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Abstract

Large language models (LLMs) targeting different deployment scales and sizes
are currently produced by training each variant from scratch; this is extremely
compute-intensive. In this paper, we investigate if pruning an existing LLM and
then re-training it with a fraction (<3%) of the original training data can be a
suitable alternative to repeated, full retraining. To this end, we develop a set of
practical and effective compression best practices for LLMs that combine depth,
width, attention and MLP pruning with knowledge distillation-based retraining; we
arrive at these best practices through a detailed empirical exploration of pruning
strategies for each axis, methods to combine axes, distillation strategies, and search
techniques for arriving at optimal compressed architectures. We use this guide
to compress the Nemotron-4 family of LLMs by a factor of 2-4 x, and compare
their performance to similarly-sized models on a variety of language modeling
tasks. Deriving 8B and 4B models from an already pretrained 15B model using our
approach requires up to 40x fewer training tokens per model compared to training
from scratch; this results in compute cost savings of 1.8 for training the full model
family (15B, 8B, and 4B). MINITRON models exhibit up to a 16% improvement
in MMLU scores compared to training from scratch, perform comparably to
other community models such as Mistral 7B, Gemma 7B and Llama-3 8B, and
outperform state-of-the-art compression techniques from the literature. We have
open-sourced MINITRON model weights on Huggingfaceﬂ with corresponding
supplementary material including example code available on GitHub
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DEP MLP ATT EMB Distillation Loss LM Val Loss

v v v v 5.35—-0.38 2.062
X v v v 6.33 — 0.37 2.049
X v v X 5.07 — 042 2.101
v X X X 8.35 - 0.49 2.155
Train from scratch (random init) 12.27 — 2.34 3.953

Table 1: Demonstration of how various pruning strategies perform before and after lightweight
retraining using ~1.8B tokens. We prune the Nemotron-4 15B model down to the size of Nemotron-3
8B and report the change in distillation loss (KL divergence [28]] on logits) and the final LM validation
loss with retraining. We see that width (attention, MLP, embedding) pruning outperforms depth, but
only after retraining. The last row shows change in loss for the Nemotron-3 8B model.

lion parameters, while the Pythia family [6]] offers a selection of eight models with sizes ranging from
80 million to 12 billion parameters. However, training multiple multi-billion parameter models from
scratch is extremely time, data and resource-intensive. In this paper, we ask the following question:
can we train one big model, and obtain smaller, more accurate (w.r.t. training from scratch) models
from it through a combination of weight pruning and retraining, while only using a small fraction of
the original training data? Achieving such a goal would make producing LLMs targeting different
deployment scales significantly cheaper. Weight pruning is a powerful and well-known technique for
reducing model size [51} 21]]. In this paper, we focus on structured pruning, where blocks of nonzero
elements are removed at once from model weights; examples of structured pruning techniques include
neuron, attention head, convolutional filter, and depth pruning [32} [18} 534} 34} 155! 26]. While the
literature is rich with numerous papers on structured pruning, to an end-user, it’s not always clear
which technique to use, when, and how to combine them to consistently obtain good pruned models.
Pruning is also often accompanied by some amount of retraining for accuracy recovery [51]; this
phase is extremely expensive in modern LLMs, often requiring access to large amounts of curated
data. To the best of our knowledge, no existing work on structured pruning explores data-efficient
retraining techniques such as distillation to minimize retraining cost.

In this paper, we perform a thorough empirical exploration of structured pruning and retraining
across multiple axes: neurons in feed-forward layers, heads in multi-head attention layers, embedding
channels, and model depth. Through our experiments, we gain valuable non-trivial insights on the
metrics and hyper-parameters to use for each axis and how to effectively combine axes for higher
compression rates. For instance, we discover that pruning neurons and heads alone is initially superior
to pruning neurons, heads and embedding channels; however, after a few steps of retraining, this
order flips. Similarly, we discover that width pruning works better than depth, but only after some
retraining (see Table[I] for a concrete example). We also investigate in detail how a pruned model
can be efficiently retrained for optimal performance using minimal additional data. Based on our
findings, we develop a practical list of LLM compression and retraining best practices. Finally, we
apply our findings to prune the Nemotron-4 15B model [43]] and produce a family of smaller models,
named MINITRON, that compare favorably to similarly-sized models. MINITRON 8B achieves better
accuracy than Nemotron-3 8B [39] (using 40 x fewer training tokens) and LLaMa-2 7B [49], and
comparable accuracy to Mistral-7B [25]], Gemma 7B [48] and Llama-3 8B; likewise, MINITRON 4B
outperforms the similarly-sized Gemma2 model and compares favorably to the Phi-2 model.

This paper makes the following key contributions:

1. Provides the first thorough empirical exploration of structured pruning and retraining in
LLMs across multiple axes. It offers valuable insights on metrics and hyper-parameter
settings for pruning, order of pruning, effects of combining different axes, and retraining
techniques focusing on data efficiency.

2. Presents a list of effective and practical LLM compression and retraining best practices
grounded in extensive empirical evidence.

3. Introduces the MINITRON family of LLMs, which are obtained through direct pruning of
the Nemotron-4 15B model. Deriving MINITRON models from Nemotron-4 15B requires
up to 40x fewer training tokens compared to training from scratch, while still (1) comparing
favorably to various popular community LLMs of similar size, and (2) outperforming
state-of-the-art depth and width-pruned models from the literature.



2 Pruning Methodology

As shown in Figure 2] we start the pruning process by first computing the importance of each layer,
neuron, head, and embedding dimension and then sorting these importance scores to compute a
corresponding importance ranking. In this section, we detail how rankings are computed for each
axis and then subsequently used to obtain a pruned model.

2.1 Background and Notation

We begin with some formal definitions. Multi-Layer Perceptron (MLP) layers have two linear
layers with a non-linear activation in between: MLP(X) = § <X -W7T ) Wy ; here, X de-

notes the input, and W and W, are the two associated weight matrices in the MLP layer.
W, Wy € Rinidien Xdmoaet - where d,y,oqe; and dpiqqen are the embedding and MLP hidden di-
mensions, respectively. d(-) refers to the non-linear activation function.

We define the Multi-Head Attention (MHA) operation for an input X as follows:
MHA (X) = Concat(head; , ...head;) - W, and head; = Attn(XW @ XWX XWV); here,
Wi Wi Vi ¢ RdneaaXdmoder gnd WO € REdnead Xdmodet where dj,qq is the size of a single
attention head, and L is the total number of heads.

Finally, the Layer Normalization operation (LayerNorm) [5]] on an input X is defined as follows:
LN(X) = \/)% ® vy + 3, where . and o2 represent the mean and variance across the embedding
dimensions, € is a small value for numerical stability, and -y and [ are learnable parameters.

2.2 Importance Analysis

Estimating the importance or sensitivity of individual neural network components such as neurons,
attention heads, and layers is a well-studied area [9} 13| 41]]. In the context of LLMs, recent work
has highlighted the ineffectiveness of traditional metrics such as weight magnitude for estimating
importance [33]; instead, recent work on structured pruning of LLMs has focused on metrics such as
gradient/Taylor [33], cosine similarity [34], and perplexity on a calibration dataset [26].

Owing to their enormous size, computing gradient information on modern LLMs is prohibitively
memory and compute-intensive, and one of our primary goals is to avoid this expensive step when
trying to obtain importance information. In this paper, we propose a purely activation-based impor-
tance estimation strategy that simultaneously computes sensitivity information for all the axes we
consider (depth, neuron, head, and embedding channel) using a small (1024 samples) calibration
dataset and only forward propagation passes. We now describe how this strategy is implemented for
each individual axis.

1. Trained LLM 2. Estimate importance

Embedding
Transformer
Block
Layer norm
Attention
Layer norm

a1

. Distillation Iterative

4. Trim 3. Rank

Figure 2: High-level overview of our proposed iterative pruning and distillation approach to train a
family of smaller LLMs. On a pretrained LLM, we first evaluate importance of neurons, rank them,
trim the least important neurons and distill the knowledge from the original LLM to the pruned model.
The original model is replaced with the distilled model for the next iteration of compression.



Width: we compute the importance of each head, neuron and embedding channel by examining
the activations produced by the MHA, MLP and LayerNorm layers, respectively. We use a small
calibration dataset D for this purposeﬂ Formally, we compute activation-based importance scores for

heads neurons, and embedding channels as: Flfggd =>psl Attn(XW ! XWET XW V)|,

neuron = ZB S ( ) and Fe(m)b > Bs LN(X);. Here, W1 refers to the ith row of the
weight matrix Wy. ZB’S refers to aggregation along the batch and sequence dimensions. We
observe from our experiments that performing a simple summation here is not always optimal. To
this end, we perform a detailed evaluation of various aggregation functions along each of these
dimensions and their corresponding performance in Table[T1] Specifically, for a sequence of scores
S, we try three functions: (1) mean(abs) Z 1 |Si| (hereafter referred to as just mean), (2) L2

norm: /Y., S7, and (3) variance: = ZZ L(Si — S)2. Layer-wise scores are then summed up to
obtain network—w1de importance scores for each axis.

Depth (Layers): for depth pruning, we evaluate the importance of each layer using two metrics: (1)
perplexity (PPL) [26] and (2) Block Importance (BI) [34]. For PPL-based ranking, we simply remove
a single layer and compute its effect on perplexity of this pruned model; this serves as the “importance”
or sensitivity of the layer [[26]. BI [34]] uses the cosine distance between the input and output of a layer

. e .. xT x;
to estimate layer sensitivity. The BI score of layer ¢ is computed as: BI; = 1 —Ex , m,

where X refers to the input to layer 4, and X, ; denotes the tth row of X;. The BI of all layers
can be computed in a single forward pass, giving it a significant speed advantage over PPL-based
importance. Additionally, following Gromov et al. [14]], we can extend BI to estimate importance of
several contiguous layers at the same time.

Iterative Importance: in this setting, we iteratively alternate between pruning and importance
estimation for a given axis or combination of axes. Formally, given number of iterations 7" and source
and target dimensions (layers, heads, etc.) d,s and d;, respectively, we iteratively compute importance
ond, —i- (%27%) dimensions and prune to dy — (i + 1) - (%%%) dimensions; i € [0, T — 1]. We
evaluate the effectiveness of iterative importance estimation in Table

2.3 Obtaining a Pruned Model

Figure [2] provides an overview of how pruned models are obtained. For a given architecture configu-
ration, we first rank the elements of each axis according to the computed importance and perform
trimming (reshaping) of the corresponding weight matrices directly. For neuron and head pruning,
we trim MLP and MHA layer weights, respectively. In the case of embedding channels, we trim the
embedding dimension of the weight matrices in MLP, MHA, and LayerNorm layers.

When pruning attention heads, we add the residual info from the pruned heads back into the remaining
heads, with the aim of preserving relevant knowledge from the pruned heads. This idea is an MHA
analog of Layer Collapse [S5] for depth pruning and provides a boost to model accuracy in our
experiments. Formally, given L original attention heads heads, heads, ..., heady, being pruned to
K heads, each new head will have the form (for the ‘" head): head; + (head; — headsaf —;11) for
1 € [K — (L — K), K]. In case of grouped query attention [3]], we apply this strategy only to the
query heads.

Lightweight Neural Architecture Search: Figure [3|provides an overview of our search strategy
for finding optimal architecture configurations. Given a search space and parameter budget (left side
of the figure), we enumerate all feasible architectures meeting the parameter budget. At this stage,
while it’s possible to further reduce the search space size using strategies such as genetic search
and/or Bayesian optimization, we found that sticking to commonly used neuron, head and embedding
dimensions, along with a reasonably narrow target parameter range (less than 1 billion) was sufficient
to obtain tractable solution sets (less than 20 candidates). The feasible candidates then undergo
lightweight retraining (~1.8B tokens in this work). We show in Figure[9]that this retraining stage
stabilizes relative rankings and helps us find a more accurate candidate to train further. We note that
parameter-efficient fine-tuning techniques such as LoRA [23]] can also be applied at this stage; we
leave the exploration of such techniques to future work.

*We provide additional details of the calibration dataset in Section
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Figure 3: Overview of our neural architecture search algorithm. We perform a search on multiple
axes: number of layers, attention head count, MLP and embedding dimensions to arrive at a set of
feasible architectures meeting the parameter budget. RT refers to retraining.
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[ Embeddings |-»{ Block 0, ..., T-1 |-»| [ Multi-Head Attention |»Feed Forward (MLP) | H—»[Block T+1, ..., M |-»] LM Head
Embedding Output Loss @’@ @ @
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Figure 4: Overview of Distillation. A student model with N layers is distilled from a teacher model
with M layers. The student learns by minimizing a combination of embedding output loss, logit
loss and transformer encoder specific losses mapped across student block S and teacher block 7.

3 Retraining

We use the term retraining to refer to the accuracy recovery process following pruning. In this paper,
we explore two retraining strategies: (1) conventional training, leveraging ground truth labels, and (2)
knowledge distillation using supervision from the unpruned model (teacher).

Retraining with Knowledge Distillation: Knowledge Distillation (KD) involves transfer of knowl-
edge from a larger or more complex model called the teacher to a smaller/simpler model called the
student [20]. The knowledge transfer is achieved by having the student model mimic the output
and/or the intermediate states of the teacher model. In our case, the the uncompressed and pruned
models correspond to the teacher and student, respectively.

The output probability distribution of an LLM for a given token x; is computed as: p(x;,7) =
exp(%)
Y7 exp (<)
across the sequence of all output tokens is represented as: Liogis = + >y Loss(pf (z, 7), p¥ (z, 7));

here, p¥(z,7) and p¥(z,7) represent the teacher and student probability distributions on the k**
token, respectively, and [ represents the sequence length.

, where 7 is the softmax temperature and |V'| is the vocabulary size. Logit-based KD loss

For distillation, we explore various loss functions, and several combinations of intermediate states
and mappings across the Transformer model as the loss components, along with their respective
trade-offs. This is illustrated in Figure[d The intermediate state-based KD loss across a sequence of
Transformer-specific hidden states is represented as: Lis = 3, 320 Lossy (hf?, h¥), where
h%* and h*? represent the k*" teacher and student hidden state for the i token, respectively, and
represents the sequence length; H is the set of chosen intermediate states. The mismatch in student
and teacher hidden states is handled by learning a shared linear transformation during distillation to
upscale the student hidden state to the teacher hidden state dimension. The hidden states used are
always post LayerNorm. We report our experimental results for retraining in Section



Models

Benchmark Metric Llama-3 Llama-2 Mistral Gemma Nemotron-4 Nemotron-3 MINITRON
# Parameters 8B 6.7B 7.3B 8.5B 15.6B 8.5B 8.3B
# Non-Emb. Params 5.9B 6.4B B 7.7B 12.5B 6.4B 6.2B
# Training Tokens >15T 2T 8T 6T 8T 3.8T 94B
.3 winogrande (5) acc 77.6 74 78.5 78 83.6 75.9 79.0
3 arc_challenge (25) acc_norm 57.8 53 60.3 61 58.8 52.8 52.6
o MMLU(5) acc 65.3 46 64.1 64 66.6 54.7 63.8
2 hellaswag(10) acc_norm 82.1 79 83.2 82 84.6 78.5 80.7
E gsm8k(5) acc 50.3 14 37 50 48.5 24.0 51.3
N truthfulqa(0) mc2 439 39 42.6 45 40.7 36.5 42.6
XLSum en (20)(3) rougeL 30.9 31 4.80 17 32 30.9 31.2
Codin MBPP(0) pass@1 424 20 38.8 39 38 27.04 35.2
€ humaneval (n=20)(0) pass@1 28.1 12 28.7 32 354 20.7 31.6

Table 2: Performance of our pruned MINITRON 8B model compared to multiple baselines: the
original Nemotron-4 15B, the previous generation Nemotron-3 8B, and multiple community models.
MINITRON 8B uses 40x fewer tokens than Nemotron-3 8B. All evaluations run by us, except for
entries marked with *, which we report from the corresponding papers.

Models
Benchmark Metric Phi-2 Gemma Gemma2* Qwen2* MiniCPM* MINITRON
# Parameters 2.7B 2.5B 2.6B 1.5B 2.7B 4.2B
# Non-Emb. Params 2.5B 2B 2B 1.3B 2.4B 2.6B
# Training Tokens 14T 3T 2T 7T 1.1T 94B
winogrande (5) acc 74 67 70.9 66.2 - 74.0
arc_challenge (25) acc_norm 61 48 55.4 439 - 50.9
MMLU(5) acc 57.5 42 51.3 56.5 53.5 58.6
Knowledge, Logic hellaswag(10) acc_norm  75.2 72 73.0 66.6 68.3 75.0
gsm8k(5) acc 55 18 239 58.5 53.8 24.1
truthfulga(0) mc2 44 33 - 459 - 429
XLSum en (20)(3) rougeL 1 11 - - - 29.5
MBPP(0) pass@1 47 29 29.6 374 - 28.2
Coding humaneval (n=20)(0) pass@1 50 24 17.7 31.1 - 233

Table 3: Performance of MINITRON 4B model compared to similarly-sized community models. All
evaluations run by us, except for entries marked with *, which we report from the corresponding
papers. We only compare to base models without SFT and DPO, therefore Phi-3 is excluded.

The total loss L is computed as L = Lcpm + Liogits + o X Ljs; where Loy, is the student cross-
entropy loss against the ground truth labels, and « is a weighting coefficient. As the magnitudes of
Liogits and L;, differ significantly, we found that computing o dynamically as %
results compared to using a constant.

achieves better

4 Experiments and Results

We evaluate our pruning strategy on the Nemotron-4 family of models [43]]; specifically, we compress
the Nemotron-4 15B model with 15.6 billion parameters down to two target parameter ranges: (1)
8 billion, and (2) 4 billion. We use the NVIDIA Megatron-LM framework [47] to implement our
pruning and distillation algorithms for compression and retraining.

Data and Training Hyperparameters: we use the Nemotron-4 curated 8 trillion token (8T) base
pretraining dataset and the continued training dataset (CT) [42]144,143]]. We use the 8T training blend
for all our ablations and use a combination of both data blends to retrain our final models. Unless
otherwise specified, we use 1.8 billion tokens (400 steps) for lightweight retraining. The calibration
dataset D used for importance estimation consists of 1024 samples drawn randomly from the full
dataset. We use the same optimizer settings and data split as [43]] with cosine LR decay schedule
from 274 to 4.577.

Downstream Tasks: following Touvron et al. [49], we evaluate our models of similar size on a
series of downstream tasks, including MMLU [19]], HumanEval [8] for Python code generation,
several question-answering datasets for common-sense reasoning: Arc-C [10], HellaSwag [56],
Truthful QA [29]] and WinoGrande [45] and XL-Sum English [17]] for summarization. We report
the 5-shot performance on MMLU, 5-shot on Winogrande, 25-shot on ARC-Challenge, 10-shot



on HellaSwag, 0-shot on 20% of XL-Sum and average pass@1 scores for HumanEval and MBPP.
For pass@1 scores we use a temperature of 0.2 and nucleus sampling [22] with top-p = 0.95.
For instruction-tuned models, we use MT-Bench [57], Instruction-Following Eval (IFEval) [59]],
ChatRAG-Bench [30], and Berkeley Function Calling Leaderboard (BFCL) [54].

4.1 Main Pruning Results

We start by introducing the following list of structured compression best practices:

)

. To train a family of LLMs, train the largest one and prune+distill iteratively to smaller LLMs. )
Use (batch=L2, seq=mean) importance estimation for width axes and PPL/BI for depth.
Use single-shot importance estimation; iterative provides no benefit.

Prefer width pruning over depth for the model scales we consider (< 15B).

Retrain exclusively with distillation loss using KLD instead of conventional training.

Use (logit+intermediate state+embedding) distillation when depth is reduced significantly.
Use logit-only distillation when depth isn’t reduced significantly.

Prune a model closest to the target size.

Perform lightweight retraining to stabilize the rankings of searched pruned candidates.

If the largest model is trained using a multi-phase training strategy, it is best to prune and
retrain the model obtained from the final stage of training. Y,

SO B WD

—_

-

We arrive at this list through a detailed set of ablations and experiments, and each point is backed
by empirical evidence, as we demonstrate in the rest of this section and the Appendix. We use this
list to obtain our MINITRON pruned and retrained models, whose performance is shown in Tables 2]
and E} Here, we compare the performance of our pruned models to multiple baselines: (1) the
original Nemotron-4 15B model, (2) the previous generation Nemotron-3 8B model, and (3) a set
of similarly-sized community models, all trained from scratch with trillions of tokens. Evaluation
is performed on the downstream tasks described earlier in this Section. In both tables, we list the
number of full and non-embedding parameters, along with the number of training tokens used to
arrive at the model.

We further compare the MINITRON models to state-of-the-art depth and width-pruned baselines
in Table ['éf]; namely, LLM-Pruner [33]], SliceGPT [4]], LaCo [55], ShortGPT [34], and Sheared
LLaMa [53]. Table[I0] (Appendix) lists the architecture details of the Nemotron and MINITRON
models shown in Tables [2]and 3] In the following subsections, we will go into more detail on how we
arrived at the MINITRON pruned models.

From Table 2| we notice that MINITRON 8B compares favorably to the latest community models of
the same size. Specifically, we outperform Nemotron-3 8B and LLaMa-2 7B, and perform on par
with Mistral 7B, Gemma 7B and LLaMa-3 8B, all while using significantly fewer training tokens.
MINITRON 8B also significantly outperforms multiple depth-pruned models of larger size (~ 10B
parameters) (Table E]) From Table E], we notice that our smaller model, MINITRON 4B, retains
model capabilities better compared to small specialized models that score highly only on some
tasks, outperforms the Gemma2 model and is significantly superior to multiple depth and/or width
pruned models shown in Table

Instruction Tuning: to better understand how MINITRON models perform after supervised fine-
tuning (SFT), we perform SFT on MINITRON 4B using instruction-tuning data used for Nemotron-4
340B [38] to create MINITRON 4B-instruct, and evaluate it on various tasks, including instruction-
following and roleplay (IFEval and MT-Bench), RAG QA (ChatRAG-Bench), and function calling
(BFCL). The results for this experiment are shown in Tables[5]to[8] Tables[5]to[7]demonstrate that
MINITRON 4B-instruct has strong instruction-following, roleplay and RAG capabilities, beating
similarly sized models across all tasks. On function calling (Table BI), MINITRON 4B-instruct
outperforms Gemma-2B-IT and even Llama-3-8B-instruct.

Best Practice #1: in summary, Tables 2]- [ provide strong empirical evidence to support the claim
that training one single big model, and obtaining smaller ones from it through pruning + retraining
achieves higher accuracy and is extremely cost/compute-efficient when compared to training them
from scratch. Further, our efficient retraining strategy also eliminates the need to curate trillions of
tokens of data.



Models

Benchmark Metric LLMPruner SliceGPT LaCo ShortGPT Sheared LLaMa MINITRON
=
2 # Parameters 9.8B 9.9B 9.8B 9.8B - 8.3B
;:—3 # Non-Emb. Params 9.5B 9.5B 9.5B 9.5B - 6.2B
®  MMLUG) acc 25.2 37.1 459 54.7 - 63.8
hellaswag(10) acc_norm 67.8 55.7 64.4 66.6 - 80.7
# Parameters 4.8B 49B 4.9B 4.9B 2.7B 4.2B
g # Non-Emb. Params 4.5B 4.6B 4.6B 4.6B 2.5B 2.6B
g winogrande (5) acc - - - - 64.2 74
E arc_challenge (25) acc_norm - - - - 41.2 50.9
MMLU(5) acc 23.33 28.92 26.45 43.96 26.4 58.6
hellaswag(10) acc_norm 56.46 50.27 55.69 53.02 70.8 75
gsm8k(5) acc - - - - 23.96 24.1

Table 4: Performance of MINITRON models w.r.t recent state-of-the-art models obtained through
depth/width pruning. Top and bottom halves show results for MINITRON 8B and 4B, respectively.

Model g::‘r;; Tokens  Total Model Prompt- Prompt- Instruction-
Para;ns level Acc. level Acc. level Acc.
(strict) (loose) (loose)

PNITRON 4B-instuet 263 o o MINITRON 4B-  68.76 73.01 81.29

' . : instruct
ggfl‘:n;;gl;;t 12'§B 16‘14‘* g?g Gemma-2BIT - 28.70 40.50
StableLM 2 Chat 1.6B T 5.42 Qwen2-1.3B- 29 - -
TinyLlama v1.0 Chat  1.1B 3T 3.46 nstruc

Table 5: Evaluation results on MT-Bench. Table 6: Evaluation results on IFEval.

Cost Savings for Training a Model Family: the FLOPs required per training stepE]for the 15B, 8B,
and 4B models in the Nemotron-4 model family are, respectively: 4.4e17, 2.5e17 and 1.2e17. With
the assumption that each model in the family is trained with an equivalent token count, steps and
batch size, we obtain the following FLOP count for training each model in the family from scratch:
(4.4e17 4 2.5e17 + 1.2e17) x steps. As noted from Tablesand our approach requires 40 x fewer
training tokens for each additional model, hence resulting in the following updated FLOP count for
the family: (4.4e17 + 2.5e17/40 + 1.2e17/40) x steps; the corresponding cost savings for training
the full Nemotron-4 family using our approach is thus 1.8x.

We now dive deeper into our empirical ablations that help us arrive at the list of best practices. Unless
otherwise specified, we run these ablations on the Nemotron-4 15B checkpoint prior to continued
training with the CT data blend.

4.2 Obtaining the Best Pruned Model

Best Aggregation Metric (Best Practice #2): we start by exploring the best aggregation metric for
use with our activation-based pruning criteria (see Section [2.2] for more details). Table [IT]shows
how zero-shot LM loss and Wikitext2 perplexity [35] vary w.r.t different intra-batch and sequence
aggregation functions. Here, the Nemotron-4 15B model is pruned to the Nemotron-3 8B architecture
with no retraining. We notice that there is significant variation in zero-shot performance based
on the aggregation metric, indicating the importance of selecting the right one. Both (batch=L2,
seq=mean) and (mean, mean) perform well; in the remainder of the paper, we use (12, mean)
primarily due to its slightly better performance on the 8T dataset. To further evaluate if these relative
rankings hold after retraining, we perform a related experiment: we prune the same 15B model to 8B
using: (1) the best ((L2, mean) metric, and (2) a poorly performing (L2, L2) metric, and perform
retraining on both for 400 steps (~1.8B tokens). The results of this experiment are shown in Figure 3]
From the Figure, we conclude that these rankings continue to hold post-retraining.

Iterative Importance (Best Practice #3): we evaluate whether iterative importance estimation
provides any benefit (described in Section and report results in Table Here, we take the
Nemotron-4 15B model and prune the embedding dimension alone using number of iterations T=1, 2,
and 4 iterations to the target value of 4096. We then perform lightweight retraining of all 3 candidates

5 Assume a batch size of 1152.



Model Avg Model Avg.

MINITRON 4B-instruct 41.11 MINITRON 4B-instruct 53.09

Gemma-2B-IT 33.31 Gemma-2B-IT 41.63

Table 7: Evaluation results on ChatRAG- Llama-3-8B-instruct ~ 50.51
Bench. Table 8: Evaluation results on BFCL v2.

for 1.8B tokens. From the Table, we observe that while the iterative approach appears to be better
before retraining, all 3 candidates converge to the same loss value, indicating no benefit.

Combining Depth and Width (Best Practice #4): we perform a simple experiment to compare the
efficacy of width vs. depth pruning. Using the PPL and BI metrics defined in Section[2.2] we remove
the 16 least important layers from the Nemotron 15B model based on both metrics to arrive at two
variants of depth pruned models. We also perform neuron, head and embedding channel pruning to
target the Nemotron-3 8B model and arrive at the width pruned variant. Finally, we combine depth
(remove 4 least important layers) and width pruning to arrive at the fourth variant. We report the
results of this experiment in Table We notice that even though the depth-width pruned variant has
a lower loss post-pruning, we see the results flip around 200 steps of retraining (0.8B tokens); Table|[T]
and Figure [6| further illustrate this point.

4.3 Retraining and Search

Distillation vs. Conventional Training (Best Practice #5): in this experiment, we compare: (1)
training a 4B model with random initialization (4B-Random-Init), (2) pruning 15B to 4B, followed
by retraining with conventional training (4B-Pruned), and (3) pruning 15B to 4B, and then retraining
with distillation using the 15B model as the teacher (4B-Pruned-Distill). Since distillation adds
training overheads (additional forward pass on the teacher model), we compare approaches under
iso-compute settings. Table [I[4] shows the results. Here, we observe a significant improvement in
MMLU for (3), while both (1) and (2) score randomly. On HellaSwag, (3) > (2) > (1). This clearly
demonstrates the superiority of distillation over conventional training after pruning.

Choice of Loss Function (Best Practice #5): we experiment with Kullback-Leibler divergence
(KLD), MSE, cosine similarity and reverse KLD (R-KLD) to compute L;,4i:s. Recent work has
shown R-KLD [15| 27] to be a better fit than KLD in the SFT/instruction-following setting, and
Agarwal et al. [2] claim the choice of loss is task-dependent. We observe from Table [I5]and [I6] that
KLD is the best choice for pruned base model training.

Choice of Losses (Best Practices #6 and #7): typically, a weighted combination of L and
Liogits 1s used for distillation. We find that using L;,4i:s alone results in the best performance as
shown in Table [13] For L;s = Lemp + Lawe + L; + L, , we make several observations similar
to Lu et al. [31]; these are listed in Appendix and in Table Most notably, we observe no
improvements from using L;, when retraining models that don’t prune the depth axis significantly,
such as MINITRON 8B and MINITRON 4B and hence use L;,4:s alone in such cases (see Table .

One-shot vs Iterative Pruning and Distillation Across Model Sizes (Best Practice #8): compress-
ing Nemotron-4 15B to MINITRON 4B requires an aggressive 73.3% reduction of original model
weights. We hypothesize that aggressive one-shot pruning loses out on important capabilities of
the base LLM. We thus explore a simple iterative two-step pruning and retraining strategy where
we first prune and retrain Nemotron-4 15B to create MINITRON 8B (~46% reduction) and further
prune and retrain the latter to MINITRON 4B (~50% reduction). Table[I4] (last two rows) shows the
comparison between single-shot and iterative pruning, and demonstrates that iterative achieves a 12%
improvement in the MMLU scores compared to the one-shot strategy. During the final retraining step,
we observe that using Nemotron-4 15B as the teacher achieves superior results compared to using
MINITRON 8B. We provide additional ablations on one-shot vs. iterative pruning in Appendix

Search with Retraining (Best Practice #9): for lightweight neural architecture search, we use the
search spaces defined in Table 0] for MINITRON 8B and 4B. We further specify a target parameter
range of 8 and 4 billion parameters for the respective models, with a tolerance of 5%. With these
settings, we obtain 15 and 18 feasible candidates for the 8B and 4B parameter targets, respectively.
The architecture configurations for these candidates are provided in Table [[9] As described in
Section we perform lightweight retraining of all feasible candidates. Figure [9]illustrates how



validation loss changes for the 8B candidates as training progresses. We notice that relative rankings
undergo significant changes up to ~ 300 steps, and then stabilize.

Target Layers Heads MLP Exp. Factor Embedding

MINITRON 8B [29-32] {32,48} {2.5,3,3.5,4} {4096,4680,5120,5632,6144}
MINITRON 4B [29-32] {24,32,48} {2.5,3,3.5,4} {2560,3072,3584,4096,4608}

Table 9: MINITRON 8B and 4B search space.

Single vs Multi-Phase Retraining (Best Practice #10): Recent studies [[1] [24] [43] [46] have
shown improved results with multi-phase pretraining routines. Initially, models are trained on web
data, followed by a lightweight phase with cleaner data. We explored two compression techniques:
(1) prune the phase 1 checkpoint, retrain with portions of phase 1 and 2 data, and (2) prune the phase
2 checkpoint, retrain with a portion of phase 2 data. Table [20]shows that (2) is sufficient to regain
accuracy and surpasses (1). This strategy is used for our best models, also suggesting that for further
aligned models, it may suffice to prune the aligned model and retrain with a portion of the alignment
dataset.

5 Related Work

Structured LLM Pruning: there have been a number of recent structured pruning papers specifically
targeting LLMs; we can broadly classify these works into two main categories: (1) ones that prune
only depth (layers), (2) ones that prune width (attention heads, MLP intermediate dimension, etc.)
and/or depth. Recent work in the first category (depth pruning) includes ShortGPT [34]], LaCo [355],
and Shortened LLaMa [26]; for pruning layers in MINITRON models, we reuse and extend the metrics
proposed in some of these works (eg: block importance from ShortGPT [34]]). A number of recent
papers have also proposed new saliency metrics and pruning strategies targeting width dimensions:
namely, embedding channels, attention heads, and MLP intermediate channels [11} 4} |53} [33]].
Most work in this category uses learnable masks, combined with an Augmented Lagrangian loss
formulation to arrive at optimal width masks [4}153,33]]. At LLM scale, this strategy has multiple
disadvantages: (1) it requires compute and memory-intensive gradient computations, and (2) it
requires a considerable amount of data and fine-tuning to arrive at reasonable masks. The notable
exception in this line of work is Dery et al. [[L1], which recognizes these limitations and proposes
saliency metrics that can be computed with only forward passes. To the best of our knowledge, we
provide the first pruning strategy that (1) simultaneously targets both width and depth dimensions,
(2) works at LLM scale (i.e., uses only forward passes for computing importance and uses a small
fraction of pretraining data), and (3) achieves state-of-the-art compression and accuracy.

Post-pruning Accuracy Recovery: recent work has leveraged either a teacher model which is
larger/better [2, 27] or teacher-generated synthetic data [1,116}136L37] to improve the accuracy of
an existing trained smaller base model in the Supervised Fine Tuning (SFT)/instruction following
setting. Compared to recent width and depth pruning work [26},34,53]], to the best of our knowledge,
we are the first to employ distillation from an uncompressed teacher to improve the retraining of
structurally-pruned student models.

6 Conclusions

This paper has presented a thorough empirical exploration of structured pruning and retraining in
LLMs, offering unique insights into pruning order, effects of combining pruning axes, and retraining
techniques for minimal data use. We have developed a set of compression and retraining best practices,
backed by extensive empirical evidence, which we employ to prune the Nemotron-4 15B model by a
factor of 2-4x. Our compressed MINITRON models are significantly cheaper to obtain compared to
training each model from scratch (requiring up to 40x fewer training tokens), while still performing
favorably to a number of similarly-sized community models; MINITRON models also outperform
multiple state-of-the-art depth and width pruned models from the literature. Limitations: one notable
limitation of our work is that we currently apply our proposed techniques only on the Nemotron
family of models; we plan to address this by pruning other model families in future work. Also, even
though it is short, our method requires full model retraining.
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A Appendix

A.1 Pruned Architecture Details

Model Layers Hidden Size Att. Heads Query Groups MLP Hidden Parameters
Nemotron-4 15B 32 6144 48 8 24576 15.6B
Nemotron-3 8B 32 4096 32 32 16384 8.5B
MINITRON 8B 32 4096 48 8 16384 8.27B
MINITRON 4B 32 3072 24 8 9216 4.19B

Table 10: Architecture details of the uncompressed Nemotron and pruned MINITRON models.
Vocabulary size is 256k for all models.

A.2  Width Pruning

Best Aggregation Metric for Width Pruning: Results post-pruning (zero-shot) are shown in
Table[TT]and after lightweight retraining in Figure 5]

Batch Sequence 8T LM Loss WikiText2 LM Loss
L2 L2 8.73 8.37
L2 mean 7.18 7.23
L2 var 8.18 8.61
mean L2 8.41 7.84
mean mean 7.21 6.89
mean var 7.94 8.29
var L2 9.01 9.30
var mean 8.34 8.72
var var 10.55 11.14

Table 11: Zero-shot performance of activation-based importance with different batch and sequence
aggregation metrics. LM loss is reported on the validation set of the 8T and WikiText2 datasets.

(L2, L2) vs (L2, Mean)

—— (12,12)

(L2, mean)

N ™
N w

LM Validation Loss
~

100

150

200 250

300 350 400

Training Steps

Figure 5: LM validation loss curve for retraining of two pruned candidates with (L2, L.2) and (L2,
Mean) metrics for (batch, sequence) aggregation strategies.

Iterations

Initial (Zero-Shot) Validation Loss

Final Validation Loss

T=1
T=2
T=4

5.43
5.55
5.24

1.92
1.92
1.92

Table 12: Comparison of one-shot importance estimation and pruning vs iterative importance
estimation and pruning the embedding dimension from the original size to the target size. LM
validation loss is reported before and after lightweight retraining.
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A.3 Depth vs. Width Pruning

Model | Parameters | LM Loss
MINITRON 8B Depth (PPL) [26] | 9.39B 2.155
MINITRON 8B Depth (BI) [34] 9.39B 2.177
MINITRON 8B Width 7.74B 2.049
MINITRON 8B Depth + Width 7.91B 2.062

Table 13: Comparison of retraining LM loss across different pruning strategies post retraining with
1.8B tokens. We explore depth only, width only, and a combination of both. Width only strategy
though with the least parameter count outperforms the rest.

Width alone vs Combined Width-Depth pruning

—4— 28L-mlp-att-emb 32L-mlp-att-emb

“
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~
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Figure 6: Comparison of retraining LM validation loss curves across two pruning choices, width
alone vs combined depth and width. We observe a flip in the ranking prior to 200 steps of retraining,
showcasing the need for a lightweight retraining phase.

A.4 Distillation vs. Conventional Training

Model | Tokens | Hellaswag | MMLU
4B-Random-Init 150B* 46.22 24.36
4B-Random-Init 400B 48.23 26.24
4B-Pruned (prune Nemotron-4 15B) 150B* 50.85 24.57
4B-Pruned-Distill (prune Nemotron-4 15B) | 100B* 51.04 37.81
4B-Pruned-Distill (prune MINITRON 8B) | 100B* | 52.04 | 4245

Table 14: Accuracy comparison across different strategies to train a 4B model. Pruning the 15B
model and distillation results in a gain of 4.8% on Hellaswag and 13.5% on MMLU compared to
training from scratch with equivalent compute. Pruning an 8B model instead of a 15B model results
in an additional gain of 1% and 4.6% on the benchmarks. * Indicates settings with iso-compute.

A.5 Retraining with Distillation

Choice of loss function: In our experiments with the previous generation of Nemotron models in
Table[T5] we see that KLD consistently outperforms R-KLD, cosine and MSE. WSL-KD [58] also
performs inferior to KLLD. Hence, we do not repeat all these studies with the experiment setup in
Section[d] rather only a subset as shown in Table 16

Temperature: We experiment with 7 =0.1, 0.5, 1.0, 3.0 in the softmax computation. Literature shows
vision (classification) models output a spikey logit distribution and softening the logit distribution with
temperature > 1 results in an improvement when using distillation. However, LLM logit distributions
have higher entropy and hence the inspiration for temperature < 1 to reduce the noise. We observe
best results when 7=1.0.
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Loss | LM loss | WikiText PPL

Loy + Llogits(MSE) 2.144 9.007

Lepy + Llogits(RKLD) 2.140 9.008 R

Lenn + Liogis(Cosine) | 2.134 8.965 Loss Function | LM loss

Lerom + Liogits(KLD) | 2,117 8.791 Liogits(RKLD) | 2.665

Liogits(KLD) 2.107 8.720 Liogits(KLD) | 2.155
Table 15: LM loss comparison for various loss Table 16: Comparison of loss functions
functions and loss components on Nemotron-3 8B. with MINITRON 8B-Depth-pruned. LM
The loss component Llogits alone with forward loss is reported on the validation sets of
KLD loss outperforms the rest. the 8T.

Top-K: Inspired by the top-K/top-P sampling approach used in LLM inference, we experimented
with retaining only top-K teacher and the corresponding student logits prior to computing Ljgg;ts-
This should essentially remove noise from the low probability logits/tokens. We observe that a low
value of top-K (<=100) results in a significant drop in accuracy. The drop is no longer observed
when increasing top-K, but no better than not using top-K. Hence, we skip using top-K for further
experiments.

A.6 Choice of Losses

1. Using loss L, based on the output activations of encoder block provides a boost.

2. The final 1-2 layers in a Transformer for LLM are highly specialized [[12] and mapping
hidden states across (last-2):(last-2) layers for both the student and teacher achieves the
best result [31]].

3. Using word embeddings based loss(Le,,,5) improves accuracy.

4. Computing loss L (attention relation loss [50]) based on query, key and value states does
not show any improvement.

5. Adding loss L; based on the input to MLP makes no difference.

6. We weren’t able to experiment with attention scores due to Flash Attention abstractions.

7. Cosine similarity loss performs the best.

Results are shown in Table[T7]

A.7 One-shot vs. Iterative Pruning and Distillation

Loss components \ LM loss
Llogits 2.155
Llogits + Lo(29]3) 2.145
Liogits + Lo(15:15) + Lems 2.240
Liogits + Lo(23:15) + Lemp 2.205
Llogits + Lo(2915) + Lemb 2.203
Llogits + Lo(3015) + Lemb 2.188
Llogits + Lo(3115) + Lemb 2.180
Liogits + Lo(28:12) + Lemp 2.141
Llogits + Lo(29:13) + Lemb 2.141
Liogits + Lo(29:14) + Lems 2.152
Liogits + Lo(30:14) + Leme 2.150
Liogits + Lo(29:13) + Lemy + L3(29:13) | 2.141

Table 17: Ablation study on loss components for computing L, and different (teacher:student) layer
mapping for L, and L;. LM loss is reported on the validation set of the 8T. Note: Layer indices start
from 0, teacher Nemotron-4 15B layers (0-31), student MINITRON 8B-Depth-pruned layers (0-15).

One-shot vs Iterative for Importance Estimation and Pruning: refer to Table

One-shot vs Iterative within a Dimension: to understand the best prune-retrain strategy considering
a single dimension that can be pruned across the model (depth), we experiment with two different
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Loss | Tokens | MMLU | HellaSwag | HumanEval

Liogits + Lis | 18.9B 58.0 73.6 26.8
Liogits 18.9B 58.3 73.8 26.2
Liogits | 94B | 62.8 | 79.7 | 30.4

Table 18: Ablation study for MINITRON 8B with and without the loss component L;, and increased
retraining token count with L;og¢5. Adding L;s performs on par with using Liog4¢5 alone.

approaches for depth pruning and retraining in order to arrive at the MINITRON 8B-Depth-pruned
model mentioned above.

As a first step, we rank layer importance with the procedure mentioned in[2.2]borrowed from [34]].
Then we:

1. Iteratively prune and distill: Remove the least important layer, distill using 1.8B tokens and
repeat the procedure 16 times. See iterative x 1 161 in Figure[7}

2. One-shot prune and distill: Remove 16 least important layers, distill using 1.8B x 16(30.2B)
tokens. See 1 — shot pruning 161 in Figure[7}

In order to mitigate the sharp drop in accuracy and to prevent further catastrophic collapse of the
model, we increase the compute budget from 1.8B to 4 x 1.8B tokens starting with pruning of the 26
layer model which amounts to 86.4B tokens in total. See iterative x 4 161 in Figure[7] Increasing
the training budget improves accuracy, but it still performs worse than the one-shot prune and distill
strategy that uses 30.2B tokens.

With the iterative strategy, we can see in Figure[/|accuracy on:

* Hellaswag and PIQA is retained up to 31 layers and start dropping gradually with further
removal of layers. We see a sharper drop when the model is reduced to 25 layers.

* MMLU score is retained up to 26 layers and start dropping gradually with further removal
of layers. We see a sharp drop when the model is reduced to 20 layers.

This shows that a few layers can be removed from a pretrained model in a lossless manner with
minimal retraining. As for the retraining strategy, it is best to follow the one-shot method. Our
results agree with [26].

0.8

0.71 R i ——= hellaswag baseline 15B (8T tokens)
mmlu baseline 15B (8T tokens)
0.64 ——- humaneval baseline 15B (8T tokens)
—— iterative x1 16l (+30.2B tokens)
0.51 ——=- iterative x4 16l (+86.8B tokens)

e 1-shot pruning 16l (+30.2B tokens)
iterative x1 16l (+30.2B tokens)
iterative x4 16l (+86.8B tokens)
1-shot pruning 16l (+30.2B tokens)

—— iterative x1 16l (+30.2B tokens)
02d N = \\\\ ——~- iterative x4 16l (+86.8B tokens)
>~ ° e 1-shot pruning 16l (+30.2B tokens)

_______

0.3 <7

0.14

32 30 28 26 24 22 20 18 16
number of layers

Figure 7: Accuracy on MMLU, HellaSwag and HumanEval benchmarks for iterative vs one-shot
depth pruning and retraining strategy. One shot pruning and retraining outperforms the iterative
approach.

One-shot vs Iterative across Dimensions: we experiment with iterative EMB—MLP-ATT pruning
with retraining after both iterations and one-shot EMB-MLP-ATT pruning and retraining with
equivalent token count as the former. As shown in Figure [§]one-shot achieves better results than the
iterative approach.
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One-shot mlp-att-emb vs Iterative emb->mlp-att Pruning

—A— One Shot mlp-att-emb Iterative emb->mlp-att
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Figure 8: Comparison of LM validation loss curves for one-shot pruning of embeddings, MLP,

attention and retraining for 400 steps vs the iterative approach; pruning the embeddings first and
retraining for 250 steps, followed by pruning MLP, attention and retraining for additional 150 steps.

A.8 Search
All the feasible 8B candidates produced by search are shown in Table

ID Layers Heads MLP Exp. Factor Embedding

1 32 32 12800 5120
2 32 32 13824 4608
3 32 48 11520 4608
4 32 48 16384 4096
5 31 32 12800 5120
6 31 32 16128 4608
7 31 48 13824 4608
8 31 48 16384 4096
9 30 32 12800 5120
10 30 32 16128 4608
11 30 48 13824 4608
12 30 48 16384 4096
13 29 32 12800 5120
14 29 32 16128 4608
15 29 48 13824 4608

Table 19: MINITRON 8B feasible candidates produced by search.

A.9 Single vs. Multi-Phase Training

Table 20| compares the accuracy of single vs. multi-phase training.

Strategy | Tokens | MMLU | HellaSwag | PIQA | HumanEval
Phasel + Phase2 | 113B 54.7 80.3 77.2 25.6
Phase2 only 94B 61.9 80.1 76.7 30.5

Table 20: Accuracy comparison of single vs multi-phase training approach with MINITRON 8B-
Width-pruned. Note: This is not the searched 8B model in Table 2]

A.10 Compute Resources

All experiments were performed on 16x NVIDIA DGX A100 nodes (8x A100 80GB) for short
turnaround times.
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Retraining of Search candidates
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Figure 9: Retraining of searched candidates for 8B target with 1.8B training tokens.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Experimental results provided in Section 4}
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations listed in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical proofs or results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
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* The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer:
Justification: Model weights are public. We intend to release the code pending internal
review.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Provided in Section [
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:
Justification: Training LLMs is extremely expensive, we are therefore unable to perform
multiple runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed in Section[A. 10l
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9.

10.

11.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification:

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Generic algorithm for optimizing LLM training.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such release artifacts.

Guidelines:

* The answer NA means that the paper poses no such risks.
* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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12.

13.

14.

that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Assets are properly credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets released.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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