’s attention map, we still find a
strong effect of the PGNs additionally supplied prompts. While the effect is not interpretable for
low-resolution datasets such as CIFAR, for Pets and Resisc we observe a strengthened focus on the
object vs the background. We also show the attention values of the CLS to the 16 supplied prompts
below the PGN-CLIP attention maps. A strong variance between images is seen, demonstrating that
the method indeed learns and leverages the input-dependency of the prompts that are supplied to the
frozen model.

5 DISCUSSION AND CONCLUSION

We propose Prompt Generator Network (PGN), a simple and effective framework for learning input-
dependent visual prompts. Our method is parameter-efficient by leveraging a Token Library from
which tokens are combined to yield the prompts using a lightweight ResNet. We demonstrate that
PGN can be used to adapt CLIP, surpassing previous methods and even matching and exceeding
the results of full-finetuning of the visual encoder, despite requiring two orders of magnitude less
number of adapted weights. Finally, we have demonstrated that PGN can be a scalable method for
generic adaptation of frozen visual transformers by training them with a mixture of datasets.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous clustering
and representation learning. In ICLR, 2020.

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
for adapting large-scale models. arXiv:2203.17274, 2022.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
ponents with random forests. In ECCV, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, 2020.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for
efficient on-device learning. In NeurIPS, pp. 11285–11297, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In ECCV, pp. 132–149, 2018.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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APPENDICES

A ADDITIONAL DETAILS

Our code and models will be published online.

A.1 DATASETS

Table 7 gives an overview of the downstream datasets used for the evaluation of our method, includ-
ing the text prompt templates used to generate classifiers for CLIP.

Table 7: Description of the datasets and the corresponding text prompt used for CLIP. Table adapted
from Bahng et al. (2022).

Dataset Train Size Validation Size Test Size Classes Text Prompt

CIFAR100 50,000 - 10,000 100 “This is a photo of a { }”
CIFAR10 50,000 - 10,000 10 “This is a photo of a { }”

Flowers102 4,093 1,633 2,463 102 “This is a photo of a { }”
Food101 50,500 20,200 30,300 101 “This is a photo of a { }”
EuroSAT 13,500 5,400 8,100 10 “This is a photo of a { }”
SUN397 15,888 3,970 19,850 397 “This is a photo of a { }”
UCF101 7,639 1,898 3,783 101 “This is a photo of a { }”
SVHN 73,257 - 26,032 10 “This is a photo of a { }”

OxfordPets 2,944 736 3,669 37 “This is a photo of a { }”
DTD 2,820 1,128 1,692 47 “This is a photo of a { }”

Resisc45 18,900 6,300 6,300 45 “This is a photo of a { }”
CLEVR/count 70,000 - 15,000 8 “This is a photo of { } objects”

A.2 EXPERIMENTAL SETTINGS

Table 8: Experimental settings for each of our tables and figures. (*) In Table 1, the reported numbers
for VP do not come from our own experimentation, hence our settings do not apply.

Table/Figure Epochs Number of prompts TL Size PGN resolution

Table 1 1000* 16 256 224× 224
Table 2 500 8 64 64× 64
Table 3 500 - - -
Table 4 500 16 256 224× 224
Table 5 1000 16 256 224× 224
Table 6 500 16 256 224× 224
Figure 2 1000 16 256 224× 224
Figure 3 500 8 64 64× 64
Figure 4 1000 16 256 224× 224
Figure 5 1000 16 256 224× 224
Figure 6 1000 16 256 224× 224
Figure 7 1000 16 256 224× 224

A.3 ARCHITECTURES

In Table 9, we show the details of ResNet10 architectures.

A.4 FEATURE SIMILARITIES COMPUTATION

For Fig. 2, we embed the validation set of CIFAR-100 using the three visual encoders of PGN (only),
CLIP, and PGN+CLIP. For this we cluster the features into 100 clusters using k-means. After this,
the representations can be easily compared with each other using the normalised mutual information
score.
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Table 9: The structure of ResNet10, which is modified from ResNet18 to be more light-weight.
Modifications are marked in red. Note that the final classification layer is omitted.

stage specification output sizes
H ×W × C

input data - 2242 × 3

conv1
7× 7, 16
stride 2, 2

1122 × 16

pool1
3× 3, 16
stride 2, 2

562 × 16

res2

[
3× 3, 16
3× 3, 16

]
× 1 562 × 16

res3

[
3× 3, 32
3× 3, 32

]
× 1 282 × 32

res4

[
3× 3, 64
3× 3, 64

]
× 1 142 × 64

res5

[
3× 3, 128
3× 3, 128

]
× 1 72 × 128

pool2
7× 7, 128
stride 1, 1

12 × 128

B DETAILS OF FEATURE SIMILARITY ANALYSIS

In the NMI analysis in Section 4.2 and Fig. 2, we measure the pairwise alignment between the
outputs of the visual encoders we use and the ground truth. These are: the frozen CLIP model’s
visual encoder that outputs CLS embedding, the trained PGN model that outputs prompts (the ĥV

in Eq. (5)), and the combined CLIP+PGN model which uses PGN prompts to modify CLIP’s visual
encoder’s outputs (that outputs CLS embedding after CLIP). For this, we apply k-means clustering
to the set of embeddings generated by each encoder individually, setting k equal to the number
of ground-truth classes. For our experiment, we use the full CIFAR100 test split. This yields a
set of 3 pseudo labelings of the dataset. After combination with the ground-truth labels, we can
make 6 pairwise comparisons and calculate the normalised mutual information, which measures a
generalized correlation between labelings. The results are shown in Table 10.

Table 10: Normalized Mutual Information (NMI) score in %.

NMI GT PGN CLIP PGN+CLIP
GT 100 29.5 58.1 70.1

PGN 100 27.5 33.8
CLIP 100 61.2

PGN+CLIP 100

C ADDITIONAL EXPERIMENTS

Table 11: Feature projection layer type.

Type CIFAR100 SUN397

Linear 77.9 70.5
MLP 78.2 70.4

We evaluate replacing the final linear layer of gθ with a MLP with 1 hidden layer, which allows
for a nonlinear mapping between image features and the logits that give rise to the combination
coefficients in Eq. (4). No significant performance gain is observed.
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