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Abstract

The data used to pretrain large language models has a decisive impact on a model’s
downstream performance, which has led to a large body of work on data selection
methods that aim to automatically determine the most suitable data to use for
pretraining. Existing data selection methods suffer from slow and computationally
expensive processes, a problem amplified by the increasing size of models and of
pretraining datasets. Data mixing, on the other hand, reduces the complexity of data
selection by grouping data points together and determining sampling probabilities
across entire groups. However, data mixing proportions are typically fixed before
training and therefore cannot adapt to changing training dynamics. To address
these limitations, we develop an efficient algorithm for Online Data Mixing (ODM)
that combines elements from both data selection and data mixing. Based on
multi-armed bandit algorithms, our online approach optimizes the data mixing
proportions during training. Remarkably, our method trains a model that reaches
the final perplexity of the next best method with 19% fewer training iterations, and
improves performance on the 5-shot MMLU benchmark by 1.9% relative accuracy,
while adding negligible wall-clock time during pretraining.
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Figure 1: Validation perplexity, unweighted average over 22 domains from The Pile [1].

RO-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.



1 Introduction

It is well-known that the training data for machine learning models has a significant influence on
their performance. In particular, the data used to pretrain large language models (LLMs) can be a
major factor in the performance of a given LLM. For example, the 28 different 7-billion parameter
models on the Open LLM Leaderboardﬂ have scores varying from 34.92 to 56.26 even though they
all use nearly the same model architecture and training process [2]). It is a widely accepted view that
pretraining is performed so that models can absorb large quantities of information (3,4, 5], and later
training stages such as target task fine-tuning [6], instruction fine-tuning [7]], and RLHF [8]] primarily
refine the model for a specific purpose. This perspective raises the important question of how best to
choose pretraining data for training LLMs.

Language models are generally trained on data collected from a variety of domains in hopes that data
diversity will lead to a higher-quality model, but the data mixing strategy to use (i.e. how frequently to
sample data from each domain) during training is an open question. For example, when introducing
The Pile [1]] dataset (consisting of data from 22 domains), the authors suggest higher sampling weights
on academic texts and those domains that they felt would provide high-quality data, but these weights
are determined using intuition and heuristics, raising the question as to whether a more performant set
of weights could be found. The recently proposed DoReMi algorithm [9] was specifically designed
to automatically determine a data mixing strategy for LLM training. DoReMi optimizes domain
weights that maximize the information gained of a “proxy” model over a “reference” model, but
requires training multiple models, reducing the method’s efficiency. Additionally, we show in this
work that their sampling weights don’t transfer well across models and thus requires training new
“reference” and “proxy” models in order to determine the best weights for each new model architecture
or tokenizer. These additional steps and considerations reduce the effective efficiency of DoReMi
and further increase the already expensive cost of training large language models. Furthermore,
both DoReMi and The Pile fix weights throughout training and therefore cannot adapt to changing
dynamics over the course of pretraining.

In this work, we follow the principle that the best data to train on is the data that maximizes
information gained and that a data selection method should introduce negligible computational
overhead. Motivated by recent uses of multi-armed bandits (MAB) for auxiliary data selection
in few-shot LLM fine-tuning [6]], we view each data domain as the arm of an MAB and design
an algorithm that optimizes the data mixing distribution in an online fashion, thereby adapting to
changing training dynamics. Recalling from information theory that perplexity can be thought of as a
measure of model uncertainty and the expected information gain from learning the next token, we aim
to increase the mixing ratio for domains with the most information to be learned. We therefore utilize
the training loss per domain as a reward for our multi-armed bandit algorithm, which fortuitously
requires minimal overhead to compute.

To empirically validate the effectiveness and efficiency our approach, we perform language model
pretraining using a 1-billion parameter model trained on 50 billion tokens from the 22 domains
found in The Pile [1]]. We compare our method with three baseline data mixing methods, finding
that our online data mixing algorithm is the most effective, reaching the final validation perplexity
of the next best method with 19% fewer iterations (Figure|l) and improving on 5-shot MMLU [10]
performance by 3% relative accuracy over the baseline (Table [T). Additionally, we find that our
method is computationally efficient, introducing a minuscule 0.000007% overhead.

2 Online Data Mixing (ODM)

In this section, we first define the setting under which online data mixing for language model
pretraining takes place (outlined in Figure 2). Then, we formulate the online data mixing problem
under the multi-armed bandit (MAB) setting, and describe our reward function which measures
information gain and is very efficient to compute. Finally, we describe our algorithm for ODM and
present pseudo-code in Algorithm [I]

Problem setup. Consider the setting where we are given K groups of data for language model
pretraining, where each group D; will be sampled according to the probability defined by 7 (D;).

'Open LLM Leaderboard accessed on 10/02/2023, 28 models includes only pretrained models without
fine-tuning, instruction-tuning, or RL-tuning.
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Figure 2: Overview of Online Data Mixing (ODM) as a multi-armed bandit. At each iteration
of training, ¢, a dataset D; is sampled according to the data mixing distribution 7. The loss Lp, is
calculated w.r.t the model fy and subsequently used to update the model. Simultaneously, a reward

7A21- is calculated and used to update 7 for the next iteration, ¢ + 1.

Each group D; could be assigned explicitly according to different domains as in The Pile [1]], or they
could determined via some automatic method (as e.g. in [L1]]). In traditional data mixing, each 7 (D;)
is fixed prior to training, but in online data mixing, we let each 7(D;) be redefined at every training
iteration. Given that we want to update w(D;) at every training iteration, the problem this work
attempts to solve is how to update 7(D;) so that the information content of the data being trained on
is maximized, and how to do so efficiently.

Adapting multi-armed bandits to data mixing. We adopt the multi-armed bandit (MAB) frame-
work to attack the online data mixing problem by formulating it as a Markov decision process [12]
that is played over NV turns. We design our approach based on Exp3 (Exponential-weight algorithm
for Exploration and Exploitation) [[13]. Exp3 defines the policy as a Gibbs distribution based on
the empirically determined importance-weighted reward of dataset proportions [14] and allows for
exploration by mixing the Gibbs distribution with a uniform distribution [[13]]. Let & represent the
exploration rate at time step ¢, then the probability of selecting dataset D; € D is defined by 7 as the
linear combination of Gibbs and uniform distributions

m(D;) = (1-K&) % +&; where Ri,t is the moving average of the importance weighted

reward Riﬁt = aRi,t—l + (1 _ Oé) R; ¢

me—1(Ds)

al. [14], defined at turn ¢t as & = min{ %, 1}1{5 } The main deviation of our method from Exp3

is the use of a moving average estimated reward instead of a cumulative estimated reward. Under
normal MAB settings, rewards at each turn are weighted equally, but in our setting we care most
about recent rewards. Thus, we still account for past rewards through the use of a moving average,
but rewards from the past are weighted less and less moving further into the past.

. We adopt the decaying exploration rate from Seldin et

Designing the reward function. When designing our reward function we have 2 main goals:
(1) ensure that the policy favors data with the highest information content, and (2) minimize the
computation required. To achieve these goals, we define the reward to be the current loss for a
given dataset group. Formally, at turn ¢, suppose that dataset D; is sampled from 7(D), and a batch
is sampled as {x,y} ~ D;. Then, the reward is simply R, = L(f,x,y). By formulating the
reward as the training loss on a dataset, we add no additional forward or backward passes through the
model beyond standard training procedures, minimizing the computation required. Additionally, as
discussed in section[I] perplexity (the exponentiated loss) is a measure of expected information gain
from each token in a sequence. Thus, by assigning a high reward to datasets with high perplexity, we
favor data with the highest information content.

Online data mixing algorithm. Our algorithm is shown in pseudocode in Algorithm[I|and runs
as follows: At each turn, the exploration rate &, is calculated and the policy 7 defines a sampling
strategy over all K datasets D; € D. Since we are dealing with LLM pretraining which typically uses
a large batch size, we assume that we will have GG gradient accumulation steps. For each accumulation



Algorithm 1 Online Data Mixing (ODM)

Require: D = {D,..., Dk }: Grouped dataset

Require: fy: Parameterized model

Require: £: Loss function

Require: G: Gradient accumulation steps
1: Initialize: K = |D|; & = +; Vie{l,...,K}:Ri =0
2: fort=1,2,...,N do

3 &= min{ %, £/ %} > Update the exploration rate
exp(E,-1Ri)

4:  7(D):7(D;) + (1 — K&) — + & > Calculate the mixing distribution
E]‘ exp(€¢—1Rj)

50 Vi=12,...,K:Lp, =0 > Reset group losses

6: forg=1,2,...,Gdo

7: Sample D; ~ (D) and sample a batch {x,y} from D;

8: Lp; < Lp, + L(fs,x,y) > Record group losses for reward updates

9:  end for

Update model parameters w.r.t Y, Vo Lp,
10:  forie {1,...,K} where Lp, # 0 do

11: Ri « aR; + (1- a)% > Update estimated rewards
12:  end for
13: end for

step we sample one of the datasets D;, then sample a batch {x,y} ~ D; and calculate the loss Lp,.
After accumulating losses, we calculate the gradient w.r.t. § and update the model. Finally, for each
sampled dataset D;, we calculate a reward R; that is used to update the policy 7 for the next turn.
As a practical method to reduce the very high variance of losses at the beginning of language model
training, we include a warmup period during which the model trains, but the policy remains stationary.
In practice, we find a warmup period of 1% of total steps to be sufficient.

3 Experimental Setup

Training. For our experiments we use The Pile [1]], an 825Gb open-sourced language modelling
dataset comprising 22 smaller datasets from various domains including Wikipedia, Github, and
PubMed Central. We train decoder-only style transformers using an adapted version of the GPT-
NeoX library [15]]. For all experiments, we train a 1 billion parameter model using the model
configuration of Pythia [16]]. We train using a batch size of 60 sequences per GPU, and accumulate
gradients across 8 GPUs in parallel (G = 8) to reach a total batch size of 480 samples. We let the
sequence length be 1024 and pack sequences together [[17]. We train for a total of 100,000 steps,
reaching 50 billion tokens. For ODM, we initialize the domain weights using those defined by The
Pile. The full model configuration and hyperparameters can be found in Appendix

Evaluation. To validate the performance of our approach and the baselines, we compute perplexity
on held-out validation and test data from each domain of The Pile. Additionally, we evaluate each
model on downstream capabilities by performing multiple choice classification on the 57 tasks from
MMLU [10]. For each task in MMLU we use 5 in-context examples.

Baselines. We compare the performance of our method against that of the original domain weights
suggested by The Pile [1]], and refer to it as The Pile Weights (TPW). Additionally, we compare with
the domain weights proposed by DoReMi [9], but empirically find that the weights do not perform as
published. However, after discussion with the authors, we attained weights that were re-calculated on
the same tokenizer as oursﬂ The original DoReMi weights are computed with a 256k vocabulary
tokenizer while we use a 50k vocabulary tokenizer, so to specify each DoReMi baseline we name
them DoReMi-256k and DoReMi-50k.

1t is hypothesized by the authors of [9] that different tokenizers may lead to different domain weights, but is
still an open question why that may be the case.
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Figure 3: Test perplexity on average, and on 22 individual domains.

4 Findings and analysis.

In Figures [I] and [3] we compare the perplexities of training models using ODM with the baseline
data mixing methods. Table[T|shows the average 5-shot accuracy on MMLU of ODM and baseline
methods.

Main results. Figure[T]shows that ODM achieves the final performance of the originally suggested
Pile weights (TPW) with 30% fewer iterations, and 19% fewer than DoReMi-50k. Additionally,
Figure [T shows that ODM’s final validation perplexity is 4.8% lower than TPW, 2.4% lower than
DoReMi-50k, and 4.9% lower than DoReMi-256k, emphasizing how the DoReMi method is not
transferrable across models. These results show that ODM improves the training efficiency compared
with static data mixing methods. Additionally, Table [I] shows that ODM leads to better downstream
performance in 5-shot classification tasks, improving over TPW by 3%, and DoReMi-50k by 1.9%.

Figure [3| shows the test perplexity of each
method on held-out data as well as the average

perplexity. Surprisingly, we find that the orig- Method | Accuracy
inal domain weights reported for DoReMi [9] The Pile Weights | 0.27469
(DoReMi-256k) leads to test perplexity that is, DoReMi-256k 0.27596
on average, 0.7% worse than The Pile Weights, DoReMi-50k 0.27887
ODM 0.28416

in direct contradiction with their original find-
ings. However, DoReMi-50k does improve over
The Pile Weights by 2.6%, demonstrating that
the domain weights determined by the DoReMi
method do not transfer well across models.

Table 1: Average 5-shot accuracy on MMLU

The effects of data mixing optimization objectives on individual domain performance. Here
we compare the empirical effects of the contrasting optimization of objectives of ODM and DoReMi
on individual domains. Recall that the reward function used in ODM favors dataset groups with the
greatest information gain (highest loss) at each step, and that DoReMi’s objective is to maximize the
information gain of a “proxy” model over a “reference” model (i.e. “minimize the worst-case excess
loss”). To see these different objectives in effect, we group the performance of each method into one
of three buckets: best, worst, or in the middle, where the ideal method would have all 22 domains
in the “best” category. Interestingly, we find that The Pile Weights are almost evenly distributed
across all 3 buckets, doing worst in 7 domains, best in 7, and in the middle for the remaining 8. As
expected from a method that optimizes for the best worst-case scenario, we find that DoReMi-50k’s
test perplexity is often not the best or the worst, but falls in the middle. In fact, 17/22 domains are
in the middle, only performing best on three domains (PubMed_Abstracts, StackExchange, and
Wikipedia_(en)), and worst on only two domains (BookCorpus2 and OpenSubtitles). On the other
hand, using ODM leads to the best perplexity on 9 domains, with 9 more in the middle, and only
performing the worst on 4 domains (Books3, Github, OpenWebText2, and Pile-CC). Notably, two of
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Figure 4: The cumulative sampling distribution of ODM calculated as the samples per domain out
of the total number of samples trained on. Highlighted lines are the six domains whose final sampling
distributions have increased/decreased the most from initialization.

the domains where ODM performs worst are web text domains but this decreased performance does
not seem to have a negative impact on downstream performance.

What does ODM’s sampling policy look like? In Figure ] we show the cumulative sampling
distribution of each domain over the course of training. Note that ODM is initialized with The Pile
Weights, which are the initial values on the left. Figure ] highlights the three datasets whose mixing
ratio increased the most (PhilPapers, HackerNews, and BookCorpus2), and the three datasets whose
mixing ratio decreased the most (Github, ArXiv, and PubMed_Central). It is evident from this figure
that ODM finds a sampling distribution which is closer to uniform than The Pile Weights. We also
see that the distribution for most domains stabilizes early on in training (~ 40000 iterations). Beyond
the 40000 step, the distribution is still changing, but at a much lower rate. For example, we see that
the mixing ratio for Github is still decreasing and the ratio for both BookCorpus2 and HackerNews
are increasing all the way until the end of training.

Why does ODM’s validation perplexity start off high? Figure[I|shows that although our method
outperforms the baselines, at the beginning of training ODM actually has higher perplexity than other
methods. We believe that this is due to the homogeneity of the micro-batches used in ODM, whereas
other methods see a greater mixture of data in each batch. In preliminary experiments we trialed a
version of ODM that uses data from a single domain in all gradient update steps, and found that this
exacerbates the phenomena leading to a perplexity that starts even higher. This suggests that one
of the weaknesses of our method is the requirement that each batch comes from the same grouped
dataset. This problem can be alleviated by decreasing the micro-batch size, but this comes with
technical considerations as simply decreasing micro-batch size will reduce GPU utilization, and lead
to slower wall clock time. Likely, a better solution would be to mix domains within micro-batches
during the warm-up phase, which would lead to validation perplexity exactly the same as The Pile
Weights, but gaining the advantages of ODM after the warm-up.

5 Conclusion

The method proposed in this work demonstrates the effectiveness of online data mixing formulated as
a multi-armed bandit problem. Additionally, we showed that by designing a reward which attempts
to maximize information gain, we can train models that achieve lower perplexity on held-out data in
fewer iterations than baseline methods. Furthermore, by utilizing the training loss as a reward, the
proposed method is very computationally efficient, adding a trivial 0.000007% additional wall-clock
time to training.
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A Model Configuration

Our 1-billion parameter model uses a sequence length of 1024, has 16 layers with a hidden size
of 2048, 16 attention heads, and rotary positional embeddings [[18]]. We use FlashAttention [[19] to
reduce training time. We use the Adam optimizer [20] with a linear warmup over 1000 iterations from
a minimum learning rate of 2.5e-5 to a maximum learning rate of 2.5e-4, and then decay the learning
rate with a cosine schedule down to the minimum of 2.5e-5 again. We use the GPT-NeoX-20B
tokenizer [21]].
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