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ABSTRACT

Among the various forms of post-hoc explanations for black-box models, coun-
terfactuals stand out for their intuitiveness and effectiveness. However, long-
standing challenges in counterfactual explanations involve the efficiency of the
search process, the likelihood of generated instances, their interpretability, and
in some cases, the validity of the explanations themselves. In this work we in-
troduce a generative framework for interactive classification designed to address
all of these issues. Notably, this is the first framework capable of generating in-
terpretable counterfactual images in real-time, making it suitable for human-in-
the-loop classification and decision-making. Our method leverages a label disen-
tangled regularized autoencoder to achieve two complementary goals: generating
high-quality instances and promoting label disentanglement to provide full control
over the decision boundary. This allows the model to sidestep expensive gradient-
based optimization by directly generating counterfactuals based on the adversar-
ial distribution. A user study on a challenging human-machine classification task
demonstrates the approach’s effectiveness in enhancing human performance, em-
phasizing the importance of counterfactual explanations.

1 INTRODUCTION

Explainable AI is a field of research that arises from the need of transparency and to improve under-
standing of what are known as black-box models (Gunning et al., 2019). With the goal of explaining
the inner workings of deep-learning models, researchers have provided users with many different
techniques of post-hoc explanations. Among these, counterfactuals consist of instances describ-
ing the necessary changes in input features that alter the prediction to a predefined output (Molnar,
2022), and are especially appealing for a human decision maker (Fernández-Lorı́a et al., 2021).
Counterfactual explanations should carry the following properties: i) validity – the model prediction
on the counterfactual instance needs to follow a predetermined class; ii) interpretability – the ex-
planatory instance should be interpretable, iii) likeliness – the explanation should be representative
of the counterfactual class distribution, iv) proximity – the counterfactual instance should be similar
to the original one.

Despite the appeal of counterfactual explanations, existing approaches have struggled in satisfy-
ing the desired properties, especially likeliness (Poyiadzi et al., 2020; Dhurandhar et al., 2018),
actionability (Guidotti et al., 2019; Dhurandhar et al., 2019) or proximity (Guidotti, 2022) of the
counterfactual being generated. Efficiency in generation is another major problem of existing solu-
tions (Farid et al., 2023; Wachter et al., 2017; Kanamori et al., 2020) undermining the potential of
explanations in real-time interactive settings. Simultaneously, generative models in XAI are gaining
attention for improving explanation quality (Schneider, 2024). Inspired by this, we propose a gen-
erative framework for interactive classification that leverages counterfactual explanations satisfying
the desired properties and that is computationally efficient, so to answer users queries in real-time.

Our framework leverages a label disentangled regularized autoencoder to learn class-specific repre-
sentations. This in turn allows the generation of counterfactuals by simply trading-off the likelihood
of the explanation according to the counterfactual distribution with its distance from the instance to
explain. Likeliness of the output is assured by the underlying generative model, validity is guaran-
teed by the explicit modeling of the decision boundary between classes and proximity is encouraged
by combining label-relevant latent dimensions with label-irrelevant ones, which are shared among
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classes. Efficiency is achieved by directly generating counterfactuals according to the adversarial
distribution, thus sidestepping expensive gradient based optimizations. Finally, interpretability of
explanations is improved extracting interpretable concepts associated to the latent dimensions and
presenting the most relevant conceptual changes together with the counterfactual image.

To the best of our knowledge, our proposal is the first interactive classification framework capable of
generating interpretable counterfactual images in real-time, enabling real-time user interaction. We
assess its effectiveness through a user study in which participants tackle a challenging task with the
support of our framework whereas we remind readers to Appendix C.1 for a quantitative evaluation
of our method. The study results clearly demonstrate the potential of our approach in enhancing hu-
man performance, with some users even surpassing machine performance. Furthermore, the findings
highlight the crucial role of counterfactual explanations in achieving these improvements.

2 RELATED WORK

Contrastive explanations Contrastive explanations aim at justifying a choice by rejecting the
other viable options. Throughout the years, various techniques have been proposed to achieve this
goal (Prabhushankar et al., 2020; Wang & Wang, 2022; Jacovi et al., 2021; Miller, 2021), with
counterfactuals being the most popular option. With the growing use of Deep Generative Models,
such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and VAEs (Kingma
& Welling, 2013; Rezende et al., 2014), to explain model decisions, the most common approach
has been to progressively modify the input to reveal the most meaningful and interpretable changes
(Feghahati et al., 2020; Joshi et al., 2019; Liu et al., 2019; O’Shaughnessy et al., 2020; Samangouei
et al., 2018; Szegedy et al., 2013). However, these operations can be computationally intensive and
often require complex gradient-based optimizations, as seen in Poels & Menkovski (2022) or in
Luss et al. (2021), where concepts extracted from a disentangled VAE are central to the explanation
process. More recent approaches leverage knowledge of causal graphs (Pawlowski et al., 2020;
Ribeiro et al., 2023; Dash et al., 2022; Kocaoglu et al., 2017; Kladny et al., 2023) a requirement
that our framework relaxes, as such information is rarely available in most real-world datasets. In
conclusion, the exceptional performance of denoising diffusion probabilistic models (DDPM) (Ho
et al., 2020; Song et al., 2020) in generating high-quality images has inspired a growing body of
work leveraging these models for counterfactual explanations. While these approaches can produce
realistic counterfactuals (Jeanneret et al., 2022; 2023; Augustin et al., 2022; Farid et al., 2023), the
resulting explanations are not clear regarding which features have been changed and how changes
reflect in the target model seriously undermining their interpretability.

Generative AI and disentanglement Disentanglement plays a central role in the framework we
propose, in terms of both learning disentangled latent representations and label disentanglement in
the latent space. Disentangled feature representations, or high level generative factors in disjoint
subsets of the feature dimensions, carry many desirable properties such as intervention and inter-
pretability (Kumar et al., 2017; Bengio et al., 2013). An important results comes from Locatello
et al. (2019) who show that it is not always possible to construct disentangled embedding spaces
as the problem is inherently unidentifiable without additional assumptions such as observed vari-
ables (Hyvärinen & Pajunen, 1999; Kazhdan et al., 2020) or tuples of observations that differ in
only a limited number of components (Locatello et al., 2020). Leemann et al. (2023) argue that
concept discovery should be identifiable and propose two provably identifiable concept discovery
methods for components that are not correlated or do not follow a Gaussian distribution. Unsuper-
vised approaches that leverage VAEs (Higgins et al., 2017; Kumar et al., 2017; Chen et al., 2018;
Kim & Mnih, 2018) instead incorporate additional regularization components or derive alternative
ELBO formulations. Not surprisingly, a body of works exploiting classification losses to encourage
a disentangled latent representations at a label level already exists (Dhuliawala et al., 2023; Ding
et al., 2020; Zheng & Sun, 2019). However, the two contributions of Dhuliawala et al. (2023)
and Ding et al. (2020) are conceived for classification and cannot generate new instances, while the
one of Zheng & Sun (2019) can perform generation but is designed to optimize quality of gener-
ated images exploiting high-dimensional latent spaces, making it unsuited for interpretable concept
extraction.
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Deterministic regularized autoencoders Deterministic regularized autoencoders (RAE) were
first introduced by Ghosh et al. (2019) as alternative decoder regularization schemes with respect
to the original noise injection mechanism first proposed in the VAE formulation. Such models re-
quire an additional density estimation step to be able to sample latent codes to be reconstructed.
Alternative more complex unsupervised approaches (Saseendran et al., 2021; Böhm & Seljak, 2020;
Ghose et al., 2020) have been proposed over the years to side-step ex-post density estimation by
shaping the latent space according to a uni-modal or multi-modal distribution. Being unsupervised,
these approaches do not allow to perform disentanglement at a label level, which is essential for
counterfactual explanations. Our approach builds on these ideas and adapts them to the supervised
setting.

3 METHOD OVERVIEW

In this section we present an overview of the methodology we propose. Given an instance and a user-
specified label that differs from the model’s prediction, the goal is to generate a counterexample that
the model would classify under the alternative label. The framework we use is centered around a
label disentangled RAE, equipped with a label-relevant label-irrelevant approach to simultaneously
learn a generative process and a classification task. This allows class distributions to guide both the
label predictions and their explanatory process. (For simplicity, we will refer to this framework as the
disentangled RAE moving forward.). The novel technique for counterfactual generation we present
to achieve this operates under the assumption that data follows a mixture of Gaussian distributions,
and it consists of a three step process: i) identification of a set of candidate counterfactuals according
to the criteria of proximity and likeliness; ii) extraction of the expected value of the set under the
alternative class distribution as the generated counterfactual; iii) computation of the top-k most
impactful changes in the latent space as interpretable concept changes explaining the counterfactual.
This framework aims at capitalizing on the following advantages:

• Proximity: Our method optimizes the trade-off between likeliness and proximity in the
latent space. Additionally, explanations share part of their latent representation with the
original instance, ensuring a natural connection between the two;

• Interpretability: Extracting interpretable concepts via latent traversal allows to provide an
intelligible feedback to users in terms of relevant components of the visual counterfactual
explanation;

• Validity: the assumptions of the predictive model are coherent with the ones of the chosen
explanatory technique, allowing full control over the predictive mechanism;

• Likeliness: learning the latent-space data distribution allows for fast, efficient and high
quality counterfactuals generation with the methodology we propose.

The full interactive explanatory pipeline, shown in Figure 1(a), can be divided in three main steps:
an encoding step, a counterfactual search step and a decoding step. In the following, we describe
the generative model and the training methodology we employ, we present our novel counterfactual
generating technique and illustrate the findings of the user study we conducted.

4 DENOISING DISENTANGLED REGULARIZED AUTOENCODERS

The generative model in our explanatory pipeline consists of a disentangled regularized autoen-
coder. Our architecture, shown in Figure 1(b), includes a label-relevant encoder ENCs(·), that lever-
ages label supervision to map inputs to a latent representation that follows a mixture of Gaussians.
Additionally, the architecture features a label-irrelevant encoder ENCu(·), which uses adversarial
classification to learn high-level generative factors shared across labels. Training occurs in two
stages. First, label-relevant and label-irrelevant dimensions are jointly used for reconstruction by
the decoder DEC(·). We refer to this intermediate model as deterministic disentangled autoencoder,
as it is not suited for generation. In the second stage, we extract latent representations and employ
a noise injection mechanism to create a smooth latent space. We leverage the auxiliary model to
handle the noise and achieve decoder regularization by reconstructing denoised representations. We
now introduce the necessary background, and then present the deterministic and generative training
procedures.

3
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4.1 BACKGROUND

VAEs are a type of parametric model following an encoding qϕ(z|x) and decoding pθ(x|z) mecha-
nism, trained with the goal of maximizing likelihood of evidence through its lower bound (ELBO):

log p(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−Dkl(qϕ(z|x) ∥ p(z)) (1)

where ϕ and θ are the parameters of the encoder and decoder respectively. According to such for-
mulation, Eqϕ(z|x)[log pθ(x|z)] is the reconstruction loss (LREC), which encourages encoded inputs
to be decoded with fidelity, and DKL(qϕ(z|x) ∥ p(z)) is the Kullback-Leibler divergence between
the output of the recognition model qϕ(z|x) and the prior latent distribution p(z). The former is ex-
tracted from the encoder, which returns mean µϕ(x) and variance Σϕ(x) parameters through which
the latent code z is sampled for every input x, while the latter is typically modelled as a standard
Gaussian.

The ELBO objective can be extended to incorporating classification terms as in Zheng & Sun (2019),
with the idea of disentangling the latent space via label supervision. A common choice is to exploit
the Gaussian mixture framework of Wan et al. (2018) who propose to apply an alternative loss LGM

to the latent representation zi of instance xi with label yi. The first component of the loss is a
Gaussian classification term and a the second one is a likelihood regularization term responsible of
efficiently shaping the latent space according to a mixture of Gaussian distributions:

LGM = − 1

N

∑
c

∑
i

I(yi = c) log
N (zi;µyi , I)p(yi)∑
c

N (zi;µc, I)p(c)
+N log N (zi;µyi , I) (2)

where the mean µc parameters are encoding statistics accumulated during training while assuming
identity covariance matrices.

4.2 TRAINING DETERMINISTIC DISENTANGLED AUTOENCODERS

The first stage of training combines reconstruction, classification, and regularization objectives to
efficiently shape the label-specific latent space as a mixture of Gaussians, achieving strong clas-
sification performance while encouraging a smooth latent structure. For the label-irrelevant loss,
focused on learning high-level representations shared across classes, we apply Gaussian classifica-
tion to the output of the label-irrelevant encoder within the Gaussian mixture framework. The key
difference is that the posterior class probabilities are expected to follow a uniform distribution:

LuGM = − 1

N

∑
i

∑
c

1

|C| log
N (zi;µc, I)p(c)∑
c

N (zi;µc, I)p(c)
+N log N (zi; 0, I) (3)

The final loss is defined as follows:

LDET = LREC + λsLGM + λuLuGM (4)

The pseudocode of the training procedure is shown in Algorithm 2 in Appendix B.1. In the following
we show how to transition from a deterministic to a generative model.

4.3 FROM DETERMINISTIC TO GENERATIVE DISENTANGLED AUTOENCODERS

The deterministic disentangled autoencoder model is not suited for generation. For this reason,
and inspired by highly performing DDPMs (Ho et al., 2020), we propose an alternative approach to
latent space smoothing based on denoising autoencoders. We argue that with a single noise injection
step it is possible to effectively transition from a deterministic to generative model. We treat noise
as a hyper-parameter and the structure of the already learned latent space significantly simplifies the
regularization task. More precisely, we process stochastic representations with an auxiliary model
MAUX : DECAUX◦ENCAUX and reconstruct denoised latent representations. Given latent dimension
z, noise ϵ ∼ N (0, I) and noise parameter σ we define:

σϵ̂ = z + σ · ϵ− DECAUX(ENCAUX(z + σ · ϵ))
LrecAUX = σ2∥ϵ− ϵ̂∥22 (5)
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Basophil Eosinophil?

Counterfactual
search
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Size: bigger

a) Explanatory pipeline b) Model architecture

Figure 1: a) Our explanatory pipeline, consisting of the encoding, counterfactual search and decod-
ing steps; b) Denoising disentangled regularized autoencoder architecture.

The denoising autoencoder reconstruction loss is optimized jointly with the one of the decoder:

LGEN = Lrec
AUX + LREC (6)

The pseudocode of the training procedure is shown in Algorithm 3 in Appendix B.1.

5 COUNTERFACTUAL GENERATION

In the previous section we showed how to train a deep generative model with a Gaussian classi-
fier that labels instances according to their label-relevant latent representation. Now we present our
proposal to generate counterfactuals explaining the predictions to human users. With regard to the
counterfactual search process, this only applies to label-relevant dimensions and we optimize latent
distances under a validity constraint The underlying assumption is that optimization in the latent
space will naturally translate to the input space. This alignment occurs when distances in the input
space are accurately mirrored in the latent space, with reconstruction quality and the model’s clas-
sification performance serving as reliable indicators of this condition. We start defining a set called
counterfactual candidates whose elements optimize the trade-off between likeliness and proximity
in the latent space. We then compute the expected value of these candidates according to the coun-
terfactual class distribution and present it as the counterfactual explanation. This sidesteps the need
for the user to specify (non-trivial) likelihood or distance thresholds for selecting the required coun-
terfactual. To further enhance interpretability of the counterfactual explanation, we complement it
with the most relevant concept changes. After training, concepts are extracted by human annotators
in a post-hoc manner via latent traversals on the learned latent dimension. At explanation time, we
return the concepts that were altered the most in generating the counterfactual (see Figure 1(a) for
an illustration). These steps are further detailed in the following.

5.1 COUNTERFACTUAL CANDIDATES

We start by describing the formal properties of a candidate counterfactual.

Definition 1 (properties of counterfactual candidates). Let x be an instance with encoding z0 pre-
dicted as class y∗ with distribution centroid µy∗ . An instance zcf belongs to the set of counterfactual
candidates C for the label ycf with centroid µycf , if ∄ z ̸= zcf ∈ Rd that satisfies P1 ∧ P2, where:

P1 : argmin
y
∥z − µy∥22 = ycf

P2 : ∥z − z0∥22 ≤ ∥zcf − z0∥22 ∧ ∥z − µycf ∥22 ≤ ∥zcf − µycf ∥22

5
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P1 ensures the validity of the candidate counterfactual, i.e., the fact that it is always predicted as the
alternative class. P2 ensures the non-existence of a strictly better counterfactual in the latent space.

It is straightforward to see that all the points that lie on the segment S1 from z0 to µycf and satisfy
the first condition are counterfactual candidates. These should be complemented with the points on
the segment of the decision boundary DB between class y∗ and ycf that goes from the intersection
between DB and S1 (Icf ) to the orthogonal projection of z0 on DB (PROJDB(z0)).
Proposition 1 (Set of counterfactual candidates). Given an instance x′ with latent encoding z0
predicted as class y∗, the set of counterfactual candidates C for label ycf consists of:

1. the points on the segment S1 from z0 to µycf predicted as ycf

SC1 = {(1− t)z0 + tµycf | t ∈ [0, 1] ∧ P1} (7)

2. the points on the segment connecting the intersection Icf between S1 and the decision
boundary DB with the closest point to z0 predicted as ycf

S2 = {(1− t)Icf + tPROJDB(z0) | t ∈ [0, 1]} (8)

Please refer to the Appendix A.1 for the proof. A graphical representation of the set of counterfactual
candidates for an instance can be found in Figure 2(left). We proceed showing how to extract the
expected counterfactual from this set of candidates.

5.2 COUNTERFACTUAL AS EXPECTATION OVER CANDIDATES

In the following section we define a technique to compute the expected value of the counterfactual
candidates, which will be returned as a counterfactual explanation. We argue that such counterfac-
tual intrinsically optimizes the trade-off between the likelihood of the explanation and the distance
from the instance to explain in the latent space. Problematically, computing such expectation has no
closed form solution, and a large number of samples from a multivariate normal distribution is nec-
essary to estimate it. We thus derive specific conditions under which such estimate can be reduced
to a fast and efficient sampling from a univariate distribution.

In our derivations we treat expected value computations separately for SC1 and S2, and return a
density-based weighted sum of the two as the final counterfactual (more details in Appendix A.2.2):

zcf1 = ESC1
[z] ; zcf2 = ES2 [z] ; zcf = w1zcf1 + w2zcf2

with w1 =
N (zcf1 ;µycf , I)

N (zcf1 ;µycf , I) +N (zcf2 ;µycf , I)
and w2 = 1− w1 (9)

Methods like Monte Carlo Integration require a considerable number of samples to produce accurate
estimates, since the density of points vanishes as the dimensions of the distributions increase. In
order to speed-up the expected values estimation of equation 9, we propose an alternative sampling
technique that achieves accurate results while being computationally efficient.
Proposition 2 (Expectation along a segment parallel to an axis). Let a = (c, c, ..., c, ad) and b =
(c, c, ..., c, bd) ∈ Rd be two points aligned along the last axis. Let S = {(1 − t)a + tb | t ∈ [0, 1]}
be the segment connecting them, and Z(t) = (1 − t)ad + t(bd) the function of the last component
of the segment. In addition, let fZ(z) = fZ1,Z2,...,Zd

(z) be the density function of the underlying
distribution of the expectation. The expected value of the elements in S according to an isotropic
Gaussian is a vector with unchanged components except for the last one, computed as:

ES[z] =

(
c, c, ..., c,

∫ 1

0

Z(t)fZd
(Z(t))dt

/∫ 1

0

fZd
(Z(t))dt

)
(10)

Please refer to Appendix A.2.1 for the proof. This expectation still has no closed form solution, but
it is much cheaper to estimate as it requires univariate samples only.

Unfortunately, segments S1 and S2 are never simultaneously parallel to the last axis. However, ro-
tating an isotropic Gaussian preserves the point densities, as distances are not affected by rotations.
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Figure 2: Visualisation of the set of candidates we take in consideration (left) and of the latent space
manipulations necessary to compute the expected counterfactual (right).

We can thus define a rotation matrix R to map a generic segment S into a segment which is parallel
to the last axis (see Algorithm 4 in Appendix B.2). This procedure allows us to rotate the original
label-relevant latent space, compute expectations with sampling on the rotated space, and map the
expected value back to the original space without loss of information. This motivates embedding
the latent space in a Gaussian-mixture, as other distributions would not allow to compute expecta-
tions via fast one-dimensional sampling. We now present the methodology we employ to boost the
interpretability of proposed explanations through interpretable concept changes.

5.3 CONCEPT-BASED EXPLANATIONS

After training, we extract class-relevant concepts by traversing the latent space with each class
medoid. This approach relies on a human annotator to identify the meaningful changes applied
to an input images when only a single dimension is altered at a time. Examples of this procedure
are shown in Appendix E. During the counterfactual search step, we identify the top-k most relevant
latent dimensions for counterfactual generation and return the associated concepts. We quantify
relevance score of a latent dimension as a likelihood-based squared difference:
Definition 2. Let x be an instance with latent encoding z0 predicted as class y∗ with distribu-
tion centroid µy∗ . Let zcf be counterfactual encoding for an alternative class ycf . Let py(z) =
[N (z1;µy,1, 1),N (z2;µy,2, 1), . . . ,N (zd;µy,d, 1)] be a vector of univariate densities for the single
latent dimensions of z according to a label y. Let Φ(y, z) = z ⊙ py(z) be the Hadamard prod-
uct between latent dimensions and their label-specific densities. The relevance scores of the latent
dimensions for the counterfactual explanation are computed as follows:

scf = (Φ(y∗, z0)− Φ(ycf , zcf ))⊙ (Φ(y∗, z0)− Φ(ycf , zcf )) (11)

The relevance score consists in the weighted squared differences between original and counterfactual
encodings along each dimension. More precisely, each latent of the original encoding is weighted
by its likelihood according to the predicted label distribution and each latent of the counterfactual
encoding is weighted by its likelihood according to the counterfactual class distribution. We finally
return the top-k most relevant concept changes associated to the top-k latent dimensions in terms of
relevance scores.

5.4 THE COUNTERFACTUAL GENERATION ALGORITHM

In the following section we assemble the various components presented so far into the full coun-
terfactual generation process, presented in Algorithm 1. Given an instance x predicted as having
label y∗ and a user-provided counterfactual label ycf ̸= y∗, the explanatory pipeline consists of: 1)

7
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encoding the instance to explain x in zs and zu; 2) rotating the SC1 and S2 segments to align them on
the last axis and sampling their expectations; 3) computing the expected counterfactual zcf in latent
space by averaging the expectations from the segments; 4) Extracting top-k most relevant concept
changes, 5) concatenating the label-relevant and label-irrelevant latent representations and decoding
the resulting latent vector into the final counterfactual explanation xcf .

Algorithm 1 Explanation Algorithm
Require: x, y∗, ycf , k, instance to explain, prediction, counterfactual class and number of concepts.
Encode instances and extract label relevant and label irrelevant encodings
1: zs ← ENCs(x)
2: zu ← ENCu(x)

Rotate space to compute expectations along SC1 and S2 sets of candidate counterfactuals
3: m1 ← (zs + µycf )/2; v1 ← (µycf − zs)
4: S1 ← {(1− t)ROTATE(µycf ;m1, v1) + tROTATE(zs;m1, v1)} | t ∈ [0, 1] ∧ P1}
5: zcf1 ← ROTATE−1(ESC

1
[z];m1)

6: m2 ← (µy∗ + µycf )/2; v2 ← (µycf − µy∗)
7: S2 ← {(1− t)ROTATE(zs;m2, v2) + tROTATE(projP (zs);m2, v2)} | t ∈ [0, 1]}
8: zcf2 ← ROTATE−1(ES2 [z];m2)

Compute expected counterfactual as density based weighted sum
9: w1 ← N (cf1;µycf , I)/(N (cf1;µycf , I) +N (cf2;µycf , I))

10: zcf ← w1zcf1 + (1− w1)zcf2
Extract concepts according to relevance metric
11: scf ← (Φ(y∗, zs)− Φ(ycf , zcf ))⊙ (Φ(y∗, zs)− Φ(ycf , zcf ))
12: Concepts← EXTRACT(scf , k)
Concatenate latent dimensions and decode to generate the explanation
13: xcf ← DEC(MAUX([zu; zcf ]))
14: return xcf , Concepts

This procedure ensures explanations naturally connect to the original instance by sharing label-
irrelevant factors, maintaining proximity. Efficient expected value estimation via sampling guar-
antees in-distribution outputs, and linking visual explanations to concept changes enhances inter-
pretability, allowing users to focus on the relevant components of the explanation.

6 USER STUDY

To the best of our knowledge, our proposal is the first interactive framework to leverage an inter-
pretable counterfactual generating technique without requiring concepts supervision, enabling real
time collaboration with users (Appendix C.2 contains an evaluation of running-times). Average
generation time for a single counterfactual with our method is in-fact 1.214 ± 0.045 seconds and
Gaussian classification ensures 100% validity on generated explanations. In addition, we facilitate
the interaction step by eliminating the need for hyper-parameter configuration, thereby reducing po-
tential confusion for non-expert users. For these reasons we consider a challenging human-machine
classification task with real-time feedback from the machine counterpart the most natural test-bed
for our proposal. In the following sections we present the experiment designed to assess the effec-
tiveness of our explanations and present the corresponding empirical findings.

6.1 STUDY DESIGN

We design an experiment with the goal of answering the following research questions:

RQ1: Can explanations improve users performance in solving the task?
RQ2: Can users spot machine errors in presence of explanations?
RQ3: Can explanations be harmful or mislead users?

We focused on a multiclass image classification task, namely identifying the cell type of a blood cell
image, using the BloodMNIST dataset introduced by Yang et al. (2023). The task is very challenging

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Prediction: Immature granulocytes

Nucleus size: bigger
Contours: less polished
Membrane size: bigger

Color: more intense
Size: bigger

Prediction: NeutrophilCounter example for: Monocyte Counter example for: Eosinophil

Figure 3: Examples of model prediction and counterfactual explanation for an alternative (user
predicted) class. Concepts highlight the most relevant changes from the original image to the coun-
terfactual.

for a non-expert human, because of the poor resolution of the images and the difficulty in clearly
identifying distinctive patterns per-class. Figure 9 in Appendix E reports the medoid image for the
eight different cell types in the dataset. We trained our model on a 70-10-20 train-validation-test
split, coarsely optimizing the hyper-parameters on the validation set (Appendix D.1). The resulting
classifier achieves 91% accuracy on the test-set. We extracted a subset of 20 images from the test set
to be presented to the user in the study. To address RQ2 and RQ3 while maintaining a manageable
number of questions for the user, we included in this subset five images where the model is wrong.
The accuracy of the trained model users interact with is therefore 75%, while the average accuracy
of non-expert users is 27%, as will be shown in the following.

We designed three experimental study variants to evaluate non-expert user performance in a cell
type prediction task: no machine support (None), machine-predicted label (Label), and machine-
predicted label with counterfactual explanation (Label+Explanation). Each variant involved
50 unique, English-speaking participants recruited via Prolific. Participants underwent brief prepara-
tory training (Figure 15, Appendix G.3) before predicting the cell types of 20 test images. For each
prediction, users were provided with the image and reference examples of all cell types (Figure 16,
Appendix G.4). In None, participants received no machine feedback, serving as a baseline for
human performance. In Label, users initially made their own predictions, as in None. If the ma-
chine disagreed, they were given the option to confirm their prediction, accept the machine’s label,
or select another. Label+Explanation extended Label by including a counterfactual expla-
nation in case of disagreement: a counterfactual image resembling the original but predicted with
the user-specified label, along with the top-3 concept changes required for this outcome (Figure 3).
Additional details on the interface and study are in Appendix G.4.

6.2 RESULTS

To answer our research questions we extract the following statistics: i) accuracy (ACC) before and
after machine feedback, ii) agreement rate (AGR) with the machine before and after feedback, iii)
accuracy against the machine (ACCAM), i.e., accuracy on instances where a user does not comply
with the machine, iv) machine induced errors (MIE), namely errors made by users who initially pro-

Types of feedback ACCs (%) AGRs (%) ACCAM (%) MIE (%)
Before feedback After feedback Before feedback After feedback

None 26.73 ± 8.46 - - - - -
Label 50.60 ± 12.19 63.99 ± 10.45 43.90 ± 9.96 70.80 ± 13.97 24.80 ± 21.64 16.24 ± 13.2
Label+Explanation 51.63 ± 11.06 69.08 ± 8.39 41.96 ± 10.55 78.57 ± 13.92 29.14 ± 22.20 16.49 ± 13.55

Table 1: Comparison of users’ performance in different settings.

vided correct answers, with respect to how many times the machine feedback altered their decisions.

Results (Table 1) confirm the task’s difficulty for non-experts, as participants in None strug-
gled significantly. Notably, accuracy before feedback significantly improved in Label and
Label+Explanation, suggesting that interacting with the machine provided implicit training
(see Appendix G.2 ). Machine feedback also significantly boosted overall accuracy, with the best
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results in Label+Explanation, where explanations helped up to 12% of users outperform the
machine. In addition, agreement rates were highest with explanations suggesting better trust and
calibration of when to rely on feedback. Crucially, no evidence of over-reliance was observed, as
users didn’t alter correct predictions more often with explanations than without. In conclusion,
performance variability across participants highlights the overall task’s complexity.
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Accs (before feedback)

0.5

0.6

0.7

0.8

Ac
cs

 (a
fte

r f
ee

db
ac

k)

Label
corr: 0.67, slope: 0.574

0.3 0.4 0.5 0.6 0.7
Accs (before feedback)

0.5

0.6

0.7

0.8

Label+explanations
corr: 0.41, slope: 0.319

6 8 10 12
same choices (before feedback)

0.5

0.6

0.7

0.8

Label
corr: 0.46, slope: 0.0244

6 7 8 9 10 11 12
same choices (before feedback)

0.5

0.6

0.7

0.8

Label+explanations
corr: 0.26, slope: 0.0147

Figure 4: Comparison of correlation plots between the two settings of our experiment. Correlation
significantly decrease in presence of explanations and slopes of regression lines become flatter.

We conclude investigating the relationship between a user final score (ACCaf) and their skill level,
intended as accuracy before feedback (ACCbf), as well as initial agreement (AGRbf) which measures
how many explanations a user is exposed to. Figure 4 shows correlation plots and Pearson’s coef-
ficients for the Label and Label+Explanation variants. Without explanations, ACCbf and
AGRbf strongly predict final users scores as a consequence of the good performance of the machine.
With explanations, this link weakens. Explanations seem to have the potential to flatten final scores,
as the slope of regression lines suggest, therefore enabling users of varying skill levels to excel. See
Appendix G.1 for a detailed discussion of feedback helpfulness across experimental settings.

In conclusion, our findings suggest affirmative answers to RQ1 and RQ2 and a negative answer to
RQ3. Additionally, despite considerable variance in the user performance due to the complexity of
the task, we can confidently assert that the explanations provided are beneficial across all user skill
levels, demonstrating their overall utility.

7 LIMITATIONS AND FUTURE WORK

Our approach is limited to deep neural networks (DNNs) using the latent-space loss from Wang
& Wang (2022). While external models require fine-tuning with the Gaussian mixture loss, we ar-
gue this is a reasonable requirement for domains where explainability is critical, as the loss ap-
plies to arbitrary DNN architectures and maintains classification performance comparable to DNNs
with softmax output layers (Wang & Wang, 2022). We also investigated the capabilities of our
proposal within a single-stage interactive setting. Given that our approach is tailored for real-time
collaboration, exploring potential improvements in interpretability through multi-stage interactions
represents a significant future direction for our work. Moreover, interpretable concepts traversal
requires largely compressed latent spaces, as too complex structures can be challenging for users to
comprehend, and this can hinder reconstruction quality for more complex input spaces. A potential
solution is to condition latent diffusion models on RAE outputs to obtain refined counterfactuals or
directly on RAE semantically meaningful latent representations although specific domains may not
allow concept extraction even with larger-scale models. Exploring these directions while preserving
the efficiency required for real-time interaction is an important avenue for future research.

8 CONCLUSION

We presented the first framework for real-time interpretable counterfactual generation. Our tech-
nique guarantees likeliness, validity and proximity of explanations. We also conducted a user study
to evaluate the effectiveness of our proposal. Results demonstrated that explanations are helpful
across all users skill levels, confirming the interpretability and practical value of the machine feed-
back.

10
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REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our results, we provide detailed information in the Ap-
pendix of this paper. This includes proofs of all propositions presented, a comprehen-
sive description of the model architecture and of its training hyper-parameters and thor-
ough explanations of all the algorithms used. Additionally, the Appendix contains infor-
mation about the user study design and implementation. In conclusion, the source code
of our implementation can be found at: https://anonymous.4open.science/r/
Interpretable-counterfactuals-real-time-C8D3/. These efforts are intended to
support researchers in replicating our methodology and verifying the robustness of our findings.

ETHICS STATEMENT

This study was conducted in compliance with the ICLR Code of Ethics. All participants provided
informed consent before taking part in the study. The study involved the collection of anonymized
data, ensuring that no personally identifiable information (PII) was recorded or stored at any point.
Participants were informed about the purpose of the research, the voluntary nature of their participa-
tion, and their right to withdraw at any time without penalty. No sensitive personal information was
collected, and all responses were kept confidential. The data were processed and analyzed solely for
the purposes of this research and will not be used for any other purpose.
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A MATHEMATICAL PROOFS

A.1 COUNTERFACTUAL CANDIDATES

To better follow our proof, first let us introduce once again the properties of counterfactual candi-
dates of Definition 1:

Let x0 be an instance with encoding z0 predicted as class y∗ with distribution centroid µy∗ . An
instance zcf belongs to the set of counterfactual candidates C for the label ycf with centroid µycf ,
if ∄ z ̸= zcf ∈ Rd that jointly satisfies P1 ∧ P2, where:

P1 : argmin
y
∥z − µy∥22 = ycf

P2 : ∥z − z0∥22 ≤∥ zcf − z0∥22 ∧ ∥z − µycf ∥22 ≤∥ zcf − µycf ∥22

Counterfactual candidates should optimize a trade-off between likeliness and proximity under a va-
lidity constraint. More precisely, likeliness is measured as the euclidean distance between a point
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and the counterfactual class mean. The motivation is that, under diagonal covariance assumption
Σ = σ2I , this distance is proportional to the negative log-likelihood according to the counterfactual
class distribution:

N (z, µ, σ2I) =
1

(2πσ2)
d
2

exp

(
− 1

2σ2
∥z − µ∥22

)
− log(N (z, µ, σ2I)) =

1

2σ2
∥z − µ∥22 + c ∝ ∥z − µ∥22

According to the definition we provided, identifying candidates is trivial with the use of triangle
inequality. Follows that all points satisfying P1 and laying on the segment S1 from z0 to µycf
are counterfactual candidates. This allows to omit the majority of points in space that satisfy the
first property in favor of a point in S1. Problematically, some points in S1 are not predicted as the
counterfactual class. This allows the existence of valid candidates according to P1 that cannot be
discarded because they are equivalently distant from z0 with respect to some points in S1 that do
not satisfy P1. In the following we prove that when this happens an infinitesimal approximation of
the best possible valid points according to P2 is obtained with the segment S2. This is the part of
the decision boundary DB between class y∗ and ycf that goes from the intersection between DB
and S1 (Icf ) to the orthogonal projection of z0 on DB (PROJDB(z0)). More precisely we define
segments S1 and S2 as below:

S1 = {(1− t)z0 + tµycf | t ∈ [0, 1]}
S2 = {(1− t)Icf + tPROJDB(z0) | t ∈ [0, 1]}

And our proof is structured as follows:

1. We identify the set of points in S1 that are at least as distant to z0 as PROJDB(z0) but fail
to satisfy P1, which we name S̸C1 .

2. For any point zS ∈ S̸C1 we construct the set of points ZDB where zDB ∈ ZDB if zDB ∈
DB and ∥zS − z0∥22 = ∥zDB − z0∥22

3. We identify the best point z∗DB ∈ ZDB according to P2

4. We show that this point belongs to S2
5. We identify the region of space O containing the points that are better than z∗DB according

to P2

6. We show that the points in O are all on the same side of the decision boundary

7. We prove this side is not associated to counterfactual class prediction.

The last point allows us to conclude that, for the given value of ∥zS− z0∥22, no valid point according
to P1 is better than z∗DB according to P2. Therefore z∗DB ∈ C. In the following we further detail
the different steps of the proof.

A.1.1 DEFINITION OF S̸C1

To begin our proof let us consider the following setting. Let µy∗ and µycf be the mean vectors
of the original and counterfactual label distribution respectively. The segment Sµ is the segment
connecting them. The decision boundary DB between the two according to diagonal covariance
matrix assumption Σ = σ2I is a hyper-plane perpendicular to Sµ. Finally the intercept Iµ between
Sµ and DB is given by: Iµ =

µycf
+µy∗

2 . According to our setting we define the segment S̸C1 as
follows:

S̸C1 = {zS ∈ S1 : ∥zS − z0∥22 < ∥Icf − z0∥22 ∧ ∥zS − z0∥22 > ∥PROJDB(z0)− zs∥22} (12)

Intuitively, any point z that satisfies P1 must be at least at distance ∥PROJDB(z0) − zs∥22 to z0 as
PROJDB(z0) is the closest point in DB to z0. In addition, if ∥zs − z0∥22 < ∥Icf − z0∥22 the point
zs ∈ S1 does not satisfy P1.
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A.1.2 DEFINITION OF POINTS ON THE DECISION BOUNDARY FOR A GIVEN zS ∈ S̸C1
Let us denote by H(za, zb) the hyperspherical set of points z : ∥z − za∥22 = ∥zb − za∥22. Also, for
any point zS ∈ S̸C1 , all the points z : ∥z − z0∥22 = ∥zs − z0∥22 lay on a hyper-sphere. Let us denote
ZDB(K) the intersection between the collection of points in the set K andDB: ZDB(K) = K∩DB.
Let us now fix a value for zS . We can denote the set of points zDB that belong toDB and are equally
distant to z0 as zS as follows:

Zz0DB = ZDB(H(z0, zs))

A.1.3 OPTIMAL z∗DB ACCORDING TO P2

Let us define the points in H(µycf , zS) that belong to DB:

ZycfDB = ZDB(H(µycf , zS))

According to P2, the best point z∗DB ∈ Zz0DB , as all points in Zz0DB are equally distant to z0 by
definition, is the one such that:

z∗DB = argmin
zDB∈ Zz0DB

∥zDB − µycf ∥22

In addition we have that if Zycf∗DB = ZDB(H(µycf , z
∗
DB)) , then :

|Zycf∗DB ∩ Zz0DB | = 1 (13)

More precisely, Zz0DB and ZycfDB are hyper-spheres of d − 1 dimensions centered respectively in
PROJDB(z0) and Iµ because DB ⊥ Sµ. Since fixing zs is equivalent to fixing the radius rzo of
Zz0DB , we want to find the minimum rycf of ZycfDB such that Zz0DB ∩ ZycfDB ̸= ∅. This leaves us with
the trivial optimum radius r∗ycf of Zycf∗DB such that Zz0DB is tangent to Zycf∗DB . The point of tangency
is exactly z∗DB .

A.1.4 PROOF THAT z∗DB ∈ S2

We showed that the optimal zDB∗ ∈ Zz0DB is such that the two hyper-spheres of points on the
decision boundary are tangent. We now show that the point z∗DB belongs to S2. More precisely,
since the point where two hyper-spheres are tangent lays on the segment connecting the centroids,
z∗DB will belong to the segment Stan connecting Iµ and PROJDB(z0).

Stan = {(1− t)PROJDB(z0) + tIµ | t ∈ [0, 1]} (14)

which is the segment on the decision boundary that collects all the values of z such
that two hyper-spheres ZDB(H(µycf , z)) and ZDB(H(z0, z)) are tangent. Moreover, the
point Icf also belongs to Stan as: 1) by definition it is on the decision boundary, 2)
H(z0, Icf ) is tangent to H(µycf , Icf ). More precisely, the last condition ensures that H(z0, Icf ) ∩
H(µycf , Icf ) = Icf ∈ DB. This implies that ZDB(H(z0, Icf )) ∩ ZDB(H(µycf , Icf ) = Icf and
therefore ZDB(H(z0, Icf )) is tangent to ZDB(H(µycf , Icf ) in Icf . Follows that if I ∈ Stan then:

Stan = {(1− t)PROJDB(z0) + tIcf | t ∈ [0, 1]} ∪ {(1− t)Iµ + tIcf | t ∈ [0, 1]}
or:

Stan = S2 ∪ {(1− t)Iµ + tIcf | t ∈ [0, 1]} (15)

Finally, since z∗DB ∈ Stan, then z∗DB ∈ S2 as ∥z∗DB − z0∥22 < ∥Icf − z0∥22 and every element in the
other component is at least distance ∥Icf − z0∥22 to z0.

A.1.5 STRICTLY BETTER POINTS THAN z∗DB ACCORDING TO P2

We showed that out of all the points in Zz0DB the best possible choice according to P2 is z∗DB ∈ S2.
We now show how to find the region O of points that are better or equal than z∗DB according to P2 to
prove that P1 is never true in this region. More precisely, the region of points that are simultaneously
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closer to z0 and µycf than z∗DB is trivially identified as the intersection between the areas of the
hyper-spheres H(z0, z

∗
DB) and H(µycf , z

∗
DB):

Az0 = {z ∈ Rd : ∥z − z0∥22 ≤ ∥z∗DB − z0∥22}
Aycf = {z ∈ Rd : ∥z − µfcf ∥22 ≤ ∥z∗DB − µfcf ∥22}
O = Az0 ∩ Aycf (16)

In addition, |O| > 1 since the two hyper-spheres are not tangent as z∗DB /∈ S1 which is the segment
connecting z0 and µycf .

A.1.6 CLASSIFICATION OF O

Given that any point that is an improvement to z∗DB is in O, we show that the elements in this region
are all on the same side of the decision boundary. If this holds, we can show that they are all predicted
as a different label with respect to the counterfactual class and this would ensure that no better point
than z∗DB that satisfies P1 exists. More precisely, to prove that all elements in O are on the same side
of the decision boundary we need to prove that DB does not intersect the region O, as DB is linear.
To achieve this, given Oz0H = O∩H(z0, z

∗
DB)∩DB and OycfH = O∩H(µycf , z

∗
DB)∩DB, we can

equivalently show that: |Oz0H ∪ OycfH | = 1 or that DB touches the two hyper-spheres in the region
O in a single shared point and therefore does not intersect it. In that regard, remind that Zz0DB and
Zycf∗DB are the intersections with the decision boundary of H(z0, zS) and H(µycf , z

∗
DB). It is trivial

to see that Oz0H = O ∩ Zz0DB and OycfH = O ∩ Zycf∗DB . Given that z∗DB ∈ Oz0H and z∗DB ∈ OycfH , if all
the points in O are better or equal to z∗DB according to P2 then O ∩ Zz0DB = O ∩ Zycf∗DB = z∗DB as
z∗DB optimizes P2 for Zz0DB . This allows to conclude that:

Oz0H = OycfH = {z∗DB} (17)

|Oz0H ∪OycfH | = 1 (18)

or that all elements in O are assigned the same class label by the model.

A.1.7 PROOF z∗DB ∈ C

Since the points in O all share the same model prediction, we conclude our proof by taking a point
inside O for which we know the model decision. This allows us to extend that same decision to
all points in O. More specifically, as O contains all the points that are better or equal to z∗DB
according to P2, the original point zS ∈ S1 that violets P1 will belong to O. This is because zS
is equivalently distant to z0 while according to triangle inequality being closer to µcf . This proves
that all points in O are not predicted as the counterfactual class and violate P1. We conclude that
∄ z ̸= z∗DB ∈ Rd : P1 ∧ P2 or z∗DB is a counterfactual candidate:

z∗DB ∈ C (19)

A.1.8 ON THE VALIDITY OF POINTS IN S2

We are aware that points on the decision boundary are technically a violation of P1. Even though
this is true, we still consider them as an infinitesimal approximation of the points that would change
the model prediction. Simplifying further our setting, let µycf = (c, c, ..., c, µy∗,d) and µycf =
(c, c, ..., c, µycf ,d) the mean vectors of the original label distribution and the counterfactual class
distribution. The segment Sµ connecting them is parallel to the last axis: Sµ ∥ e(d) where e(d) is
the basis vector of the last dimension. The decision boundary DB between the two according to
identity covariance matrix assumption is a hyper-plane perpendicular to Sµ: DB ⊥ Sµ. Finally the

intercept Iµ between Sµ and DB is given by: Iµ = (c, c, ..., c,
µycf ,d+µy∗,d

2 ). According to this
setting we have:

fM(z∗DB + ϵed) = ycf for ϵ ≈ 0, ϵ ∈ R+

As a global result, any infinitesimal change perpendicular to the decision boundary would result in
the model predicting the counterfactual label.
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A.2 EXPECTED COUNTERFACTUAL

In the following we present mathematical derivations regarding the computation of the expected
counterfactual.

A.2.1 EXPECTATION ALONG A SEGMENT PARALLEL TO AN AXIS

We show that the expected value of elements in a segment S, which lies parallel to the last axis,
can be computed using single-dimensional sampling (as depicted by equation 10), assuming the
elements belong to a space Rd where they follow an isotropic Gaussian distribution:

ES [z] =

(
c, c, ..., c,

∫ 1

0

Z(t)fZd
(Z(t))dt

/∫ 1

0

fZd
(Z(t))dt

)
proof: Take two points aligned along the last axis a = (c, c, ..., c, ad) and b = (c, c, ..., c, bd) ∈ Rd,
with c, ad, bd ∈ R and ad < bd and the segment S connecting them S = {(1 − t)a + (t)(b) | t ∈
[0, 1]}. Any point z ∈ S can be expressed as a function of t: Z(t) = (1 − t)a + (t)(b). More
precisely any coordinate of any point z ∈ S can be expressed as a function of the corresponding
components of a and b and t: Zi(t) = (1− t)ai + t(bi). If the underlying distribution of the points
in S is an isotropic Gaussian we can factorize the density as follows:

fZ1,...,Zd
(z1, ..., zd) =

d∏
i

fZi(zi)

And the expected value becomes:

ES [z] =

∫ 1

0

Z(t)fZ(Z(t))dt∫ 1

0

fZ(Z(t))dt

=

∫ 1

0

Z(t)

d∏
i=1

fZi
(Zi(t))dt

∫ 1

0

d∏
i=1

fZi(Zi(t))dt

But:
d∏
i=1

fZi(Zi(t)) = fZd
(Zd(t))

d−1∏
i=1

fZi(c)

and: ∫ 1

0

Z(t)

d∏
i=1

fZi(Zi(t))dt∫ 1

0

d∏
i=1

fZi(Zi(t))dt

=

d−1∏
i=1

fZi(c)

∫ 1

0

Z(t)fZd
(Zd(t))dt

d−1∏
i=1

fZi(c)

∫ 1

0

fZd
(Zd(t))dt

=

∫ 1

0

Z(t)fZd
(Zd(t))dt∫ 1

0

fZd
(Zd(t))dt

To conclude our proof we have that for a given t value Z(t) is a vector of the form (c, c, ..., c, Zd(t))
and we can write:

ES [z] =

( ∫ 1

0

cfZd
(Zd(t))∫ 1

0

fZd
(Zd(t))dt

, ...,

∫ 1

0

cfZd
(Zd(t))∫ 1

0

fZd
(Zd(t))dt

,

∫ 1

0

Zd(t)fZd
(Zd(t))dt∫ 1

0

fZd
(Zd(t))dt

)

=

( c

∫ 1

0

fZd
(Zd(t))∫ 1

0

fZd
(Zd(t))dt

, ...,

c

∫ 1

0

fZd
(Zd(t))∫ 1

0

fZd
(Zd(t))dt

,

∫ 1

0

Zd(t)fZd
(Zd(t))dt∫ 1

0

fZd
(Zd(t))dt

)

=

(
c, ..., c,

∫ 1

0

Zd(t)fZd
(Zd(t))dt∫ 1

0

fZd
(Zd(t))dt

)
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Proving that to estimate the last component, which is the only one whose value is modified, we can
resort to one-dimensional sampling.

In conclusion, the clear advantage is that eliminating other dimensions significantly increases the
probability of sampling within the desired interval removing the complexity of combinatorial effects.
More precisely, dimensionality has no influence on the effectiveness of our approach, whereas it
poses a problem for other sampling-based methods, as it causes probability densities to vanish due
to factorization.

A.2.2 EXPECTED CANDIDATE COMPUTATION

Given two generic segments S1 = {(1− t)a1+(t)(b1) | t ∈ [0, 1]} and S2 = {(1− t)a2+(t)(b2) |
t ∈ [0, 1]} and a1, b1, a2, b2 ∈ Rd, The expected value of elements in the segments equals:

ES1,S2 [z] = w1ES1 [z] + w2ES2 [z]

with w1 =

∫ 1

0

fZ(Z1(t))dt∫ 1

0

fZ(Z1(t))dt+

∫ 1

0

fZ(Z2(t))dt

and w2 = 1− w1

where Z1(t) = (1− t)a1 + tb1 and Z2(t) = (1− t)a2 + tb2
This formulation requires an additional Monte-Carlo estimator of the probabilities of the segments
and for efficiency in our derivations we approximate the quantity with:

z1 = ES1 [z] ; z2 = ES2 [z] ; z = w1z1 + w2z2

with w1 =
N (z1;µy1 , I)

N (z1;µy1 , I) +N (z2;µy1 , I)
and w2 = 1− w1

It is worth noticing that in our setting we would have N (Z1(t);µ, I) > N (Z2(t);µ, I)∀t ∈ [0, 1]
therefore: ∫ 1

0

fZ(Z1(t))dt≫
∫ 1

0

fZ(Z2(t))dt

which inevitably transfers to the mean densities:
N (z1;µy1 , I)≫ N (z2;µy1 , I)

Thus, we can conclude that the approximation for the expected value is suitable:∫ 1

0

fZ(Z1(t))dt∫ 1

0

fZ(Z1(t))dt+

∫ 1

0

fZ(Z2(t))dt

≈ N (z1;µy1 , I)

N (z1;µy1 , I) +N (z2;µy1 , I)
(20)

A.2.3 EXPECTED COUNTERFACTUAL VIOLATIONS OF P2

The expected counterfactual can violate the second property of counterfactual candidates defined as:
P2 : ∥z − z0∥22 ≤ ∥zcf − z0∥22 ∧ ∥z − µycf ∥22 ≤ ∥zcf − µycf ∥22

This is because the expected counterfactual consists in an interpolation of points in SC1 and S2 which
inevitably returns a point that belongs to neither segment. Given a generic segment S = {(1− t)a+
(t)(b) | t ∈ [0, 1]} with a, b ∈ Rd and two additional points c = t0a + (1 − t0)b that belongs to S
and d ∈ Rd we define the interpolation between c and d as c1 = w1c + (1 − w1)d. The distance
between the interpolation c1 and any point in the segment S is given by:

∥ (1− t)a+ (t)(b)− (1− t0)a− (t0)(b)− (1− w1)d ∥22
which allows us to bound the distance between the interpolation c1 and the segment S with at least:

∥ (1− t0)a+ (t0)(b)− (1− t0)a− (t0)(b)− (1− w1)d ∥22
∥ (1− w1)d ∥22= (1− w1)

2 ∥ d ∥22 (21)

Recall from 20 that the weight associated to the expected value of SC1 appraoches one implying that
1− w1 approaches zero. This allows us to conclude that, while the expected counterfactual slightly
violates the P2 property of counterfactual candidates, this violation is negligible due to the inherent
relationship between SC1 and S2.
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B ALGORITHMS

B.1 TRAINING ALGORITHMS

We minimize this loss of 4 following the procedure depicted in Algorithm 2. We encode inputs to
extract label-relevant and label-irrelevant dimensions and compute the corresponding classification
and regularization components of the loss. Follows that latents are concatenated and decoded to
compute reconstruction loss before the update-step of model parameters. Procedure iterates until
convergence.

Algorithm 2 Deterministic Training
Procedure: DETTRAIN(λs, λu, n)
while not convergence do

for i = 0 to n do
{x, y} ∼ D
zs ← ENCs(x)
zu ← ENCu(x)
x̃← DEC([zs; zu])
L ← LREC + λsLGM + λuLuGM
ψ, ϕ, π

+← −∇ψ,ϕ,πL
end for

end while

Algorithm 3 Generative Training
Procedure: GENTRAIN(σ, n)
while not convergence do

for i = 0 to n do
{x, y} ∼ D; ϵ ∼ N (0, I)
zs ← ENCs(x) + σ · ϵ
zu ← ENCu(x) + σ · ϵ
zaux ← ENCAUX([zs; zu])
z̃ ← DECAUX(zaux)
x̃← DEC(z̃)
L ← Lrec

AUX + LREC

θ, ω, π
+← −∇θ,ω,πL

end for
end while

The procedure of our second stage of training is depicted in Algorithm 3. We encode latent repre-
sentations to extract label-relevant and label-irrelevant codes. Through reparametrization trick we
inject noise to both representations. We now introduce our auxiliary model which takes as input
the concatenation of these noisy latents and is trained to denoise them. We compute the auxiliary
loss component as in equation 5 and reconstruct original inputs from the denoised representations.
Finally the loss of 6 is computed and parameters updated. This procedure iterates until convergence.

B.2 ROTATION ALGORITHM

We describe the algorithm we use to rotate the space so that the segment S connecting z and z′ is
parallel to the last-axis. More precisely, given inputs z of dimensionality d, v = z′ − z direction
vector and the reference point m = (z + z′)/2 (left unchanged by rotations), our algorithm returns
the point zr that corresponds to z in the rotated space.

Algorithm 4 Rotation Algorithm
ROTATE(·;m, v)
Require: m, v, vector to map to rotated space z

1: zr ← z
2: for i = 0 to d− 1 do
3: θ ← atan2(vi, vi+1)
4: R← I
5: Ri,i ← cosθ
6: Ri,i+1 ← −sinθ
7: Ri+1,i ← sinθ
8: Ri+1,i+1 ← cosθ
9: zr ← (zr −m) ·R+m

10: end for
11: return zr
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When a direction vector’s components are all simultaneously zero except for the last one the vector
becomes parallel to the last axis. Based on this observation, we define an iterative procedure that
progressively zeros out each dimension and aligns the corresponding axis. Once the second-to-last
dimension is processed, the vector will be fully parallel to the last axis and the procedure completed.
More precisely, given a direction vector v, for each dimension i we compute the angle θ between vi
and e(i+1) using θ = atan2(vi, vi+1), where e(i+1) is the basis vector of the (i + 1)-th dimension.
This angle defines the rotation needed to zero out the current dimension. Once θ is computed, we
construct a rotation matrix R that affects only the i-th and (i + 1)-th dimensions, leaving the rest
unchanged. To achieve this we combine the identity matrix with the standard 2d rotation matrix for
the indices of interest. The vector z is then transformed by multiplying it with the rotation matrix
R, effectively zeroing out the i-th dimension. This process is repeated iteratively for d − 1 steps,
progressively aligning the vector with the final axis.

C QUANTITATIVE EVALUATION

C.1 COUNTERFACTUAL QUALITY

In the following we quantitatively assess the quality of counterfactuals generated for the BloodM-
NIST dataset by our proposed framework and competitors. As a baseline, we compare it to the
method introduced by Luss et al. (2021), which, to the best of our knowledge, is the only other
interpretable counterfactual generation framework that operates without concept supervision. Addi-
tionally, to conduct an ablation study, we compare our approach to a simpler approach. This alter-
native involves generating counterfactuals by interpolating between the instance to be explained and
the mean of the counterfactual class under the constraint that the model’s confidence level reaches
specific thresholds (0.6, 0.8, 0.9). We leverage the FID, COUT, and S3 metrics to evaluate various
desiderata of counterfactual explanations. The FID score (Heusel et al., 2017), typically used to
evaluate the quality of generative models, quantifies the realism of the generated counterfactuals.
The COUT score (Khorram & Fuxin, 2022) focuses on the model’s confidence in the original and
counterfactual classes, providing insight into the effectiveness of the counterfactual explanation. Fi-
nally, the S3 (Jeanneret et al., 2023) metric, which leverages the SimSiam self-supervised learning
framework (Chen & He, 2021), compares the cosine similarities between the SimSiam encodings of
the original and counterfactual instances.

Method FID COUT S3

OURS 131.21 0.90 0.81
CEM-MAF 173.61 0.85 0.87
Interpolation (0.6) 264.79 0.22 0.63
Interpolation (0.8) 162.81 0.68 0.84
Interpolation (0.9) 135.44 0.83 0.81

Table 2: Comparison of counterfactual generation methods using various metrics to assess the like-
liness, proximity, and impact of explanations on model confidence.

In Table 2 we present the methods along with their corresponding scores for each metric. While the
FID score is relatively high across all methods, our approach achieves the best FID score. These
high values are primarily due to the constrained latent spaces used by the methods, which produce
counterfactuals that are clearly distinguishable from the original images. However, the results from
our user study provide strong evidence that the generated counterfactuals are both actionable and
informative. Our method also achieves the highest COUT score, indicating that it generates im-
pactful perturbations of the original instances so to achieve counterfactual explanations with high
model confidence. The best S3 score is achieved by CEM-MAF, which excels in this category due
to its design focused on optimizing proximity. Overall, our approach delivers competitive perfor-
mance, outperforming competitors in both FID and COUT metrics, while performing slightly worse
on the S3 metric. Simpler approaches, as expected, show lower FID and COUT scores, although
interpolation with a confidence threshold of 0.8 surpasses our method S3 metric. The variability in
the results of the interpolation approaches raises the question of what the model’s confidence value
should be, as it is difficult to generalize because this value depends on the model’s learned decision
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boundary. As a result, hyper-parameter tuning becomes a critical requirement for interpretability.
Our approach, however, demonstrates better overall performance and eliminates the need for hyper-
parameter tuning, making it a more favorable choice. This is particularly crucial in real-time user
interaction settings, where automating the counterfactual generation process is essential.

C.2 GENERATION TIMES

Our approach enables efficient counterfactual generation using a gradient-free optimization process,
which offers a significant computational advantage over existing techniques. Specifically, the com-
putational cost of our method depends solely on the dimensionality of the input latent vector, making
the generation time independent of the complexity of the underlying model architecture. This con-
trasts with gradient-based optimization methods, where the depth of the model can dramatically
slow down the convergence of the counterfactual generation process. In Table 3, we present a com-
parison of generation times between our method and the competing approach of (Luss et al., 2021).
The results demonstrate that our technique is more efficient, while other methods struggle to meet
the real-time performance requirements necessary for user interaction.

Method OURs CEM-MAF (k values)
k=1 k=3 k=5

Generation time (s) 1.21 ± 0.05 15.87 ± 1.86 24.16 ± 11.05 31.08 ± 14.21

Table 3: Comparison of generation times for our method and CEM-MAF for different values of
hyperparameter k which controls the model confidence on the counterfactual prediction.

Table 3 shows the substantial efficiency gains offered by our approach, revealing that generation
times are often insufficient, if not entirely inadequate, for providing real-time feedback, even when
using basic and shallow neural network architectures. This issue is exacerbated in more complex
domains as depicted in Figure 5 where generation times for different model architecture depths are
compared. In contrast, our method preserves its efficiency independently from such complexities.
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Figure 5: Comparison for generation times at varying of number of layers of a resnet architecture.
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C.3 IMPLEMENTATION DETAILS

To implement the approach of Luss et al. (2021) we trained a Convolutional Neural Network clas-
sifier and Disentangled Inferred Priors Variational Autoencoder (Kumar et al., 2017) as their pro-
posal suggests. The architectures of the two models were identical to the encoding and decoding
blocks implemented for our Denoising Disentangled Regularized Autoencoder (Table 4) with the
only exception that the classifier latent dimension was 8 (number of classes) and the DIP-VAE latent
dimension was 10. In addition, we set all hyper-parameters as the proposed values in the popular
repository https://github.com/Trusted-AI/AIX360. Specifically, the number of iter-
ations was set to 250. If a valid counterfactual was not obtained within this limit, we permitted
the algorithm to continue running until the first valid counterfactual was generated. The value of
k represents the difference in log-probabilities the model associates to the user asked class and the
second most plausible class for the counterfactual explanation. The approach of Luss et al. (2021)
returns explanations for which this difference is at least k , with a common choice being k = 5.
Intuitively, the optimization process slows down as the value of k increases because achieving a
higher model confidence in predicting a different class than the original necessitates progressively
larger perturbations to the input.

D TRAINING

D.1 OPTIMIZATION AND ARCHITECTURES

We train our model on BloodMNIST dataset introduced by (Yang et al., 2023). It contains 17092
images of blood cells belonging to 8 different classes. We use a 70-10-20 train-validation-test split
and optimize hyper parameters with the use of the validation set. For training, we use Adam opti-
mizer with α = 0.001, β1 = 0.9 and β2 = 0.999. With regard to the other hyper-parametrs, in the
first stage of training we use λs = 10, λu = 10. The first was picked to avoid over-fitting by means
of the validation set. With the second parameter we instead obtain a reasonable trade-off between
learning meaningful high-level generative factors and adversarial classification performance. In the
second stage of training we introduce noise according to σ = 0.1. More precisely, we empirically
notice that a desirable trade-off between reconstruction quality and latent smoothing is obtained with
this value. The factors that primarily affect this are learned latent-structure and size of latent space.
Below we show architectures of the models implemented.

Encoder Decoder
input x ∈ R28×3×3 input x ∈ R20

3x3 conv, 32 filters, batchnorm, relu Dense 200 units, relu
3x3 conv, 32 filters, batchnorm, relu Dense 200 units, relu
2x2 maxpool, stride 2 Dense 8*8*64 units
3x3 conv, 64 filters, batchnorm, relu 3x3 trans conv, 64 filters, batchnorm, relu
3x3 conv, 64 filters, batchnorm, relu 3x3 trans conv, 64 filters, batchnorm, relu
Dense 200 units, relu 2x2 upsample
Dense 200 units, relu 3x3 trans conv, 32 filters, batchnorm, relu
Dense 15 for zs, 5 for zu 3x3 trans conv, 3 filters

Table 4: Architecture for Encoder (ENC(·)) and Decoder (DEC(·))

Auxiliary Encoder Auxiliary Decoder
input x ∈ R20 input x ∈ R12

Dense 64 units, relu Dense 16 units, relu
Dense 32 units, relu Dense 32 units, relu
Dense 16 units, relu Dense 64 units, relu
Dense 12 output units Dense 20 output units

Table 5: Architectures for auxiliary encoder (ENCAUX(·)) and decoder (DECAUX()·)
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D.2 LATENT SPACE

Here we present the structure of the latent space learned by the model. as depicted in 6 the label-
relevant dimensions are mapped to a label-disentangled space and class is indistinguishable accord-
ing to label-irrelevant dimensions which follow an Isotropic Gaussian.
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Figure 6: Learned latent structure. Gaussian mixture for label-relevant and isotropic gaussian for
label-irrelevant dimensions.

D.3 SAMPLING

After regularization with the noise injection mechanism, our model is suited for sampling. We
extract distribution parameters for the label-relevant encodings and sample according to diagonal-
covariance distributions. Label irrelevant encodings follow instead an isotropic gaussian. We show
few examples of results with unconditional (Figure 7) and conditional sampling (Figure 8).

Figure 7: Unconditional sampling. To achieve this labels are treated as a random variable and sam-
pled. Finally a new image is obtained from the conditional random label distribution.
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Eosinophil

Platelet

Erythroblast

Neutrophil

Lymphocyte

Immature
granulocytes

Basophil

Monocyte

Figure 8: Conditional sampling. Each row corresponds to a different class.
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E CONCEPT EXTRACTION

In the following we show an example of the concept-traversal plots we exploit to extract interpretable
concepts. Latent traversal plots are obtained gradually twisting (increasing or decreasing) a latent
dimension while keeping the other elements fixed. These modified representations are reconstructed
and the effect of changing a single dimension can be observed. This allows to leverage a human
annotator to potentially associate concepts to generative factors by describing how reconstructions
change at the varying of the latent. More specifically we traverse the latent space using class medoids
(real instance whose encoding was closest to the corresponding latent mean 9) to capture label-
relevant concepts.

Basophil Eosinophil Erythroblast
Immature

granulocytes

Lymphocyte Monocyte Neutrophil Platelet

Figure 9: Class medoids

in Figure 10 we present the plot for the medoid of class Erythroblast. It is intuitive that certain
dimensions, such as the first, control the darkness of the image, while others, like the third and
last, influence the size of the membrane. The shape of the nucleus appears to be modulated by
the fourth dimension, and the overall cell size is affected by the eighth and fourteenth dimensions.
This reasoning can be extended to all generative factors. Once each dimension is associated with a
specific concept, the process is complete, making the concepts ready for explanation.
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Figure 10: Latent traversal plot of the 15 label-relevant dimensions for Erythroblast.
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F COUNTERFACTUALS

We provide additional examples of the counterfactuals and concepts generated with our technique
for a qualitative analysis in Figure 11. Explanatory images are clear, in-distribution and differences
are evident. It is worth mentioning that blurriness in the generated output is due to the compressed
latent representation and not to our counterfactual generating technique. This could be of incentive
to couple our proposal with more powerful generative models. On the other hand, sharing the
label-irrelevant latent dimensions evidently ensures a conceptual similarity as original images and
explanations tend to share high level generative factors like inclination or position of the cell in the
image. Associated concepts appear clear, pertinent and correctly depict the most relevant changes
applied to the input to obtain the explanation. In that regard, the choice of the number of concepts
to present is crucial. If the number is too high, certain concepts may capture insignificant variations,
reducing the interpretability of the explanations and potentially confusing users.

Model prediction: Counter example for:

Model prediction: Erythroblast Counter example for: Lymphocyte

Model prediction: Eosinophil
Counter example for: 
Immature granulocytesModel prediction: Basophil Counter example for: Eosinophil Model prediction: Eosinophil Counter example for: Basophil

Model prediction: Eosinophil Counter example for: Neutrophil
Model prediction: Erythroblast Counter example for:Platelet

Model prediction: 
Immature granulocytes Counter example for: Monocyte

Counter example for:
Immature granulocytes

Counter example for: LymphocyteModel prediction: Monocyte
Counter example for: 
Immature granulocytes

Model prediction: 
Immature granulocytes Counter example for: Monocyte

Model prediction: Neutrophil Counter example for: Eosinophil Model prediction: Neutrophil
Counter example for: 
Immature granulocytes Model prediction: Platelet Counter example for: Erythroblast
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Figure 11: Examples of the generated counterfactuals.
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G EXPERIMENT

G.1 HELPFULNESS OF EXPLANATIONS

From the correlation plots in Figure 4, it appears evident that predictions provided users of an addi-
tional help linearly across skill levels. In contrast to this, explanations seem to have the potential to
flatten final scores, as the slope of regression line suggests, therefore allowing users across all skill
levels to perform well on the task.

Table 6: Density imbalance Scores across skill levels
Variables Density imbalance Scores

Q1 (b-l) Q2 (b-r) Q3 (u-r) Q4 (u-l)
ACCbf, ACCaf −0.073 −0.415 0.224 0.668
AGRbf, ACCaf 0.198 −0.277 0.129 0.583

To further investigate this phenomenon, we present in Figure 12 Gaussian density plots of the data
points and analyze quadrant-wise density imbalance scores. Specifically, we overlay the data points
from the scatter plots in Figure 4 for both versions of our experiment, highlighting regions of space
using a Gaussian kernel density estimate to visualize the prevalence of data from either the Label
or Label+Explanation version of the user study. By dividing the plane into four quadrants, we
identify regions where: (i) low-skill users receive little help (bottom-left, Q1), (ii) high-skill users
receive little help (bottom-right, Q2), (iii) high-skill users receive substantial help (top-right, Q3),
and (iv) low-skill users receive substantial help (top-left, Q4).
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Figure 12: Gaussian densities plots. The coloring depicts the prevalence of points from Label ex-
periment or Label+Explanation experiment. The latter presents points associated with greater
help for less skilled users.

The red predominance in the upper-left quadrant of both plots is evident while bottom-left and
upper-right quadrants appear to be equally shared. On the other hand the bottom-right quadrants
appears to be mostly blue dominated. This is further supported by the quadrant-wise density imbal-
ance scores of Table 6 where values of the indicator range from 1 to 0 and positive values indicate
red dominance while negative values blue dominance. This analysis demonstrates that providing
explanations, rather than just model predictions, significantly helped less skilled users achieve com-
petitive performance scores and further validates our proposal.
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G.2 MACHINE FEEDBACK AS A USER TRAINING MECHANISM

To better understand the impact of explanations on users’ ability to complete the task, we analyze the
pattern of cumulative errors. Examining cumulative errors helps reveal how mistakes are distributed
as the number of interactions with the model increases. In Figure 13, we present the experimental
results across all three settings. Notably, in the None setting, errors appear to be evenly distributed
across questions. In contrast, the Label and Label+Explanation settings exhibit a distinct
pattern, with error rates increasing initially but leveling off significantly after a few interactions with
the model. The data reveals that the majority of errors occur within the first 12 questions (nearly
half of the experiment), while the last 7 questions account for only 12% of the total mistakes. This
strongly indicates the presence of a training effect driven by the interactive framework, especially
as the decline in errors occurs immediately after the peak error rate, which coincides with more
frequent model interactions.
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Figure 13: Cumulative proportion of errors made by users across questions. In the None setting,
errors are evenly distributed across questions, while in the Label and Label+Explanation
settings, users progressively reduce their mistakes, with errors diminishing significantly after suffi-
cient interactions with the model.

G.3 USER STUDY PREPARATORY STAGE

Given the inherent difficulty of the task users are tackling and given most non-expert users are
not familiar with blood cell images, each participant goes through a brief training stage before
the beginning of the experiment. In addition, in the Label and Label+Explanation ver-
sions of our experiment, users receive an introduction to what the interactive stage consists. For
the Label+Explanation version we show this procedure in Figure 14. The training, depicted
in Figure 15, consists in showing users images and the corresponding label. More precisely, the
first column presents class medoids, while the remaining three columns are populated by random
samples from that class. With this, we provide users with a prototypical observation together with
information about the variability inherent to each class. In that regard, class medoids consist in the
real images whose latent representation was closest to the corresponding latent class mean.
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Model prediction: Neutrophil Counter example for: Eosinophil

Color: more red
Shape: more round
SIze: bigger

Figure 14: Explanation provided to users of the interactive process
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Figure 15: Training session for users.
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G.4 INTERFACE

[H] We present the user interface for the Label variant of our experiment and the
Label+Explanation variant of our experiment. In both variants users are presented a ques-
tion in the form depicted in Figure16. In case of agreement with the model users jump to the next
question after being informed. In the case of disagreement with the model, for the Label version,
the interface is presented in Figure 17. For the Label+Explanation version of the experiment
the interface for disagreement is shown in Figure 18.
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Figure 16: Question example

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 17: Example of disagreement interface for Label version of the experiment
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Model prediction: Erythroblast Counter example for: Lymphocyte

Membrane size: smaller
Nucleus size: bigger

Figure 18: Example of disagreement interface for Label+Explanation version of the experi-
ment
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