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Abstract

In this note, we demonstrate a first-of-its-kind provable convergence of SGD to the global
minima of appropriately regularized logistic empirical risk of depth 2 nets – for arbitrary data
with any number of gates with adequately smooth and bounded activations, like sigmoid
and tanh, and for a class of distributions from which the initial weight is sampled. We also
prove an exponentially fast convergence rate for continuous time SGD that also applies to
smooth unbounded activations like SoftPlus. Our key idea is to show that the logistic loss
function on any size neural net can be Frobenius norm regularized by a width-independent
parameter such that the regularized loss is a “Villani function” – and thus be able to build
on recent progress with analyzing SGD on such objectives.

1 Introduction
Modern developments in artificial intelligence have been significantly been driven by the rise of deep-learning.
The highly innovative engineers who have ushered in this A.I. revolution have developed a vast array of heuris-
tics that work to get the neural net to perform “human like” tasks. Most such successes, can mathematically
be seen to be solving the function optimization/“risk minimization” question, minn∈N Ez∈D[ℓ(n, z)] where
members of N are continuous functions representable by neural nets and ℓ ∶ N × Support(D) → [0,∞) is
called a “loss function” and the algorithm only has sample access to the distribution D. The successful neural
experiments can be seen as suggesting that there are many available choices of ℓ, N & D for which highly
accurate solutions to this seemingly extremely difficult question can be easily found. This is a profound
mathematical mystery of our times

This work is about developing our understanding of some of the most ubiquitous methods of training nets. In
particular, we shed light on how regularization can aid the analysis and help prove convergence to global min-
ima for stochastic gradient methods for neural nets in hitherto unexplored and realistic parameter regimes.

In the last few years, there has been a surge in the literature on provable training of various kinds of
neural nets in certain regimes of their widths or depths, or for very specifically structured data, like noisily
realizable labels. Motivated by the abundance of experimental studies it has often been surmised that
Stochastic Gradient Descent (SGD) on neural net losses – with proper initialization and learning rate –
converges to a low–complexity solution, one that generalizes – when it exists (Zhang et al., 2018).

But, to the best of our knowledge a convergence result for any stochastic training algorithm applied to the
logistic loss for even depth 2 nets (one layer of activations with any kind of non–linearity), without either an
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assumption on the width or the data, has remained elusive so far. We recall that this is the most common
way to train classifiers facing binary class labelled data.

In this work, we not only take a step towards addressing the above question in the theory of neural networks
but we also do so while keeping to a standard algorithm, the Stochastic Gradient Descent (SGD). In light
of the above, our key message can be summarily stated as follows,

Theorem 1.1 (Informal Statement of Lemma 3.3). If the initial weights are sampled from an appropriate
class of distributions, then for nets with a single layer of sigmoid or tanh gates – for arbitrary data and size of
the net – SGD on appropriately regularized logistic loss, while using constant steps of size O(ϵ), will converge
in O( 1

ϵ
) steps to weights at which the expected regularized loss would be ϵ–close to its global minimum.

We note that the threshold amount of regularization needed in the above would be independent of the
width of the nets. Further, this threshold would be shown to scale s.t it can either naturally turn out to be
proportionately small if the norms of the training data are small or can be made arbitrarily small by choosing
outer layer weights to be small. Our above result is made possible by the crucial observation informally stated
in the following lemma - which infact holds for more general nets than what is encompassed by the above
theorem,

Lemma 1.2. It is possible to add a constant amount of Frobenius norm regularization on the weights, to the
logistic loss on depth-2 nets with activations like SoftPlus, sigmoid and tanh gates s.t with no assumptions
on the data or the size of the net, the regularized loss would be a Villani function.

Since our result stated above does not require any assumptions on the data, or the neural net width, we posit
that this significantly improves on previous work in this direction. To the best of our knowledge, similar
convergence guarantees in the existing literature either require some minimum neural net width – growing
w.r.t. inverse accuracy and the training set size (NTK regime (Chizat et al., 2018; Du et al., 2018b)), infinite
width (Mean Field regime (Chizat & Bach, 2018; Chizat, 2022; Mei et al., 2018)) or other assumptions on
the data when the width is parametric (e.g. realizable data, (Ge et al., 2019; Zhou et al., 2021)).

In contrast to all these, we show that with appropriate ℓ2 regularization, SGD on logistic loss on 2–layer
sigmoid / tanh nets converges to the global infimum of the loss. Our critical observation towards this proof
is that the above standard losses on 2–layer nets – for a broad class of activation functions — are a “Villani
function”. Our proof get completed by leveraging the relevant results in Shi et al. (2020).

Organization In Section 2 we shall give a literature review of existing proofs about guaranteed training
of neural nets. In Section 3 we present our primary results – in particular Lemma 3.3 which uses special
initialization of the weights to show the global convergence of SGD on regularized logistic loss with ±1
labelled data and and for gates like sigmoid and tanh. Additionally, in Theorem 3.5 we also point out that
for our architecture, if using the SoftPlus activation, we can show that the underlying SDE converges in
expectation to the global minimizer in linear time. In Section 4, we give a brief overview of the methods in
Shi et al. (2020) and further details are given in Appendix D. In Section 3.2 we discuss some experiments
with synthetic data, which show that there exist nets trained on the loss function considered such that they
have high binary classification accuracy near the critical value of the regularizer considered for the proof.
Further experiments with MNIST demonstrating similar phenomenon are given in Appendix E. We end in
Section 6 with a discussion of various open questions that our work motivates. In Appendices A to C one
can find the calculations needed in the main theorems’ proofs.

2 Related Work
Firstly, we note that in recent times major advances have been made about understanding the statistical
properties of doing binary classification by neural nets. In Zhou & Huo (2023), the authors consider {±1}
labelled data distributed as a Gaussian Mixture Model and the labels satisfying a Tsybakov-type noise
conditions with the noise exponent being q. The authors obtain that with probability 1 − δ of sampling
n data, the difference between the population risk of the empirical risk minimizer and the Bayes’ optimal
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risk is upperbounded by Cq,d log( 2
δ
)(log n)4( 1

n
)

q+1
q+2 , where Cq,d is some constant depending on q and data

dimension d. To appreciate this, we note that earlier in Shen et al. (2022), similar bounds for CNNs with
logistic loss were obtained. However, unlike the result in Shen et al. (2022), the excess risk bound obtained
in Zhou & Huo (2023) for the hinge loss doesn’t blow up with respect to the increasing smoothness of the
minimizer of the risk over all measurable functions.

In the setting of finite–width neural nets trained on logistic loss for binary classification (Chatterji et al.,
2021), it can be shown that if one has (a) small initial loss (poly ( 1

n
), where n is the number of training data)

and (b) ‘smoothly approximately ReLU activation function’, then the loss converges at a rate of O ( 1
t
) over

t steps of gradient descent. But to ensure the smallness of the initial loss, this result needs to assume a large
width which scales polylogarithmically with inverse of the confidence parameter. In that limited sense this
can be seen to be belonging to the larger framework of proofs at asymptotically wide nets which we review
as follows.

Review of the NTK Approach To Provable Neural Training : One of the most popular parameter
zones for theory of provable training of nets has been the so–called “NTK” (Neural Tangent Kernel) regime
– where the width is a high degree polynomial in the training set size and inverse accuracy (a somewhat
unrealistic regime) and the net’s last layer weights are scaled inversely with width as the width goes to
infinity. (Du et al., 2018a; Su & Yang, 2019; Allen-Zhu et al., 2019b; Du & Lee, 2018; Allen-Zhu et al.,
2019a; Arora et al., 2019b; Li et al., 2019; Arora et al., 2019a; Chizat et al., 2018; Du et al., 2018b). The
core insight in this line of work can be summarized as follows: for large enough width, SGD with certain
initializations converges to a function that fits the data perfectly, with minimum norm in the RKHS defined
by the neural tangent kernel – which gets specified entirely by the initialization (which is such that the
initial output is of order one). A key feature of this regime is that the net’s matrices do not travel outside
a constant radius ball around the starting point – a property that is often not true for realistic neural net
training scenarios.

In particular, for the case of depth 2 nets – with similarly smooth gates as we focus on – in Song et al.
(2021) global convergence of gradient descent was shown using number of gates scaling sub-quadratically in
the number of data - which, to the best of our knowledge, is the smallest known width requirement for such
a convergence in a classification setup. On the other hand, for the special case of training depth 2 nets with
ReLU gates on cross-entropy loss for doing binary classification, in Ji & Telgarsky (2020) it was shown that
one needs to blow up the width only poly-logarithmically with target accuracy to get global convergence for
SGD.

Review of the Mean-Field Approach To Provable Neural Net Training : In a separate direction of
attempts towards provable training of neural nets, works like Chizat & Bach (2018) showed that a Wasserstein
gradient flow limit of the dynamics of discrete time algorithms on shallow nets, converges to a global optimizer
– if the convergence of the flow is assumed. We note that such an assumption is very non-trivial because
the dynamics being analyzed in this setup is in infinite dimensions – a space of probability measures on
the parameters of the net. Similar kind of non–asymptotic convergence results in this so–called ‘mean–field
regime’ were also obtained.(Mei et al., 2018; Fang et al., 2021; Chizat & Bach, 2018; Nguyen & Pham, 2020;
Sirignano & Spiliopoulos, 2022; Ren & Wang, 2022). The key idea in the mean–field regime is to replace
the original problem of neural training which is a non-convex optimization problem in finite dimensions by a
convex optimization problem in infinite dimensions – that of probability measures over the space of weights.
The mean–field analysis necessarily require the probability measures (whose dynamics is being studied) to
be absolutely–continuous and thus de facto it only applies to nets in the limit of them being infinitely wide.

We note that the results in the NTK regime hold without regularization while in many cases the mean–field
results need it. (Mei et al., 2018; Chizat, 2022; Tzen & Raginsky, 2020).

In the next subsection we shall give a brief overview of some of the attempts that have been made to get
provable deep-learning at parametric width.

Need And Attempts To Go Beyond Large Width Limits of Nets The essential proximity of the
NTK regime to kernel methods and it being less powerful than finite nets has been established from multiple
points of view. (Allen-Zhu & Li, 2019; Wei et al., 2019).
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In He & Su (2020), the authors had given a a very visibly poignant way to see that the NTK limit is not
an accurate representation of a lot of the usual deep-learning scenarios. Their idea was to define a notion of
“local elasticity” – when doing a SGD update on the weights using a data say x, it measures the fractional
change in the value of the net at a point x′ as compared to x. It’s easy to see that this is a constant
function for linear regression - as is what happens at the NTK limit (Theorem 2.1 Lee et al. (2019)). But it
has been shown in Dan et al. (2021) that this local-elasticity function indeed has non-trivial time-dynamics
(particularly during the early stages of training) when a moderately large neural net is trained on logistic
loss.

Specific to depth-2 nets – as we consider here – there is a stream of literature where analytical methods
have been honed to this setup to get good convergence results without width restrictions - while making
other structural assumptions about the data or the net. Janzamin et al. (2015) was one of the earliest
breakthroughs in this direction and for the restricted setting of realizable labels they could provably get
arbitrarily close to the global minima. For non-realizable labels they could achieve the same while assuming
a large width but in all cases they needed access to the score function of the data distribution which is a
computationally hard quantity to know. In a more recent development, Awasthi et al. (2021) have improved
over the above to include ReLU gates while being restricted to the setup of realizable data and its marginal
distribution being Gaussian.

One of the first proofs of gradient based algorithms doing neural training for depth−2 nets appeared in
Zhong et al. (2017). In Ge et al. (2019) convergence was proven for training depth-2 ReLU nets for data
being sampled from a symmetric distribution and the training labels being generated using a ‘ground truth’
neural net of the same architecture as being trained – the so-called “Teacher–Student” setup. For similar
distributional setups, some of the current authors had in Karmakar et al. (2020) identified classes of depth–2
ReLU nets where they could prove linear-time convergence of training – and they also gave guarantees in the
presence of a label poisoning attack. The authors in Zhou et al. (2021) consider another Teacher–Student
setup of training depth 2 nets with absolute value activations. In this work, authors can get convergence
in poly(d, 1

ϵ
) time, in a very restricted setup of assuming Gaussian data, initial loss being small enough,

and the teacher neurons being norm bounded and ‘well–separated’ (in angle magnitude). Cheridito et al.
(2022) get width independent convergence bounds for Gradient Descent (GD) with ReLU nets, however
at the significant cost of having the restrictions of being only an asymptotic guarantee and assuming an
affine target function and one–dimensional input data. While being restricted to the Gaussian data and
the realizable setting for the labels, an intriguing result in Chen et al. (2021) showed that fully poly-time
learning of arbitrary depth 2 ReLU nets is possible if one is in the “black-box query model”.

Related Work on Provable Training of Neural Networks Using Regularization Using a regular-
izer is quite common in deep-learning practice and in recent times a number of works have appeared which
have established some of these benefits rigorously. In particular, Wei et al. (2019) show that for a specific
classification task (noisy–XOR) definable in any dimension d, no NTK based 2 layer neural net can succeed
in learning the distribution with low generalization error in o(d2) samples, while in O(d) samples one can
train the neural net using Frobenius/ℓ2−norm regularization. Nakkiran et al. (2021) show that for a specific
optimal value of the ℓ2- regularizer the double descent phenomenon can be avoided for linear nets - and that
similar tuning is possible even for real world nets.

In the seminal work Raginsky et al. (2017), it was pointed out that one can add a regularization to a gradient
Lipschitz loss and make it satisfy the dissipativity condition so that Stochastic Gradient Langevin Dynamics
(SGLD) provably converges to its global minima. But SGLD is seldom used in practice, and to the best of
our knowledge it remains unclear if the observation in Raginsky et al. (2017) can be used to infer the same
about SGD. Also it remains open if there exists neural net losses which satisfy all the assumptions needed
in the above result. We note that the convergence time in Raginsky et al. (2017) for SGLD is O ( 1

ϵ5 ) using
an O (ϵ4) learning rate, while in our Theorem 3.3 SGD converges in expectation to the global infimum of
the regularized neural loss in time, O ( 1

ϵ
) using a O (ϵ) step-length.

In summary, to the best of our knowledge, it has remained an unresolved challenge to show convergence of
SGD for logistic loss on any neural architecture with a constant number of gates while not constraining the
distribution of the data to a specific functional form. In this work, we exploit the use of some regularization
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to be able to resolve this optimization puzzle in our key result, Lemma 3.3 – and in our experiments we show
that the regularization needed may not harm downstream classification performance. Thus we take a step
towards bridging this important lacuna in the existing theory of stochastic optimization for neural nets in
general.

3 Setup and Main Results
We start with defining the neural net architecture, the loss function and the algorithm for which we will
prove our convergence results.

Definition 1 (Constant Step-Size SGD On Depth-2 Nets). Let, σ ∶ R → R (applied elementwise for
vector valued inputs) be atleast once differentiable activation function. Corresponding to it, consider the
width p, depth 2 neural nets with fixed outer layer weights a ∈ Rp and trainable weights W ∈ Rp×d as,

Rd ∋ x↦ f(x; a, W ) = a⊺σ(W x) ∈ R

Then, corresponding to a given set of n binary training data (xi, yi) ∈ Rd × {+1,−1}, with ∥xi∥2 ≤ Bx, i =
1, . . . , n define the individual data logistic losses L̃i(W ) ∶= log(1 + e−yifi(W )). Then for any λ > 0 let the
regularized logistic empirical risk be,

L̃(W ) ∶= 1
n

n

∑
i=1

L̃i(W ) +
λ

2
∥W ∥2F (3.1)

Correspondingly, we consider SGD with step-size s > 0 as,

W k+1 =W k − s

b
∑

i∈Bk

∇L̃i(W k) − sλW k

where Bk is a randomly sampled mini-batch of size b.

Definition 2 (Properties of the Activation σ). Let the σ used in Definition 1 be bounded s.t. ∣σ(x)∣ ≤ Bσ,
C∞, L−Lipschitz and L′σ−smooth. Further assume that ∃ a constant vector c and positive constants Bσ, MD

and M ′
D s.t σ(0) = c and ∀x ∈ R, ∣σ′(x)∣ ≤MD, ∣σ′′(x)∣ ≤M ′

D .

In the framework of Shi et al. (2020), the required step-length for convergence of the above SGD and the
corresponding measure of the rate of convergence of the loss depend on the gradient Lipschitz smoothness
and the Poincaré constant of the Gibbs’s measure of the loss function, respectively. Hence, towards stating
the final results, in terms of the above constants we can now quantify these as follows,

Lemma 3.1 (for Classification with Logistic Loss). In the setup of binary classification as contained in
Definition 3.1, and the definition MD and L as given in Definition 2 above, there exists a constant λc =
MDLB2

x∥a∥
2
2

2 s.t ∀λ > λc and s > 0 the Gibbs measure ∼ exp (− 2L̃
s
) satisfies a Poincaré-type inequality with the

corresponding constant λs.

Moreover, if the activation satisfies the conditions of Definition 2 then ∃gLip (L̃) > 0 such that the empirical
loss is gLip (L̃)-smooth and we can bound the smoothness coefficient of the empirical loss as,

gLip(L̃) ≤√p(
√

p∥a∥2M2
DBx

4
+ (2 + ∥c∥2 + ∥a∥2Bσ

4
)M ′

DBxp + λ) (3.2)

The precise form of the Poincaré-type inequalities used above is detailed in Theorem 4.1.
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Theorem 3.2 (Bounds on Error for Arbitrary Initialization.). We continue in the setup of lo-
gistic loss from Definitions 1 and 2 and Lemma 3.1. For any s > 0, define the probability measure
µs ∶= 1

Zs
exp (− 2L̃(W )

s
), Zs being the normalization factor. Then, ∀ T > 0 and desired accuracy ϵ > 0, ∃

constants A(L̃), B(T, L̃) and C(s, L̃) s.t if the above SGD is executed at a constant step-size

s = s∗(ϵ, T ) ∶=min( 1
gLip(L̃)

, ϵ ⋅ 1
(A(L̃) +B(T, L̃))

)

with the weights W 0 initialized from any distribution with p.d.f ρinitial ∈ L2( 1
µs∗
) and then, the error at the

end of having taken k = T
s∗

SGD steps can bounded as,

EL̃(W k) − inf
W

L̃(W ) ≤ ϵ +C(s∗, L̃)∥ρinitial − µs∗∥µ−1
s∗

e−s∗λs∗ ⋅k

where

∥ρinitial − µs∗∥µ−1
s∗
∶= (∫

R
(ρinitial(x) − µs∗)2 µ−1

s∗ dx)
1
2

measures the ‘gap’ between the initial distribution and the stationary distribution

Lemma 3.3 (Global Convergence of SGD on Sigmoid and Tanh Neural Nets of 2 Layers for
Any Width and Any Data - for Binary Classification With Logistic Loss). We continue in the
setup of logistic loss from Definitions 1 and 2 and Lemma 3.1. For any s > 0, define the probability measure
µs ∶= 1

Zs
exp (− 2L̃(W )

s
), Zs being the normalization factor. Then, ∀ T > 0, and desired accuracy, ϵ > 0, ∃

constants A(L̃), B(T, L̃) and C(s, L̃) s.t if the above SGD is executed at a constant step-size

s = s∗ ( ϵ

2
, T) ∶=min( 1

gLip(L̃)
,

ϵ

2 ⋅ (A(L̃) +B(T, L̃))
)

with the weights W 0 initialized from a distribution with p.d.f ρinitial ∈ L2( 1
µs∗
) and ∥ρinitial − µs∗∥µ−1

s∗
≤

ϵ
2⋅C(s∗,L̃)

⋅eλs∗ ⋅T – then, in expectation, the regularized empirical risk of the net, L̃ would converge to its global
infimum, with the rate of convergence given as,

EL̃(W T
s∗ ) − inf

W
L̃(W ) ≤ ϵ.

The proof of Theorem 3.2 is given in Section 5 and the proof of Lemma 3.1 can be read off from the
calculations done as a part of the proof of Theorem 3.2. Lemma 3.3 can be obtained along the same lines as
Theorem 3.2 as follows.

Similar to Theorem 3.2, we consider SGD executed at a constant step size s = s∗( ϵ
2 , T ) – and as earlier this

constant is defined in terms of the constants A(L), B(T, L̃), C(s, L̃). Further, we invoke the condition, that
we consider the initial weights of the SGD being sampled from an initial distribution with p.d.f ρinitial such
that,

∥ρinitial − µs∗∥µ−1
s∗
≤ ϵ

2
⋅ eλs∗ ⋅T

C(s∗, L̃)

Then for k = T
s∗

, combining the above into Theorem 3 from Shi et al. (2020) (as was also used to get the
guarantee of Theorem 3.2) we get the guarantee in Lemma 3.3,

EL̃(W k) − inf
W

L̃(W ) ≤ ϵ

2
+C(s∗, L̃)∥ρinitial − µs∗∥µ−1

s∗
e−s∗λs∗ ⋅k ≤ ϵ

2
+ ϵ

2
= ϵ
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We make a few quick remarks about the nature of the above guarantees, Firstly, we note that the “time
horizon” T above is a free parameter - which in turn parameterizes the choice of the step-size and the initial
weight distribution. Choosing a larger T makes the constraints on the initial weight distribution weaker at
the cost of making the step-size smaller and the required number of SGD steps larger. But for any value
of T , the above theorem guarantees that SGD, initialized from weights sampled from a certain class of
distributions, converges in expectation to the global minima of the regularized empirical loss for our nets for
any data and width, in time O( 1

ϵ
) using a learning rate of O(ϵ).

Secondly, we note that the phenomenon of a lower bound on the regularization parameter being needed for
certain nice learning theoretic property to emerge has been seen in kernel settings too. (Yang et al., 2017).

Also, to put into context the emergence of a critical value of the regularizer for nets as in the above theorem,
we recall the standard result, that there exists an optimal value of the ℓ2−regularizer at which the excess
risk of the similarly penalized linear regression becomes dimension free (Proposition 3.8, Bach (2022)).
However, we recall that the quantities required for computing this “optimal” regularizer are not knowable
while training and hence it is not practically implementable. Thus, we see that for binary classification, one
can define a notion of an “optimal” regularizer and it remains open to investigate if such a similar threshold
of regularization also exists for nets. Our above theorem can be seen as a step in that direction.

Thirdly, we note that the lowerbounds on training time of neural nets proven in works like Goel et al. (2020)
do not apply here since these are proven for SQ algorithms and SGD is not of this type.

Finally, note that the threshold values of regularization computed above, λc, do not explicitly depend on the
training data or the neural architecture, consistent with observations in Anthony & Bartlett (2009); Zhang
et al. (2021). It depends on the activation and scales with the norm of the input data and the outer layer of
weights.

For intuition, suppose in the binary classification setting we set the outer layer weights s.t we have ∥a∥2 ⋅Bx =
1. This leads to λc = MDL

2 . For the sigmoid activation, σβ(x), by calculations as above we would get, λc in
this case (say λsi,β

c ) to be = β2

32 . Since β = 1 is the most widely used setting for the above sigmoid activation,
this results in,

λsi,1
c ≈ 0.03125 (3.3)

3.1 Global Convergence of Continuous Time SGD on Nets with SoftPlus Gates
In, Shi et al. (2020) the authors had established that, if the loss L̃ is gradient Lipschitz, then over any fixed
time horizon T > 0, as s → 0, the dynamics of the SGD in Definition 1 is arbitrarily well approximated (in
expectation) by the unique global solution that exists for the Stochastic Differential Equation (SDE),

dWs(t) = −∇L̃(Ws(t))dt +
√

s dB(t) (SGD–SDE) (3.4)

where B(t) is the standard Brownian motion. The SGD convergence proven in the last section critically
uses this mapping to a SDE. In Shi et al. (2020) it was further pointed out that if we only want to get
a non-asymptotic convergence rate for the continuous time dynamics, the smoothness of the loss function
is not needed and only the Villani condition suffices. In this short section we shall exploit this to show
convergence of continuous time SGD on L̃ with the activation function being the unbounded ‘SoftPlus’.
Also, in contrast to the guarantee about SGD in the previous subsection here we shall see that the SDE
converges exponentially faster i.e at a linear rate.

Definition 3 (SoftPlus activation). For β > 0, x ∈ R, define the SoftPlus activation function as

SoftPlusβ(x) =
1
β

loge (1 + exp(βx))

Remark. Note that limβ→∞ SoftPlusβ(x) = ReLU(x). Also note that for f(x) = SoftPlusβ(x), f ′(x) = σβ(x)
(sigmoid function as defined above) and hence ∣f ′(x)∣ ≤MD for MD = 1 and f(x) is L−Lipschitz for L = 1.
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Recall the following fact that was proven as a part of Lemma 3.1,

Lemma 3.4. There exists a constant λc ∶= MDLB2
x∥a∥

2
2

2 s.t ∀ λ > λc & s > 0, the Gibbs’ measure
µs ∶= 1

Zs
exp (− 2L̃(W )

s
), Zs being the normalization factor, satisfies a Poincaré-type inequality with the cor-

responding constant λs.

Theorem 3.5 (Continuous Time SGD Converges to Global Minima of SoftPlus Nets in Linear
Time). We consider the SDE as given in Equation 4.1 on a Frobenius norm regularized logistic empirical
loss on depth−2 neural nets as specified in Equation 3.1, while using σ(x) = SoftPlusβ(x) for β > 0, the
regularization threshold being s.t λ > λc = MDLB2

x∥a∥
2
2

2 and with the weights W0 being initialized from a
distribution with p.d.f ρinitial ∈ L2( 1

µs
).

Then, for any S > 0, ∃ G(S, L̃) and C(s, L̃), an increasing function of s, s.t for any step size 0 < s ≤
min{ ϵ

2G(S,L̃)
, S} and for t ≥ 1

λs
log (

2 C(s,L̃)∥ρinitial−µs∥µ−1
s

ϵ
) we have that,

E L̃(W (t)) −min
W

L̃(W ) ≤ ϵ.

Proof. The SoftPlus function is Lipschitz, hence using the same analysis as in (Section 5), we can claim
that for λ > λc the loss function in Definition 1 with SoftPlus activations is a Villani function (and hence
confining, by definition).

Then, from Proposition 3.1 of Shi et al. (2020) it follows that, ∃ C(s, L̃), an increasing function of s, that
satisfies,

∣EL̃(Ws(t)) −EL̃(Ws(∞))∣ ≤ C(s, L̃)∥ρinitial − µs∥µ−1
s

e−λst.

From Proposition 3.2 of Shi et al. (2020) it follows that, for any S > 0, for s ∈ (0, S), ∃ G(S, L̃) that quantifies
the excess risk at the stationary point of the SDE as,

L̃(W (∞)) −min
W

L̃ ≤ G(S, L̃) s

Combining the above, the final result claimed follows as in Corollary 3.3 in Shi et al. (2020).

3.2 An Experimental Demonstration of the Maintenance of Classification Accuracy At Various
Regularizations at Different Widths

For further illustration of the ramifications of the novel convergence theorems shown above, in here we present
some experimental studies of doing binary classification by training depth 2 sigmoid activated nets with the
regularized loss considered in the above convergence proofs. And we will be using the normalizations that
correspond to the theoretically needed threshold value of the regularizer being λc = 0.03125 (Equation 3.3).

We sampled the data from a clearly separable dataset with a margin – n data vectors in d−dimensions were
sampled as a n × d normally distributed matrix whereby after sampling each row vector was normalized
to have unit norm. The data whose last coordinate were > 0.2 were assigned label +1 and where the last
coordinate was < −0.2 was assigned label −1 and the rest of the data were discarded. In our experimental
setting, we fixed to d = 10. The data were split into being 20% test data and the rest used for training.

Then we simulate SGD based training on the above data for multiple neural nets at various values of λ in
[0, λC] and for neural net widths p. The step-length in the experiments is constant across all widths and
lambda, across all settings.

The elements of the (trainable) weight Matrix W0 of dimension p×d were initialized from a standard normal
distribution, i.e W0 ∼ N (0, Ip×d). Likewise, the elements of the (fixed) outer layer a, of dimension 1×p were
sampled as a ∼ N (0, I1×p) and then normalized.
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For all experimental settings the neural networks were trained for 500 epochs, and with a mini-batch size of
256. At the end of training we measured the test accuracy of classification - as the downstream metric of
measuring the goodness of training.

As shown in the experimental graph (Figure 1), we demonstrate examples of nets trained on regularized
logistic loss showing remarkable accuracy for regularization λ ≤ λc – even though the model was not been
exposed to the 0 − 1 criteria during training.

The code for the experiments can be found at this Colaboratory File.

Figure 1: Test Accuracy across various widths p and regularizer λ

Thus we have demonstrated that the threshold amount of regularization that was needed for the proof of
convergence may not at all harm the downstream performance metric of classification.

For further insights, the reader can see Appendix E, where additional experiments on the MNIST dataset
are detailed. These experiments showcase that the regularized loss function considered in the aforestated
theorems can be trained via SGD to achieve remarkable classification performance on real data too.

4 Overview of Shi et al. (2020)
In Section 5, we will give the proof for our Theorem 3.2. As relevant background for the proof, in here
we shall give a brief overview of the framework in Shi et al. (2020), which can be summarized as follows :
suppose one wants to minimize the function L̃(W ) ∶= 1

n ∑
n
i=1 L̃i(W ), where i indexes the training data, W

is in the parameter space (the optimization space) of the loss function and L̃i is the loss evaluated on the
ith−datapoint. On this objective, a constant step-size mini-batch implementation of the Stochastic Gradient
Descent (SGD) consists of doing the following iterates, Wk+1 =Wk − s

b ∑i∇L̃i(Wk), where the sum is over
a mini-batch (a randomly sampled subset of the training data) of size b and s is the fixed step-length. In,
Shi et al. (2020) the authors established that over any fixed time horizon T > 0, as s → 0, the dynamics of
this SGD is arbitrarily well approximated (in expectation) by the Stochastic Differential Equation (SDE),

dWs(t) = −∇L̃(Ws(t))dt +
√

s dB(t) (SGD–SDE) (4.1)

where B(t) is the standard Brownian motion. We recall that the Markov semigroup operator Pt for a
stochastic process Xt and its infinitesimal generator L are given as, Ptf(x) ∶= E[f(Xt) ∣ X0 = x] and
Lf ∶= limt ↓0

Ptf−f
t

.

Invoking the Forward Kolmogorov equation ∂tf = L∗f , one obtains the following Fokker–Planck–
Smoluchowski PDE governing the evolution of the density of the SDE,

∂ρs

∂t
= ⟨∇ρs,∇L̃⟩ + ρs∆L̃ + s

2
∆ρs (FPS) (4.2)
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Further, under appropriate conditions on L̃ the above implies that the density ρs(t) converges exponentially
fast to the Gibbs’ measure corresponding to the objective function i.e the distribution with p.d.f

µs =
1

Zs
exp(−2L̃(W )

s
) (4.3)

where Zs is the normalization factor. The sufficient conditions on L̃ that were shown to be needed to achieve
this “mixing” and to know a rate for it, are that of L̃ be a “Villani Function” as defined below,

Definition 4 (Villani Function (Villani (2009); Shi et al. (2020))). A map f ∶ Rd → R is called a Villani
function if it satisfies the following conditions,

1. f ∈ C∞

2. lim∥x∥→∞ f(x) = +∞

3. ∫
Rd

exp (− 2f(x)
s
)dx <∞ ∀s > 0

4. lim∥x∥→∞ (−∆f(x) + 1
s
⋅ ∥∇f(x)∥2) = +∞ ∀s > 0

Further, any f that satisfies conditions 1 – 3 is said to be “confining”.

From Lemma 5.2 Shi et al. (2020), the empirical or the population risk, L̃, being confining is sufficient for
the FPS PDE (equation 4.2) to evolve the density of SGD–SDE (equation 4.1) to the said Gibbs’ measure.

But, to get non-asymptotic guarantees of convergence – even for the SDE (Corollary 3.3, Shi et al. (2020)),
we need a Poincaré–type inequality to be satisfied (as defined below) by the aforementioned Gibbs’ measure
µs. A sufficient condition for this Poincaré–type inequality to be satisfied is if a confining loss function L̃
also satisfied the last condition in definition 4 (and is consequently a Villani function).

Theorem 4.1 (Poincaré–type Inequality (Shi et al. (2020))). Given a f ∶ Rd → R which is a Villani Function
(Definition 4), for any given s > 0, define a measure with the density, µs(x) = 1

Zs
exp (− 2f(x)

s
), where Zs

is a normalization factor. Then this (normalized) Gibbs’ measure µs satisfies a Poincare-type inequality i.e
∃ λs > 0 (determined by f) s.t ∀h ∈ C∞c (Rd) we have,

Varµs[h] ≤
s

2λs
⋅Eµs[∥∇h∥2]

The reader can see Appendix D for a more detailed sketch of the key proof in Shi et al. (2020) about why
this SGD-SDE considered above mixes to a Gibbs’s distribution for objectives being the Villani function

The approach of Shi et al. (2020) has certain key interesting differences from many other contemporary
uses of SDEs to prove the convergence of discrete time stochastic algorithms. Instead of focusing on the
convergence of parameter iterates W k, they consider the dynamics of the expected error i.e E[L̃(W k)], for
L̃ being the empirical or the population risk. This leads to a transparent argument for the convergence of
E[L̃(W k)] to infW L̃(W ), by leveraging standard results which help one pass from convergence guarantees
on the SDE to a convergence of the SGD.

We note that Shi et al. (2020) achieve this conversion of guarantees from SDE to SGD by additionally
assuming gradient smoothness of L̃ – and we would show that this assumption holds for the natural neural
net loss functions that we consider.

5 Proof of Theorem 3.2
Proof. Note that L̃ being a confining function can be easily read off from Definition 4. Further, as shown
in Appendix A, the following inequalities hold,
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∥∇W L (W )∥2 ≥
⎛
⎝

λ2 − λ∥a∥22MDB2
xL

2
⎞
⎠
∥W ∥2F − λ∥W ∥F ∥a∥2MDBx (1 +

∥a∥2∥c∥2
2

)

∆W W L̃ ≤ p [M2
d B2

x∥a∥
2
2 + ∥a∥2 [(By + ∥a∥2 (∥c∥2 +LBx∥W ∥F )) (M

′
DB2

x)] + λd] (5.1)

Combining the above two inequalities we can conclude that, ∃ functions g1, g2, g3 such that,

1
s
∥∇W L̃∥2 −∆W W L̃ ≥ g1(λ, s)∥W ∥2F − g2(λ, s)∥W ∥F + g3(λ, s)

where in particular,
g1(λ, s) = λ2 − 2λ ⋅MDLB2

x∥a∥
2
2.

Hence we can conclude that for λ > λc ∶= 2MDLB2
x∥a∥

2
2,∀s > 0, 1

s
∥∇W L̃∥2 −∆W W L̃ diverges as ∥W ∥→ +∞,

since g1(λ, s) > 0. The key aspect of the above analysis being that the bound on ∆W W does not depend on
∥W ∥2F . Thus we have, that the following limit holds,

lim
∥W ∥F→+∞

(1
s
∥∇W L̃∥2 −∆W W L̃) = +∞

for the range of λ as given in the theorem, hence proving that L̃ is a Villani function.

Towards getting an estimate of the step-length as given in the theorem statement, we also show in Appendix
B that the loss function L̃ is gradient–Lipschitz with the smoothness coefficient being upperbounded as,

gLip(L̃) ≤√p(
√

p∥a∥2M2
DBx

4
+ (2 + ∥c∥2 + ∥a∥2Bσ

4
)M ′

DBxp + λ)

Now we can invoke Theorem 3 (Part 1), Shi et al. (2020) with appropriate choice of s, as given in the
theorem statement to get the result as given in Theorem 3.2. In Appendix C one can find a discussion of
the computation of the specific constants involved in the expression for the suggested step-length s∗.

6 Conclusion
To the best of our knowledge, in this work, we have shown the first proof of convergence of SGD to the global
minima of logistic loss on a neural net whilst not making any assumptions about the data or the width of
the net. Our result relied on the convergence of discrete-time algorithms like SGD to their continuous time
counterpart (SDEs) - a theme that has lately been an active field of research.

We recall that Ji & Telgarsky (2020) is among the most related works to this as it shares with us the same SGD
algorithm, primary loss function, neural architecture, and data labels. Their proof exploits specific properties
of the (leaky) ReLU like positively homogeneous activation function and is limited to asymptotically wide
networks. In contrast, our convergence result (Lemma 3.3) applies to activation functions like tanh and
sigmoid not covered by them and most importantly accommodates arbitrary data and network widths. But
to achieve these flexibilities we needed to exploit a parametric (in data norm and last layer norm) amount of
regularization and impose certain constraints on the distribution from which the initial weights are sampled.

By juxtaposing these two results, multiple intriguing research directions for the immediate future are revealed
- which can significantly advance our understanding of the provable training of neural networks. Specifically,
we advocate for further investigation into reformulating the constraints on the initial weight distribution in
more intuitive terms. It could also be promising to explore whether natural weight initialization schemes
adhere to the sufficient criteria we require. We also point out that experiments suggest that convergence as
we prove can happen at lower values of regularization (possibly in a data-dependent way) and hence that
suggests trying for tighter analysis to show that neural losses can be Villani functions.

We posit that trying to reproduce our Theorem 3.3 using a direct analysis of the dynamics of SGD could
be a fruitful venture leading to interesting insights. Our results also motivate a new direction of pursuit in
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deep-learning theory, centered around understanding the nature of the Poincaré constant of Gibbs’ measures
induced by neural net losses.

Our experiments further demonstrated that there exists neural nets and binary class labelled data such
that optimizing on our provably good smooth loss functions also does highly accurate classification. This
motivates a fascinating direction of future pursuit about the phenomenon of classification calibration or
Bayes consistency i.e to be able to analytically identify cases where convergence guarantees as given here
could be extended to guarantees on the classification error.

Lastly, given the new method of proving neural training by SGD that has been initiated in this work, it
naturally begets the question if these proof techniques could also resolve similar mysteries for more exotic
loss functions and neural architectures that are in use.
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A Towards Establishing the Villani condition for the Empirical Logistic Loss
We start with the following observation,

Lemma A.1. Letting wj denote the jth row of W we have,

∇wj fi (W ) = ajσ′ (w⊺j xi)xi

In the following, ∥W ∥ for a matrix W denotes its spectral or operator norm. We recall that the regularized
logistic loss for training the given neural net on data D = {(xi, yi)}n

i=1 is,

L̃(W ) ∶= 1
n

n

∑
i=1

L̃i(W ) +Rλ(W ) ∶=
1
n

n

∑
i=1
{1

2
(yi − f(xi; a, W ))2} + λ

2
∥W ∥2F

Explicitly stated, the SGD iterates with step-length s > 0 that we analyze on the above loss are,

W k+1 =W k − s
⎡⎢⎢⎢⎣

1
b
∑

i∈Bk

∇L̃i(W k) +∇Rλ(W k)
⎤⎥⎥⎥⎦

=W k − s

b
∑

i∈Bk

( − (yi − f(xi; a, W k)) ⋅ ∇W k f(xi; a, W k)) − sλW k

= (1 − sλ)W k + s

b
∑

i∈Bk

[(yi − f(xi; a, W k)) ⋅ ∇W k f(xi; a, W k)]

We also note the following observation,

Lemma A.2.
1

1 + eyifi(W )
≤ 1

2
+ ∣fi(W )∣

4
(A.1)

Proof.
1

1 + eyifi(W )
≤ 1

1 + e−∣fi(W )∣
= e∣fi(W )∣

1 + e∣fi(W )∣

Consider the function g(z) = ez

1+ez , z ∈ [0,∞)

g(0) = 1
2

, g′(z) = ez

(1 + ez)2 ≤
1
4

Hence, we have

g(z) − g(0) = ∫
z

0
g′(z) ≤ ∫

z

0

1
4
= z

4

Therefore,

g(z) ≤ 1
2
+ z

4
(A.2)
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Lower-bounding the Norm of the Gradient of the Empirical Logistical Loss
Recall that we are using the following empirical loss function,

L (W ) = 1
n

n

∑
i=1

ℓ (yifi (W )) +
λ

2
∥W ∥22 (A.3)

where ℓ (z) = log (1 + e−z) is the logistic loss function. It follows that,

∇wj L (W ) = 1
n

n

∑
i=1

ℓ′ (yifi (W )) yi∇wj f (W ) + λwj (A.4)

Therefore,

∇wj L (W ) = 1
n

n

∑
i=1

−yi

1 + eyifi(W )
∇wj f (W ) + λwj

And that implies,

∥∇wj L (W )∥22 = λ2∥wj∥22 − 2 ⟨λwj ,
1
n

n

∑
i=1

yi

1 + eyifi(W )
∇wj f (W )⟩ + ∥ 1

n

n

∑
i=1

−yi

1 + eyifi(W )
∇wj f (W )∥

2

≥ λ2∥wj∥22 − 2 ⟨λwj ,
1
n

n

∑
i=1

yi

1 + eyifi(W )
∇wj f (W )⟩

≥ λ2∥wj∥22 − 2λ∥wj∥2
⎛
⎝

1
n

n

∑
i=1

∥∇wj fi (W )∥
1 + eyifi(W )

⎞
⎠

≥ λ2∥wj∥22 − 2λ∥wj∥2
⎛
⎝

1
n

n

∑
i=1

∣aj ∣∣σ′ (w⊺j xi)∣∥xi∥2
1 + eyifi(W )

⎞
⎠

(A.5)

In the last line above we have invoked Lemma A.1. Now invoking Lemma A.2 and recalling the definition of
MD and Bx in the above, we can claim that,

∥∇wj L (W )∥22 ≥ λ2∥wj∥22 − 2λ∥wj∥2∣aj ∣MD∥xi∥(
1
n

n

∑
i=1

1
2
+ ∣fi (W )∣

4
)

≥ λ2∥wj∥22 − 2λ∥wj∥2∣aj ∣MDBx (
1
2
+ ∥a∥2(LBx∥W ∥2 + ∥c∥2)

4
)

Summing the above over all j and using Cauchy-Schwartz inequality, ∑p
j=1 ∥wj∥2 ⋅ ∣aj ∣ ≤ ∥W ∥F ⋅ ∥a∥ and

∥W ∥2 ≤ ∥W ∥F , we get,

∥∇W L (W )∥2 ≥
⎛
⎝

λ2 − λ∥a∥22MDB2
xL

2
⎞
⎠
∥W ∥2F − λ∥W ∥F ∥a∥2MDBx (1 +

∥a∥2∥c∥2
2

) (A.6)

Analyzing the Laplacian of the Empirical Logistic Loss
We begin with observing that,

∣∇wj ⋅ (∇wj L (W ))∣ = ∣∇wj ⋅ (
1
n

n

∑
i=1

ℓ′ (yifi (W )) yi∇wj f (W )) + λd∣

≤ ∣ 1
n

n

∑
i=1

ℓ′′ (fi (W )) ∥∇wj f (W )∥22∣ + ∣
1
n

n

∑
i=1

ℓ′ (yifi (W )) yi∆wj f (W )∣ + λd

16



In above we have defined, ∆wj f = ∇wj ⋅ (∇wj f) We recall that, ℓ′′(z) = ez

(1+ez)2
≤ 1

4 , as show in Lemma A.2.
Further by invoking Lemma A.1, the definition of MD and Bx we have,

∣ 1
n

n

∑
i=1

ℓ′′ (yifi (W )) ∥∇wj f (W )∥22∣ ≤ ∣
1
n

n

∑
i=1

1
4
∥∇wj f (W )∥22∣

≤ ∣ 1
n

n

∑
i=1

1
4
∣aj ∣2(σ′(w⊺j xi))2∥xi∥2∣

≤ M2
DB2

x∥a∥
2
2

4

(A.7)

Recalling the definition of M ′
D we have,

∣ 1
n

n

∑
i=1

ℓ′ (yifi (W )) yi∆wj f (W )∣ ≤ ∣ 1
n

n

∑
i=1
(1

2
+ ∣fi (W )∣

4
) yi∆wj f (W )∣

≤ (2 + ∥c∥2
4

+ ∥a∥2LBx∥W ∥F
4

)B2
xM ′

D∥a∥2
(A.8)

And hence,

∣∇wj ⋅ (∇wj L (W ))∣ ≤ (2 + ∥c∥2
4

+ ∥a∥2LBx∥W ∥F
4

)B2
xM ′

D∥a∥2 +
M2

DB2
x∥a∥

2
2

4
+ λd (A.9)

Summing over all j, we get,

∆W L (W ) ≤
p

∑
j=1
∣∇wj ⋅ (∇wj L (W ))∣ ≤ p

⎡⎢⎢⎢⎣
(2 + ∥c∥2

4
+ ∥a∥2LBx∥W ∥F

4
)B2

xM ′
D∥a∥2 +

M2
DB2

x∥a∥
2
2

4
+ λd
⎤⎥⎥⎥⎦

(A.10)

B Bounding the Gradient Lipschitzness Coefficient of the Empirical Logistic Loss
Towards the upcoming computation, we define the following function,

gj (W ) ∶= ∇wj L = 1
n

n

∑
i=1

ℓ′ (yifi (W )) yi∇wj fi (W ) + λwj (B.1)

Consequently, corresponding to two values of the weight matrix W1 and W2, we obtain that,

∥gj (W2) − gj (W1)∥2 =

∥ 1
n

n

∑
i=1

yi (ℓ′ (yifi (W2))∇w2,j fi (W2) − ℓ′ (yifi (W1))∇w1,j fi (W1)) + λw2,j − λw1,j∥
2

≤ ∥ 1
n

n

∑
i=1

yi (ℓ′ (yifi (W2))∇w2,j fi (W2) − ℓ′ (yifi (W1))∇w1,j fi (W1))∥
2
+ ∥λw2,j − λw1,j∥2

≤ Bx∥a∥2
n

n

∑
i=1
∣ℓ′ (yifi (W2))σ′(w⊺2,jxi) − ℓ′ (yifi (W1))σ′(w⊺1,jxi)∣ + ∥λw2,j − λw1,j∥2

(B.2)

In the last line above we have invoked Lemma A.1 and the fact that yi ∈ {1,−1} for i = 1, . . . , n. Hence, the
problem simplifies to finding the Lipschitz constant of ℓ′ (yifi (W ))σ′(w⊺j xi) Define hk as follows:

hk(W ) ∶= ∇wk
(ℓ′ (yifi (W ))σ′(w⊺j xi)) (B.3)
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∥hk(W )∥2 = ∥∇wk
(ℓ′ (yifi (W ))σ′(w⊺j xi))∥2

= ∥akℓ′′ (yifi (W ))σ′(w⊺j xi)σ′(w⊺kxi)xi + 1k=jℓ′ (yifi (W ))σ′′(w⊺j xi)xi∥2
≤ ∥akℓ′′ (yifi (W ))σ′(w⊺j xi)σ′(w⊺kxi)xi∥ + ∥1k=jℓ′ (yifi (W ))σ′′(w⊺j xi)xi∥2

≤ ∥a∥2M2
DBx

4
+ ∥1k=j (

1
2
+ ∣fi(W )∣

4
)σ′′(w⊺j xi)xi∥

2

≤ ∥a∥2M2
DBx

4
+ (2 + ∥c∥2

4
+ ∥a∥2Bσ

4
)M ′

DBx
√

p = Lprod

where in the second term the √p factor comes in from using Cauchy-Schwarz inequality. We concatenate
these functions along the indices k = 1, 2, . . . , p, to get

h(W ) ∶= ∇W [f(xi; a, W )σ′(w⊺j xi)] = [h1(W ), h2(W ), . . . , hp(W )]

And hence,
∥h(W )∥2 ≤

√
pLprod

Therefore, the Lipschitz constant of ℓ′ (yifi (W ))σ′(w⊺j xi) is,

∥a∥2M2
DBx
√

p

4
+ (2 + ∥c∥2

4
+ ∥a∥2Bσ

4
)M ′

DBxp

Hence the Lipschitz constant of gj (W ) is

∥a∥22M2
DB2

x
√

p

4
+ (2 + ∥c∥2

4
+ ∥a∥2Bσ

4
)M ′

DB2
x∥a∥2p + λ

Proceeding as in the case of h(W ) above, we now concatenate the above gradients gj w.r.t the index j in a
vector form (of dimension pd) to get the following pd−dimensional gradient vector of the empirical loss,

∇W L̃ = g(W ) ∶= [g1(W ), g2(W ), . . . , gp(W )]

and the Lipschitz constant of g - and hence the gradient Lipschitz constant for L̃ to be bounded as,

gLip(L̃) ≤√p(
√

p∥a∥2M2
DBx

4
+ (2 + ∥c∥2

4
+ ∥a∥2Bσ

4
)M ′

DBxp + λ)

Thus we get the expression as required in the proof in Section 5.

C Defining the Constants C(s, L̃) and λs of Theorem 3.2
Invoking Theorem 3 from Shi et al. (2020) with a “time horizon” parameter T > 0, f = L̃, the convergence
guarantee for running k steps of SGD at a step-size s as given in Theorem 3.2 for k ⋅ s ∈ (0, T ) and s ∈
(0, 1/gLip(L̃)) can be given as,

EL̃(W k) − inf
W

L̃(W ) ≤ (A(L̃) +B(T, L̃))s +C(s, L̃)∥ρ − µs∥µ−1
s

e−sλsk (C.1)

where A, B, C are constants as mentioned in Shi et al. (2020). In particular, the C therein was defined as
follows

C(s, L̃) = (∫
Rp×d
(L̃(W ) −min

W
L̃(W ))2µs(W )dW )

1/2

for µs(W ) being the Gibbs’ measure, µs(W ) = 1
Zs

exp (− 2L̃(W )

s
) with Zs being the normalization factor.
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For determining λs, Shi et al. (2020) consider the function Vs(W ) = ∥∇L̃∥2/s −∆L̃. Let R0,s > 0 be large
enough such that Vs(W ) > 0 for ∥W ∥F ≥ R0,s. For Rs > R0,s, Shi et al. (2020) define ϵ(Rs) as

ϵ(Rs) =
1

inf{Vs(W ) ∶ ∥W ∥F ≥ Rs}

where Rs is assumed large enough such that ∫∥W ∥F ≤Rs
dµs ≥ 1/2. For BRs as the ball of radius Rs centered

at origin in Rp×d, Shi et al. (2020) define

µs,Rs = [∫
∥W ∥F ≤Rs

dµs(W )]
−1

µs(W )1∥W ∥F ≤Rs
.

Using the Poincaré inequality in a bounded domain[Evans (2010), Theorem 1, Chapter 5.8], Shi et al. (2020)
define the constant C(Rs) to be s.t the the following holds ∀h ∈ C∞c (Rd),

∫
W ∈Rp×d

h2dµs,Rs ≤ s ⋅C(Rs)∫
W ∈Rp×d

∥∇h∥2µs,Rsdµs,Rs + (∫
W ∈Rp×d

h dµs,Rs)
2

Then the key quantity λs occurring in the aforementioned convergence guarantee for SGD was shown to be,

λs =
1 + 3s (infW ∈Rp×d Vs(W )) ϵ(Rs)

2(C(Rs) + 3ϵ(Rs))

D Further Details of The Key Idea in Shi et al. (2020) About the Convergence of
the SGD-SDE (Equation 4.1)

In this appendix we outline the steps of the key proof in Shi et al. (2020) which prove that that solution
Ws(t) of the SGD-SDE (Equation 4.1) has a well-controlled bound on the error it makes at any time t in
terms of how far away it is from the global infimum of the objective function L̃.

Theorem D.1 ((Main) Theorem 1 of Shi et al. (2020)). If L̃ is both confining and Villani, ∃λs > 0
for any s > 0 (“learning rate”) s.t for a certain functions ϵ(s, L̃) > 0 which is strictly increasing in s and
D(s, W , ρ) ≥ 0 where ρ is the initial distribution, we have expotential convergence of the expected excess risk
as,

EL̃(Ws(t)) − inf
z

L̃(z) ≤ ϵ(s) +D(s, W , ρ)e−λst

Towards outlining the proof of the above we will denote E[L̃(Ws(∞))] ∶= EW∼µsL̃(W ), where µs is as given
in equation 4.3 . This is justified by the following convergence theorem - which we count as the first of the
3 main steps to be taken to prove Theorem D.1.

Step I

Theorem D.2 (Lemma 5.2 in Shi et al. (2020)). If L̃ satisfies the confining condition and if the initial
distribution of the S.D.E is ρ ∈ L2( 1

µs
) then the unique solution ρs(t) ∈ C1([0,∞), L2( 1

µs
)) of the F.P.S

differential equation (4.2) of the S.D.E, dWs = −∇L̃(Ws)dt +√s dW converges in L2( 1
µs
) to the Gibbs’

invariant distribution µs.

Now we note the following decomposition of error that is considered in Theorem D.1.

EL̃(Ws(t)) − inf
z

L̃(z) = (EL̃(Ws(t)) −E[L̃(Ws(∞))]) + (E[L̃(Ws(∞))] − inf
z

L̃(z))

Next we bound each of the 2 terms in the RHS above via the following two theorems.
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Step II

Theorem D.3 (Proposition 3.1 of Shi et al. (2020)). For L̃ being confining and Villani and for any
s > 0 ∃λs > 0 s.t we have a function C(s, L̃) > 0 (an increasing function in s) s.t ∀t ≥ 0 we have,

∣EL̃(Ws(t)) −EL̃(Ws(∞))∣ ≤ C(s, L̃) ⋅ e−λst ⋅ ∥ρ − µs∥ 1
µs

Step III

Theorem D.4 (Proposition 3.2 of Shi et al. (2020)). The excess risk at stationarity ϵ(s) is s.t for all
S > 0 and s ∈ (0, S], ∃A(S, L̃) s.t,

ϵ(s) = E[L̃(Ws(∞))] − L̃∗ ≤ A(S, L̃) ⋅ s

Combining the above two theorems (in Step II and Step III respectively) we are led to the key upperbound
stated in Theorem D.1, with an appropriate definition of the D function therein.

E Experimental Demonstration of Maintenance of Classification Accuracy on
MNIST Dataset

For further illustration, we present experimental studies performing binary classification between pairs of
digits from the MNIST dataset by training depth-2, sigmoid activated nets and regularized with the coefficient
being at the threshold where the loss was proven to become a Villani function.

We do the binary classification experiments on the digit pairs (0, 1) and (2, 7). In our experiments, the
elements of the trainable weight matrix W0 (of dimension 12 × 784) is initialized from the standard normal
distribution and so is the fixed outer layer of dimensions 1×12 – which was then rescaled by the largest data
norm for the value of λc to be as given in equation 3.3.

Figure 2: Batch Size = 3000, λ = λc = 0.03125 and the net being trained has 12 sigmoid gates

Experiment on Digits 2 and 7 This is the experiment shown in Figure 2, In this case the model was
trained for 100 epochs with a mini-batch size of 3000. We measured the test accuracy of classification - as
the downstream metric of measuring the goodness of training and at the end of training, we achieved an
accuracy of ≈ 84%.

Experiment on Digits 0 and 1 This is the experiment shown in Figure 3. Here the model was trained for
100 epochs with a mini-batch size of 3000. We measured the test accuracy of classification as the downstream
metric of measuring the goodness of training and at the end of training, we achieved ≈ 90% accuracy

Thus we have experimentally demonstrated that the threshold amount of regularization that was needed
for the proof of convergence may not at all harm the downstream performance metric of classification for
even real data. In both the cases above we demonstrated examples of nets being trained on logistic loss for
regularization parameter being λ = λc and achieving good accuracy on the classification metric even though
the model was not exposed to the 0 − 1 criteria during training.
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Figure 3: Batch Size = 3000, λ = λc = 0.03125 and the net being trained has 12 sigmoid gates.

Codes for these experiments can be found at this link for the (2, 7) classification experiment and at this link
for the (0, 1) classification experiment
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