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ABSTRACT

Fairness is an essential factor for machine learning systems deployed in high-stake
applications. Among all fairness notions, individual fairness, following a consen-
sus that ‘similar individuals should be treated similarly,” is a vital notion to guar-
antee fair treatment for individual cases. Previous methods typically characterize
individual fairness as a prediction-invariant problem when perturbing sensitive at-
tributes, and solve it by adopting the Distributionally Robust Optimization (DRO)
paradigm. However, adversarial perturbations along a direction covering sensitive
information do not consider the inherent feature correlations or innate data con-
straints, and thus mislead the model to optimize at off-manifold and unrealistic
samples. In light of this, we propose a method to learn and generate antidote data
that approximately follows the data distribution to remedy individual unfairness.
These on-manifold antidote data can be used through a generic optimization pro-
cedure with original training data, resulting in a pure pre-processing approach to
individual unfairness, or can also fit well with the in-processing DRO paradigm.
Through extensive experiments, we demonstrate our antidote data resists individ-
ual unfairness at a minimal or zero cost to the model’s predictive utility.

1 INTRODUCTION

Unregulated decisions could reflect racism, ageism, and sexism in high-stakes applications, such
as grant assignments (Mervis}, [2022)), recruitment (Dastinl 2018), policing strategies (Gelman et al.,
2007), and lending services (Bartlett et al., [2022)). To avoid societal concerns, fairness, as one of
the fundamental ethical guidelines for Al has been proposed to encourage practitioners to adopt Al
responsibly and fairly. The unifying idea of fairness articulates that ML systems should not dis-
criminate against individuals or any groups segmented by legally-protected and sensitive attributes,
therefore preventing disparate impact in automated decision-making (Barocas & Selbst, [2016).

Many notions have been proposed to specify Al Fairness (Dwork et al., 2012; Kusner et al., 2017;
Hashimoto et al.| 2018). Group fairness is currently the most influential notion in the fairness com-
munity, driving different groups to receive equitable outcomes regardless of their sensitive attributes,
in terms of statistics like true positive rates or positive rates (Hardt et al., [2016). However, these
statistics describe the average of a group, hence lacking guarantees on the treatments of individ-
ual cases. Alternatively, individual fairness established upon a consensus that ‘similar individuals
should be treated similarly,” shift force to reduce the predictive gap between conceptually similar
instances. Here, ‘similar’ means two instances have close profiles regardless of their different sensi-
tive attributes, and usually have customized definitions upon domain knowledge. We invite readers
to look into Section 2l for a more concrete establishment on individual fairness.

Previous methods solve the individual fairness problem mainly by Distributionally Robust Optimiza-
tion (DRO) (Yurochkin et al.,|2020; ['Yurochkin & Sunl |2021;|Ruoss et al.,2020; | Yeom & Fredrikson),
2021). They convert the problem to optimize models for invariant predictions towards original data
and their perturbations, where the perturbations are adversarially constructed to mostly change the
sensitive information in a sample. However, one use case of DRO in model robustness is to adversar-
ially perturb a sample by a small degree. The perturbations can be regarded as local perturbations,
and the adversarial sample is still on the data manifold. In contrast, perturbing a sample for individ-
ual fairness purposes, e.g., directly flipping its sensitive attributes like gender from male to female,
cannot be regarded as a local perturbation. These perturbations may violate inherent feature cor-
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relations, e.g., some features are subject to gender but without notice, thus driving the adversarial
samples leaving the data manifold. Additionally, perturbations in a continuous space could break the
innate constraints from tabular, e.g., discrete features should be in a one-hot format. Consequently,
these adversarial samples for fairness are unrealistic and do not match the data distribution. Taking
these data can result in sub-optimal tradeoffs between utility and individual fairness.

In this work, we address the above limitations and propose an approach to rectify models for in-
dividual fairness from a pure data-centric perspective. Following the high-level idea of the DRO
paradigm, and by giving a concrete setup for similar samples, we learn the data manifold through
generative models, and continue to construct on-manifold samples with different sensitive attributes
as antidote data to mitigate individual unfairness. We launch two ways to use the generated anti-
dote data: simply inserting antidote data into the original training set and training models through
regular optimization, or equipping antidote data to the DRO pipeline as an in-processing approach.
Our approach works for multiple sensitive attributes, and each sensitive attribute can have multi-
ple values. We conduct experiments on census, criminological, and educational datasets, compared
to standard classifiers and several baseline methods. Compared to baseline methods, our method
greatly mitigates individual unfairness, and has minimal or zero side effects to model utility.

2 INVIDIVUAL FAIRNESS AND COMPARABLE SAMPLES

Notations Let fy denote a parameterized probabilistic classifier, X and ) denote input and output
space with instance z and label y, respectively. For tabular datasets, we assume every input instance
x contains three parts of features: sensitive features s = [sq,$2,- -+, Sn,], continuous features
c = [c1,¢2, -, cn.], and discrete features d = [dy,da, - - ,dn,], with N denoting the number of
features in each parts. We assume these three parts of features are exclusive, i.e., s, ¢, and d do not
share any feature or column. We use d, to denote the discrete features of instance =, and the same
manner for other features. For simplification we shall assume discrete features d contain categorical
features before one-hot encoding, continuous features c contain features in a unified range like [0, 1]
after some scaling operations, and all data has the same feature dimension. We consider sensitive
attributes in a categorical format. Any continuous sensitive attribute can be binned into discrete
intervals to fit our scope. We use & to denote vector-vector or vector-scalar concatenation.

Individual Fairness: Concept and Practical Usage The concept of individual fairness is firstly
raised in Dwork et al.|(2012). Following a consensus that ‘similar individuals should be treated sim-
ilarly,’ the problem is formulated as a Lipschitz mapping problem. Formally, for arbitrary instances
x and ' € X, individual fairness is defined as a (D, Dy)-Lipschitz property of a classifier fy:

Dy (fo(x), fo(z")) < Dx(x,2"), (1)
where Dx(-,-) and Dy(:,-) are some distance functions respectively defined in the input space
X and output space ), and shall be customized upon domain knowledge. However, for a general
problem, it could be demanding to carry out a concrete and interpretable Dx (-,-) and Dy (-, "),
hence makes individual fairness impractical in many applications. To simplify this problem from
a continuous Lipschitz constraint, some works evaluate individual fairness of models with a binary
distance function: Dy (z,z’) = 0 for two different samples = and 2’ if they are exactly the same
except sensitive attributes, i.e., ¢ = ¢/, d = d’, and s # s’ (Yurochkin et al.| 2020; [Yurochkin &
Sun, 2021)). Despite the interpretability, this constraint can be too harsh to find sufficient comparable
samples since other attributes may correlate with sensitive attributes. For empirical studies, these
studies can only simulate the experiments with semi-synthetic data where they flip one’s sensitive
attribute to construct a sample and evaluate the predictive gap. Note that for tabular data, simply
discarding the sensitive attributes could be a perfectly individually fair solution to this simulation.

In this work, we consider a relaxed version of the above individual fairness definition for an imper-

fect classifier. We present Definition to characterize in what conditions we shall consider two

samples are comparable. When two samples x and x’ are coming to be comparable, their predictive

gap |fo(x) — fo(a’)| should be minimized for the individual fairness purpose.

Definition 2.1 (comparable samples). Given Ty, T, € R>¢, x and 2’ are comparable iff all con-

straints are satisfied: 1. vazdl 1{d; # d;} < Ty; 2. max{|e; — |} < T,,V1<1i< N, and3.
/

y=vy.

Remark 2.1. For some thresholds 7}; and T, two samples are considered as comparable iff 1. there

are at most 7y features differing in discrete features; 2. the largest disparity among all continuous

features is smaller or equal to 7, and 3. two samples have the same ground-truth label.
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Definition [2.1] allows two samples to be slightly different in discrete and continuous features, and
arbitrarily different in sensitive attributes. The definition is also flexible to extend if users want to
enforce some crucial features to be identical for comparable samples, and this does not affect our
model design. Our comparable samples are highly interpretable and semantically rich. For example,
in lending data, to certify individual fairness for two samples, we can set discrete features to the
history of past payment status (where value 1 indicates a complete payment, and value O indicates
a missing payment), and continuous features to the monthly amount of bill statement. Two samples
are considered to be comparable if they have a determinate difference in payment status and amount
of bills. In what follows we shall build models and evaluate individual fairness by Definition [2.1}
and mostly consider comparable samples with different sensitive attributes.

3 LEARNING ANTIDOTE DATA TO INDIVIDUAL UNFAIRNESS

Motivation Several methods solve the individual fairness problem through Distributionally Ro-
bust Optimization (DRO) (Yurochkin et al.| [2020; |Yurochkin & Sunl 2021} Ruoss et al.,|2020;|Yeom
& Fredrikson, 2021)). The high-level idea is to optimize a model at some samples with perturbations
that dramatically change their sensitive information. The solution can be summarized as:

minE, 0(fo(z),y) and minEq,) max £(f(x+e€),y), 2)
fo ‘ fo 24€e~Dsen

where the first term is standard empirical risk minimization, and the second term is for loss mini-
mization over adversarial samples. Dse, is some customized distribution offering perturbations to
specifically change one’s sensitive information. For example, [Yurochkin et al.[ (2020) character-
izes Dsey as a subspace called sensitive subspace learnt from logistic regression, which contains the
most predictability of sensitive attributes. [Ruoss et al.| (2020) find out this distribution via logical
constraints. Though feasible, we would like to respectfully point out that (1) Perturbations violate
feature correlations could push adversarial samples leave the data manifold. An intuitive example
is treating age as a sensitive attribute. Perturbations can change a person’s age arbitrarily to find
an optimal age that encourage the model to predict the most differently. Such perturbations ignore
the correlations between the sensitive feature and other features like education or annual income,
resulting in an adversarial sample with age 5 or 10 but holding a doctoral degree or getting $80K
annual income. (2) Samples with arbitrary continuous perturbations can easily break the nature of
tabular data. There are only one-hot discrete values for categorical variables after one-hot encoding,
and potentially a fixed range for continuous variables. For example, the adversarial samples may in
half bachelor degree and half doctoral degree. These two observations make the adversarial samples
from Ds,, unrealistic and leaving the data manifold, thus distorting the following DRO paradigm,
and resulting in sub-optimal tradeoffs between fairness and utility.

In this work, we address the above issues related to Dse,, and propose to generate on-manifold data
for individual fairness purposes. The high-level philosophy is, by giving an original training sample,
generate its comparable samples with different and reasonable sensitive attributes, and the generated
data should fit into existing data manifold and obey the inherent feature correlations or innate data
constraints. We name the generated data as antidote data. The antidote data can either mix with
original training data to be a pre-processing technique, or either serve as Ds., in Equation (2)) as an
in-processing approach. By taking antidote data, a classifier would give individually fair predictions.

3.1 ANTIDOTE DATA GENERATOR

We start by elaborating on the generator of antidote data. The purpose of antidote data generator gy
is, given a training sample z, generating its comparable samples with different sensitive attribute(s).
To ensure the generations have different sensitive features, we build gy as a conditional generative
model to generate a sample with pre-defined sensitive features. Given sensitive attributes § # s,
(recall s, is the sensitive attributes of instance x), the objective is:

go : (x,8,2z) = &, with sz =5, xandz satisfy Definition[2.T} 3)

where z ~ N(0, 1) is drawn from a standard multivariate normal distribution as a noise vector.
The generation  should follow the data distribution and satisfy some innate constraints from dis-
crete or continuous features, i.e., the one-hot format for discrete features and a reasonable range for
continuous features. In the following, we shall elaborate the design and training strategy for gg.
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Encoding Continuous Values For continuous features, we adopt mode-specific normaliza-
tion (Xu et al.l 2019) to encode every column of continuous values independently. We use Vari-
ational Bayesian to estimate the Gaussian mixture in the distribution of one continuous feature. This
approach will decompose the distribution into several modes, where each mode is a Gaussian distri-
bution with unique parameters. Formally, given a value c; ; in the i-th column of continuous feature
and j-th row in the tabular, the learned Gaussian mixture is P(c; ;) = 25:1 w; kN (Ci i i ks U?’k),
where w; i, is the weight of k-th mode in ¢-th continuous feature, and p;, and oy, are the mean and
standard deviation of the normal distribution of k-th mode. We use the learned Gaussian mixture to
encode every continuous value. For each value c; ;, we estimate the probability from each mode via
Pik(cij) = wi kN (¢ i pik, 012, ;:)> and sample one mode from the discrete probability distribution
p; with K; values. Having a sampled mode k, we represent the mode of c; ; using a one-hot mode
indicator vector, an all-zero vector e; ,, except the k-th entry equal to 1. We use a scalar to represent
the relative value within k-th mode: v; , = (¢; ; — pi k)/40; k. By encoding all continuous values,
we have a re-representation Z to substitute = as as the input for antidote data generator gy:

T=W1,sPe1sPD  DUN. s DPen.z) Ddy D sy 4)

Recall & denotes vector-vector or vector-scalar concatenation. To construct a comparable sample
z, the task for continuous features is to classify the mode from latent representations, i.e., estimate
e; i, and predict the relative value v; .. We can decode v; , and e;, back to a continuous value
using the learned Gaussian mixture.

Structural Design The whole model is designed in a Generative Adversarial Networks (Goodfel-
low et al.,|2014) style, consisting of a generator gy and a discriminator dg.

The generator gy takes the re-representation Z, a pre-defined sensitive feature S, and noisy vector
z as input. The output from gg will be a vector with the same size as & including v;, ez, dz, and
sz. To ensure all discrete features are in a one-hot manner so that the generations will follow a
tabular distribution, we apply Gumbel softmax (Jang et al., [2017) as the final activation to each
discrete feature and obtain d;. Gumbel softmax is a differentiable operation to encode a continuous
distribution over a simplex and approximate it to a categorical distribution. This function controls
the sharpness of output via a hyperparameter called temperature. Gumbel softmax is also applied to
sensitive features s; and mode indicator vectors e; to ensure the one-hot format.

The purpose for the discriminator model dy is to distinguish the fake generations from real samples,
and we also build discriminator to identify generated samples in terms of its comparability from real
comparable samples. Through discriminator, the constraints from comparable samples are implicitly
encoded into the adversarial training. We formulate the fake sample for discriminator as £ ®Z @ (& —
Z), and real samples as &’ & Z @ (I’ — &), where &’ is the re-representation of a comparable sample
2’ to & drawn from the training data. The third term # — Z is encoded to emphasize the different
between two comparable samples. Implicitly regularizing the comparability leaves full flexibility to
the generator to fit with various definitions of comparable samples, and avoid adding complicated
penalty terms, as long as there are real comparable samples prepared for training.

Training Antidote Data Generator We train generator and discriminator iteratively through the
following objectives with gradient penalty |Gulrajani et al.|(2017)) to ensure stability:

H;Z)n ]Ema-TlNDcomp KCE(S.@7 S.’L‘/) - d9 (99 (ij D Sa/ @ Z)), (5)
min By pinne,,  do(90(Z 20 @ 7)) — dg (&), (6)
6

where Deomp is the distribution describing the real comparable samples in data, {c is cross entropy
loss to penalty the prediction of every sensitive attribute in s; with s, as the ground-truth.

3.2 LEARNING WITH ANTIDOTE DATA
We elaborate two ways to easily apply the generated antidote data for the individual fairness purpose.

In practice, it is not strictly guaranteed that gy will produce comparable samples submitting to Def-
inition Some samples may be incompatible with some pre-defined sensitive features coming
from the violations of neural networks. Thus, we apply a post-processing step Post to filter out
comparable samples from all the generations. Given a dataset X, for one iteration of sampling, we
input every x with all possible sensitive features (except s,) to the generator, collect raw generations
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Algorithm 1 DRO-Anti: DRO with Antidote Data for Individual Fairness

1: Input: Training data T = {(=;, y;)}?, learning rate 7, loss function ¢
Train Comparable Sample Generator gy with {x;}?V and comparable constraints
Sample antidote data X using gy
repeat
0 <+ 0 — Nk 3.4 [Vo(maxze s,y o 02, y) +L(z,y))] > {2 }M « = is the set of M
comparable samples of z and {#;}™ € Post(X)
6: until convergence

X, and apply Post(X ) to get the antidote data. The label y for antidote data is copied from the
original data. We may have multiple iterations of sampling to enlarge the pool of antidote data.

The first way to use antidote data is to simply insert all antidote data to the original training set:
min U fo(x),y), z € X +Post(X). 7
iin 3 ((fo(2). ) (%) )

Since we only add additional training data, this approach is model-agnostic, flexible to any model op-
timization procedure, and fits well with well-developed data analytical toolkits such as sklearn (Pe-
dregosa et al., 2011)). We consider the convenience as a favorable property for practitioners.

The second way is to apply antidote data with Distributionally Robust Optimization. We present
the training procedure in Algorithm [I] In every training iteration, except the optimization at
real data with ¢(x,y), we add an additional step to select z’s comparable samples in antidote
data with the highest loss incurred by the current model’s parameters, and capture gradients from
maX;e 3,3 q £(Z,y) to update the model. The algorithm is similar to DRO with perturbations
along some sensitive directions, but instead we replace the perturbations with on-manifold gener-
ated data. The additional loss term in Algorithm [I]can be upper bounded by a gradient smoothing
regularization term. Taking Taylor expansion, we have:
maxie{ii}""(—zg(i‘7 y) = €($7 y) + max [f(jj’ y) - €($7 y)]

de{d; ) ea

=l(z,y)+ _max  [(Vil(z,y), (& — 2))] + O(5%) (8)

ze{Z;} =z

< (z,y) + Tymax Vg, l(z,y) + T. max V., l(z,y) + Nymax V, L(z,y) + O(67).

Recall T;; and T, are the thresholds for discrete and continuous features in Deﬁnition 0O(6?) is
the higher-order from Taylor expansion. The last inequality is from Definition 2.1} The three gra-
dients on discrete, continuous, and sensitive features serve as gradient regularization and encourage
the model to have invariant loss with regard to comparable samples. However, the upper bound is
only a sufficient but not necessary condition, and our solution encodes real data distribution into the
gradient regularization to solve individual unfairness with more favorable trade-offs.

4 EXPERIMENTS
4.1 EXPERIMENTAL SETUP

Datasets We involve censual datasets Adult (Kohavi & Becker, [1996) and Dutch (Van der Laan,
2000), educational dataset Law School (Wightman, (1998) and Oulad (Kuzilek et all [2017), and
criminological dataset Compas (Angwin et al.,|2016) in our experiments. For each dataset, we select
one or two attributes related to ethics as sensitive attributes which expose a significant individual
unfairness in a base model like neural networks. We report their details in Appendix [A]

Protocol For all datasets, we transform discrete features into one-hot encoding, and standardize
the features by removing the mean and scaling to unit variance. We transform continuous features
into the range between 0 and 1. We construct pairs of comparable samples for both training and
testing sets. In experiments, different from (Yurochkin & Sun, [2021}; |Yurochkin et al., [2020), our
evaluations on tabular datasets are sampled from real testing data but not simulated. We evaluate
both the model utility and individual fairness in experiments. For utility, we consider the area under
the Receiver Operating Characteristic Curve (ROC), and Average Precision (AP) to characterize
the precision of probabilistic outputs in binary classification. For individual fairness, we consider
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Table 1: Experimental results on Adult dataset

ROC 1 AP 1 Pos. Comp. (Mean/Q3) | Neg. Comp. (Mean/Q3) |
LR (Base) 90.04 75.72 31.751743.55 10.25/18.37
LR+Proj 81.40 9.60% 62.19 -17.87% 25.10 -20.95% / 34.83 -20.02% 23.29 +127.17% / 33.03 +79.81%
LR+Dis 89.95 -0.10%  75.59 -0.17% 30.81 -2.94% / 41.10 -5.62% 9.40 8.29% / 17.78 -3.18%
LR+Anti 89.72 -035%  75.04 -0.90% 24.72 22.13% / 30.84 -29.18% 8.66 -15.56% / 14.64 20.29%
LR+Anti+Dis  89.56 -053%  74.83 -1.17% 23.02 -27.49% / 26.61 -38.90% 8.12 -20.76% / 13.91 -24.28%
NN (Base) 88.18 70.09 33.21/47.84 13.03/23.37
NN-+Proj 87.42 086%  68.51 -2.25% 32.38 -252% / 46.45 2.91% 13.59 +4.36% / 23.69 +1.37%
NN+Dis 88.15 -004%  70.27 +0.26% 32.90 -0.93% / 44.79 -6.37% 11.83 -9.17% / 23.36 -0.08%
SenSR 86.01 247%  66.19 -557% 28.68 -13.63% / 44.21 -7.59% 14.88 +14.20% / 23.07 -131%
SenSel 86.42 2.00%  66.08 -5.72% 27.92 -15.94% / 35.92 -24.91% 13.22 +1.53% / 26.01 +11.28%
LCIFR 87.35-094%  68.52 -2.24% 32.51 -2.13% / 44.84 -6.26% 12.97 -041% / 26.49 +1335%
NN+Anti 87.95 -026%  69.51 -0.83% 26.05 -21.57% / 35.76 -25.26% 10.42 -19.97% / 16.88 -27.80%
NN+Anti+Dis  87.79 -044%  69.40 -0.98% 24.40 -26.53% / 32.12 -32.85% 9.56 -26.63% / 15.54 -33.51%
DRO-Anti 8791 -031% 71.08 +1.41% 17.46 -47.44% / 20.04 -58.10% 5.48 -57.96% / 6.87 -70.59%

the gap in probabilistic scores between comparable samples when both two samples have the same
positive or negative label (abbreviated as Pos. Comp. and Neg. Comp.). We evaluate unfairness for
positive and negative comparable samples in terms of the arithmetic mean (Mean) and upper quartile
(Q3). The upper quartile can show us the performance of some worse-performed pairs. For a base
model with randomness like NN, we ran the experiments five times and report the average results.

Baselines We consider two base models: logistic regression (LR), and three-layers neural net-
works (NN). We use logistic regression from Scikit-learn (Pedregosa et al.,[2011)), and our antidote
data is compatible with this mature implementation since it does not make a change to the model.
Approaches involving DRO currently do not support this LR pipeline, but will be validated through
neural networks implemented with PyTorch. We have the following five baselines in experiments:
1. Discard sensitive features (Dis). This approach simply deletes the appointed sensitive features in
the input data; 2. Project (Proj) (Yurochkin et al.;[2020). Project finds a linear projection via logistic
regression which minimizes the predictability of sensitive attributes in data. It requires an extra pre-
processing step to project input data. 3. SenSR (Yurochkin et al.| | 2020). SenSR is based on DRO. It
finds a sensitive subspace through logistic regression which encodes the sensitive information most,
and generates perturbations on this sensitive subspace during optimization. 4. SenSel (Yurochkin
& Sunl 2021). SenSel also uses the DRO paradigm, but involves distances penalties on both input
and model predictions to construct perturbations; 5. LCIFR (Ruoss et al., 2020). LCIFR computes
adversarial perturbations with logical constraints, and optimizes representations under the attacks
from perturbations. We basically follow the default hyperparameter setting from the original imple-
mentation but fine-tune some parameters to avoid degeneration in some cases. For our approaches,
we use Anti to denote the approach that simply merges original data and antidote data, use ‘Anti.’
to denote adding Dis to original and antidote data, and use DRO-Anti to denote antidote data with
DRO. We standardized baselines with the same base model in experiments.

4.2 How ANTIDOTE DATA MITIGATE UNFAIRNESS

We present our numerical results on Table |1} Table |2 and Figure|l} and defer more to Appendix
From these results we have the following major observations.

Antidote Data Show Good Performance Across all datasets, with antidote data, our models
mostly perform the best in terms of individual fairness, and with only a minimal drop or sometimes
even a slight improvement on predictive utility. For example, on Law School dataset, our NN+Anti
mitigates individual unfairness by 70.38% and 63.36% in terms of the Mean in Pos. Comp. and
Neg. Comp., respectively, with improvements on ROC by 0.47% and AP by 0.07%. On this dataset,
other methods typically bring a 0.1%-2.5% drop in utility, and deliver less mitigation on individual
unfairness. In some cases, some baseline methods do give better individual fairness, e.g., LCIFR for
Neg. Comp., but their fairness is not consistent for positive comparable samples, which is usually
achieved at a significant cost on utility (up to a 13.03% drop in ROC).

Improvements from DRO-Anti Our DRO-Anti outperforms base models that learn with antidote
data through regular optimizations. This model gets fairer results and slightly better predictive
utility. This is because DRO-Anti introduces antidote data into every optimization iteration and
selects the worst performed data instead of treating them equally. The typical DRO training has an
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Table 2: Experimental results on Law School dataset

ROC 1 AP 1 Pos. Comp. (Mean/Q3) | Neg. Comp. (Mean/Q3) |
LR (Base) 86.14 97.80 3.67/5.39 11.70/15.21
LR+Proj 85.84 -035%  97.74 -0.06% 2.23 -39.35% / 2.48 -54.07% 8.66 -25.99% / 11.40 -25.05%
LR+Dis 86.18 +0.04%  97.79 -0.01% 2.04 -4432% / 2.32 -56.90% 7.33 -37.36% / 11.25 -26.04%
LR+Anti 86.22 +0.08%  97.80 +0.00% 1.79 -51.20% / 2.20 -59.14% 6.56 -43.98% / 8.64 -4321%
LR+Anti+Dis  86.20 +0.06%  97.80 -0.00% 1.76 -52.08% / 2.16 -59.96% 6.28 -46.33% / 8.36 -45.03%
NN (Base) 85.70 97.72 5.38/8.22 12.55716.47
NN+Proj 85.89 +0.22%  97.76 +0.04% 2.04 -62.07% [ 2.277 -12.39% 5.52 -56.00% / 6.46 -60.77%
NN+Dis 85.99 +0.34%  97.78 +0.06% 1.97 -63.36% / 2.22 -72.98% 5.34 -57.42% 1 6.45 -60.81%
SenSR 84.49 .141%  97.55 -0.18% 2.58 -51.99% / 3.23 -60.67% 5.56 -55.68% / 7.81 -52.57%
SenSel 84.59 -130%  97.49 -0.24% 7.01 +30.33% / 10.83 +31.64% 18.22 +45.16% / 24.99 +51.712%
LCIFR 74.53 -13.03%  95.28 -2.50% 2.63 -51.05% / 3.06 -62.79% 3.35 -73.28% / 3.78 -77.07%
NN+Anti 86.11 +047%  97.79 +0.07% 1.59 -70.38% / 1.94 -76.44% 4.60 -63.36% / 6.31 -61.69%
NN+Anti+Dis  86.07 +0.43%  97.79 +0.06% 1.54 71.31% / 1.80 -78.05% 4.44 -6a.66% | 5.47 -66.78%
DRO-Anti 86.56 +1.00% 97.88 +0.16% 1.52 -71.75% / 1.82 -77.82% 4.10 -67.34% / 5.54 -66.33%
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Figure 1: Box plots for experimental results on Compas dataset. Experiments in the left three figures
use Logistic Regression as the base model, and the right three figures use Neural Networks. The top
two rows plot the results in individual fairness, while the bottom two rows plot the model’s utility.
Since we set two sensitive attributes for Compas dataset, we plot three situations for comparable
samples upon sensitive attributes for these two samples, and use logical expressions to denote them.
We use ‘and’ to indicate none of the sensitive attributes is same between a pair of comparable
samples, use ‘or’ to denote at least one sensitive attribute is different, and use ‘not’ to indicate both
two sensitive attributes are consistent. The dash line in the box plots indicate the arithmetic mean.

iterative optimization in every epoch to search for good perturbations. In contrast, DRO-Anti omits
the inner optimizations but only evaluates every antidote data in each round.

Binding well with Dis. Removing sensitive features from input data generally improves individ-
ual fairness. In Law School dataset, discarding sensitive features can bring up to 44.32% - 63.36%
mitigation in individual fairness. But once sensitive features are highly correlated with other fea-
tures, the mitigation is not guaranteed. In Adult dataset, removing sensitive features only gets 0.93%
- 2.94% improvements across these two models. Regardless of the varying performance from Dis,
our antidote data bind well with sensitive features discarding. On Adult dataset, our LR+Anti plus
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Figure 2: A & B: The tradeoffs between utility and fairness on Adult dataset. For SenSel we iterate
the controlling hyperparameter in (le+3, Se+3, le+4, Se+4, le+5, 2e+5, Se+5). For LCIFR, we
iterate the weight for fairness in (0.1, 1.0, 10.0, 50.0, 100.0). For Anti, we have the proportion of
antidote ratio at 0%, 45%, 90%, 134%, 180%, 225%, 270%, 316%, 361%, and 406%. For DRO-
Anti, we have the proportion of antidote ratio at 45%, 90%, 136%, 180%, 225%. Every point is
plotted with variances, and the variance for our models is too small to observe in this figure. C: The
convergence in terms of the comparability ratio during the training of the generator.

Dis boosts individual fairness in Pos. Comp. by 5.36%, where solely discarding sensitive features
only has 0.94% improvements. This number is consistent in NN, i.e., 4.96% compared to 0.93%.

Algorithmic Tradeoffs In Figure[2]A & B, we show the tradeoffs between utility and fairness. We
have two major observations: (1) Models with antidote data perform better tradeoffs, i.e., with more
antidote data, we have lower individual unfairness, and less drop in model utility. DRO-Anti has the
best tradeoffs and achieves individual fairness with an inconspicuous sacrifice of utility even when
the amount of antidote data goes up. (2) Our models enjoy a lower variance with different random
seeds. For baseline methods, when we turn up the hyperparameters controlling the tradeoffs, there
is an instability in the final results and a significant variance. However, as our model is optimized
on approximately real data, and with no change on a model from Anti. and minimal change in
optimization from DRO-Anti, there is no observational variance in the final results.

Convergence In Figure[2]C, we show the change of the comparability ratio, i.e., the rate of com-
parable samples from the entire generated samples, during training for different types of features.
The comparability ratio of sensitive features quickly converged to 1 since we have direct supervision.
The ratio of discrete and numerical features converged around the 500-th iteration due to the implicit
supervision from the discriminator. The ratio of continuous features is lower than discrete features
due to more complex patterns. Due to the imperfect comparability ratio, we add an additional step
Post() to filter out incomparable samples.

4.3 MODELING THE DATA MANIFOLD

Compare to Randomly Generated Compa-
rable Samples In Table [3] we compare ran-
domly generated comparable samples to em-
phasize the benefit of data manifold modeling.

Table 3: Comparing to random generated compa-
rable samples on Adult dataset

ROC 1  Pos. Comp. (Mean/Q3) |

We sample the random comparable samples as NN 88.18 3321747384

. . +100.0% Rand.  88.25 31.33/44.69
such: (1) Uniformly sample discrete features +200.0% Rand.  88.18 30.16/42.51
and perturb them into a random value in the +300.0% Rand.  88.19 29.48 /39.77
current feature. The total number of perturbed  +500.0% Rand.  88.08 27.94/39.31
features is arbitrary in [0, T;]. (2) Uniformly +44.5% Anti 87.95 26.05/35.76

sample values from [—T, T.], and add the per-

turbations to continuous features. We clip the perturbed features in [0, 1]. (3) Randomly perturb an
arbitrary number of sensitive features. We add these randomly generated comparable samples to the
original training set. From the results in Table 3] we observe that with only 44.5% antidote data, the
model outperforms the one with 500% randomly generated comparable samples in terms of individ-
ual fairness. By surpassing 10x data efficacy, the results demonstrated that modeling on-manifold
comparable samples is greatly helpful to mitigate individual unfairness.

Learning Efficacy of Antidote Data In Table [d] we study the model binary classification perfor-
mance by training only on generated data. We use Accuracy (Acc.), Bal. Acc. (Balance Accuracy),
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and F1 Score (F1) for evaluation. We construct a synthetic training set that has the same amount of
data as the original training set. We use two baselines. Random Data: the randomly generated data
fit the basic constraints from tabular. Pert. in SenSel: we collect perturbations from the original data
in every training iteration of SenSel, and uniformly sample from these perturbations.

Within expectation, results in Table show that Table 4: Learning efficacy on Adult dataset
our antidote data suffer from a performance Acc. 1 Bal. Ace. 1 FI{

drop compared to the original data because the
generator cannot perfectly fit the data manifold. ~ Original Data ~ 84.64 76.16 65.55

Even so, antidote data surpass random data and ~ Random Data  30.48 40.25 29.59
perturbations from SenSel, indicating that anti- ~ Pert. in SenSel  53.81 67.83 50.36
dote data are closer to the original training data. ~ Antidote Data ~ 78.48 74.03 59.84

5 RELATED WORK

Machine Learning Fairness Al Fairness proposes ethical regulations to rectify algorithms not
discriminating against any party or individual. To quantify the goal, the concept ‘group fairness’
asks for equalized outcomes from algorithms across sensitive groups in terms of statistics like true
positive rate or positive rate (Hardt et al.,[2016). Similarly, minimax fairness (Hashimoto et al.,2018)
characterizes the algorithmic performance of the worst-performed group among all. Though appeal-
ing, both of these two notions guarantee poorly on individuals. To compensate for the deficiency,
counterfactual fairness (Kusner et al.,2017)) describes the consistency of algorithms on one instance
and its counterfacts when sensitive attributes got changed. However, this notion and corresponding
evaluations strongly rely on the casual structure (Glymour et al., 2016) which originates from the
data generating process. Thus, in practice, an explicit modeling is usually unavailable. Individual
fairness (Dwork et al.| 2012)) describes the pair-wise predictive gaps between similar instances, and
it is feasible when the constraints in input and output spaces are properly defined.

Individual Fairness Several methods have been proposed for individual fairness. [Sharifi-
Malvajerdi et al.| (2019) study Average Individual Fairness. They regulate the average error rate
for individuals on a series of classification tasks with different targets, and bound the rate for the
worst-performed individual. |Yurochkin et al.| (2020); Yurochkin & Sun|(2021)); [Ruoss et al.| (2020);
Yeom & Fredrikson| (2021) develop models via DRO that iteratively optimized at samples which
violate fairness at most. To overcome the hardness for choosing distance functions, Mukherjee et al.
(2020) inherit the knowledge of similar/dissimilar pairs of inputs, and propose to learn good similar-
ity metrics from data. Ilvento| (2020) learns metrics for individual fairness from human judgements,
and construct an approximation from a limited queries to the arbiter. Petersen et al.| (2021} propose
a graph smoothing approach to mitigate individual bias based on a similarity graph. [Lahoti et al.
(2019) propose a probabilistic mapping from input to low-rank representations that reconcile indi-
vidual fairness well. To introduce individual fairness to more applications, |Vargo et al.|(2021) study
individual fairness in gradient boosting, and the model is able to work with non-smooth models such
as decision trees. [Dwork et al.|(2020) study individual fairness in a multi-stage pipeline. [Maity et al.
(2021)); John et al.| (2020) study model auditing with individual fairness.

Crafting Adversarial Samples Beyond regular adversary (Madry et al. [2018), using genera-
tive models to craft on-manifold adversarial samples is an attractive technique for model robust-
ness (Xiao et al., [2018}|Zhao et al., [2018} |Kos et al., 2018;Song et al., 2018). Compared to general
adversarial samples without too many data-dependent considerations, generative samples are good
approximations to the data distribution and can offer attacks with rich semantics. Experimentally,
crafting adversarial samples is in accordance with intuition and has shown to boost model general-
ization capacity (Stutz et al.,2019; [Raghunathan et al., 2019).

6 CONCLUSION

In this paper we studied individual fairness on tabular datasets, and focused on an individual fairness
definition with rich semantics. We proposed an antidote data generator to learn on-manifold compa-
rable samples, and used the generator to produce antidote data for the individual fairness purpose.
We provided two approaches to equip antidote data to regular classification pipeline or a distribu-
tionally robust optimization paradigm. By incorporating generated antidote data, we showed good
individual fairness as well as good tradeoffs between predictive utility and individual fairness.



Under review as a conference paper at ICLR 2023

REFERENCES

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of Data and
Analytics, 2016.

Michelle Bao, Angela Zhou, Samantha A Zottola, Brian Brubach, Sarah Desmarais, Aaron Seth
Horowitz, Kristian Lum, and Suresh Venkatasubramanian. It’s COMPASIicated: The messy rela-
tionship between RAI datasets and algorithmic fairness benchmarks. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1),2021. URL
https://openreview.net/forum?id=geM58whnpXM.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. California Law Review, 2016.

Robert Bartlett, Adair Morse, Richard Stanton, and Nancy Wallace. Consumer-lending discrimina-
tion in the fintech era. Journal of Financial Economics, 2022.

Jeffrey Dastin. Amazon scraps secret ai recruiting tool that showed bias against women, 2018.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of The 3rd Innovations in Theoretical Computer Science
Conference, 2012.

Cynthia Dwork, Christina Ilvento, and Meena Jagadeesan. Individual fairness in pipelines. In /st
Symposium on Foundations of Responsible Computing, 2020.

Andrew Gelman, Jeffrey Fagan, and Alex Kiss. An analysis of the new york city police department’s
“stop-and-frisk” policy in the context of claims of racial bias. Journal of the American statistical
association, 2007.

Madelyn Glymour, Judea Pearl, and Nicholas P Jewell. Causal inference in statistics: A primer.
John Wiley & Sons, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Processing Systems,
2017.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
Advances in Neural Information Processing Systems, 2016.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. In Proceedings of the 35th International Conference
on Machine Learning, 2018.

Christina Ilvento. Metric learning for individual fairness. In Ist Symposium on Foundations of
Responsible Computing, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Verifying individual fairness in
machine learning models. In Conference on Uncertainty in Artificial Intelligence, 2020.

Ronny Kohavi and Barry Becker. Adult data set, 1996.

Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for generative models. In IEEE
Security and Privacy Workshops, 2018.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In Advances
in Neural Information Processing Systems, 2017.

10


https://openreview.net/forum?id=qeM58whnpXM

Under review as a conference paper at ICLR 2023

Jakub Kuzilek, Martin Hlosta, and Zdenek Zdrahal. Open university learning analytics dataset.
Scientific Data, 2017.

Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. ifair: Learning individually fair data
representations for algorithmic decision making. In IEEE 35th International Conference on Data
Engineering, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Subha Maity, Songkai Xue, Mikhail Yurochkin, and Yuekai Sun. Statistical inference for individual
fairness. In International Conference on Learning Representations, 2021.

Jeffrey Mervis. Nsf grant decisions reflect systemic racism, study argues, 2022.

Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee, and Yuekai Sun. Two simple ways
to learn individual fairness metrics from data. In International Conference on Machine Learning,
2020.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 2011.

Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail Yurochkin. Post-processing for
individual fairness. In Advances in Neural Information Processing Systems, 2021.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang. Adversarial
training can hurt generalization. arXiv preprint arXiv:1906.06032, 2019.

Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. Learning certified individually
fair representations. In Advances in Neural Information Processing Systems, 2020.

Saeed Sharifi-Malvajerdi, Michael Kearns, and Aaron Roth. Average individual fairness: Algo-
rithms, generalization and experiments. In Advances in Neural Information Processing Systems,
2019.

Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unrestricted adversarial
examples with generative models. In Advances in Neural Information Processing Systems, 2018.

David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and generaliza-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019.

Paul Van der Laan. The 2001 census in the netherlands. In Conference The Census of Population,
2000.

Alexander Vargo, Fan Zhang, Mikhail Yurochkin, and Yuekai Sun. Individually fair gradient boost-
ing. In International Conference on Learning Representations, 2021.

Linda F Wightman. Lsac national longitudinal bar passage study. LSCA Research Report Series,
1998.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating ad-
versarial examples with adversarial networks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, 2018.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. In Advances in Neural Information Processing Systems, 2019.

Samuel Yeom and Matt Fredrikson. Individual fairness revisited: transferring techniques from ad-
versarial robustness. In Proceedings of the Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence, 2021.

11



Under review as a conference paper at ICLR 2023

Mikhail Yurochkin and Yuekai Sun. Sensei: Sensitive set invariance for enforcing individual fair-
ness. In International Conference on Learning Representations, 2021.

Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models with
sensitive subspace robustness. In International Conference on Learning Representations, 2020.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial examples. In Inter-
national Conference on Learning Representations, 2018.

12



Under review as a conference paper at ICLR 2023

A  DATASET

Adult dataset The Adult dataset contains census personal records with attributes like age, educa-
tion, race, etc. The task is to determine whether a person makes over $50K a year. We use 45.25%
antidote data for Anti, and 225.97% antidote data for DRO-Anti. We set T; = 1 and T, = 0.025 for
the constraints of comparable samples.

Compas dataset The Compas dataset is a criminological dataset recording prisoners’ information
like criminal history, jail and prison time, demographic, sex, etc. The task is to predict a recidivism
risk score for defendants. We use 148.55% antidote data for Anti, and 184.89% antidote data for
DRO-Anti. We set Ty = 1 and 7, = 0.025. Note that from (Bao et al.,[2021)), Compas dataset may
not be the ideal dataset for demonstrating algorithmic fairness.

Law School dataset The Law School dataset dataset contains law school admission records. The
goal is to predict whether a candidate would pass the bar exam, with available features like sex,
race, and student’s decile, etc. We use 56.18% antidote data for Anti, and 338.50% antidote data for
DRO-Anti. Weset Ty = 1 and T, = 0.1.

Oulad The Open University Learning Analytics (Oulad) dataset contains information of students
and their activities in the virtual learning environment for seven courses. It offers students’ gender,
region, age, and academic information to predict students’ final results in a module-presentation.
We use 523.23% antidote data for Anti, and 747.85% antidote data for DRO-Anti. We set Ty = 1
and T, = 0.025.

Dutch dataset The Dutch dataset dataset shows people profiles in Netherlands in 2001. It provides
information like sex, age, household, citizenship, etc., and aim to predict a person’s occupation. We
remove 8,549 duplication in the test set and reduce the size to 6,556. We use 205.44% antidote data
for Anti, and 770.65% antidote data for DRO-Anti. We set Ty = 1 and T, = 0.025.

Table 5: Dataset Statistics. We report data statistic including sample size as well as the number of
positive and negative comparable samples in training / testing set, respectively.

Dataset #Sample #Dim. Sensitive Attribute #Pos. Comp. #Neg. Comp.
Adult 30,162/ 15,060 103 marital-status 739 /193 38,826 /10,412
Compas 4,626 /1,541 354 race + sex 24,292 /2,571 8,116/ 1,020
Law School 15,598 /5,200 23 race 13,425/ 1,530 1,068 / 118
Oulad 16,177 /5,385 48 age_band 33,747 /3,927 5,869 / 608
Dutch 45,315/ 6,556 61 sex 1,460,028 / 6,727 1,301,376 /9,390

B IMPLEMENTATION DETAILS

We elaborate the architecture of our model in details by using h as the hidden representations.

hi1 = ReLU(BatchNormld(Linear_,o56(Z® 50 2))) @I PSPz
hs = ReLU(BatchNormld(Linear_o56(h1))) ® h1

hs = ReLU(BatchNormld(Linear_,pim(s)(h2)))

0; = tanh(Linear_,j(hs[index forv;])) V0 <i< N,

&; = gumbeljy(Linear_, 4, (hs[index for K;])) VO <i< N,

d;, = gumbelgo(Linear_,q, (hslindex for d;])) V0 <i< Ng

9o

hi1 = Dropout s(LeakyReLUgpo(Linear _o56(2 DT B T — T)))
dp = { hg = Dropoutg s(LeakyReLUyo(Linear_o56(h1)))
score = Linear_,1(h2)

We use Adam optimizer. We set the learning rate for generator gy to 2e-4, for discriminator dy to
2e-4, weight decay for gp to 1e-6, for dp to 0. We set batch size to 4096 and training epochs to 500.

13
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C ADDITIONAL RESULTS

We present experimental results on Dutch dataset in Table[6] and on Oulad dataset in Table[7} and
tradeoffs study in Figure[3] Similar conclusions can be drawn as in Section[#.2} with antidote data,
our models Anti and DRO-Anti achieve good individual fairness and favorable tradeoffs between
fairness and model predictive utility.

Table 6: Experimental results on Dutch dataset

ROC 1 AP 1 Pos. Comp. (Mean/Q3) | Neg. Comp. (Mean/Q3) |
LR (Base) 89.55 87.87 17.84 /24.15 21.81/30.29
LR+Proj 86.62 328%  85.13 -3.13% 7.74 -56.60% / 8.21 -65.99% 8.01 -63.30% / 8.55 -71.79%
LR+Dis 87.51 228%  85.71 -2.47% 8.44 52.67% 1 9.03 -62.63% 9.11 -5822% / 11.29 -62.72%
LR+Anti 85.41 -463% 83.38 -5.11% 9.55 -46.47% / 10.37 -57.05% 10.74 -50.77% / 12.70 -58.09%
LR+Anti+Dis  87.40 240% 85.51 -2.69% 7.08 -60.32% / 7.06 -70.76% 7.10 -67.44% [ 7.48 -7531%
NN (Base) 90.22 88.93 15.88 /20.85 21.42/31.68
NN-+Proj 88.18 226%  86.94 -2.23% 8.11 -48.95% / 9.44 -54.75% 7.65 -64.29% / 9.73 -69.28%
NN+Dis 88.21 223%  86.92 -2.25% 8.18 -4851% / 9.41 -54.87% 8.18 -61.80% / 10.53 -66.76%
SenSR 87.78 -270%  86.68 -2.52% 8.54 -46.20% 1 9.71 -53.46% 7.72 -63.94% / 8.61 -72.83%
SenSel 89.91 -034% 88.34 -0.65% 16.21 +2.07% / 21.12 +1.29% 21.98 +2.65% / 31.25 -1.35%
LCIFR 88.04 2.429% 86.54 -2.68% 8.12 -48.84% / 9.30 -55.42% 8.41 -60.73% / 10.61 -66.50%
NN+Anti 87.05 351%  85.59 -3.75% 8.71 -45.13% / 10.50 -49.67% 9.49 -55.70% / 13.23 -58.23%
NN+Anti+Dis  87.80 -2.68% 86.37 -2.87% 6.78 -57.30% / 7.37 -64.65% 6.32 -70.48% [ 7.15 -77.44%
DRO 88.00 -2.46% 87.13 -2.02% 6.34 -60.04% / 6.06 -70.93% 4.91 -77.08% / 5.41 -82.93%
Table 7: Experimental results on Oulad dataset
ROC 1 AP 1 Pos. Comp. (Mean/Q3) | Neg. Comp. (Mean/Q3) |
LR (Base) 63.04 76.73 8.41/12.09 9.08/12.97
LR+Proj 65.20 +3.44%  79.29 +334% 5.33 -36.61% / 7.50 -37.99% 5.46 -39.88% / 7.69 -40.71%
LR+Dis 62.52 -083%  76.39 -0.45% 5.42 -35.50% / 7.89 -34.77% 5.89 -35.14% / 8.74 -32.63%
LR+Anti 62.17 -138%  76.24 -0.64% 6.42 23.61% / 9.19 -24.02% 7.10 21.76% / 9.78 -24.63%
LR+Anti+Dis  60.82 3529  75.07 -2.17% 5.10 -3931% / 6.95 -42.53% 5.81 -36.04% / 8.67 -33.17%
NN (Base) 65.80 79.72 6.63/9.59 6.81/9.73
NN+Proj 65.42 057%  79.49 -0.29% 4.76 28.26% / 6.70 -30.11% 4.65 -31.68% / 6.71 -31.00%
NN+Dis 65.51 -043%  79.59 -0.16% 4.78 -27.94% / 6.84 -28.75% 4.75 -3027% 1 6.94 -28.66%
SenSR 65.58 -034%  79.57 -0.19% 4.96 -25.17% / 7.00 -27.08% 4.23 -37.85% / 6.16 -36.67%
SenSel 64.14 2529  78.68 -131% 5.53 -16.49% / 8.13 -15.22% 5.50 -19.18% / 7.99 -17.90%
LCIFR 65.21 -089%  79.40 -0.40% 4.13 -37.61% / 5.66 -41.01% 3.70 -45.70% / 5.26 -45.94%
NN+Anti 64.75 -159%  79.08 -0.80% 4.09 -38.32% / 5.82 -39.36% 4.51 -33.69% / 6.30 -35.27%
NN+Anti+Dis  64.97 -1.26%  79.20 -0.65% 4.00 -39.70% / 5.53 -42.33% 4.18 -38.68% / 5.97 -38.61%
DRO 64.38 -2.16%  78.62 -1.38% 2.86 -56.80% / 3.71 -61.34% 3.97 -41.64% [ 5.22 -46.31%
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Figure 3: The tradeoffs between utility and fairness on Compas dataset. For SenSel we iterate the
controlling hyperparameter in (1le+3, Se+3, le+4, Se+4, le+5, 2e+5, 5e+5). For LCIFR, we iterate
the weight for fairness in (0.1, 1.0, 10.0, 50.0, 100.0). For Anti, we have the proportion of antidote
ratio at 110%, 130%, 150%, 167%, 185%, 206%. For DRO-Anti, we have the proportion of antidote
ratio at 129%, 146%, 167%, 184%, 201%, 222%. Every point is plotted with variances.
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