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Abstract

Environment setup—the process of configuring the system to work with a specific
software project—represents a persistent challenge in Software Engineering (SE).
Automated environment setup methods could assist developers by providing fully
configured environments for arbitrary repositories without manual effort. This
also helps SE researchers to scale execution-based benchmarks. However, recent
studies reveal that even state-of-the-art Large Language Models (LLMs) achieve
limited success on automating this task. To address this limitation, we employ
an online Reinforcement Learning with Verifiable Rewards approach to improve
the environment setup capabilities of LLMs. As outcome-based rewards for en-
vironment setup require containerisation of each sample and are computationally
expensive, we leverage lightweight proxy rewards. On EnvBench-Python, our
method enables Qwen3-8B (a model runnable on consumer hardware) to set up
15.8 out of 329 repositories on average over five runs. This is a +690% gain over
the base model and +58% over GPT-40-mini at comparable cost. Our replication
package with training code and trained model checkpoints is available online:
https://github.com/envsetup-rl-dl4c/envsetup-rl.

1 Introduction
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Figure 1: Overview of the proposed training pipeline. For ¢-th training sample, which is an individual
repository, LLM 7y is provided with the prompt ¢; that contains the task description and the repository
context, and it generates a completion o; that is expected to contain a shell script. LLM response o;
is passed to a rule-based reward function R that outputs a float score R;. REINFORCE++ algorithm
is used to update the LLM weights given the reward scores R; and the responses o;.

Large Language Models (LLMs) show great promise for Software Engineering (SE) tasks [Liu
et al.|[2024]]. While closed-source general-purpose models largely dominate benchmarks [Jain et al.|
Jimenez et al., 2024]], open-source models remain strong competitors [[DeepSeek-Al, 2025, |Qwen
Team,|2025| |Kimi Team et al.}[2025]). Recent studies demonstrate that task-specific autonomous agents
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powered by open-source models can solve various SE problems, including code generation [Hasan
et al.| 2025]], bug localization [Ma et al., 2025, |Chang et al., 2025, |Reddy et al., 2025, |Chen et al.,
2025]], and issue resolution [Luo et al., 2025| [Wang] [2025| |Pan et al.| |2025| |Zeng et al., 2025, Ma
et al.,[2025} |Chang et al.| 2025]).

A common strategy for developing capable task-specific agents is to train them on carefully curated
data [Pan et al., 2025 Zeng et al., 2025]. However, in the SE domain, the bottleneck has shifted
from sophisticated data filtering strategies to acquiring sufficient data in the first place. Since agents
operate in an interactive manner, this requires scaling the construction of interactive environments.
This, in turn, often requires appropriately configuring the system to be able to execute the sample
code. In this paper, we will call this configuration process an environment setup.

This limitation has far-reaching implications for SE benchmarks. For instance, SWE-Bench [Jimenez
et al., [2024], one of the leading benchmarks for SE agents, includes only 12 Python repositories, and
collecting and maintaining it required substantial manual effort. Scaling such datasets typically relies
on manual setup [Pan et al.,|2025]] or on synthetic augmentation [Pham et al., 2025], trading realism
for scale. Automated environment setup methods [Guo et al.| 2025| Badertdinov et al.||2025| [Zhang
et al.l 2025} |Vergopoulos et al.| promise scalability with real data but remain limited—for instance,
SWE-Rebench [Badertdinov et al.| [2025] reports a 31% success rate on Python repositories overall,
while on EnvBench [Eliseeva et al.,[2025], a recently introduced benchmark for environment setup
specializing on hard repositories, the best result is 6.69% of 329, achieved by GPT-40 in an agentic
workflow.

Hence, our work focuses on advancing the environment setup capabilities of current LLMs. We
analyze the environment setup scripts produced by strong LLMs on EnvBench and catalogue locally
verifiable failure patterns. In the absence of a robust teacher for supervised learning, we adopt
Reinforcement Learning with Verifiable Rewards (RLVR) [Lambert et al.| [2024]]. The proposed
framework, presented in Figure[I] relies on rule-based rewards to improve the models’ capabilities. To
avoid slow and costly containerised execution of each sample, we introduce three lightweight proxy
rewards. (i) LLM-as-a-Judge is an LLM-based feedback on environment setup script correctness;
(ii) Heuristics is a set of deterministic rules that detect common environment setup fault patterns via
static analysis; and (iii) ShellCheck is a general-purpose shell script quality check based on static
analysis. Using these lightweight rewards enables online RL over hundreds of real repositories.

The Qwen3-8B model trained with the proposed approach consistently achieves better results on
EnvBench-Python compared to the base model, showing the effectiveness of RLVR with designed
proxy rewards for the environment setup task. Our best checkpoint trained with LLM-as-a-Judge
reward successfully sets up 15.8/329 repositories on average as compared to 2/329 of the base model,
approaching the performance of 4 times larger Qwen3-32B (18.4/329) and surpassing GPT-40-mini
(10/329). To facilitate reproducibility and future research in this direction, we make our code, model
weights, and generated scripts publicly availableﬂ

The rest of the manuscript is organized as follows. We detail the task and motivate the method design
in Section 2] describe the training and evaluation approach in Section[3] and provide a comprehensive
overview of our experimental results in Section [4]

2 Environment Setup

In this section, we provide the formulation of the environment setup task following previous work
and present our initial analysis of the problems faced by general-purpose LLMs.

2.1 Task Definition

Recently, several environment setup benchmarks were proposed [Eliseeva et al., 2025, Hu et al.,
2025b, Milliken et al.| |2025| |Arora et al. [2025]]. In this study, we focus on EnvBench [Eliseeva
et al.,|2025]] due to its large scale and lightweight static analysis-based metrics. In total, EnvBench
comprises 665 JVM and 329 Python repositories curated from GitHub. We consider Python part of
EnvBench and leave exploration on other languages for future work. We follow the original task
definition, which we briefly outline below.
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Input The environment setup approach has access to the full repository context and base environment
configuration. How exactly this context is utilized remains part of the approach definition: it
could be a predefined prompt, an interactive agentic workflow, and more.

Output The environment setup approach should produce a shell script that successfully installs all
the needed dependencies in the base environment.

Evaluation The correctness of the environment setup script is evaluated by first executing it, and
then, if the script was executed successfully (finished with exit code 0), invoking Pyrigha
static analysis tool used to evaluate whether the imports across the codebase were resolved
successfully. The repository is considered to be set up correctly if the script finished with
exit code 0 and subsequent Pyright check reported no import issues.

2.2 Exploratory Analysis

As was highlighted by Eliseeva et al.|[2025]], even frontier models achieve modest results on EnvBench.
To shed light on core problems faced by the LLMs during environment setup, we qualitatively study
the scripts generated by GPT-40 for a sample of 40 repositories. Overall, we find that failures are
due to the inability of the models to fully understand the context of the repository, the system they
operate in, and the tools that they are required to use.

Specifically, we identify 11 failure patterns in model-produced scripts and 3 configuration challenges
presented by the repositories that GPT-40 could not overcome. These failures fall into two categories:
those producing non-zero exit codes, dominated by incorrect syntax (10% of repositories) and models
failing to resolve conflicting dependencies versions (7.5%), and those causing unresolved import
issues reported by Pyright, most frequently, models failing to install dependencies present in the
codebase but not specified in the configuration files (25%) and optional dependencies required for
development, such as test packages or linters (22.5%). Finally, we note 7 Script Problems patterns
that could potentially be detected simply by localized check driven by parsing, static analysis, and
heuristics. A detailed description of the analysis process and all findings are presented in Appendix [B]

3 Method

The lack of a strong teacher model complicates creating a high-quality training dataset for traditional
supervised learning approaches common in the literature [Pan et al.|[2025]]. RLVR is a promising
alternative that requires not a high-quality supervised dataset but rather a way to verify the correctness
of the results. Moreover, RLVR showed benefits in various domains, including SE [Luo et al.| 2025,
Golubev et al., [2025]]. Hence, we apply RLVR to the environment setup task. As illustrated in
Figure|l| our RLVR training pipeline samples candidate outputs from a model, scores them with a
verifiable reward function to obtain scalar rewards, and updates model parameters via the chosen
RLVR algorithm.

The rest of the section is structured as follows. First, in Section [3.1] we introduce our training setup.
Then, in Section [3.2] we describe the motivation and implementation of the proposed rewards. Finally,
in Section[3.3] we describe how we evaluate the results.

3.1 Training setup

Algorithm. We train our policy with REINFORCE++ [Hu et al.,[2025a]], a critic-free method that
stabilizes updates via global batch advantage normalization and lowers the compute by removing
the value model. We do not adopt GRPO [Shao et al. 2024]] because it requires generating multiple
samples for each prompt and would significantly increase experiment duration in our setting. In
practice, REINFORCE++ provides comparable training dynamics and strong generalization with a
much lighter footprint. A more exhaustive comparison with GRPO and GRPO-like objectives is left
for future work.

Models. We use Qwen3-8B as our base model, selected for its strong performance on SE tasks
and reasonable compute requirements [Qwen Teaml 2025]. Qwen models also show consistent
improvements with RLVR training compared with other model families [Gandhi et al., [2025[]. We
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leave the exploration of other model families and model sizes to future work. We use non-thinking
mode because reasoning traces are often long [Sui et al. 2025] and increase the GPU memory
requirements as well as the training duration.

Scaffold. Our experiments follow zero-shot approach from [Eliseeva et al.| [2025]. The model is
prompted with the general task description, predefined context for the particular repository, and
information about the base environment (Dockerfile contents). It generates a shell script in a single
attempt without receiving any intermediate feedback from the environment. We instruct the model to
provide a script in a Markdown format, enclosed in ~~ “bash and ~ ~ ~ delimiters. The prompts and
the provided repository context are described in Appendix

Data. We perform both training and evaluation on the Python subset of EnvBench. Following
recent work on code benchmarks [Gehring et al., Jain et al.,[2025| [Le et al.| [2022], where agents learn
through trial-and-error on the same problems used for evaluation, our setup also employs EnvBench
tasks for both training and evaluation. However, we never explicitly provide any ground-truth labels
to the model, only rule-based reward scores for the generated scripts. This ensures the model cannot
trivially memorize correct answers, forcing it to learn from reward feedback alone. We additionally
compare the results on the train and validation sets in Appendix [C] and find no strong indication
of memorization. Specifically, we reserve 96 repositories as a held-out validation set and use the
remaining 228 repositories for training. Due to technical issues, we omit five repositories from
EnvBench from our training and validation sets. To save the compute, we cache the zero-shot prompt
for each repository, instead of dynamically composing it for each training step. The resulting dataset
is available onlin%l

Framework and Hyperparameters. We use the VeRL framework [Sheng et al.| [2024] for training.
All our training runs are executed on 4xH200 GPUs. We set a batch size of 64 and the number of
epochs to 15, yielding 45 training steps. We truncate the prompts longer than 30000 tokens and
allow the model to generate up to 4096 tokens in response. We use vVLLM [Kwon et al.,2023] as
the rollout engine and set sampling parameters to the values recommended in Qwen3 model card for
non-thinking mode. We perform 5 optimization epochs on each trajectory batch to improve sample
efficiency. We use AdamW [Loshchilov and Hutter]| optimizer. One training run takes 4 hours on
average. Our comprehensive hyperparameter setup and training details are listed in Appendix [A.2]

3.2 Proxy Rewards

The reward design is a crucial component of RLVR training. A common choice is to use binary
outcome-based rewards for each model response [Luo et al.l 2025]]. For the environment setup task,
this means evaluating whether each script successfully configures the corresponding repository. For
safety, each script must run in an isolated container, which, together with the massive scale required
for efficient RLVR training (e.g., recent work runs up to 512 containers in parallel [Luo et al.,[2025]),
creates significant computational and technical overhead. To address these challenges, we introduce
three lightweight execution-free proxy rewards based on our qualitative analysis from Section [2]and
experiment with them independently to probe alternative signals. Throughout the following reward
definitions, we use o for the model output and s = extract_script(o) for the environment-setup shell
script it contains. extract_script uses regular expressions to parse the shell script from the model
outputs; if parsing fails, we consider s to be empty.

LLM-as-a-Judge This reward (denoted Ry ) takes in the extracted script s along with a com-
prehensive context for the corresponding repository and emulates the EnvBench evaluation suite.
The judge predicts the exit code from the shell script execution and the number of Pyright issues
(num_issues). We use GPT-4.1 as the backbone LLM for the judge. Further implementation details
could be found in Appendix [A.5] The reward is calculated as follows:

—-L.0, if s is empty
Ripm(s) = { 0.0, if exit_code(s) # 0
max (1.0 - %, 0.0) , otherwise
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Heuristics This reward (Rheyrisiics) also analyzes both the repository contents and the model-
generated script. It parses the repository’s configuration files and the commands from the model-
generated script, then applies rule-based heuristics to detect two categories of issues: major issues
(logical mistakes that lead to a non-zero exit code after script execution) and minor issues (logical
mistakes that lead to unresolved import issues after script execution). Based on qualitative analysis of
environment setup fault patterns described in Appendix [B] we develop 4 major and 1 minor issue
types, with details in Appendix [A.6] The reward is calculated as follows:

—1.0, if sisempty

—0.5, if major issues are observed in s
0.5, if minor issues are observed in s
1.0, if no issues are observed in s

Rheuristics (5) =

ShellCheck This reward (Rgpeiicheck) relies on ShellCheckﬂ a popular static analysis tool for shell
scripts. Given a shell script, ShellCheck outputs a list of the observed issues, including syntax errors,
stylistic problems, and moreﬂ Similar to how the feedback from static analysis tools for code is
helpful for code generation agents [Jiang et al.|[2025]], we hypothesize that ShellCheck could improve
the shell script generation quality for our end task, environment setup. The reward is calculated based
on a binary check that penalizes for any issues reported by ShellCheck, as follows:

—1.0, if sis empthy
Rshencneck (s) = ¢ 0.0, if ShellCheck reports any issues for s
1.0, otherwise

3.3 Evaluation Setup

Baselines. We consider multiple general-purpose LLMs in the same zero-shot scaffold that we use
for our experiments. Following [Eliseeva et al.|[2025]], we compare our results with two closed-source
models from OpenAl, GPT-40 and GPT-40-mini. Additionally, we consider multiple models from
the Qwen3 family (specifically, 8B, 14B, and 32B). All models are used in non-thinking mode.

Data. We conduct the evaluation on the full set of 329 Python datapoints from EnvBench.

Metrics. We build off the metrics proposed in EnvBench and consider pass @ k—the binary measure
of success across k attempts for each datapoint. It is equal to 1 for a given repository, if at least
once in k attempts the model was able to generate a script that results in an exit code of 0 and
no issues reported by Pyright. Another metric we introduce for more detailed results analysis is
avgFixRate—the percentage of Pyright issues resolved by running the generated script averaged
across all repositories. This metric is equal to 100% for the successfully installed repositories, and
to 0% for the repositories with a non-zero exit code. We cache the number of Pyright issues before
running the script to lower computational costs. We also report # Failed—number of repositories
where the scripts resulted in a non-zero exit code.

Unlike Eliseeva et al.| [2025[], we conduct five independent evaluation runs for each model, since we
observe high variance in the performance of trained models. We separately report pass@5 and all
other metrics, averaged across the five runs.

4 Experiments

In this section, we provide and discuss the achieved experimental results following the methodology
outlined in Section[3] We first discuss the dynamics of the training, and then the evaluation results.

4.1 Training Dynamics

Training dynamics with each proxy reward described in Section[3.2]are depicted in Figure2} Every
reward function returns values from the [—1, 1] range, where —1 indicates malformed scripts, and 1
indicates perfect performance.

5https ://www.shellcheck.net
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Figure 2: RLVR training dynamics with each of the proxy rewards described in Section Raw
datapoints are shown as semi-transparent dots, with Gaussian-smoothed curves overlaid to highlight
trends. Blue shows average reward on the training set; shows average reward on the validation
set. The x-axis is training steps, and the y-axis is average reward. (a) Evolution of the ShellCheck
reward Rghenicheck, (b) LLM-as-a-Judge reward Ry, and (c¢) Heuristics reward Rpeyristics-

The base model exhibits formatting compliance but fails to satisfy the meaningful criteria imposed by
each reward. This is evident from scores at step 0, which are close to the minimum values
achievable with the correct formatting: near 0.0 for LLM-as-a-Judge and ShellCheck, and near -0.5
for Heuristics reward.

Across all rewards, we observe a steady initial increase for both training and sets, which

then slows for LLM-as-a-Judge and Heuristics rewards, and largely plateaus for ShellCheck. The

substantial differences in validation reward scores between step 0 and step 45 suggest that RLVR

training successfully steers the model to better adhere to the criteria imposed by each reward. In

addition, we do not observe strong overfitting: there is only a small gap between training and
reward scores.

ShellCheck approaches saturation with a mean score of 0.9 at step 45, while LLM-as-
a-Judge and Heuristics rewards achieve lower scores of 0.76 and 0.58, respectively. By definition,
ShellCheck represents the most straightforward reward in our set, as achieving a perfect score requires
only passing general script quality checks. The lower performance of LLM-as-a-Judge and Heuristics
rewards likely reflects Qwen3-8B’s difficulty satisfying their more challenging task-specific criteria.
We leave the hyperparameter tuning to improve the training dynamics for future work.

4.2 Evaluation Results

The evaluation results on EnvBench are presented in Table[I] The best model selection strongly
depends on the metrics priority, highlighting the complexity of the benchmark. For example, while
Qwen3-32B achieves the highest pass@5 (33/329), GPT-40 demonstrates the highest per-run perfor-
mance with an average pass@1 of 21.2 & 1.5 across five runs.

The best of the proposed methods, LLM-as-a-Judge, not only significantly outperforms its base model
across all metrics, but also shows the best avgFixRate across all tested models. It also surpasses
the pass@5 (22) of larger models Qwen3-14B (17) and GPT-40-mini (16), and gets the avg pass@1
(15.8 £ 1.3) close to that of Qwen3-32B (18.4 + 1.8), the model we consider our upper bound.
Figure 3] compares the LLM-as-a-Judge checkpoint with all baselines, highlighting how our approach
substantially improves the performance-cost balance for Qwen3-8B.

Beyond the increase in fully configured repositories, RLVR-tuned models show progress in partial
configuration through decreased # Failed and increased avgFixRate, suggesting better understanding
of the task. For example, while Heuristics-tuned Qwen3-8B is near the level of the base Qwen3-14B
model in terms of pass@5 and averaged pass@1, it produces substantially fewer failing scripts
(222 4 7 vs. 260 £ 7) and resolves more import errors ((17 £+ 2)% vs. (11.5 £ 1.8)%).

Since the best-performing LL.M-as-a-Judge relies on a powerful GPT-4.1 model to robustly provide
targeted feedback and carries associated costs, each training run required approximately $250 in
API costs alone. Heuristics reward offers a compelling alternative, providing smaller but substantial
improvements (e.g., pass@5 of 17 vs. 22 for LLM-as-a-Judge) via lightweight static analysis checks



Table 1: EnvBench evaluation results for base models and our RLVR-tuned Qwen3-8B with various
rewards. Total number of samples is 329. pass@5 shows the number of successful samples (zero
exit code and zero issues). avg@5 shows mean = std for the following metrics: # Success (average
number of successful samples per run), # Failed (average number of samples where scripts finished
with non-zero exit code), and avgFixRate (average ratio of resolved import issues per sample as
compared to the evaluation run with empty setup script; for samples where scripts execute with
non-zero exit codes, ratio is considered 0). The symbol 1 indicates higher is better, while | indicates
lower is better.

Model Reward pass @S avg@s
# Success T # Success T #Failed| avgFixRate
Proprietary Baselines
GPT-40 — 31 21.2+1.5 185+3 (28 +4)%
GPT-40-mini — 16 10.0£1.6 160 +4 (24.1£1.4)%
Open-Weight Baselines
Qwen3-32B — 33 18.4+1.8 190£5 (28.0+1.4)%
Qwen3-14B — 17 T+£2 260 £ 7 (11.5 £1.8)%
Qwen3-8B — 6 2.0£0.7 289 +3 (5.1+0.8)%
RLVR-tuned (ours)
LLM-as-a-Judge 22 15.8+1.3 1824+2  (30.7+0.5)%
Qwen3-8B Heuristics 17 6+ 2 22247 (17+2)%
ShellCheck 7 28+1.3 281 +4 (6.9+0.6)%

alone. When employing larger models and, therefore, longer training, it may serve as a viable option
to save on compute.

The ShellCheck reward serves as an ablation study underlining the conclusions from the Section 2.2}
Its performance, while still marginally over the base model, is far from the other rewards, while
the rewards both on the train and validation sets are high. Analysis of pre- and post-training scripts
reveals that ShellCheck-identifiable issues do not address the core problems causing script execution
failures or partial setup. Common remaining issues include environment-specific configuration errors
and logical mistakes in setup sequences that pass ShellCheck checks but fail in practice. More details
can be found in Appendix [B] For transparency, in addition to our main results, in Appendix [D.T]we
note a very strong ShellCheck checkpoint result that we were unable to reproduce.

Finally, we verify the generalization of our RLVR-tuned models in Appendix [C| We confirm that the
conclusions presented in this section hold when evaluated on the held-out validation set alone and
observe no strong signs of memorization.

5 Related Work

Environment Setup. Following the advances of LLMs in other SE tasks [Liu et al.|[2024], previous
works extensively explored their applications to the environment setup task. Several environment
setup benchmarks were introduced, such as EnvBench [Eliseeva et al.,2025]], Repo2Run [Hu et al.,
2025bf], and others [Milliken et al., 2025| |Arora et al.| [2025]. They differ in scale (from tens to
hundreds of repositories), expected model outputs (shell scripts or Dockerfiles), and metrics (static
analysis or test-based). Our study required a large sample of Python repositories, which left us with
EnvBench (329 repositories) and Repo2Run (420 repositories). We selected EnvBench because its
static analysis-based metrics are more lightweight than Repo2Run’s test-based metrics and facilitate
faster experiments.

Existing environment setup approaches range from simple zero-shot prompts [Badertdinov et al.|
2025, [Eliseeva et al., 2025} |Li et al., 2025]] to complicated agentic workflows [Milliken et al., 2025
Bouzenia and Pradel, [2025| [Hu et al.l 2025b| [Vergopoulos et al.l Zhang et al.| 2025} |Guo et al., 2025].
Existing works use general-purpose LLMs as backbones, and many workflows include execution of
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Figure 3: Performance on EnvBench-Python (pass@1 averaged across five runs) compared to the
costs of running models. To exceed the performance of the model yielded by the proposed method,
one needs to quadruple the costs. The prices for Qwen3 models are taken from the Alibaba Cloud
website: |https://www.alibabacloud.com/help/en/model-studio/models.

intermediate agent outputs [Eliseeva et al., 2025, [Milliken et al., 2025} Bouzenia and Pradel, [2025)
Hu et al.| 2025b} 'Vergopoulos et al.| Zhang et al., 2025||Guo et al.| 2025], introducing isolation and
cost considerations. In contrast, we focus on a zero-shot scaffold, which was previously shown to
achieve reasonable performance given its simplicity [Eliseeva et al., 2025, Badertdinov et al.| 2025,
to study how far LLMs can go under consistent constraints. Finally, we note that many works use
automated environment setup approaches as a mere tool for constructing SWE-bench-like [Jimenez
et al., 2024 datasets [Badertdinov et al., 2025| [Vergopoulos et al.l Zhang et al.l [2025| |Guo et al.|
20235|, making the environment setup not the primary research focus.

Reinforcement Learning with Verifiable Rewards (RLVR). Reinforcement Learning (RL) has
emerged as a powerful LLM post-training technique to further enhance the model’s capabilities,
with early successes achieved from human feedback [Christiano et al., 2017, [Kaufmann et al., [2024]].
Building on this foundation, the RLVR has gained traction, wherein the reward signal is provided
by a rule-based or programmatic verifier. RLVR has found particularly impactful applications in
domains such as mathematics [Lambert et al.| 2025, [Feng et al., 2025]] and code generation [Wei
et al.,[2025, |[Luo et al., [2025] |Golubeyv et al., 2025]].

The effectiveness of RLVR has been amplified by recent advances in RL algorithms building
upon Proximal Policy Optimization (PPO) [Schulman et al., 2017] (e.g., VAPO [Yue et al., [2025]],
RLOO [Kool et al., [2019, |Ahmadian et al., 2024], Reinforce++ [Hu et al., [2025a], GRPO [Shao
et al.| [2024]], DAPO [Yu et al.| [2025], Dr. GRPO [Liu et al., 2025]], GRPO++ [Luo et al.l [2025],
GSPO [Zheng et al., 2025])). Furthermore, recent research has explored RLVR settings that do not
rely on labeled data [Zhao et al.|[2025] or even operate without an explicit verifier [Zhou et al., [2025].

6 Limitations and Future Work
In this section, we outline key limitations of our study and promising directions for future work.

Models We apply the proposed framework to a single LLM, Qwen3-8B in non-thinking mode.
While it comes from the widely used Qwen3 family and presents a competitive quality-compute
tradeoff, the range of applicability of our study could be further verified by probing other model
families, different model sizes, and reasoning LL.Ms.
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Scaffold We consider a simple single-turn scaffold in our experiments. Previous works on environ-
ment setup suggest that multi-turn agentic scaffolds—which iteratively interact with an environment
and refine their solutions based on the feedback received on each step—could bring significant
improvements. Extending RLVR training to such multi-turn scaffolds represents a natural progression
for enhancing environment setup capabilities.

Proxy Rewards We introduce lightweight reward functions that allow for the RLVR training
pipeline without computational overhead on scaling containerized execution. While we consider this
direction promising given its light computation burden and obtained results, ground truth runtime
feedback would likely provide richer training signals and drive further performance gains.

Generalization We use EnvBench for both training and evaluation. While we do not provide
any ground truth labels or feedback during training and observe no strong signs of memorization
(Appendix [C)), incorporating additional environment setup benchmarks would better establish the
generalization capabilities of our trained checkpoints.

7 Conclusion

Our study demonstrates that online Reinforcement Learning with Verifiable Rewards (RLVR) can
significantly improve environment setup capabilities in open-source models. To avoid computationally
expensive ground truth evaluation, we design three lightweight execution-free proxy rewards—LLM-
as-a-Judge evaluation, static analysis with ShellCheck, and heuristics-based verification tailored
to the environment setup task—all of which yield improvements over the performance of the base
model, Qwen3-8B. In particular, our best-performing checkpoint, Qwen3-8B with LLM-as-a-Judge
reward, is able to set up 15.8 out of 329 repositories in EnvBench-Python on average over five
runs. To move beyond this performance without fine-tuning, a 4 times larger Qwen3-32B model
is needed. The trained model also fixes more imports than any of the investigated baselines. Our
replication package with training code and trained model checkpoints is available online: https:
//github.com/envsetup-rl-dl4c/envsetup-rl.
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A Implementation Details

In this section, we provide additional details on our experiments.

A.1 Scaffold Details

We use the same zero-shot scaffold as in [Eliseeva et al.| [2025]]. The prompt is provided in Figure [4]
We collect the repository context by running the following bash commands:

( )

tree -a -L 3 --filelimit 100 || 1s -R
for f in README.md INSTALL.md SETUP.md docs/INSTALL.md docs/SETUP.md; do
if [ -f "$f" 1; then echo -e "\n=== $f ==="; cat "$f"; fi
done
find . -type f \( \
-name "*requirementsx.txt” -o -name "setup.py” -o -name "pyproject.toml” -o -name
setup.cfg” -o -name "tox.ini"” \
\) | while read f; do echo -e "\n=== $f ==="; cat "$f"; done
find . -type f -name "*.py"” -exec grep -1 "python_version\|python_requires” {3} \;
find . -type f \( -name ".env*" -o -name "*.env"” -o -name "Dockerfilex" \) | \
while read f; do echo -e "\n=== $f ==="; cat "$f"; done

n
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Zero-shot Prompt Overview

System Message:

Your task is to generate a bash script that will set up a Python development environment for
a repository mounted in the current directory.

You will be provided with repository context. Follow the build instructions to generate the
script.

A very universal script might look like this:

{baseline_script}

However, your job is to make a script more tailored to the repository context.

It will be only run on a single repository mounted in the current directory that you have
information about.

The script must not be universal but setup the environment just for this repository.

Avoid using universal if-else statements and try to make the script as specific as possible.

The script should:
* Install the correct Python version based on repository requirements

* Install all project dependencies from requirements.txt, setup.py, or
pyproject.toml

* Install any required system packages

For reference, the script will run in this Docker environment, so most of the tools you need
will be available:

{dockerfile}

IMPORTANT:
* Generate ONLY a bash script — you cannot interact with the system
* The script must be non-interactive (use -y flags where needed)

* Base all decisions on the provided repository context. Follow the context instruc-
tions.

* Do not use sudo — the script will run as root

* If you use pyenv install, please use the -f flag to force the installation. For
example: pyenv install -f $PYTHON_VERSION

The script must be enclosed in "~ “bash” " * code blocks

User Message:

Repository Context:

context

Generate a complete bash script that will set up this Python environment.

The script must be enclosed in * " “bash’ " * code blocks, it can rely on the tools available in

the Docker environment.
\. J

Figure 4: Prompt for the zero-shot scaffold for the environment setup task from [Eliseeva et al.|[2025].
Baseline script and Dockerfile are the same as theirs. Repository context is collected by executing a
fixed set of commands within the repository in the target Docker environment.
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A.2 Training Details

We show the hyperparameters used in our training in Table We use learning rate of 5 x 1076 for
Shellcheck reward and LLM-as-a-Judge reward, and 3 x 10~° for Heuristic-based reward. Sampling
parameters are set to the values recommended in the Qwen3 model car(ﬂ for non-thinking mode. Full
configuration files and code are available in the reproduction package.

Table 2: Hyperparameters used during training.

Parameter Value
Model Configuration
Max Prompt Length 30,000
Max Response Length 4,096
Training Settings
Train Batch Size 64
Mini-Batch Size 32
Micro-Batch Size 1
Optimizer AdamW
Gradient Clipping 1.0
Total Steps 45
RL Settings
Algorithm Reinforce++ [Hu et al.l [2025al]
KL Loss False
KL Reward False
Entropy Coefficient 0.001
PPO Epochs 5
N Rollouts 1
Rollout Temperature 0.7
Rollout Top-P 0.8
Rollout Top-K 20

A.3 Evaluation Details

We build off the original implementation provided by EnvBench authors. For Qwen3 models, we set
the sampling parameters to the values recommended in the corresponding model cards, same as for
training (Appendix [A.2). The resulting evaluation suite is available in our replication package.

A.4 Shellcheck Reward Implementation

For each model-generated script, we extract the shell code block using regular expressions. The
extracted script is saved to a temporary file and analyzed by running ShellCheck via the command-line
interface. We use the command:

shellcheck -s bash -f json

The ShellCheck output is parsed programmatically: if any issues are reported, the reward is set to O;
if the script is empty, the reward is -1; otherwise, the reward is 1. The implementation is available in
our replication package.

A.5 LLM-as-a-Judge Reward Implementation

The LLM-as-a-Judge reward provides repository-specific, scalable feedback for environment setup
scripts by using an LLM as an evaluator. The LLM is prompted to simulate the execution of a
candidate shell script in EnvBench Docker environment and predict the outcome of the environment
setup process, including the script’s exit code and the number of missing import issues (as would be
detected by Pyright static analysis).

Thttps://huggingface.co/Qwen/Qwen3-8B#best-practices
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The prompt provided to the LLM includes the following components: the Dockerfile specifying the
environment, evaluation guidelines informed by our exploratory analysis of model-generated scripts,
and several few-shot examples illustrating script grading. Complete prompt templates and reward
implementation code are available in our replication package.

We selected GPT-4.1 as the language model for our experiments, as it consistently yielded the most
reliable results. While we also evaluated GPT-40 and GPT-40-mini, these models did not achieve
comparable performance. In addition, we explored several ablations: (1) augmenting the LLM-as-a-
Judge with repository information like the zeroshot context, and (2) replacing the LLM-as-a-Judge
with an LLM Agent equipped with tools for repository exploration. However, neither approach led to
a significant improvement in model performance. Consequently, we adopted the simplest and most
robust configuration for our main experiments.

A.6 Heuristics Reward Implementation

We build the Heuristics reward based on the checklist constructed during the qualitative analysis (refer
to Appendix [B|for further details). We implement a deterministic algorithm that parses both repository
contents and the model-generated scripts to answer a subset of questions from the checklist that we
found plausible to judge based on simple heuristics. We use LangGraph [langchain-ai}, [2025]] for
implementation, bashlex [idank}, 2025 for parsing shell scripts (with fallbacks to regular expressions),
tomllib for parsing TOML configuration files, and ast for parsing setup.py configuration file. The
implementation is available in our replication package: https://github.com/envsetup-rl-dl4c/
envsetup-rl.

Specifically, it gathers the following information.

* Repository Contents

— configuration_files: Paths to the configuration files detected in the repository
(determined by matching a list of files to the naming conventions for pip and Poetry).

— true_dep_manager: The dependency manager used in the repository (determined
based on configuration files naming conventions).

— true_dep_groups: The optional dependency groups specified in the repository config-
uration files (determined by parsing the configuration files).

— true_extras: The extras specified in the repository configuration files (determined by
parsing the configuration files).

— python_version_reqgs: Requirements for Python version specified in the repository
configuration files (determined by parsing the configuration files).

* Script

— used_dep_manager: The dependency manager(s) invoked by the script (determined
by parsing commands from the script).

— used_dep_groups: The optional dependency groups installed by the script (determined
by parsing poetry install invocation from the script, if present — only relevant for
Poetry).

— used_extras: The extras installed by the script (determined by parsing
poetry install or pip install invocations from the script, if present).

— installed_python_versions: Which Python versions are installed by the script (de-
termined by parsing pyenv install command invocation from the script, if present).

— install_command_validation: Validation for the dependency installation com-
mands.

* has_pip_install: bool — Whether any pip install command is present.

# has_poetry_install: bool — Whether any poetry install command is
present.

* pip_install_valid: bool — Syntactic validity of pip install commands
against documented flags; also checks -r/--requirement file existence and basic
content.

% poetry_install_valid: bool — Syntactic validity of poetry install com-
mands against documented flags.
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% pip_validation_issues: List[str] — Issues detected in pip install com-
mands, if present.

+ poetry_validation_issues: List[str] — Issues detected in poetry install
commands, if present.

» System Configuration

— installed_python_versions: Which Python versions are installed on the system
(determined by invoking python -version and pyenv versions).

The gathered information is used to identify major issues (logical mistakes that lead to a non-zero
exit code after script execution) and minor issues (logical mistakes that lead to unresolved import
issues after script execution). We identify 4 major issues and 1 minor issue based on the qualitative
analysis (Section[2.2] Appendix [B) and further detail them as follows.

* Major Issues

— Multiple Dep. Managers, i.e., if used_dep_manager contains more than one depen-
dency manager. Using multiple dependency managers within a single setup script is
likely to lead to failure.

— Wrong Dep. Manager, i.c., if there is a mismatch between used_dep_manager and
true_dep_manager. For example, if the repository uses pip but the script uses Poetry
commands, it will likely lead to failure.

— Wrong Syntax, i.e., either has_pip_install and not pip_install_valid or
has_poetry_install and not poetry_install_valid. Syntax errors result in a
runtime failure.

— Non-existent Dep. Groups / Extras, i.e., used_dep_groups contains groups
not present in true_dep_groups or used_extras contains extras not present in
true_extras. This results in a runtime failure.

¢ Minor Issues

— Missing Dep. Group / Extras, i.e., true_dep_groups is non-empty, and
used_dep_groups is a subset of true_dep_groups or true_extras is non-empty,
and used_extras is a subset of true_extras. While the script may execute suc-
cessfully, some optional dependencies required for full functionality may be missing,
resulting in unresolved import errors.

B Empirical Study of Environment Setup Failure Patterns

B.1 Failure Patterns

We manually analyzed scripts generated by GPT-4o in a zero-shot scaffold, the second-best approach
on EnvBench, to understand the fault modes of environment setup scripts. Specifically, we selected
40 scripts (from the first 40 repositories in lexicographical order where the results were available).
Out of those repositories, 2 were set up correctly, 16 had a non-zero exit code (failed), and 22 had
unresolved import issues. For each script, we collected free-form observations about potential failure
reasons and applied an open coding approach to extract common failure themes.

We present the resulting failure patterns in Table[3] with labels for 40 repositories available in our
replication package. We identify three failure patterns categories: (i) Script Problems, the explicit
mistakes made in the model-generated scripts, (ii) Repository Problems, the configuration challenges
presented by a specific repository that the model failed to consider, and (iii) Eval Problems, runtime
failures of EnvBench evaluation suite and/or limitations of the static analysis. Most failures are
caused by Script Problems, while unresolved import issues are often due to Repository Problems. We
observe 3 Eval Problems in total (7.5% of 40 repositories sample).

B.2 TImpact of ShellCheck Reward Training

Based on findings from Appendix [B.2] we constructed a checklist (Figure[5) capturing common Script
Problems that we find possible to determine with simple localized checks, leaving mitigating further
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Table 3: Identified environment setup failure patterns for zero-shot GPT-40 for 40 repositories
(percentages are relative to full 40 repositories sample). # Failure means number of failed repositories
which contain given pattern; # Issues — number of repositories with unresolved import issues. Note
that each repository can contain multiple fault patterns.

Failure Pattern

Explanation

# Failure

# Issues

Script Problems

Wrong Syntax
Dependencies Resolution Issue

Multiple Dep. Managers
Wrong Python Binary

Missing System Package
Non-existent Package

Wrong Operation

Wrong Python Version
Missing Dep. Group

No Editable Mode

Missing Configuration File

Syntax errors in the script.

Dependency manager can’t resolve depen-
dencies due to conflicting versions.

Script uses both pip and Poetry.

Script installs dependencies for a specific
Python binary, but fails to configure the sys-
tem to use that binary.

Script doesn’t install a system package re-
quired by repository dependencies.

Script tries to install a package that does not
exist on PyPL.

Script executes a command that conflicts
with the given base environment (e.g., tries
to install Poetry even though it is already
installed).

Script uses Python version conflicting with
repository requirements.

Script does not install an optional depen-
dency group required for development (e.g.,
test).

Script installs the repository in non-editable
mode not suitable for development (relevant
for pip).

Script does not install dependencies
from a configuration file in the repos-
itory (e.g., multiple requirements-dev,
requirements-docs, etc.).

4 (10%)
3 (7.5%)

2 (5%)
2 (5%)

1 (2.5%)
1 (2.5%)

3 (7.5%)

1 (2.5%)

1 (2.5%)

1 (2.5%)

9 (22.5%)

3(7.5%)

2 (5%)

Repository Problems

Requirements Not Specified

Poetry Lock Outdated

Misconfigured PYTHONPATH

Some packages used in the repository code-
base are not specified in the configuration
files.

poetry install fails because the
poetry.lock file must be regenerated first.
Local modules do not resolve correctly be-
cause the PYTHONPATH environment vari-
able is not configured properly.

2 (5%)

10 (25%)

2 (5%)

Eval Problems

Dynamic Imports

Eval Failure

Hardware Problems

Repository includes dynamic imports that
cannot be resolved with static analysis.
Runtime failure of EnvBench evaluation
suite, not associated with specific script or
repository characteristics.

Dependencies require hardware not avail-
able in the base environment (e.g., GPU).

2 (5%)

1 (2.5%)

5 (12.5%)
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Current script...

installs incorrect Python version? [YES/NO/N/A] Wrong Python Version

uses incorrect path to configuration file? [YES/NO/N/A] Wrong Syntax (conf)

misses optional development dependencies?  [YES/NO/N/A] Missing Dep. Group

uses incorrect dependency manager? [YES /NOJ Wrong Dep. Manager*

uses multiple dependency managers? [YES /NO] Multiple Dep.  Man-
agers

uses pip install command incorrectly? [YES/NO/N/A] Wrong Syntax (pip)

uses poetry install command incorrectly? [YES/NO/N/A] Wrong Syntax (Poetry)

Figure 5: Checklist used to detect locally verifiable Script Problems for environment setup. References
failure patterns detailed in Table[3] Checklist questions are formulated such that YES indicates the
presence of a failure pattern, NO indicates its absence, and N/A indicates that current pattern is not
applicable to a given script (e.g., pip syntax is irrelevant if only Poetry is used). * While Wrong Dep.
Manager did not appear in our exploration of GPT-4o scripts, we added it to the checklist as it was
repeatedly observed for Qwen3-32B.

Script Problems, Repository Problems, and Eval Problems to future work. Next, we manually filled
the checklist for scripts generated by Qwen3-32B in a zero-shot scaffold. Specifically, we considered
both pretrained Qwen3-32B and Qwen3-32B-RL, a fine-tuned checkpoint from our preliminary
experiments with ShellCheck reward (Section that achieved close to perfect reward scores
at the end of the training. Since we did not observe consistent improvements on EnvBench after
training with ShellCheck reward (Section , with this study, we aimed to understand how exactly the
training affects the properties of scripts for our end task, environment setup. We considered first 40
repositories in lexicographical order where the scripts from both checkpoints were available, same
as in our study for GPT-40 (Appendix [B.I). EnvBench evaluation results on this sample indicate a
degradation after training: while the base Qwen3-32B model successfully set up a 5/40 repositories,
after training, pass@1 drops to 1/40, with the number of failed repositories increasing from 13/40 to
23/40.

We present the results for base Qwen3-32B (pre-training) and for ShellCheck-reward-trained Qwen3-
32B (post-training) in Figure[6] The most common problems faced by both base and ShellCheck-
trained Qwen3-32B are Missing Dep. Group (30%-60%) and Wrong Syntax (pip) (5%-20%),
mirroring our findings for GPT-4o (Appendix [B.T). The ShellCheck-trained model shows deteriorated
performance across most checklist questions compared to the base model. Combined with worse
EnvBench evaluation results, this suggests that addressing ShellCheck-reported issues alone is
insufficient to improve environment setup capabilities and can potentially even harm them. We use
this analysis to design Heuristics reward (Appendix [A.6).

C Train/Validation Performance

To rule out memorization from improvements of our RLVR-tuned models that were trained on a part
of EnvBench, we present experimental results separately on the held-out validation set in Table ] with
pass @k and # Failed metrics converted to percentages to account for different sample sizes. From Ta-
ble ] we observe that LLM-as-a-Judge and Heuristics similarly retain substantial improvements over
the base Qwen3-8B on the validation set, while ShellCheck shows no significant gains. Specifically,
LILM-as-a-Judge displays strong performance close to the level of Qwen3-32B and GPT-40, while
Heuristics brings moderate gains, mirroring our findings on full EnvBench.
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Wrong Python Version Wrong Syntax Missing Dep. Group Wrong Dep. Manager
(config)

Percentage (%)
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Multiple Dep. Managers Wrong Syntax Wrong Syntax
(pip) (poetry)

Data Source: Qwen3-32B
[ Pre-training Post-training

Figure 6: Results of applying the Script Problems checklist (Figure |5) to base Qwen3-32B (Pre-
training) and a checkpoint trained with ShellCheck reward obtained in our initial experiments
(Post-training).

Table 4: Validation split results for base models and our RLVR-tuned Qwen3-8B with various
rewards. Total number of samples is 96. pass@5 shows the number of successful samples (zero
exit code and zero issues). avg@35 shows mean =+ std for the following metrics: # Success (average
number of successful samples per run), # Failed (average number of samples where scripts finished
with non-zero exit code), and avgFixRate (average ratio of resolved import issues per sample as
compared to the evaluation run with empty setup script; for samples where scripts execute with
non-zero exit codes, ratio is considered 0). The symbol 1 indicates higher is better, while | indicates
lower is better. We provide percentages relative to the sample size in addition to all absolute numbers.

Model Reward pass@S avg@s
# Success T # Success T  # Failed | avgFixRate 1

Proprietary Baselines

GPT-40 — 7 4.4+0.5 55.24+ 1.5 (23.96 + 13.2)%
GPT-40-mini — 2 1.8+04 476132 (22.62+1.31)%
Open-Weight Baselines
Qwen3-32B — 6 44+1.3 56.0 4.4 (28.77 +2.09)%
Qwen3-14B — 3 1.0+0.7 79.8 4.1 (10.06 + 4.38)%
Qwen3-8B — 2 0.4+0.9 85.4+1.8 (5.76 + 1.83)%
RLVR-tuned (ours)

LLM-as-a-Judge 8 56+1.1 57.0+£29 (30.79+2.13)%
Qwen3-8B Heuristics 3 1.0+0.7 64.4 + 3.6 (17.15+1.43)%
ShellCheck 1 1+0 83.6 £2.3 (6.88 +1.62)%
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D Additional Experiments

In this section, we describe a set of experiments that did not make it into the main text. These
results highlight the practical challenges and training instabilities often encountered in RLVR, and
are included for completeness and might be of interest to researchers working on similar setups.

D.1 Irreproducible High-Performing Shellcheck Checkpoint

During our experiments, one Shellcheck training run produced an exceptionally strong model check-
point, achieving pass@5 = 18, average pass@1 =9 % 2, and avgFixRate = 25 & 2. By all metrics, this
checkpoint performed between the Heuristics and LL.M-as-a-Judge models. We have not included
this result in the main text, as we were unable to reproduce it despite multiple attempts. This run
used a slightly different configuration, with fewer epochs and a shorter response length, but even
after matching all settings, the result remained an outlier and could not be replicated. This highlights
the inherent instability of RLVR training and underscores the importance of verifying results with
multiple random seeds.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:

Justification: We provide detailed methodology (Section [3)) and experimental results (Sec-
tion[4) to support the claims made in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:
Justification: We discuss the limitations of our study in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:

Justification: We provide a comprehensive experimental methodology in Section
and Appendix [A.2] and open-source our replication package (https://github.com/
envsetup-rl-dl4c/envsetup-rl) to facilitate reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our replication package is openly available: |https://github.com/
envsetup-rl-dl4c/envsetup-rl. We provide the training code, the model checkpoints,
and full evaluation results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:

Justification: We provide a comprehensive experimental methodology in Section [3|and Ap-
pendix[A.2]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We report the results with error bars over 5 evaluation runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: We describe our resource setup in Section [3|and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:
Justification: We reviewed and followed NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our work targets improving the environment setup capabilities of general-
purpose foundation models. We discuss potential positive impacts, such as assistance in the
daily work of software developers and expansion of execution-based software benchmarks.
Potential negative impacts include harms when the system is used as intended but is incorrect
(e.g., hallucinated unsafe commands) and misuse to prepare environments for malware or
privacy-invasive tooling. As partial mitigation, we recommend sandboxed execution and user
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review before running model-generated commands. However, given the scope (advancing
capabilities of open-source LLMs on the environment setup task), we consider broader
societal impacts minimal.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We release trained Qwen3-8B checkpoints with enhanced environment setup
capabilities and do not materially expand the model’s general capabilities or misuse risk
relative to the base model. We implement no additional safeguards beyond those introduced
for the base model [Qwen Team, |2025]] due to time and resource constraints, and do not
release any new datasets or interactive demos. Details of the base model are in|Qwen Team!
[2025].

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:
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Justification: We explicitly mention the creators of the assets used in the paper and follow
the corresponding licenses.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We release the training code, the Qwen3-8B checkpoints from our experiments,
and their full evaluation results. We describe training and evaluation setup in Section [3]
and Appendix and further provide detailed documentation in our replication package
(https://github.com/envsetup-rl-dl4c/envsetup-rl).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: We propose a method to improve LLM capabilities for the environment setup
task and use multiple LLMs in our experiments. In addition, we use an LLM in the proposed
LLM-as-a-Judge reward. Both are described in Section 3]

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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