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Abstract

This paper proposes a payoff perturbation tech-
nique for the Mirror Descent (MD) algorithm in
games where the gradient of the payoff functions
is monotone in the strategy profile space, poten-
tially containing additive noise. The optimistic
family of learning algorithms, exemplified by op-
timistic MD, successfully achieves last-iterate
convergence in scenarios devoid of noise, lead-
ing the dynamics to a Nash equilibrium. A re-
cent re-emerging trend underscores the promise
of the perturbation approach, where payoff func-
tions are perturbed based on the distance from
an anchoring, or slingshot, strategy. In response,
we propose Adaptively Perturbed MD (APMD),
which adjusts the magnitude of the perturbation
by repeatedly updating the slingshot strategy at a
predefined interval. This innovation empowers us
to find a Nash equilibrium of the underlying game
with guaranteed rates. Empirical demonstrations
affirm that our algorithm exhibits significantly ac-
celerated convergence.

1. Introduction

This study delves into a variant of Mirror Descent (MD) (Ne-
mirovskij & Yudin, 1983; Beck & Teboulle, 2003) in the con-
text of monotone games whose gradient of the payoff func-
tions exhibits monotonicity concerning the strategy profile
space. This encompasses diverse games, including Cournot
competition (Bravo et al., 2018), A-cocoercive games (Lin
et al., 2020), concave-convex games, and zero-sum polyma-
trix games (Cai & Daskalakis, 2011; Cai et al., 2016). Due
to their extensive applicability, various learning algorithms
have been developed and scrutinized to compute a Nash
equilibrium efficiently.

Agents, which are prescribed to play according to MD or
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its variant, choose strategies with higher expected payoffs
more likely but do not move far away from current strate-
gies via regularization. The dynamics is known to converge
to an equilibrium in an average sense, which is referred to
as average-iterate convergence. In other words, the aver-
aged strategy profile over iterations converges to an equi-
librium. Nevertheless, research has shown that the actual
trajectory of the updated strategy profiles fails to converge
even in two-player zero-sum games and a specific class
within monotone games (Mertikopoulos et al., 2018; Bailey
& Piliouras, 2018). On the contrary, optimistic learning
algorithms, incorporating recency bias, have shown success.
The updated strategy profile itself converges to a Nash equi-
librium (Daskalakis et al., 2018; Daskalakis & Panageas,
2019; Mertikopoulos et al., 2019; Wei et al., 2021), termed
last-iterate convergence.

However, the optimistic approach faces challenges with
feedback contaminated by some noise. Typically, each agent
updates his or her strategy according to the perfect gradient
feedback of the payoff function at each iteration, denoted
as full feedback. In a more realistic scenario, noise might
distort this feedback. With noisy feedback, optimistic learn-
ing algorithms perform suboptimally. For instance, Abe
et al. (2023) empirically demonstrated that optimistic Multi-
plicative Weights Update (OMWU) fails to converge to an
equilibrium, orbiting around it.

Alternatively, perturbation of payoffs has emerged again
as a pivotal concept for achieving last-iterate convergence,
even under noise (Abe et al., 2023). Payoff perturbation is a
classical technique, as seen in Facchinei & Pang (2003), and
introduces strongly convex penalties to the players’ payoff
functions to stabilize learning. This leads to convergence
to approximate equilibria, not only in the full feedback
setting but also in the noisy feedback setting. However,
to ensure convergence toward a Nash equilibrium of the
underlying game, the magnitude of perturbation requires
careful adjustment, which is calculated as the product of a
strongly convex penalty function and a perturbation strength
parameter. In fact, Liu et al. (2023) shrink the perturbation
strength based on the current strategy profile’s proximity
to an underlying equilibrium. Similarly, iterative Tikhonov
regularization methods (Koshal et al., 2010; Tatarenko &
Kamgarpour, 2019) adjust the magnitude of perturbation
by using a sequence of perturbation strengths that satisfy
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certain conditions, such as diminishing as the iteration in-
creases. Although these algorithms admit last-iterate con-
vergence, it becomes challenging to choose an appropriate
learning rate for the shrinking perturbation strength, which
often leads to a failure in achieving rapid convergence for
these algorithms and their variants.

In response to this, we adaptively determine the amount of
the penalty from the distance G(-,-) between the current
strategy 7 and an anchoring, or slingshot strategy o, while
maintaining the perturbation strength parameter x constant.
Instead of carefully decaying the perturbation strength, the
slingshot strategies o are re-initialized at a predefined in-
terval T, by the current strategies, and thus the magnitude
of the perturbation uG(-, -) is adjusted. To the best of our
knowledge, Perolat et al. (2021) were the first to employ
this idea and enabled Abe et al. (2023) to modify MWU
to achieve last-iterate convergence. However, they have
established the convergence only in an asymptotic manner.
The significance of our work, in part, lies in extending these
two studies and establishing non-asymptotic convergence
results.

Our contributions are manifold. First, we identify our al-
gorithm as Adaptively Perturbed MD' (APMD). Second,
we analyze the case where both the perturbation function
and the proximal regularizer are assumed to be the squared
£2-distance and provide the last-iterate convergence rates to
a Nash equilibrium, O(InT'/v/T) and O(InT/T'10) with
full and noisy feedback, respectively. We also discuss the
case where different distances from the squared ¢2-distance
are utilized. Finally, we empirically reveal that our proposed
APMD significantly outperforms MWU and OMWU in two
zero-sum polymatrix games, regardless of the feedback type.

2. Preliminaries

Monotone games. This paper focuses on a continu-
ous game, which is denoted by ([N], (X;)ien, (vi)ie[ny)-
[N] = {1,2,---,N} represents the set of N players,
X, C R% represents the d;-dimensional compact con-
vex strategy space for player ¢ € [N], and we write
X = Hie[ N X;. Each player ¢ chooses a strategy m; from
X; and aims to maximize her differentiable payoff function
v; : X = R. We write n_; € H#i X; as the strategies of
all players except player ¢, and denote the strategy profile
by m = (mi)ic;n) € & This study particularly considers a
smooth monotone game, where the gradient (V,v;)ic[n]
of the payoff functions is monotone: Vr, 7’ € X,

N
> (Varvilmi, moi) = Vi, wl,), m — m) <0, (1)
i=1

'An  implementation of our method is available

at https://github.com/CyberAgentAILab/
adaptively-perturbed-md

and L-Lipschitz:

N

Z||V7Tivi(7ri7 ﬂ—i)fvmvi(ﬂ';v 77/—1)”2 SL2||7T77TI||25 2
i=1

where || - || is the #2-norm.

Monotone games include many common and well-studied
classes of games, such as concave-convex games, Zero-sum
polymatrix games, and Cournot competition.

Example 2.1 (Concave-Convex Games). Let us consider a
max-min game ({1, 2}, (X1, Xs), (v, —v)), where v : X} x
Xy — R. Player 1 aims to maximize v, while player 2
aims to minimize v. If v is concave in 1 € & and convex
in x9 € X>, the game is called a concave-convex game or
minimax optimization problem, and it is easy to confirm
that the game is monotone.

Example 2.2 (Zero-Sum Polymatrix Games). In a zero-sum
polymatrix game, each player’s payoff function can be de-
composed as v;(m) = >, ui(m;, ;), where u; @ X; X
X; — R is represented by u;(m;, 7;) = 7 M7, with
some matrix M(*7) € R%*4iand satisfies w;(m;, 7;) =
—u;(m;, m;). In this game, each player ¢ can be interpreted
as playing a two-player zero-sum game with each other
player j # 4. From the linearity and zero-sum property
of u;, we can easily show that Zf\il(vm vi(mg, ™) —
Vorvi(mh, '), m; — wl) = 0. Thus, the zero-sum polyma-

trix game is a special case of monotone games.

Nash equilibrium and gap function. A Nash equilibrium
(Nash, 1951) is a common solution concept of a game, which
is a strategy profile where no player can improve her payoff
by deviating from her specified strategy. Formally, a Nash
equilibrium 7* € X satisfies the following condition:

Vi € [N],V’]TZ € Xi, Ui(’IT;k, Wil) > 'Ui(ﬂ'l‘, Wiz)
We denote the set of Nash equilibria by IT*. Note that a Nash
equilibrium always exists for any smooth monotone game
(Debreu, 1952). Furthermore, we measure the proximity to
Nash equilibrium for a given strategy profile 7 by its gap
function, which is defined as:

N

GAP(r) := max Z;(vai(ﬂ'i,ﬂ',i),ﬂ'i — ).

The gap function is a standard metric of proximity to Nash
equilibrium for a given strategy profile m (Cai & Zheng,
2023). From the definition, GAP(7) > 0 for any 7 € X,
and the equality holds if and only if 7 is a Nash equilibrium.

Problem setting. In this study, we consider the online
learning setting where the following process is repeated
for T iterations: 1) At each iteration ¢ > 0, each player
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Algorithm 1 APMD for player .

Require: Learning rate sequence {1, }+>0, divergence func-
tion for perturbation G, perturbation strength p, update
interval T}, initial strategy 7
k<0, 7+0
0% « 70
fort=0,1,2,--- ;T do R

Receive the gradient feedback V., v; (")

Update the strategy by

A T

et —arg max{ (Vros(n) i Glet ). )

reX;
~Dy(at)}

6: T+ T1T+1
7. if 7 =T, then
8: k <— k4+1, 70
9: o; <—7rt+1
10: end 1f
11: end for

i € [N] chooses her strategy 7! € X; based on the pre-
viously observed feedback; 2) Each player i receives the
gradient feedback V., v; (7!, 7' ;) as feedback. This study
considers two feedback models: full feedback and noisy feed-
back. In the full feedback setting, each player receives the
perfect gradlent vector as feedback, i.e., V., v;(ml, 7t ) =
Vo, vi(mé, 7t ;). In the noisy feedback setting, each player’s
feedback is given by Vv (!, 7wt ;) = Vvi(nt, 7t ,) +

!, where ¢! € R% is a noise vector. Specifically, we focus
on the zero-mean and bounded-variance noise vectors.

Mirror Descent. Mirror Descent (MD) is a widely used
algorithm for learning equilibria in games. Let us define v :
R% — R U {oc} as the strictly convex regularization func-
tion and Dy, (mi, 7;) = (i) — () — (Vip(m;), 7 — )
as the associated Bregman divergence. Then, MD updates
each player i’s strategy 7} at iteration ¢ as follows:

7+t = arg max { (Vi 0i(x'), 2) = Dy nh) |

TEX;

where 7; € (0, 00) is the learning rate at iteration ¢.

Other notations. We denote a d-dimensional probabil-
o d

ity simplex by A = {p € [0,1)4 ] Y5, p; = 1}. We
define diam(X') := sup, /¢y || — 7'[| as the diameter
of X. The Kullback-Leibler (KL) divergence is defined
by KL(m;, 7)) = Zj (Tijln 2 , . Besides, with a slight
abuse of notation, we represent the sum of Bregman diver-

Slingshot strategy updates
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Figure 1: Illustration of the impact of the slingshot strategy
updates on the gap function for 7t updated by APMD.

gences and the sum of KL divergences by D,/, (m, ) =
>y Dy(mi, ), and KL(m,7') = Y210, KL(m;, 7).

respectively. We finally denote the domain of i by
dom v := {z : ¢(z) < oo}, and corresponding interior by
int(dom ).

3. Adaptively Perturbed Mirror Descent

In this section, we present Adaptively Perturbed Mirror
Descent (APMD), which is an extension of the standard
MD algorithms. Algorithm 1 describes the pseudo-code.
APMD employs two pivotal techniques: slingshot payoff
perturbation and slingshot strategy update. Each of them
corresponds to line 5 and line 9 in Algorithm 1, respectively.

3.1. Slingshot Payoff Perturbation

Letting us define the differentiable divergence function
G(,-) : RY x R% — R U {oo} and the slingshot strat-
egy 0; € X;, APMD perturbs each player’s payoff by the
divergence between the current strategy 7! and the slingshot
strategy o;, i.e., G(r!,0;). Specifically, APMD updates
each player’s strategy according to

wf“ = arg max {m <vaz( Y — uV., Gt 0y), x>
zeX,;

— D¢(a;,7r§)}. 3)

where p € (0,00) is the perturbation strength and V ;G
denotes differentiation with respect to first argument. We
assume that G(-, 0;) is strictly convex for every o; € X;,
and takes a minimum value of 0 at ¢;. Furthermore, we
assume that v is differentiable and p-strongly convex on X;
with p € (0, 00).

The conventional MD updates its strategy based on the gra-
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dient feedback of the payoff function and the regularization
term. The regularization term adjusts the next strategy so
that it does not deviate significantly from the current strategy.
APMD perturbs the gradient payoff vector by the divergence
between the current strategy 7 and a predefined slingshot
strategy o;. If the current strategy is far away from the sling-
shot strategy, the magnitude of the perturbation increases.
Note that if both strategies are equivalent, no perturbation
occurs, and APMD just seeks a strategy with a higher ex-
pected payoff. As Figure 1 illustrates, the divergence first
fluctuates, and then the current strategy profile comes close
to a stationary point where the gradient of the expected
payoff vector is equal to the gradient of the magnitude of
the perturbation so that the perturbation via slingshot sta-
bilizes the learning dynamics. Indeed, Mutant Follow the
Regularized Leader (Mutant FTRL) instantiated in Exam-
ple 5.3 encompasses replicator-mutator dynamics, which
is guaranteed to converge to an approximate equilibrium
in two-player zero-sum games (Abe et al., 2022). We can
argue that APMD inherits this nice feature.

3.2. Slingshot Strategy Update

The perturbation via slingshot enables 7t to converge
quickly to a stationary point (Lemmas 5.6 and 5.7). Dif-
ferent slingshot strategy profiles induce different stationary
points. Of course, when the slingshot strategy profile is set
to be an equilibrium, the corresponding stationary point also
becomes an equilibrium. However, it is virtually impossible
to identify such an ideal slingshot strategy profile before-
hand. To this end, APMD adjusts a slingshot strategy profile
o by replacing it with the (nearly) stationary point that is
reached after predefined iterations 7.

Figure 1 illustrates how our slingshot strategy update brings
the corresponding stationary points closer to an equilibrium.
x- and y-axis indicate the number of iterations and the loga-
rithm of the gap function of the last-iterate strategy profile.
We here assume that the learning rate and the perturbation
strength are n = 0.1 and p© = 1, respectively. The initial
slingshot strategy o; is given as a uniform distribution on
the action space. After the first interval of T, = 200 itera-
tions, APMD finds a stationary point. The slingshot strategy
profile for the second interval is replaced with the stationary
point. Figure 1 clearly shows the stationary point, i.e., the
last-iterate strategy profile comes close to an equilibrium
every time the slingshot strategy profile is updated. We also
theoretically justify our slingshot strategy update in Theo-
rem D.1, i.e., when the slingshot strategy profile is close to
an equilibrium 7* € IT*, the stationary point is close to 7*.

4. Last-Iterate Convergence Rates

In this section, we establish the last-iterate convergence
rates of APMD. More specifically, we examine a setting

where both Dy, and G is set to the squared #2-distance, i.e.,
Dy(m;, wl) = G(m;, w}) = 1||/m; — 7}||*. This instance can
be considered as an extended version of Gradient Descent,
which incorporates our techniques of payoff perturbation
and slingshot strategy update. We also assume that the
gradient vector of v; is bounded. We emphasize that we
have obtained the overall last-iterative convergence rates
of APMD for the entire 7' iterations in both full and noisy
feedback settings.

4.1. Full Feedback Setting

First, we demonstrate the last-iterate convergence rate of
APMD with full feedback where each player receives the
perfect gradient vector V., v;(7f, 7t ) = Vv (wl, 7t ),
at each iteration ¢. Theorem 4.1 provides the APMD’s con-
vergence rate of O(InT/+/T) in terms of the gap function.
Note that the learning rate is constant, and its upper bound
is specified by perturbation strength y and smoothness pa-
rameter L.

Theorem 4.1. If we use the constant learning rate 1, =
n € (0, ?Wﬁr#) and set Dy, and G as the squared ¢*-
distance Dy (m;, 7)) = G(mi, 7)) = ||m — w}||?/2, and
set T, = O(InT), then the strategy profile m* updated by
APMD satisfies:

GAP(zT) =0 (%) .

The obtained rate herein is competitive with optimistic gra-
dient and extra-gradient methods (Cai et al., 2022a) whose
rates are O(1/+/T'). Although it is open whether our conver-
gence rate matches its lower bound, it closely aligns with the
lower bound for the class of algorithms that includes 1-SCLI
algorithms (Golowich et al., 2020b), which is different from
our APMD. To the best of our knowledge, the fastest rate
of O(1/T) is achieved by Accelerated Optimistic Gradient
(AOG) (Cai & Zheng, 2023), which is an optimistic variant
of the Halpern iteration (Halpern, 1967). At first sight, the
update rule of AOG looks as if the perturbation strength was
linearly decayed. However, it does not perturb the payoff
functions and instead adjusts the regularization term by us-
ing the convex combination of the current strategy and the
anchoring strategy as the proximal point in MD. Unlike our
APMD, the anchoring strategy is never updated through the
iterations.’

4.2. Proof Sketch of Theorem 4.1

This section sketches the proof for Theorem 4.1. We present
the complete proofs for the theorem and associated lemmas
in Appendix E.

?Regarding the rate of O(1/T"), a companion paper is in prepa-
ration.
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(1) Convergence rates to a stationary point with k-th
slingshot strategy profile. We denote o* as the slingshot
strategy profile after k updates. Since the slingshot strategy
profile is overwritten by the current strategy profile 7t every
T,, iterations, we can write o* = 7%7~ . We first prove that,
as T, increases, the next k& 4 1-th slingshot strategy profile
o**1 approaches to the stationary point 7" under the
slingshot strategy profile o*, which satisfies the following
condition: Vi € [N],

k
o
™

) - nGmoh}. @

_ (o IO
= arg max {vl(m, e
T, EX;

k . . .
Note that 79" always exists since the perturbed game is

still monotone. Using the strong convexity of G(7;, o) =
k|2

i

k
, we show that oF 1t — 719" as T, — oo

%Hm -0
Lemma 4.2. Assume that Dy, and G are set as the squared
(?-distance. If we use the constant learning rate n; = 1 €
(0, 3#21%) the k + 1-th slingshot strategy profile o of
APMD under the full feedback setting satisfies that:

||7T“"7k . Uk+1H2 — ||71_;L,o'k

— oM exp (~O(T,)).

(2) Upper bound on the gap function. Next, we derive
the upper bound on the gap function for ¢**'. From the
bounding technique of the gap function using the tangent
residuals by Cai et al. (2022a) and the first-order optimality
condition for W“*”k, the gap function for **1 can be up-
per bounded by the distance between the slingshot strategy
profile and the stationary point ot

Lemma 4.3. If G is set as the squared {-distance, the gap
function for "1 of APMD satisfies for k > 0:

GAP(o*+1) = O (" — o 4 o — 0¥

By Lemma 4.2, if we set D, as the squared ¢2-distance, the
first term in this lemma can be bounded as:

”ﬂ_u,ak o o_k+1||2 — Hﬂu,g’c

—o*||2exp (—O(T,)). (5)

Therefore, it is enough to derive the convergence rate on the
. k
¢?-distance between 77" and o*.

(3) Last-iterate convergence results for the slingshot
strategy profile. Let us denote K := |T/T, | as the total
number of the slingshot strategy updates over the entire T’
iterations. Then, by adjusting 7, = Q(InT"), we show that
the £2-distance between the K — 1-th slingshot strategy pro-
file o~ and the corresponding stationary point o

decreases as K increases:
Lemma 4.4. In the same setup of Theorem 4.1, the K — 1-th

slingshot strategy profile o~ of APMD satisfies:

— o = 0(1/VE).

™

Lemma 4.4 implies that as K increases, the variation of 0%
becomes negligible, signifying convergence in its behavior.

By combining (5) and Lemmas 4.3-4.4, we can derive the

last-iterate convergence rate of the slingshot strategy profile
K.
ot

GAP(c®) = 0(1/VK).

Thus, since 77 = o and K = |T/T,| = ©(T/InT),
the statement of the theorem is concluded. O

4.3. Noisy Feedback Setting

Next, we consider the noisy feedback setting, where
each player ¢ receives a gradient vector with additive
noise: Vo v;(wh,7t,) + €. Define the sigma-algebra
generated by the history of the observations: F; =
o (Vewi w70 Dieinyy oo (Ve oi (w775 i)
Vt > 1. We assume that the noise vectors (f);>1 are with
zero-mean and bounded variances. We also suppose that
the noise vectors (£!):>1 are independent over ¢. In this
setting, the last-iterate convergence rate is achieved by

APMD using a decreasing learning rate sequence 7;. The
convergence rate obtained by APMD is O(InT/T'10 ):

Theorem 4.5. Let 6 = % and Kk =

Dy, and G are set as the squared (*-distance D, (m;, 7)) =
G(mi, ml) = ||mi— || and T, = ©(T*/>). If we choose
the learning rate sequence of the formn, = 1/(k(t — T, -
|t/T,]) + 20), then the strategy profile m* updated by
APMD satisfies:

E [GAP(x")] = O (I;T) :

5. Assume that

It should be noted that Theorem 4.5 provides a non-
asymptotic convergence guarantee with a rate. This is
a significant departure from the existing convergence re-
sults (Koshal et al., 2010; 2013; Tatarenko & Kamgarpour,
2019), which focus on the asymptotic convergence of itera-
tive Tikhonov regularization methods in the noisy or bandit
feedback settings.

4.4. Proof Sketch of Theorem 4.5

As in Theorem 4.1, we first derive the convergence rate of
o*+1 for the noisy feedback setting:

Lemma 4.6. Let 0 = W and k = 5. Suppose that

both Dy and G are defined as the squared (*-distance.
Under the noisy feedback setting, if we use the learning rate
sequence of the formn, = 1/(k(t — Ty - [t/To|) + 20), the
k + 1-th slingshot strategy profile c*+! of APMD for each
k > 0 satisfies that:

N’o_k_ k+1)2] _ lnTa-
E[Hw o ||} O(Ta .
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The proof is given in Appendix E.6 and is based on the
standard argument of stochastic optimization, e.g., Nedi¢ &
Lee (2014). However, the proof is made possible by taking
into account the monotonicity of the game and the relative
(strong and smooth) convexity of the divergence function.

Next, in a similar manner for Lemma 4.4, we show the upper

K-1

. K—1
bound on the expected distance between 77 and o

under the noisy feedback setting:

Lemma 4.7. In the same setup of Theorem 4.5, the K — 1-th
slingshot strategy profile o™~ satisfies:

)-o(%8)

We note that Lemma 4.3 holds for any combination of o*
and o*+1, regardless of the presence of noise. By combining
Lemmas 4.3, 4.6, and 4.7, we can derive the following last-
iterate convergence rate of o in terms of the gap function:

E [GAP(c")] =0 (%{) :

By setting K = |T/T,] = ©(T'/®), we conclude the
statement of the theorem. ]

E [||7TM,UK_1 _

5. Beyond Squared /2-Payoff Perturbation

Section 4 assumes that both G and D, are the squared ¢-
distance. This section considers more general choices of G
and D,.

5.1. Instantiation of Payoff-Perturbed Algorithms

First, we would like to emphasize that choosing appropriate
combinations of G and D, enables APMD to reproduce
some existing learning algorithms that incorporate payoff
perturbation. For example, the following learning algo-
rithms can be viewed as instantiations of APMD.

Example 5.1 (Boltzmann Q-Learning (Tuyls et al., 2006)).

Assume that X; = A%, the regularize is entropy: ¢(m;) =
Zj 1 mijInm;;. Let us set G as the KL divergence and
the slingshot strategy o; as a uniform distribution, i.e.,
G(mi,04) = KL(m;,0;) and 0; = (1/d;)jeja,)- Then, the
corresponding continuous-time APMD dynamlcs can be
expressed as:

d_4
dar"i T

o)
- <ln7r Zwklnw>,

which is equivalent to Boltzman Q-learning (Tuyls et al.,
2006; Bloembergen et al., 2015).

Example 5.2 (Reward transformed FTRL (Perolat et al.,
2021)). Consider the continuous-time APMD dynamics
where N = 2, X; = A%, 1) is Legendre (Rockafellar, 1997;
Lattimore & Szepesvari, 2020) on A%, and G(7;,0;) =
KL(7;,0;). Then, APMD dynamics can be described as
follows:

t [ di d;
t Cid 1 ik
T;; = arg max Trqh, — Yy Tpln 2%
eeati (VO \p= k=1 ik
d_:
L s Trs—ik:
+u E 7 In
o
=1 ik

This algorithm is equivalent to FTRL with reward transfor-
mation (Perolat et al., 2021).

Example 5.3 (Mutant FTRL (Abe et al., 2022)). Let us
define X; = A%, and assume that the regularizer 1 is
Legendre on A%, If we set G as the reverse KL divergence
ie., G(m;,0;) = KL(0y,m;) = Zd , we can
rewrite (3) as:

A arg max{z an] (q” (03— Z))—lb(x)}

z€A% s=0 j=1

ds — ()

104j ln

where qf] = (V05 (w7, 72 ;));. This algorithm is equiva-

lent to Mutant FTRL (Abe et al., 2022).

5.2. Convergence Results with General G and D,

Next, we establish the convergence results for APMD with
general combinations of G and D,,. For theoretical analysis,
we assume a specific condition on G:

Assumption 5.4. G(-, 0;) is differentiable over int(dom ).
Moreover, G(-, 0;) is B-smooth and ~-strongly convex rela-
tive to 1, i.e., for any m;, 7, € int(dom ), YDy (7}, m;) <
G(r},0) — G(mi,04) — (Va,G(mi,04), 7 — m) <
BDy (), ;) holds.

Note that these assumptions are always satisfied with 5 =
«v = 1 whenever G is identical to D,; thus, these are not
strong assumptions. We also assume that 7t is well-defined
over iterations:

Assumption 5.5. 7wt updated by APMD satisfies ©* €
int(dom ¢) foranyt € {0,1,--- ,T}.

Using Assumptions 5.4 and 5.5, we derive the convergence
rate to 7°" in 4):

Lemma 5.6. Suppose that Assumptions 5.4 with 3,~v €
(0,00) and 5.5 hold. If we use the constant learning rate

77t = 77 € (0, ngg)w), ﬂ’l@ k+1-ﬂ/l Slingsh()t Strat-

egy profile o* 11 of APMD under the full feedback setting
satisfies that:
= Dy(m7", oF) exp (—O(T5)).

Dy (rt" o)
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Lemma 5.7. Let 0 = % and k = 5Y. Sup-
pose that Assumptions 5.4 with 3,v € (0,00) and 5.5
hold, and the learning rate sequence of the form n; =
1/(k(t = Ty - [t/Ts]) + 20) is used. Then, the k + 1-
th slingshot strategy profile o*+1 of APMD under the noisy
feedback setting satisfies that:

u,a’k k+1 _ lnTa
E |Dy(n"7 o )}—O(Ta>.

These lemmas imply that oF+1 — " as T, — oo.
Therefore, when T, is sufficiently large, & + 1-th slingshot
strategy profile becomes almost equivalent to the stationary
point 7" . From this, we anticipate that E[GAP(c%)] —
0 as k — oo even in the noisy feedback setting. The subse-
quent theorems provide asymptotic last-iterate convergence
results for this ideal scenario. In particular, we show that
the slingshot strategy profile ¥+ converges to equilibrium
when using the following divergence functions as G: 1)
Bregman divergence; 2) a-divergence; 3) Rényi-divergence;
4) reverse KL divergence.

Theorem 5.8. Assume that G is a Bregman divergence D
for some strongly convex function ', and o**t' = o
for k > 0. Then, there exists m* € I1* such that ok — 1*
as k — oo.

Theorem 5.9. Let us define X; = A%. Assume that o* 1 =
ot for k >0, and G is one of the following divergence:
1) a-divergence with a € (0,1); 2) Rényi-divergence with

€ (0,1); 3) reverse KL divergence. If the initial slingshot
strategy profile c° is in the interior of X, the sequence
{o*}1>1 converges to the set of Nash equilibria T1* of the
underlying game.

We remark that these results cover the algorithms in Ex-
ample 5.1, 5.2, and 5.3. Furthermore, we can incorporate
our payoff perturbation techniques into FTRL, detailed in
Appendix C.

6. Experiments

This section empirically compares the representative in-
stance of MD, namely Multiplicative Weight Update
(MWU) and its Optimistic version (OMWU), with our
framework. Specifically, we consider the following three
instances of APMD: (i) both are the squared ¢?-distance;
(ii) both G and D, are the KL divergence, which is also
an instance of Reward transformed FTRL in Example 5.2.
Note that if the slingshot strategy is fixed to a uniformly
random strategy, this algorithm corresponds to Boltzmann
Q-Learning in Example 5.1; (iii) the divergence function G
is the reverse KL divergence, and the Bregman divergence
Dy is the KL divergence, which matches Mutant FTRL in
Example 5.3.

We focus on two zero-sum polymatrix games: Three-Player
Biased Rock-Paper-Scissors (3BRPS) and three-player ran-
dom payoff games with 10 and 50 actions. For the 3BRPS
game, each player participates in two instances of the game
in Table 2 in Appendix I simultaneously with two other play-
ers. For the random payoff games, each player ¢ participates
in two instances of the game with two other players j simul-
taneously. The payoff matrix for each instance is denoted as
M(3), Each entry of M (»7) is drawn independently from
a uniform distribution on the interval [—1, 1].

Figures 2 and 3 illustrate the logarithm of the gap function
averaged over 100 instances with different random seeds.
We assume that the initial slingshot strategy profile ¥ is
chosen uniformly at random in the interior of the strategy
space X = [[°_, A% in each instance for 3BRPS, while
w¥ is chosen as (1/d;)e(q,) for i € [3] in every instances
for the random payoff games.

First, Figure 2 depicts the case of full feedback. Unless
otherwise specified, we use a constant learning rate n = 0.1
and a perturbation strength p = 0.1 for APMD. Further de-
tails and additional experiments can be found in Appendix I.
Figure 2 shows that APMD outperforms MWU and OMWU
in all three games. Notably, APMD exhibits the fastest
convergence in terms of the gap function when using the
squared ¢2-distance as both G and D,,. Next, Figure 3 de-
picts the case of noisy feedback. We assume that the noise
vector & is generated from the multivariate Gaussian dis-
tribution A/(0, 0.1%I) in an i.i.d. manner. To account for
the noise, we use a lower learning rate 7 = 0.01 than the
full feedback case. In OMWU, we use the noisy gradient
vector V i (i~ 71 at the previous step ¢ — 1 as the
prediction vector for the current iteration ¢. We observe
the same trends as with full feedback. While MWU and
OMWU exhibit worse performance, APMD maintains its
fast convergence, as predicted by the theoretical analysis.

7. Related Literature

Recent progress in achieving no-regret learning with full
feedback has been driven by optimistic learning (Rakhlin &
Sridharan, 2013a;b). Optimistic versions of well-known
algorithms like Follow the Regularized Leader (Shalev-
Shwartz & Singer, 2006) and Mirror Descent (Zhou et al.,
2017; Hsieh et al., 2021) have been proposed to admit last-
iterate convergence in a wide range of game settings. These
optimistic algorithms have been successfully applied to var-
ious classes of games, including bilinear games (Daskalakis
et al., 2018; Daskalakis & Panageas, 2019; Liang & Stokes,
2019; de Montbrun & Renault, 2022), cocoercive games
(Lin et al., 2020), and saddle point problems (Daskalakis
& Panageas, 2018; Mertikopoulos et al., 2019; Golowich
et al., 2020b; Wei et al., 2021; Lei et al., 2021; Yoon & Ryu,
2021; Lee & Kim, 2021; Cevher et al., 2023). The advance-
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Figure 2: The gap function for 7! for APMD, MWU, and OMWU with full feedback. The shaded area represents the
standard errors. Note that the KL divergence, reverse KL divergence, and squared £2-distance are abbreviated to KL, RKL,

and L2, respectively.
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Figure 3: The gap function for 7t for APMD, MWU, and OMWU with noisy feedback.

ments have provided solutions to monotone games and have
established convergence rates (Golowich et al., 2020a; Cai
et al., 2022a;b; Gorbunov et al., 2022; Cai & Zheng, 2023).

The exploration of literature with noisy feedback poses sig-
nificant challenges, in contrast to full feedback. In situations
where feedback is imprecise or limited, algorithms must es-
timate action values at each iteration. There have been
two trends in achieving last-iterate convergence: restrict-
ing the class of games and perturbing the payoff functions.
On one hand, particularly noticeable works lie in potential
games (Cohen et al., 2017), normal-form games with strict
Nash equilibria (Giannou et al., 2021b;a), and two-player
zero-sum games (Abe et al., 2023). Also, noisy feedback is
handled with games whose payoff functions are assumed to
be strictly (or strongly) monotone (Bravo et al., 2018; Kan-
nan & Shanbhag, 2019; Hsieh et al., 2019; Anagnostides &
Panageas, 2022), while to be strictly variational stable (Mer-
tikopoulos & Zhou, 2019; Mertikopoulos et al., 2019; 2022;
Azizian et al., 2021). Note that variationally stable games,
often referred to in control theory, are a slightly broader

class of monotone games. These studies requires the payoff
functions to be strictly or strongly convex, while we do not
require such an assumption.

On the other hand, payoff-perturbed algorithms have re-
cently regained attention for their ability to demonstrate
convergence in unrestricted games when noise is present.
As described in Section 1, payoff perturbation is a textbook
technique (Facchinei & Pang, 2003) that has been exten-
sively studied (Koshal et al., 2010; 2013; Yousefian et al.,
2017; Tatarenko & Kamgarpour, 2019; Hsieh et al., 2020;
2022; Abe et al., 2023; Cen et al., 2021; 2023; Cai et al.,
2023; Pattathil et al., 2023). It is known that carefully ad-
justing the magnitude of perturbation ensures convergence
to a Nash equilibrium. This magnitude is computed as the
product of a strongly convex penalty and a perturbation
strength parameter. Liu et al. (2023) shrink the perturba-
tion strength based on a predefined hyper-parameter and
the gap function of the current strategy. Likewise, Koshal
et al. (2010) and Tatarenko & Kamgarpour (2019) have
identified somewhat complex conditions that the sequence
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of the perturbation strength parameters and learning rates
should satisfy. Roughly speaking, as we have implied in
Lemma 4.2, a smaller strength would require a lower learn-
ing rate. This potentially decelerates the convergence rate
and complicates the task of finding an appropriate learning
rate. For practicality, we have opted to keep the perturbation
strength constant, independent of the iteration in APMD.
Moreover, it must be emphasized that the existing litera-
ture has primarily provided asymptotic convergence results,
while we have successfully provided the non-asymptotic
convergence rate.

Finally, the idea of the slingshot strategy update was initi-
ated by Perolat et al. (2021) and later extended by Abe et al.
(2023). Our contribution partly owes to the significance of
quantifying the convergence rate for the first time. We must
also mention that Sokota et al. (2023) have proposed a very
similar, but essentially different update rule to ours. It just
adds an additional regularization term based on an anchor-
ing strategy, which they call a magnetic one, and this means
that it directly perturbs the (expected) payoff functions. In
contrast, our APMD indirectly perturbs the payoff functions,
i.e., perturbs the gradient vector. Furthermore, we have es-
tablished non-asymptotic convergence results toward a Nash
equilibrium, while Sokota et al. (2023) have only shown
convergence toward a quantal response equilibrium (McK-
elvey & Palfrey, 1995; 1998), which is just equivalent to an
approximate equilibrium. Similar results to them have been
obtained with the Boltzmann Q-learning dynamics (Tuyls
et al., 2006) and penalty-regularized dynamics (Coucheney
et al., 2015) in continuous-time settings (Leslie & Collins,
2005; Hussain et al., 2023).

8. Conclusion

This paper proposes a novel variant of MD that achieves
last-iterate convergence even when the noise is present, by
adaptively adjusting the magnitude of the perturbation. This
research could lead to several intriguing future studies, such
as finding the best perturbation strength for the optimal con-
vergence rate and achieving convergence with more limited
feedback, for example, using bandit feedback (Bravo et al.,
2018; Drusvyatskiy et al., 2022).
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Adaptively Perturbed Mirror Descent for Learning in Games

A. Notations

In this section, we summarize the notations we use in Table 1.

Table 1: Notations

Symbol Description
N Number of players
X; Strategy space for player @
X Joint strategy space: X = vazl X;
V; Payoff function for player ¢
e Strategy for player @
i Strategy profile: ™ = (7; );e[n]
! Noise vector for player ¢ at iteration ¢
m* Nash equilibrium
I Set of Nash equilibria
GAP(m) Gap function of m: GAP(7) = maxzcx Zfil (Vr,vi(m), 705 —
Al d-dimensional probability simplex: A? = {p € [0,1]¢ | Z?Zl pj =1}
diam(X) Diameter of X': diam(X) = sup, /|| — 7|
KL(-,") Kullback-Leibler divergence
Dy(-,-) Bregman divergence associated with 1)
Vi Gradient of v; with respect to m;
i Learning rate at iteration ¢
I Perturbation strength
o Slingshot strategy profile
G(-,-) Divergence function for payoff perturbation
VG Gradient of G with respect to first argument
T, Update interval for the slingshot strategy
K Total number of the slingshot strategy updates
i Stationary point satisfies (4) for given y and o
mt Strategy profile at iteration ¢
ok Slingshot strategy profile after k updates
L Smoothness parameter of (v;);e[n]
p Strongly convex parameter of
I} Smoothness parameter of G (-, 0;) relative to ¢
¥ Strongly convex parameter of G(-, o;) relative to ¢
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B. Formal Theorems and Lemmas

B.1. Full Feedback Setting

Theorem B.1 (Formal version of Theorem 4.1). Assume that \/Eivzl IV vi(m)||2 < ¢ for any m € X. If we use the
), and set Dy, and G as squared (*-distance Dy (m;,7.) = G(m;, 7)) =

. _ 2up”
constant learning rate n; = n € (0, ETEpEREy g :

InT + == 21n 64 , 1) for some constant ¢ > 1, then the strategy profile

Lm; — 7l||% and set T, = c- max( (2=

T updated by APMD satisfies:

6
In2—In(2—nu)

GAP(nT)

Qﬁc((““LL)'diam(XHC)'<ln2 me=mm T+ mee o ) diam(X) (S-diam(X)+<>
VT w)

<

Lemma B.2 (Formal version of Lemma 4.2). Assume that D, and G are set as the squared (*-distance. If we use the

the k + 1-th slingshot strategy profile c*+1 of APMD under the full

. _ 2pp°
constant learning rate n; = n € (0, 3#2p2+8L2),

feedback setting satisfies that:

" Ts
" = oF R < et — b2 (1- )

Lemma B.3 (Formal version of Lemma 4.3). Assume that \/Zf\il IV r,vi(m)]|2 < ¢ forany m € X. If G is set as the
squared (?-distance, the gap function for c*+1 of APMD satisfies for k > 0:

GAP(*) < - diam(X) - |7*°" — % | + (L - diam(X) + ¢) - |77 — o1,

Lemma B.4 (Formal version of Lemma 4.4). Assume that T, > max( InT + mf% 1). In the same

In2— ln(2 nw) In(2—np)?

setup of Theorem 4.1, the K — 1-th slingshot strategy profile o ~1 of APMD satisfies:

™ = o <

2\\/C diam(X) (8 - diam(X) + f)

B.2. Noisy Feedback Setting

For the noisy feedback setting, we assume that ¢! € R% is a zero-mean independent random vector with bounded variance.

Assumption B.5. For allt > 1 and i € [N|, the noise vector &! satisfies the following properties: (a) Zero-mean:
E[¢f|F,] = (0,---,0) T, (b) Bounded variance: E[||€¢]|?|F;] < C? with some constant C > 0.

This is a standard assumption in learning in games with noisy feedback (Mertikopoulos & Zhou, 2019; Hsieh et al., 2019)
and stochastic optimization (Nemirovski et al., 2009; Nedi¢ & Lee, 2014). Under Assumption B.5, we can obtain the
following convergence results for ADMP under the noisy feedback setting.

3u2p?4+8L2

2up?

\/Zf\il |V vi(m)||2 < € for any m € X. We also assume that D, and G are set as squared (*-distance D, (m;, 7)) =
G(mi, ) = %||m — w||% and T, = ¢ - max(T*/® + 2, 3) for some constant ¢ > 1. If we choose the learning rate sequence
of the formn; = 1/(k(t — Ty, - [t/Ty]) + 20), then the strategy profile m* updated by APMD satisfies:

Theorem B.6 (Formal version of Theorem 4.5). Let § = and k = 5. Suppose that Assumption B.5 holds and

V6ep - diam(X)?
T1/10

L-diam(X)+ ¢+ p- diam(?()\/18c (diam(X) + % + 1) \/p(29 — r)diam(X)? + NC? (LIn (&7 + 1) + 29)
T1/10 PR

E [GAP(rT)] <

+

16
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3u2p?4+8L?
2up?
Dy, and G are defined as the squared 02-distance. Under the noisy feedback setting, if we use the learning rate sequence of

the formn, = 1/(k(t — Ty - |t/Ty]) + 20), the k + 1-th slingshot strategy profile "+ of APMD for each k > 0 satisfies

that:
NC? 1 K 1
E o _ k412 < k2 Z1 A T 1
[”W 7 ”}— “}+p(/€(Tg—1)+29) K n(%)( 1+ )+29

Lemma B.8 (Formal version of Lemma 4.7). Assume that T, > max(T 4/5 12, 3). In the same setup of Theorem 4.5, the
K — 1-th slingshot strategy profile o™~ satisfies:

E [l = %

_ |l -otl 2 (diam()() +<+ 1) (p(20 — r)diam(X)2 + NC? (LIn (5T +1) + )
< I .

Lemma B.7 (Formal version of Lemma 4.6). Let 6 = and r = %. Suppose that Assumption B.5 holds, and both

20 — K [Hﬂ“’” _
K(T, — 1)+ 260

B.3. Convergence Results with General G and D,

Lemma B.9 (Formal version of Lemma 5.6). Suppose that Assumptions 5.4 with 3,~ € (0,00) and 5.5 hold. If we use the
constant learning rate n, =1 € (0 %), the k + 1-th slingshot strategy profile o* ' of APMD under the full

? wPyp? (v+28)+8L3
feedback setting satisfies that:

Dy(re" 0"1) < Dy(an o) (1 )T

Lemma B.10 (Formal version of Lemma 5.7). Let = W and k = 5L. Suppose that Assumptions 5.4, 5.5,

and B.5 hold, and the learning rate sequence of the formn, = 1/(k(t — T, - |t/T]) + 20) is used. Then, the k + 1-th
slingshot strategy profile **' of APMD under the noisy feedback setting satisfies that:

2% — ot NC? 1 1
AT, =) 2o o+ p(r(T, —1)+29)< 1“(29( 71”1) 29)

C. Extension to Follow the Regularized Leader

E[Dy (r7" , oF+1)] <

In Sections 4 and 5, we introduced and analyzed APMD, which extends the standard MD approach. Similarly, it is possible
to extend the FTRL approach as well. In this section, we present Adaptively Perturbed Follow the Regularized Leader
(APFTRL), which incorporates the perturbation term pG(-, o;) into the conventional FTRL algorithm:

t+1 = arg max {Z s <vﬂ'1vl( ) MvﬂiG(Ffv Ui)> {L‘> - ¢($)} :
TEAX;

Throughout this section, we assume that X is an affine subset, i.e., there exists a matrix A € RFi%di a vector b € RFi such
that Am; = b for all m; € A);. Furthermore, we assume that ¢ is Legendre (Rockafellar, 1997; Lattimore & Szepesvari,
2020). Then, APFTRL enjoys the last-iterate convergence of 7r” in full and noisy feedback settings by proving the following
lemmas:

Lemma C.1. Suppose that Assumptions 5.4 with B,y € (0,00) and 5.5 hold. If we use the constant learning rate
ne =n € (0, WM‘)’ the k + 1-th slingshot strategy profile o*+! of APFTRL under the full feedback setting
satisfies that:

Ts
Dy 0*1) < Dy o) (1= 1T

Lemma C.2. Let 0 = W—Q’;)'FSLZ and r = Y. Suppose that Assumptions 5.4, 5.5, and B.5 hold, and the learning
uyp

rate sequence of the formn, = 1/(k(t — Ty, - |t/T,|) + 20) is used. Then, the k + 1-th slingshot strategy profile o**1 of
APFTRL under the noisy feedback setting satisfies that:

20 — K
w(T, — 1)+ 20

k k ?
By (" 1)) < D o gy (o (550 1 +1) 55).
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The proofs of these theorems can be found in Appendix E.5, F.6.

D. Additional Theorems

Based on this theorem, we can show that the gap function for 7* converges to the value of O(u).

Theorem D.1. In the same setup of Lemma 5.6, the gap function for APMD is bounded as:

N t
Y < - di ) Ko 5 Y ]|2 _ ey 2 .
GAP(r') < pu - diam(X) ;vacm o)l +o((1 : )

We note that lower y reduces the gap function for 7#: (as in the first term of Theorem D.1), whereas higher 1 makes 7
converge faster (as in the second term of Theorem D.1). That is, i controls a trade-off between the speed of convergence
and the gap function.

E. Proofs for Section 4
E.1. Proof of Theorem B.1 (Formal Version of Theoremf 4.1)

Proof of Theorem B.1. First, from Lemma B.3, we have for any £ > 0:

GAP(c"*1) < pu- diam(X) - |77 — ¥ + (L - diam(X) + ¢) - =" — o*+1.

. k
Using Lemma B.2, we can upper bound the term of || 747" — o**1|| as follows:

X Ty
ot = o2 < et = R (1- )

Combining these inequalities, we have for any & > 0:

To
2

GAP(o*™) < pi- diam(X) - [|7°" — o®| + (1 - %) (L - diam(X) + ) - |7 — o

< ((n+ L) - diam(X) + ¢) - 7" — o*],

where the second inequality follows from 7T, > 1. Let us denote K := |T/T, | as the total number of the slingshot strategy
updates over the entire 7 iterations. By letting £k = K — 1 in the above inequality, we get:

1

GAP(0%) < ((u+ L) - diam(X) + ¢) - 7" = 1] ©)

1

Next, we derive the following upper bound on ||7r“"’K_ — o&=1| from Lemma B.4:

1

23
VE

e — oK <

diam(X) <8 - diam (X)) + /€> ©)

By combining (6) and (7), we get:

2v2((u+ L) - diam(X) +¢) [ - diam(¥) +
N \/dlam(X) (8 diam(X') + M)'

18
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Finally, since 77 = o, K = |T/T,|,and T, = c - max(m InT + %, 1), we have:
GAP(rT)
2v/2 L)-di X
< V2 (et 1) - diam(¥) +¢) diam(X) (8 - diam(X) + C)
T/T, Hw

2v/2¢ (i + L) - diam(X) + ¢) - (prgmpog—ry I T + g2 41
< (1\/2TI (2—np) In2—In(2—np) ) diam(X) (8'diam(é’()+c>.

This concludes the statement of the theorem. O

E.2. Proof of Lemma B.2 (Formal Version of Lemma 4.2)

Proof of Lemma B.2. From the definition of the Bregman divergence, we have for all 7;, 7} € X:

Dw(ﬂ' ) Dw(ﬂ'UU?)7<V7F7D7/)(7T1701)77T1{77Ti>

= () — (i) = (V(03), 1 — 0i) — (i) + (i) + (Vop(03), m — i) — (Vp(mi) — Vep(oi), 7 — i)

= P(m) — (i) — (V(mi), m) — m3)

= D7/’ (7‘(1/-, 7Ti)'
Hence, assuming that G is identical to D,;,, Assumption 5.4 is satisfied with 5 = ~ = 1. Furthermore, since ¢(z) = % Hx||2,
both p = 1 and int(dom /) = R% hold. Therefore, Assumption 5.5 is also satisfied. Consequently, we can obtain the
following convergence result from Lemma B.9 with § = v =p = 1:

ok k+12 ok k12 i Ty
ot — 2 < et — R (1- )

E.3. Proof of Lemma B.3 (Formal Version of Lemma 4.3)

Proof of Lemma B.3. First, we have for any 7 € X

N
GAP(m) = max Z(vai(ﬂ'), T — i)
N
= maxz (Vv (7)), 7i — w0y — (Vi 0i(7"), w1 — 7h) + (Vyvi(7) — Vi ui(7), 7 — m3)) 8)

Here, we introduce the following lemma from Cai et al. (2022a):

Lemma E.1 (Lemma 2 of Cai et al. (2022a)). For any m € X, we have:

N

max Vevi(m), 71 — m;) < dlam(X) - min — Vor,vi(m) + a;|?
g (Vi) 7 ) < o) i Zn 2

N (a7 —m) <0, vr' € X}.

where Nx () = {(a;)ic[n] € Hf\il

From Lemma E.1, the first term of (8) can be upper bounded as:

max (Vrvi(n'), 7 — ) < diam(X) - o glj\lfg(ﬂ Z | = Va,vi(n") + a;|? )

19



Adaptively Perturbed Mirror Descent for Learning in Games

Next, from Cauchy-Schwarz inequality, the second term of (8) can be upper bounded as:

N

N
=D (Vi) mi —m) < lw =2l | D IV, wil)2
i=1

i=1

<(fm ==l (10)

Again from Cauchy-Schwarz inequality, the third term of (8) can be upper bounded as:

N N

Y AVri(m) = Vaoi(n'), 7 —mi) < |IF =7l | D I Ve, vi(m) = Varyoi(n)|2

i=1 i=1

N
< diam(X), | Y |V, 0i(m) = V03 () |2
=1

< L-diam(X) - |7 — 7| (11)

By combining (8), (9), (10), and (11), we get for any 7,7’ € X

N
GAP(r) < diam(X)- min D = Vawi(a) + al|? + (L - diam(X) + ) [|m — |
(a;)ENx (") P}

k

. k
Thus, letting 7 = 0¥+ and 7/ = 7", we have:

N
GAP(cF*1) < diam(X) - min || = Vaui(mno®) + a2 + (L - diam(X) + ) [t — G| (12)
(ai)ENx (wro") =1

On the other hand, from the first-order optimality condition for w“’“k, we have for any m € X:

N
k k
> (Vi) = (2l —ok) m =) <0,
=1

k

and then (vai (’R’”’Uk) —p (W”’U - O'k>) . € NX(W""’k). Thus, the first term of (12) can be bounded as:
1€

(3 7

N
min | = Vrvi (") + a4
(a:)ENx (m17%) ;

N
<\ Dol = Tnn(wot) + Vi) — s (w1 = oF) |2
i=1
“w ok k
= pll77 =" (13)

Combining (12) and (13), we have:

GAP(o" ™) < pu - diam(X) - ||7r“"’k —o®|| 4 (L - diam(X) +¢) ||7r“"’k — okt
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E.4. Proof of Lemma B.4 (Formal Version of Lemma 4.4)

Proof of Lemma B.4. First, we prove the following lemma:

Lemma E.2. Assume that \/Zfil |V vi(m)||2 < C forany m € X. If G is set as the squared (-distance, we have for
any k € [K]:

2 _
[ — k| < flo* — R 12 4 2 o

From Lemma E.2, we can bound ||7T#’Uk — "% as

" — o*|?
2 _
< ok — oh P 4 Z et oh

—1

= - - 2 -
<l = T2 4 ok — T2 2ot — T et — o f\lw“"” R )

Next, we upper bound ||7T”’Uk — 0%||? using the following lemma:

Lemma E.3. Assume that T,, > max(
for any Nash equilibrium 7* € II*:

InT + mf% 1). In the same setup of Theorem 4.1, we have

In2— 111(2 nw) In(2—np)?’

—1
S [t = oF|2 < 16)jm* — o),

Using Lemma E.3, we have:
k Kl k
[wte —o* 2 < Y w — k|2 < 16| — 002,
k=

and then from Lemma B.2, we get:

o = ot < et — o) (1- ) T e -0t (1-%) i (1)
By combining (14) and (15), we have:
" — %2
< Jlr ™ = gF Y2 16— o) (1 - 7) +32)|x" — 0|12 (1 - %)L + %HW* — o0 (1- %)
<l = 2 4 )l — o2 (1 - )TU = ol (1- %)L
< et R s = o) (1= ) (6|7r* ~o+ ).
Therefore, we get:
o™ = oK < ™ N2 g — o0 (1= ) 7 (ot - %)+ £)
<l — |2+ 8K — 0| (1 - ) N (6” =%+ i) : (16)
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By combining (16) and Lemma E.3, we have:

K—-1 Ty
Kllm#o ™ = oF 12 < 37 [lnte" — ok |2 + 8K2|n* — o) (1 - %) ? (GW* — o0+ <>
k=0 K
&
<16||7* —o°|* + 8K 7" — 0| (1 - %) 2 <6W* — o'l + C)
2 %
Ty
< 16]7* = "2 + 8727 — o) (1- ) 7 (6““* —o°ll+ f) |

Under the assumption that T, > max(m

NN~ % np\ ~ et 0T N i N mE
(1-2) " =(1- 7) ' (=) —6a (1 ?) T 64T,

Thus, we have:

waﬁl—aK*Ws16w—a%?+ww—oo(6H—o%+<)
7
=wf—a%(&f—a%+j)

< 8- diam(X) <8 - diam(X) + i) .

E.5. Proof of Theorem B.6 (Formal Version of Theorem 4.5)

Proof of Theorem B.6. First, from Lemma B.3, we have for any £ > 0:

E [GAP(U’VH)} < e diam(X) - {Hﬂu,a" o Uk”} 4 (L A diam(X) + O -E [”ﬂ.u,a’“ . a_k-i-l”] )

Using Lemma B.7, we can upper bound the term of E {||7r“7"k — ghtl ||2} as follows:

20 — Kk
w(T, — 1) + 20

E [”,n_u,ak . 0k+1||2} <

B [l -] + - s

R 1)+ 20) \r (3@ - D+1) + 219) '

Combining these inequalities, we have for any k£ > 0:

E [GAP(cF )]

p(20 — k)diam(X)2 + NC2 (L In (ET +1) + 5)
pliT4/5 ’

< p-diam(X)-E [H?T”’”k — UkH} + (L - diam(&X) 4 ¢) - \/

where we use T, > max(T*/® 4 2,3). Let us denote K := |T/T, | as the total number of the slingshot strategy updates
over the entire 7 iterations. By letting k = K — 1 in the above inequality, we get:

E[GAP(r*)] < - diam(X) - [ = o]

20 — k)diam(X)2 + NC?2 (L In (&T +1) + &
+(L.diam(X)+g).\/f’( r)diam(X) +pf$T4/5(K n (g7 + )+29)7 17
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Next, we derive the following upper bound on E [HW“JK*I — oK1 ||] from Lemma B.8:

E [HW;L,UK’I - O_K—lﬂ

) $ I = 02 + 2 (diam(X) + & +1) (p(20 — r)diam(X)2 + NC? (1n (5T +1) + 35))

K

By combining (17) and (18), we get:

E [GAP(c™)]

(18)

1

20

)

< p - diam(X %

(26 — k)diam(X)2 + NC? (% In (%T + 1) + ﬁ)
prT4/5

-I-(L-diam(X)—i-C)-\/p

Finally, since 77 = 0%, K = |T/T, ], and T,, = ¢ - max(T*/® + 2, 3), we have:

E [GAP(r")]

). \J |7 — 0|2 + p% (diam(X) + ﬁ + 1) (p(20 — k)diam(X)2 + NC? (2 In (£T +1) +

[ =002 + 2 (diam(X) +5 1) (p(20 — k)diam(X)2 + NC2 (LIn (£T + 1) + &)

<,u-diam(X)-\J /T,

p(20 — k)diam(X)2 + NC? (2 In (T +1) + 3)
pHT4/5

+ (L - diam(X) + ¢) \/

< p-diam(X) - \/c(TY5 + 5)

| J |7* — 002 + j—ﬁ (diam(X) + g + 1) (p(20 — K)diam(X)2 + NC? (2 In (£T+1) + %))
T

p(20 — k)diam(X)2 + NC2 (L In (£T +1) + 5)
pHT4/5

+ (L - diam(X) + () \/

6cllm* — 00|12 + 15 (diam(X) + § +1) (p(20 — w)diam(X)2 + NC? (LI (5T +1) + 55))

S,u-diam()()-\l T8

p(20 — k)diam(X)2 + NC? (2 In (T +1) + 3)
pHT4/5

+ (L - diam(&X) + ¢) \/

. | 6¢
S - dl&m(X)Q . m

18¢ (diam(X) + % + 1) (p(20 — K)diam(X)2 + NC? (L In (£T +1) + o))
pliTl/S

+ p - diam(X) - J

p(20 — k)diam(X)2 + NC2 (L In (5T +1) + &)
pﬂTl/E’

+ (L - diam(X) + () \/

V6ep - diam(X)?
= T1/10
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+

T1/10 Pk ’

This concludes the statement of the theorem.

E.6. Proof of Lemma B.7 (Formal Version of Lemma 4.6)

Proof of Lemma B.7. Assuming that G is identical to Dy, Assumption 5.4 is satisfied with 3 = v = 1. Furthermore, since
Y(z) =3 ||#||*, both p = 1 and int(dom t) = R% hold. Therefore, Assumption 5.5 is also satisfied. Consequently, we
can apply Lemma B.10 with 8 = v = p = 1 and obtain:

20 — K * NC? 1 1
E wof k412 < E ot _ k2 ] T, 1 .
[Ilnt" — o1 7] < W(T, —1) 126 [Int7" — ¥ 2] + p(r(Ty —1)+20) \n " (35— 0+1) + 55

O

E.7. Proof of Lemma B.8 (Formal Version of Lemma 4.7)

Proof of Lemma B.8. From Lemmas E.2 and B.7, we have:

E[lx" - o*|2]
2 o

S E [Ho_k o O_k71||2] + ﬁ]E [Hﬂu’gk 1 _ Uk”}
7

-1

, ) i o
<E [”0’“ =t ] B [ R ] B 2o - et b 2t o
1

o 2 02 K
R(Ta )+29 E [llnto" — o*7] + p(m(TgN— 2) + 26) (iln (%(T 2)+1) + 219>
P (dlam ) \/K(TUQH—Z);@Jr 20IE [Hﬂ.u,gk_l _ O‘k—1||2] 4 p(/{(TgNCQ) +20) <11€ In (%(Ta -2)+ 1) + 210>
+E [ — ot
[Hﬂ-l‘ 0 ok~ 1” } (29 — K)diam(X) +NC? ( (Q%(T — 2) + 1) + %)
p(~(Ty —2) + 26)

g) \/p(ze — )diam(X)? + NC? (1n (35(Ty —2) +1) + 55)

) (diam(X) + p(K(To — 2) +20)

Under the assumption that 7, > max(T*/5 + 2, 3), we get:

HHQ] N p(20 — k)diam(X)? + NC? (L In (£T +1) + &)
p(KT*/5 + 20)

+2<diam(X)+<) \/p(29—/i)diam(X)2+N02 (%hl(z%T—l—l)-F%).

E[ro" = 0" 2] <E [ — o

p(KT*/> + 20)
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Therefore, we get:

1

p(20 — k)diam(X)? + NC? (L In (5T + 1) + ?19)

p(KT*/5 + 20)
. ¢ p(20 — k)diam(X)? + NC? (lln (%T—i— 1) +§)
21d X > K

+ ( fam(X) + 'u> \/ p(KT4/5 4 20)

p(20 — k)diam(X)% + NC? (% In(&T+1)+ %)
p(KT*/> + 20)

g) \/p(29 — k)diam(X)2 + NC2 (LIn (5T +1) + )

n p(KT/5 + 20)

Ef|r" " — oF P < E[at" T - o722 4

< E[|n"" —o*| + K

Here, we derive the following upper bound in terms of ]E[Hﬂ'“"’k —a¥||?):

Lemma E.4. Assume that T, > max(T4/ 5 +2,3). In the same setup of Theorem 4.5, we have for any Nash equilibrium
e II*:

E

K-1 .

20 — k)d X2+ NC?2 (tIn(&5T+1 s
S et — M| < fln - 0% + K - diam(X) - p(26 — r)diam(X)" + — (cIn (557 +1) + 39)
= p(KT4/5 + 20)

By combining (19), Lemma E.4, and the assumption that 7, > max(T4/ 54 2,3), we have:
KE[[[xe" " — o512

K-—1 . )
<E|Y flnne - a’ﬂ o f2P20 = Rdiam(X) + NC? (LIn (5T +1) + )
k=0

p(KT4/5 + 20)

o . ¢ p(260 — k)diam(X)% + NC? (£ In (25T + 1) + 55)
+ 2K (dlam(X) + M> \/ AT T 20)

(20 — k)diam(X)? + NC? (L In (£(T - 1)+ 1) + 55)
p(KT*/> + 20)
(20 — k)diam(X)? + NC? (% In (;—QT + 1) + 710)
p(KT*/> + 20)

e ¢\ [p(20 — k)diam(X)? + NC? (L In (55T + 1) + 55)
+2K (dlam(X) + M) \/ o(KT5 + 20)

< |7 = o + K - diam(X) - \/'D

p(20 — k)diam(X)? + NC? (L In (35(T — 1) + 1) + 55)
p(KT*/5 + 20)

< |7 — o) + TV/5 - diam(X) - \/

(20 — k)diam(X)? + NC? (% In (?’ET 4 1) + %)
p(KT*/> + 20)
g) \/p(29 — m)diam(X)2 + NC2 (LIn (5T + 1) + L)

272/% ( diam(X) + =
+ < jam(X) + u p(KT4/5 + 20)

+ 7257

< |7 — %) +3 <diam(){) + 55 1> <

20
PR

p(20 — k)diam(X)? + NC? (£ In (55T + 1) + 1))
u .
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F. Proofs for Section 5
F.1. Proof of Lemma B.9 (Formal Version of Lemma 5.6)
Proof of Lemma B.9. From the definition of the Bregman divergence, we have for any ¢t € {kT,, kT, +1,--- , (k+1)T, —
1}:
Dy (" w1 = Dy (" wt) + Dy ()

= () = (i) = (T, 77 — 2t

ﬂﬁ(ﬂi“’ )+ (mf) + (Vip(m)), wh? )
+p(mith) — (mh) = (Vep(nf), mitt — xl)
= (Vih(rl) — Vp(ith), oo — i, (20)

From the first-order optimality condition for 7'+, we get for any t € {kT,,, kT, +1,---, (k + 1)T, — 1}:

(Vi (e, 7) = 1V, Gk, 0k)) — V() 4 V() oo — 71y <0, @1

Note that V., G (r!, oF) and V., (rt) are well-defined because of Assumptions 5.4 and 5.5. By combining (20) and (21),
we have:

k k k
Dy ("7, mi*h) = Dy (af"7 ,mf) + Dy (m ™ mh) < (Vvi(mf, wly) — uVa, G(rf of ), m™ =) (22)

K2 ? K2 17 Z ? 1

Next, we derive the following convergence result for 7t:

Lemma F.1. Suppose that Assumption 5.4 holds with 3, € (0,0), and the updated strategy profile w* satisfies the
following condition: for any t € {kT,, kT, +1,--- ,(k+1)T, — 1},

k

Dy w 1) = Dy (a7 ') + Dy (' wt) < 0y (Vi wls) = pVin Gl o), — ).

Then, forany t € {kT,, kT, +1,--- ,(k+1)T, —1}:

t—kTs+1
Do(e 71) < Dy’ 24 (1 - ) T

It is easy to confirm that (22) satisfies the assumption in Lemma F.1. Thus, taking ¢t = (k + 1)T, — 1, we have:

To
Dy (" 70Ty < Dy (" 7o) (1 201)

k — kT, k+1 _

Since o and o 7(+1Ts e conclude the statement. O

F.2. Proof of Lemma B.10 (Formal Version of Lemma 5.7)

Proof of Lemma B.10. Writing g¢ = V., v;(rt, 7t ,) — uV,,G(rt, oF), from the first-order optimality condition for /™,

we get forany ¢t € {kT,, kT, +1,--- ,(k+1)T, — 1}:

(gt + &1 — V() + V() woo" — ity <. (23)

Note that V., G (¢, o) and V., (7 ) are well-defined because of Assumptions 5.4 and 5.5. By combining (20) and (23),

(Rl 3

we have for any t € {kT,, kT, +1,--- ,(k+1)T, — 1}

. k
Dy (" ) = Dyl ) + Dy (rtHh, ml) < melgh + €l mitt — i, (24)

? ? 2 K3 ’ ? 77 7,
We have the following Lemma that replaces the gradient with Bregman divergences:
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Lemma F.2. Under the noisy feedback setting, suppose that Assumption 5.4 holds with 3,~ € (0, 00), and the updated
strategy profile Tt satisfies the following condition: for any t € {kT,, kT, +1,---,(k+1)T, — 1},

Dy (" w1 — Dy (a7 7t) + Dy (a1, ')
N
k
<Y (Vi wly) = pVa, Glnt,of) + & mi! — 7).

i=1

Then, forany t € {kT,, kT, +1,--- ,(k+ 1)1, — 1}:
Dw (Wuﬁkvﬂt+1) - Dill(’fru’akaﬂ—t) + Dw(WtJrlv 7Tt)

2,2 2 N
peyp?(y +28) + 8L 1 ey MY o ¢ 141 _pot
<M (( 2 Dy(n* ™ ") — 7D¢(7r“ ST ) e ;_1<£i,7ri — 7).

It is easy to confirm that (24) satisfies the assumption in Lemma F.2. Thus, for any ¢ € {kT,, kT, +1,--- ,(k+1)T, — 1}:

Dy (a7, w41) = Dy (" ) + Dy (a1, )

N

2 2 2
pryp*(y +28) + 8L Y o "
< << 52 Dy(attt at) — ?Dw(w“’ ) ) e Z( toptl ety
=1

N
= (0D (x" T, 7t) — KD¢(W”’ak,Wt)) + 0 Z( fopith ey,
i=1

Then, using this inequality, we can bound the expected value of Dy, (W”’Uk , w1 as follows:

Lemma F.3. Suppose that with some constants 0 > k > 0, forall t € {kTy, kT, +1,--- ,(k+ 1)T, — 1}, the following
inequality holds:

Dw(’ﬁ#’ak 7 7rt+1) . Dw(ﬂ_u’ak , ’/Tt) + Dw(WtJrl, ’/Tt)
N
< (@D (r Y 1) — KDy (" 7)) e Y (EL wH — ),
i=1

Then, under Assumption B.5, for any t € {kT,, kT, +1,--- ,(k+ 1)T5 — 1},

E[Dy (7", 7))
20 — Kk

< -

= k(t—kT,) + 20

- NC? 1. /& 1
E[Dy (xt0"  7+Te S (=T, +1) + — ).
Do w7 20) \ s n(ze(t o)+ )*29
Taking t = (k + 1)T, — 1, we have:

E[Dy (x> a1

20 — K k NC? 1 K 1
< T R[Dy(xt" 7kTe S (T, — 1) 1)+ — .
S T =) o e ) e Ty a0 <m n(29( )+ )*29)

Since 0% = 7%T> and g%t = r(*+DTo we conclude the statement. O

F.3. Proof of Theorem 5.8

Proof of Theorem 5.8. When G(m;,n;) = Dy (m;,m,) forall i € [N] and 7,7" € X, we can show that the Bregman
divergence from a Nash equilibrium 7* € II* to o**! monotonically decreases:
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Lemma F.4. Assume that G is a Bregman divergence Dy, for some strongly convex function ¢'. Then, for any Nash
equilibrium 7* € II* of the underlying game, we have for any k > 0:

Dy (7%, 0™ ) — Dy (7, 0%) < =Dy (", o).

By summing the inequality in Lemma F.4 from k = 0 to K, we have:

K K

p
Dw/ ’/T O' Z k+170' 52 k+1 —O'k||2,

k=0 k=0

L k|2

where the second inequality follows from the strong convexity of 1)’. Therefore, Z;O:o lo < 00, which implies

that ||o*+1 — ok|| — 0 as k — oo.

By the compactness of X and Bolzano—Weierstrass theorem, there exists a subsequence k,, and a limit point 6 € X such
that ¥ — & as n — oc. Since [|o¥»+1 — g || — 0 as n — oo, we have ¥+ — & as n — co. Thus, the limit point &
is the fixed point of the updating rule. From the following lemma, we show that the fixed point & is a Nash equilibrium of
the underlying game:

Lemma F.5. Assume that G is a Bregman divergence D,y for some strongly convex function i, and ok+l = quot for
k> 0. Ifo*t! = o then o* is a Nash equilibrium of the underlying game.

On the other hand, by summing the inequality in Lemma F.4 from k = k,, to k = K — 1 for K > k,, + 1, we have:
0< Dw/(f)’,dK) < Dw/(&,ak").

Since 0% — & as n — oo, we have 0 — 6 as K — co. Since & is a Nash equilibrium of the underlying game, we

conclude the first statement of the theorem.

O

F.4. Proof of Theorem 5.9

Proof of Theorem 5.9. We first show that the divergence between IT* and o* decreases monotonically as k increases:

Lemma F.6. Suppose that the same assumptions in Theorem 5.9 hold. For any k > 0, if % € X \ IT*, then:

min KL(7*, o"!) < min KL(7*, o").
mrellr meellr

Otherwise, if o* € 1%, then o**+1 = o* € TI*.

From Lemma F.6, the sequence {min, ¢y« KL(7*, 0%)};>0 is a monotonically decreasing sequence and is bounded
from below by zero. Thus, {min -~ KL(7*, ak)}kzo converges to some constant b > 0. We show that b = 0 by a
contradiction argument.

Suppose b > 0 and let us define B = min e+ KL(7*, 0°). Since min, e+ KL(7*, 0%) monotonically decreases, o*

isintheset Oy p = {0 € X | b < ming+en- KL(7*,0) < B} forall k > 0. Since min «¢r+ KL(7*, -) is a continuous
function on X, the preimage €2, 5 of the closed set [b, B] is also closed. Furthermore, since X is compact and then bounded,
Oy p is a bounded set. Thus, €, p is a compact set.

Next, we show that the function which maps the slingshot strategies o to the associated stationary point 7+ is continuous:

Lemma F.7. Let F(0) : X — X be a function that maps the slingshot strategies o to the stationary point 7 defined by
(4). In the same setup of Theorem 5.9, F(-) is a continuous function on X.

From Lemma F7, ming«cn«KL(7* F(0)) — mingen- KL(n*,0) is also a continuous func-
tion. Since a continuous function has a maximum over a compact set ) p, the maximum J =
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maXseQ, 5 {Ming e+ KL(7*, F(0)) — ming- e+~ KL(7*,0)} exists. From Lemma F.6 and the assumption that
b > 0, we have 6 < 0. It follows that:

k—1
min KL(7*,0%) = min KL(7*,0°) + <m1n KL(7*, ') — min KL(?T*,CTZ)>
mell* eIl s \nellr T eIl

k—1
<B+)» 6=DB+k.
1=0

This implies that min« g~ KL(7*,0%) < 0 for & > %, which contradicts min,« e« KL(7*,0) > 0. Therefore, the

sequence {min, e+ KL(7*, 0%)} x>0 converges to 0, and " converges to IT*. O

F.5. Proof of Lemma C.1

Proof of Lemma C.1. First, we introduce the following lemma:

Lemma F.8. Let us define T(y;) = arg max{(y;,x) — ¥ (x)}. Assuming ¢ : X; — R be a convex function of the Legendre
TEX;

type, we have for any m; € X;:

Dy (mi, T(yi)) = (mi) = (T (y:) — (i, mi = T(ya))-
Defining y! = 13"t _o (Var,vi(75,7%,) — uVar, G(xf, 0F)) and letting m; = 7! oy = y! in Lemma F.8, we have:

Dyl i) = () — ) = (gl — ).

Note that V., G (7r o¥) is well-defined because of Assumptions 5.4 and 5.5. Using this equation, we get for any ¢ €

70 K2

(KTy, KT, + 1, , (k + 1)T, — 1}:

Dyl w 1) = Dyl f) + Dy ()

3

= () — () — (gl Y () () 4 (T at — d)

+ () — () — (it — )

- _<y£77ré%ak - 775+1> + <y;5 177‘-57076 - 77;‘5+1>

= (g —yi Nt

= (Vi vi(rl,my) — pV, Gt ok), mitE — i), (25)

It is easy to confirm that (25) satisfies the assumption in Lemma F.1. Thus, taking ¢ = (k + 1)7, — 1 in Lemma F.1, we
have:

Dw(ﬂu,ak,ﬁ(k+1)T(,) < Dw(ﬂ_u,ak)ﬂ_kT,,) (1 _ 77M’Y>

2
Since o = %77 and g%t = 7(:+1DT> we conclude the statement. O
F.6. Proof of Lemma C.2

Proof of Lemma C.2. Writing y! = "% (Vi vi (75, 75 ) +£5 — iV, G(7$ , 7)) and using Lemma E.8 in Appendix E.5,
we have:

Dy (rt" 7Yy — Dy (a7 wl) + Dyt h)
= (yf — gt it — e >

:nt<vﬂivi(ﬁ’f’ﬂii)_uvﬂ'i0( 5 z)+§z7 f+1 f7ak>'
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Note that V.., G (w}, oF) is well-defined because of Assumptions 5.4 and 5.5. Thus, we can apply Lemma F.2, and we have
forany ¢ € {k‘Tg,kT +1,-- ,(k+ 1T, — 1}

Dy (7T, ity — Dw(ﬂ“’[rk,ﬂt) + Dd,(WHI, ")

2 2 2
p2yp*(y +26) + 8L Hy o oo
< (( 22 Dy(r" ') = SoDy (7, 7)) + Z it — )

k
= 77t(9D¢(7rt+1’7rt) — an(ﬁlw ) + 1 Z t fH ,a ).

Therefore, the assumption in Lemma F.3 is satisfied, and we get:

E[Dy(n#" 7))

20 — Kk k NC? 1 1
< o kT, _ — .
S pa k) 1 oa e T 1 20) ( In (20“ o)+ ) + 29)

Taking t = (k + 1)T, — 1, we have:

E[Dy(n#" D7)

20 — K k NC? 1 K 1
<7 F gD, (x" 7T 21 (7 T, —1 1) .
~k(T,—1)+26 [Dy (n7" )]+p(f£(Tg—1)+29) <H " 29( )+ Ry

Since o = 7*T> and g%t = r(++1DTo we conclude the statement. O
G. Proofs for Section D

G.1. Proof of Theorem D.1

Proof of Theorem D.1. Since v;(-, 7" ;) is concave, we can upper bound the gap function for 7 as:

GAP(7")
N
= 2 ey (Vmen(n'), 7 = )
N
_ glea))((z (<vﬂ.i’0i(7l'p”g), e — W;L,O’) B <v7rivi(7r#’0),ﬂ'f _ ﬂ-zH’J> 4 <Vﬂi1}¢(7'rt) _ vﬂivi(ﬂ“’g)aﬁ-i - 771t>) . (26)

From Lemma E.1, the first term of (26) can be upper bounded as:

N N
max Ve vi(m?), 7 — 77 < diam(X) - min — Ve, v (o) + a;]|2.
g D (Ve ). 7= ) S @) iy S = Veew) + )
From the first-order optimality condition for 7*?, we have for any m € A’:
N
N (Varvi(77) = pVn, Gt ), — 7)< 0,

i=1
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and then (V. v;(7#7) — uVo, G(7}7,0:))icin) € Na (7). Thus,
N
max » (Vv(77), 7 — %)

~EX 1
T =

N

< diam(X), | Y || = Vi, vi(m7) + Virvg(m07) — uV o, G (w7, 03) |2

i=1

N

= - diam(X), | Y[V, G(al7, 0)]|2. (27)
=1

Next, from Cauchy—Schwarz inequality, the second term of (26) can be bounded as:

N

N
=D (Vaui(@ ) mf = 7)<l = wt | D (Vi) |12

(28)
i=1 i=1
Again from Cauchy—Schwarz inequality, the third term of (26) is bounded by:
N N
D AVrvi(mt) = Voi(m9), & = wl) <17 = 7|y | Y (I Vevi(7t) = Vv (i) |2
i=1 1=1
N
< diam(X) [ Y |V, vi(7t) = Vi vs(mi) |2
i=1
< L -diam(X) |7t — 77|, (29)
where the third inequality follows from (2).
By combining (26), (27), (28), and (29), we get:
N N
GAP(r') < - diam(X),| Y |V, G(x}"%, 03)||2 + | L-diam(X) + | D [[Vervs(mio) |2 | 7" = 7.
i=1 i=1
Thus, from Lemma 5.6 and the strong convexity of ), we have:
N
GAP(r") < - diam (&) | Y [V, G(nt7, 0)|2
i=1
. al o\ [2Dy(mme, 70 nuY\ !
+ | L- diam(x) + ; [V neoimme)]2 | (550 = (1= )
O

H. Proofs for Additional Lemmas

H.1. Proof of Lemma E.2

Proof of Lemma E.2. From the first-order optimality condition for 7" and W“*”kil, we have for any k > 1:

k k k k
u,o w0 n,o k k w,o
(Vrvi(m? 7wl )‘N(ﬂ'i _Ui)vai -m7 ) <0,
k—1 k—1 k—1 k k-1
(O o o k—1 o o
(Vi y T )_M(ﬂ-i7 —0; )a”i’ - ) <0.
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Summing up these inequalities yields:

N
k k k k
02> (Vau(rto” 77 ) = (w7 = ob) ok = o)
i=1
N
k— k—1 k—1 k k—1
S (Ve ) (e )t e
i=1
N N
k 1 k k
= D (Vmui(m w7 ), m T = w4+ Y (Vi w7, of =)+ pl”
i=1 i=1
N -1 —1 k N k—1 k k—1
Z<vaz( #0 7 ,L_L’LO' )77_{_;9,0 771_?,0 +,UZ< Z(c—l ﬂ_éz,cr ’ﬂ_f,a 771_1”,0 >
i=1 i=1
= o " TR Lk TN L wyo”
:Z<vﬂivi(ﬂi ;) = Vil y T ), T b )
i=1
N
k k —1 k—1
Y (a7, ok = w4t H2+MZ e e
i=1
N
N v uo " k o 1o k(2 P TR L TN L TR L
_Z< mvi(m 7wl ) 08 — )+ pllm el +HZ<01‘ 7Ti » T T
i=1 i=1
where the last inequality follows from (1). Then, since
; k— o ot okt k—
N L it il et e
2 1 » 1 2 2 2
we have
N k k —1
02 Y (Vaui(al? w7 ) o — a4l — ot
i=1
N N
k— k k— k— ® _
DG A S RS D et A A
i=1 i=1
N
k —1
> Y (Tt w7 ) ok = at ) e — ok
i=1
_ % (Ho_k—l _ ﬂ_,u,a’”"l HQ + Hﬂ_p,ak o ﬂ_p,ok’1”2 ||7T;L,a _ ﬂ_u,ak’l =+ o_k—l _ ﬂ_,u,ak’l HQ)
= L (Il = R — e T2 e g 2)
N
k k—
>3 (Vaui(l w7 ), of =l ) el = oF|2 = Bt - R
i=1
N
, k , k , -1 k M k 1% _
L R R Tl K P
i=1
N
" o* s I k I B
= > (Vrwi(m” w7 ) ok = o) B — ok |2 Bk — ot 2,
i=1
where the third inequality follows from (a + b)? < 2(a? + b?) for a,b € R. Thus,
N
k B 2 K k—1
I = P < ok = bR 4 2 Y (Tant e at ) nt o
i=1
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N
-~ 2 k—1 k k
< flo* = P+ Sl = oty S IVl w2
=1

S ||0,k _ O’k7

H.2. Proof of Lemma E.3

2 _
P 2 et
1

"Il

Proof of Lemma E.3. From the first-order optimality condition for p**!, we have:

k
<vai(7ré‘=‘7 » T

Thus, from the three-point identity 2(z — y, 2 — z) = ||y — 2||> — [z — y||* — [l — 2||* and Young’s inequality:

k
0
—1

k
—o;

)*u(ﬂ,‘»“"k

7% =

k
* H,0
)77[-71 -7

- T

i

T
i

)

o™t — P —

) <0.

pir* — o

k+1,0

A [loM T —w |

N N
k k k k
Z<V‘mvi(ﬂ-z}‘ha 771-/:72‘” ), — ﬂ-é“j ) < MZ@#?U - Uzl‘cvﬂ;‘k
=1 =1
= Gl — oM = Blnto” — | — Gl — |
2 2 2
— EHW* — ok - H”ﬂu,a’“ L ﬁ||7r* L ghHl g w“’”kH2
2 2 2
= B — b2 = B’ — ok |2 = B — o2 - £
2 2 2 2
< Bllw — %2 = Ejlrme® — oF )2 = Efln® — o2 4l -
2 2 2
Iz 7 b 7 Iz
< Sl = o* |2 = Sl — o2 = Bt — 0" 2 4
: 6 21n 64 .
Here, since T, > max(m_ln(Q_W) InT + 1n2—1r111(2—m,a) , 1), we have:

1 H 122

(1) "= (-4

Therefore, we get from Lemma B.2:

nH

)—mlnT<

L
2

In 64

)1“(1*%&) — 64 (1 _

K

2

N
k k k
> (sl w7 ), wf = w)
i=1
32uT3
< llrt = M2 = Sl = o* 2 = Ejlnt — o2 4 g — oM 2
< Sllm* = ok |2 = Sl = o* 2 = Bt — "2 4 gl — oM P+ Bt -
= Sl — o2 = St — o512 = Bt — oF P+ gl - oM.
Summing up this inequality from £ = 0 to K — 1 yields:

B s 02 K

Sl = oo™+ oms
K-1 N X

> Y Y (Tmunlte 7 ) m — e
k=0 i=1
K—-1 N X

> Z<vmvi(7r:<vﬂ—ii)vﬂ—j 771—#,0 >
k=0 i=1

> 0.

33

k

)

K-1 K-1 .
>l = o= BT e — o2
k=0 k=0

In T3
> Tm(2—nu)—In2

ot |2

k+1 7Tu,al"'>

= 6473,

o — w2 (1 -

32uT?
O_k+1||2 + :L2l‘ Ho_lc+1 771_%0’6”2'

UL

2

X
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Then, from Cauchy—Schwarz inequality, we have:

K-1 K-1
£ o — ok | < Sl = 02 4+ 3 It o
< 7” * 0”2 64T3 Z <ZO||JT+1 _
k
= g””* —ol 32/;3 (
k=0 7=0

2
o'l +[I=* 0°||>

2
> Ml - UTH) + |l — o0

K-1 k
< Sl — o2 32’}32<K |aT“oT||2+||w*o”>
k=0 7=0
K-1
< Ll =o'l + o (K |ak+1—ok||2+m*—a°||2)
k=0
K-1 . . 2
<Gl ="+ <K 3 (I = e =) +Kw*ooll2>'

K N k)2
LYl — ok
k=0
’ u K— 1 .
R (KQ ot = w2 (1 -
k=0
Iz Iz £ 1 2
< Sl = 0P + g (K? (2l = oHl) + K|
k=0
" " K—1
_ 5”77* _0_0||2 3973 <4K2 Hﬂ.uo —O'kH2+K||7T* _
k=0
K-1
<l = 0P+ g <4T2 " = oHP + T —
k=0
" K-1 .
(g4 g2 I = 1P+ L X et - P
k=0

< 2p|m —

K-1 .
P+ 8D I — ok
k=0

Therefore, for K > 1, we get:

K—1
Z ||7ru,<f’“ _
k=0

H.3. Proof of Lemma E.4

Proof of Lemma E.4. From the first-order optimality condition for p**!

k k k
w,o w,o w,o k
(Vaoi(m? 77 ) — (7"1' ToTo;

34

_ ﬂ)Tg + et

cfIP <16 — o

T

T — 00”2>
0_0||2>
0,0”2)

0H2'

, we have:

k
* o
) T — T

) < 0.

2
ak||) K| —o°||2>
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Thus, from the three-point identity 2(a — b, ¢ —a) = b — ¢ — [l — b]}? — [la — c/|? and Young’s inequality:
N
Z<Vﬂ-7vl( J 7‘[‘5’:’ ) Tr 77(-“0- </’LZ MU 70—1””‘1 77'['# k>
i=1
= %”ﬂ'* _ o—k||2 _ g”,n_lt,g’“ _ o_k;||2 _ gnﬂ_* . ﬂ_mg ||2
= g”ﬂ'* _ Uk||2 _ gnwma’“ . Uk||2 _ g”ﬂ_* _ Uk+1 + Uk'H . W“’akHQ
; a : H [ . )
= 5”71’* _ (j'k”2 — *||7TM7‘7 — o'k’||2 — 5||71'* _ ak+1H2 o §||o.k+1 — o H2 _ ,U/<7T* - O—k‘f‘l’ak-i-l _ o >
< %”ﬂ'* _ o'k“2 _ HHWM,U’“ _ o’k||2 — g”’ﬂ'* _ ak+1H2 + ,U,”’]T* . o,k+1||||o_k+1 . 7TM7Uk||
K " k M . )
< 5”77* _ o-k“2 — §||7rM7U — gk”2 _ 5||71—>%< o 0k+1H2 +u- dlam(X)HJkJrl _ ko H

Since T, > max(T*/® + 2, 3), we get from Lemma B.7:

N
Z vTrl'Uz ug 7TIL_L’710' ) 7T 771'#0- >]

1=

1
<E[Sllw = o) = Sl — o) - Bt — o+ 1]

+ 1+ diam(X) - \/9(29 — r)diam(X) p—:li](va _(;)11(22’3)@0 1) +1)+4)

<E [%”ﬂ_* _ O,k”Z _ g”ﬂ-%(rk _ O_k||2 _ gnﬂ_* _ a'k+1H2:|

, p(260 — k)diam(X)% + NC? (L In (£T + 1) + 55)
. X) - K )
+ - diam(X) \/ p(RT75 + 20)

Summing up this inequality from £ = 0 to K — 1 and taking its expectation yields:

K
By s o*
S o1 |3 et =T
k=0
p(20 — w)diam(X)2 + NC2 (1 In (£T +1) + &)
Ku-d K
+ Kpu - diam(X) - \/ (KT4/5+29)

K—1 N . N .
= [Z S (Vi (rt w0 e — o)

Therefore, for K > 1, we get:

K—-1 . 1 K 1
. 20 — k)diam(X)2 + NC2 (= In (£T + 1) + 55
E E ||7T”’Uk —oF|?| <||7* — 0%? + K - diam(&X) - o r)diam(X) Ve G In (55 ) 29).
= p(KT*/> + 20)
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H.4. Proof of Lemma F.1

Proof of Lemma F.1. We first decompose the inequality in the assumption as follows:

Dy (rl"”" w*) = Dy(n*”" ml) + Dy (it 7t

)
< (Vi vi(wl, 7l ) = pV o, Gl o), mitd — ")
= (Vp,vi(ml,wt ), mit — Wf’a Y 4 Vi, Gt ok, 7t — ity 4 nu(VMG(Wf,Uf),ﬂf’ak -7, (30)
From the relative smoothness in Assumption 5.4 and the convexity of G(-, o%):
(Va Gl 07),mf = m ™)
< G(rf,0f) = G(ri ™ of) + BDy (mi, 7f)
< G(nl,of) = Gl o) + (Vo Gl of) wl"" = wlHh) 4 BDy (el ). G1)

2 3

Also, from the relative strong convexity in Assumption 5.4:

k

G(’/Tz?’ Uf) - G(WHJ 7011‘6) < <V7\'71G(7T§a O’f),ﬂf - ﬂ¢’0k> - ’YD?D(W;‘M’U)C"’Q?)' (32)

3

By combining (30), (31), and (32), we have:

Dyl w ™) = Dyl f) + Dy (et )
< n(Vﬁivi(ﬂf,ﬂt_»),wﬁl " o ) + (Vo G(?rﬁ"”k,of), A A
— npuy Dy (a7 7t) + nuBDy (a1, ),

and then:

DHCEEEADE (1—mw)Dw( ;) + (1= nuB) Dy (mi ™, )

k
<V vi(l,wl ), m = ) (Ve G 705)77%”’” —mith
k
= (Vv (mf T 7 ), altt — M )+ Va, G Uf)aﬁf’a —mith
+ 1 (Vmgvi(rd, ) = Vi (L D)t e

Summing this inequality from ¢ = 1 to /N implies that:
k k
Dy(n7, w'™h) — (1= npuy) Dy (77, ') + (1 = nuB) Dy (n'*, ')

N N
k k
<0 AVauim T aih), mit = w ) Sy (Ve Gl of), wl T —wlth
i=1 i=1

N
k
+772<Vm“i(77 ) vaz( t+1 tjgl)vﬂﬁ_l _7"570 )

N

k k k

Sﬂ§ <V,Tlvi(7rf’a ’ﬂ—ﬁf ) — 1V, G(T; ot ,0’5),71’;+1 77#,0 )
i=1

+772 (Varvi(mi, i) = Vi vi(; i t—tl)ﬂrﬁl —m7)
J.O'k
§n2<vmvi(w L)) = V(i wthh), mtt — i, (33)
=1

where the second inequality follows from (1), and the third inequality follows from the first-order optimality condition for
k
/St
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Here, from Young’s inequality, we have for any A > 0:

N
> (Vrilml, 7t) = Vauilm a5, =t
i=1
N N k
= Z (Vavi(rh, mt ) = Vo (rf T 7ty gty —l—Z(Vﬂivi(ﬂ L) = Vv (el ot ml — mthoy
i=1 i=1
N
v f+1 1y g (bt )12 i t+1 _t2 i t o2
ZI w Vim0 ) = Vavi(my, n2) 17 + oy llm w7+ oyt =]
1 ;
< <L2)\+ 2/\) ||7Tt+1 77Tt||2 + ﬁ||7rt *W“’UkHz
1 2 1 t+1 _t 1 wof _t
g; 2L )\+X Dy(m ,ﬂ')—|—p—)\Dw(ﬂ' o). 34)

where the second inequality follows from (2), and the fourth inequality follows from the strong convexity of 1.

By combining (33) and (34), we get:

M,Uk t+1 o _i mo’k AN _ 2L2)\ i t+1 ¢t
Dy (mt 7, m' ) < (1 —n( py ) Dy (mh ") 1—n|pus+ ; +p/\ Dy(m" T, 7).

By setting A\ = %{p,

2
Dy 7 H1) < (1 _ m) D (neo" ) — <1 - <u(v+2ﬁ) L AL >) Dy(rt+, )

2 2 wyp?
2 2 2 L2
_ (1_M) Dw(’fr“’ak,’frt)— 1_77 np (’7"_ ﬁ)+8 de(,”t—&-l’ﬂ_t).
2 2uyp?

2u7yp> 2 ... — 1
Thus, when 1 < T < ng Ve have for any ¢t € {kT,, kT, +1,--- ,(k+ 1)T, — 1}:

, t—kTy+1
Dy(er ", w41 < Dyl 7') (1= ML) < Dy’ 247) (1 2T)
O
H.S. Proof of Lemma F.2
Proof of Lemma F.2. We first decompose the inequality in the assumption as follows:
O‘k k
Dy(n}"” ,m ™) = Dy (nl"" m}) + Dy (w7, 7f)
< (Vi v, w) = iV, Gt oF) + €l =l
= (Vavi(ml ), mt = 77 ) 4 (Vi Gt oF), it — w )
(Vo Gt o), w7 = ) + (€l -t (35)

By combining (31), (32) in Appendix H.4, and (35),

Dﬂi(ﬂ—#’g vaH)—Dw( 50 ) z)+D¢( t+177ﬁ)

< nt<vﬂ'ivi(ﬂ-§aﬂ-t—i)vﬂf+l - e > +77tﬂ<va(7Tf7 70'11'6) " _ﬂf+1> +77t,u6DT/J(7T2+177T?)

)y TG i
k k
_ntﬂ'wa(ﬂzH)g vﬂf) +< zt?7T1t+1 ?U >
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Summing up these inequalities with respect to the player index,

Dy (a7 ) = Dy(ah" 7t) + Dy (x' T, 7")

N
o_lc
<0 Y (Vaoilad,wly) = pGat™ o), mtt — a7y 4 puBDy(rt )
=1
N
— mepyDy (w7 wh) + Y (g, it — alh )
=1

N
o ok ok
=Y (Vw7 ) — iV Gl Cok), = at ) Dy (n " )+ pBDy (r Y 7t)
k

+77t Z<V7TLU’L(7T$77T ) Vﬂ—l’l}z( t+1 7-[-75_4;_1)7 f+1 +77tz 1 erl ,u,O' >

N
Ok Uk a_k O_k‘ k
= Z 7]t<vﬂ—i1],'(ﬂ'f’ ’ﬂ-lji ) - ,LLVMG(TF,';’ vaf)v ﬂ-f—i_l - 7T’LH7 > - ntﬂryD’l/J(ﬂ-MU aﬂ-t) + UtMﬁDw(ﬂ'tHv Wt)

=1
N k N k
+ 7 Z<vﬂ'i’ui(7r$7 ) vmvz( . 7Tt—tl)77§+1 _Wf’[f > M Z< f’ﬂerl _7(1”’0 >
=1 1=1
< =y Dy (77" 1) + Dy (1, )
N k N k
> (Vaevi(ah, mhy) = Vv (wl T ol wlth = xlh) gy Y (el it — alo), (36)
1=1 =1

where the second inequality follows (1), and the third inequality follows from the first-order optimality condition for o
By combining (34) in Appendix H.4 and (36), we have for any A > 0:
Dy (" w ) = Dy(at 7t + Dy (x' T, 7)
k
< iy Dy (a7 7t) + ppBDy (', 1)

un 2 1 t+1 _t Ui o attl o
+p(2L /\+>\>D¢(7r )+ T Dy( +ntz &, 9.

By setting A = -2,

P

Dw(w“’gk,wt"'l) — D¢(W“’ok,ﬂt) + de(ﬁt-i-l’ )

2.2 2
Neky o peyp*(y +28) + 8L ot
< M (o ,wt)+77t< 2 D (1, ) +mZ C gttty
This concludes the proof. O
H.6. Proof of Lemma F.3

Proof of Lemma F.3. Reforming the inequality in the assumption,

k k k
Dy(r# 7 7)) < (1= kne) Dy (7, 7') = (1 = 0ef) Dy (w1, ") +mZ HE AR

= (1 — wme) Dy (7" 7" — (1 = 0,0) Dy (w1, 1)

N
+ntz<€:aﬂ-:_ +77tz 17 f+1 t>'
i=1
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By taking the expectation conditioned on F; for both sides and using Assumption B.5 (a),

N
E[Dy (7" m T HIF] < (L= ) Dy (a7 7) = (1= ) B[Dy (x 1) | F) + D El(megl, wi ™ = ) 7]
=1~ Knt)Dw(ﬂ“"’kwt) = (L= mOE[Dy(x+, 7| 7]
N ¢t
_ it ot g

< (1 - ant)Dw(ﬂ'H’a , ) = (1= n0)E[Dy (1, )| F]

b S e+ LD
7 m — T

2p(1 —mf) = k 2 k
k 7’]2 N

< (1= kn)Dy(7t 7ty 4+ —L E f2.7:

< (1— km) Dy )+ gy 2 B

N
1 ! 2
< 1-—— VD Hn,o t t E t)12 .
—< t—kT0+29/,€> (7T + ;:1 €3 11717)

Therefore, rearranging and taking the expectations,

NC?

(t = KT, + 20/W)EIDy (v w1 < (¢ = KTy =1 4 20/ R)ELDy (77" 7))+ s

Telescoping the sum,
" " NC? 1
t — kT, + 20/k)E[Dy (7, 711 < (20/k — DE[Dy (77, 7T e
(8 =K, + 20/ R)EDy(""" 7] < (20w = DED (="', w0 + T 3 oy

t—kT,

NC? 3 1
p(k(t — kT,) + 20) = kst 20"

k 20 — K k
EID o t+1 < EID Qo kT,

Here, we introduce the following lemma, whose proof is given in Appendix H.12, for the evaluation of the sum.

Lemma H.1. Forany x,0 > 0andt > 0,

In summary, we obtain the following inequality:

E[Dy (" wt+1)]

20 — K k NC? 1 1
< ——— " _RE[Dy(a"°  7*Te ~1 t— kT, — .
S wE k) 1 oa e T 1 20) <H n(29( )+ )*29
This concludes the proof. O

H.7. Proof of Lemma F.4
Proof of Lemma F4. Recall that G(m;, 7}) = Dy (m;, w}) for any ¢ € [N] and m;, 7, € X;. By the first-order optimality
condition for o**1, we have for all 7* € II*:

N

S (Vavilof " — p(Ve (08 ) — Vo (of), mf — of ) <.

i=1
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Then,

N N

Z<V¢/(Uf+l) - V’l//((ff), Jz]‘H_l - W;k> i Z<0—z]‘€+l - ﬂ—:v Vﬂivi(o—f+1’ O—E—z’—l»
i=1 i=1

IN

Moreover, we have for any 7* € IT*:

Dy (7, 0" — Dy (0, o)

N
= Z (¥'(m7) =" (o7 ™) = (V' (0] ™), 1) — o71) =/ () + 4 (0F) + (V' (), 7] — 07))

N
=2 () + (@) + (VY (0F), 0T = of) = (V' (o) = V' (o), 7 — o))

N
= —Dy ("1 0%) + D (VY (0 Th) = V! (of), 0T — ).

=1

By combining these inequalities, we get for any 77* € II*:

Dys (1,081 = Dys (%, 0%) < =Dy (0F1,0%) 4 = S ok — 72, U mi(0541, K1)

7 3 ? -1

==
11

S —Dw/(ok"_l,ok)—i— <0_£C+1

- 7T;'k7 Vﬂivi(ﬂf,ﬂ'ii»,

-

==
o
I
=

where the second inequality follows from (1). Since 7* is the Nash equilibrium, from the first-order optimality condition,
we get:

N
Z<O’f+1 -7, vai(ﬂ—:a 7Tii)> < 0.

i=1
Thus, we have for 7* € IT*:

Dy (n*,0**1) = Dys(n*,0%) < —Dys (aF+1,0%).

H.8. Proof of Lemma F.5

1

Proof of Lemma F.5. By using the first-order optimality condition for af+ , we have forall m € X:

N
D (Vavi(of oM ) — w(Vi ) (08T = Vi (0F)), m — o) <0,
i—1
and then
N N
D AVaui(of T ot ) m = o) <u Y (Ve (o) = Vet (0f), m — o ).
i1 i1
Under the assumption that ¢¥*1 = %, we have for all 7 € A’:
N
D (Vruilop ot m — o) < 0.
i=1

This is equivalent to the first-order optimality condition for 7* € IT*. Therefore, o**! = o* is a Nash equilibrium of the

underlying game. O
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H.9. Proof of Lemma F.6
Proof of Lemma F.6. First, we prove the first statement of the lemma by using the following lemmas:

Lemma H.2. Assume that o*+1 = 7" for k > 0, and G is one of the following divergence: 1) a-divergence with
a € (0,1); 2) Rényi-divergence with o € (0, 1); 3) reverse KL divergence. If o*+! = o, then o* is a Nash equilibrium of
the underlying game.

Lemma H.3. Assume that c*+1 = 77" for k > 0, and G is one of the following divergence: 1) a-divergence with
€ (0,1); 2) Rényi-divergence with o € (0,1); 3) reverse KL divergence. Then, if c**1 # o*, we have for any 7 € I1*
and k > 0:

KL(7*, o) — KL(7*, 0") < 0.

From Lemma H.2, when % € X \ IT*, o**! # oF always holds. Let us define 7* = arg min KL(7*, o¥). Since
T ell*
ohktl # o®, from Lemma H.3, we have:

mierl KL(7*,0%) = KL(7*, 0%) > KL(7*, o *1) > miH KL(7*, o**t1).
mrell* T €I

Therefore, if 0% € &' \ IT* then min,- ey« KL(7*, 0* 1) < ming- e« KL(7*, 0%).

Next, we prove the second statement of the lemma. Assume that there exists o® e IT* such that o511 #* o® . In this case, we
can apply Lemma H.3, hence we have KL(7*, 0**1) < KL(7*, o*) for all 7* € II*. On the other hand, since o* € II*,
there exists a Nash equilibrium 7* € IT* such that KL(7*, %) = 0. Therefore, we have KL(7*, c¥*1) < KL(7*, o%) = 0,
which contradicts KL(7*, 0*+1) > 0. Thus, if o* € II* then o**! = o*. O

H.10. Proof of Lemma F.7

Proof of Lemma F.7. For a given o € X, let us consider that 7 follows the following continuous-time dynamics:

ﬂ'f = arg max {<yf7ﬂ-l> - w(ﬂ-l)} ? (37)
mEXi

Yoo o .
yfj:/ ( __Ui(ﬂi,ﬂ‘_i)—u__G(w;,ai))
0 Tij Tij

We assume that ¢(m;) = Z;lzl m;; Inm;;. Note that this dynamics is the continuous-time version of APFTRL, so clearly
7 defined by (4) is the stationary point of (37). We have for a given ¢/ € X and the associated stationary point
aho’ = F(d'):

iKL(TI"U’ o xt) =

p Dy, (mH? ,7rt)

SIS

|
M =

s
I
-

> & (9t = tnt) — (o mt” — )
d
i

I
Mz

({wtmt) = w(mh) = (bt + ()

@
Il
-

I
WE
S

(v h - i)

ﬁ
Il
-

| |
(= L[]=
T~
Q.‘Q‘
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<
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where ¢*(y!) = max,,ex, {(y}, mi) — ¥ (m;)}. When ¢(m;) = ijl mi; Inm;;, we have

d; t d; t t
exp(y;;) exp(y;;) exp(y;;)
¢*(yf) = nyg d; “ - Z d; N t In d; = t
=1 Z =1 Xp(yz] ) j=1 > §'=1 eXP(%’j/) Zj’:l exp(yij’)

an J_q exp( ylj
= Ze xp(yi;);
Zg’ 1eXp(sz) 7j=1

and then,

O it
8yij

d;
(35 =1 exp(yi;)) (Zj/zl exp(y;;:))?
In Zj7=1 eXP(yij')
d;
Zj’:l eXP(i‘/fj')
explyy;)

=& .= T
Zj/:1 eXP(yfj/)

Xp(y;‘tj)
Therefore, we get Vb* (y!) = wt. Hence,

d ,
ﬁKL(ﬁ“"’ ) =

d
<dty“77t_7r% >

(va,»(wf, ) vaG(Wza UZ) Trt - ﬂ-# i >

=1
N ’
=D (Vmui(rh,ty) = pVa,G(nt, of), wh — 77
i=1
N
+’“Z V.G — V., G(rl,04), 7t — w7 >
i=1

The first term of (38) can be written as:

’
(Vavi(my,7ly) = uVa, G, 07), m — w7

3

-

-1

N
< S (Vi ) =y, Gt ol) ml — 7l

i=1

N , , N /
=Y (Ve ) wl = 7l = > (Ve Glrt, o)t — )

i=1 =1

N
= D (Vi w7 ) = pVa Gl o) wf — )

=1
N ’
— 1> (Va — Va, G(nlo7 o)), 7t — w7
=1
N ’
<=1 (Va,G(rl,0)) = Va,G( ), mh — a7y
=1

42

* eXp y'L] In 25}21 eXp(yfj/) t & t
(Yl = —x Z exp(y!;) exp(yl;) > exp(yl;)

(38)
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where the first inequality follows from (1), and the second inequality follows from the first-order optimality condition for
7. When G is a-divergence, G has a diagonal Hessian is given as:

o
(mi1)—2

VzG(m, ol) =
U;di

(mia;)*=27

and thus, its smallest eigenvalue is lower bounded by min;¢4,) 07 ;- Therefore,

N
Z<V”*w(ﬂ L) — uVa, G(rl,al), ml — ﬂf"’l>
=1
N ’
Z 7t ol) = Vi, G ol), mt — w7
< — i r t_ o122
- ”(ve[m et ”) e =l (39)

On the other hand, by compactness of A, the second term of (38) is written as:

uz (Vo G(nt,00) = Vi, G(rk, 07), mt — w7

< p- diam(X ZHVMG mt,0}) = Vi, G(xt,00)||2 (40)

By combining (38), (39), and (40), we get:

d ,
%KL(’N“’U ,7Tt)

N
3 t 00|12 :
< (min ol ) I = P - @), 39,6t ) = Vo Gl o)

Recall that w9 is the stationary point of (37). Therefore, by setting the start point as 7° = 77, we have for all

t > 0,7 = 7. In this case, for all ¢ > 0, jtKL(ﬂ“ o' xt) = 0 and then:

/ o’ 1,02 : t .
(i, ) I = 5] < dian(2 Zuw t.ol) = Vi Glnt )|

. min; . . . .
For a given € > 0, let us define &’ = ( Ed[f;]r'n( i1 %) 2. Since VmG(Wi”’U, -) is continuous on X, for ', there exists

X)
§ > O such that |0’ — 0| < § = \/sz\; Ve, G(rt 7 0l) = Vi, G(nt"70))||? < & = (mmied[g]rh’(;[‘;” %) g2 Thus, for
every ¢ > 0, there exists 6 > 0 such that

lo" —a| < ¢

, di *
= | Wns\/ ( fam( (vam il ,1>va<7rf"",ai>||2> <e.

mlnze[N] jeld;] O

This implies that F'(-) is a continuous function on X when G is a-divergence. A similar argument can be applied to
Rényi-divergence and reverse KL divergence. O
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H.11. Proof of Lemma F.8

Proof of Lemma F.8. First, from the definition of the Bregman divergence, for any 7; € X;:
Dy (m, T (y:)) = () = b(T(ys)) = (VO(T (i), mi — T(a))- (41)

Recall that X; satisfies Am; = b for all 7; € X; for a matrix A € R¥i*% and b € R¥:. From the assumption for 1/ and the
first-order optimality condition for the optimization problem of arg max{(y;, z) — v (z)}, there exists v € R¥ such that
TeX

— V(T (y:) = ATv.
Thus, we get:

(i, mi —T(ys)) =

(
= <V1/)(T(yz))»7ﬁ - T(yz)> + VTA’/Tl - VTAT(yi)
= (V(T (i), mi = T(yi)) + v b—v'b
= (Vo(T(y:)), mi — T(:))- (42)

By combining (41) and (42), we have:
Dy (m,T(y:)) = Y(m) = (T(v:) — (i mi — T(ys))-

H.12. Proof of Lemma H.1

Proof of Lemma H.1. Since }F% is a decreasing function for s > 0, for all s > 1,

1 s 1
< ——dzx
kS + 20 s_1 KT + 260
Using this inequality, we can upper bound the sum as follows.
t t
1 1 1
§J55+29 _@+;m+29

t

1 s 1
< — d
20+S§_:1/S_1 e+ 20"
1 to
= — d
29+/0 Kkx + 20 *
1 1/t 1
=—+— | —d
29+l€/0x+2’fx
S L )
T 20 kK 20 uu v==r K
1

:29+11 (%t—&-l)

This concludes the proof. O

H.13. Proof of Lemma H.2

Proof of Lemma H.2. By using the first-order optimality condition for a”““l we have forall m € X:

N
S (VroiloF T, 0MY) =y, G(oF Y ok), 7 — o) <,

g
=1
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and then

N N
Z(Vﬂivi(ok+1 UkJ.rl)Jri - Gl’-c+1> < Mz<va(Uf+170k)7ﬂ'i - U].C+1>.

% Y —1i ] i
i=1 i=1

When G is a-divergence, we have for all 7 € X:

N N d; k I-a
k1 _k k1 1 k+1 Tij
S (Ve Glof T oh)m — ol = == 3T S (ol ) |

i=1 i=1 j=1 Gij
dA
1 ;
_ f+1 _
= LSS el - mp =,
i=1j=1

where we use the assumption that o**! = ¢* and X; = A% . Similarly, when G is Rényi-divergence, we have for all
mTeX:

N o N 1 d; ok 1-a
k+1 _k k+1 k+1 iJ
Z<V‘MG(0’i+ ,0¢), Wi — Ui+ ) = 1—a Z k+1 k)l-a Z(Oij—‘r — i) <0_kl~il)

d;
i=1 i1 2o ) (o

N d;

o« 1 k+1 _
- ]_70[2 k-+1 k;)lfa Z(Oij _ﬂ-ij) =0.

d;
i e (o) (o

Furthermore, if G is reverse KL divergence, we have for all m € X

N N 4 ok
E+1 _k k+1 k+1
Z<vﬂ'iG(0i+ 7Ui)’7ri_0i+ ) :Z (O—ij+ _Wij)kizj_l
i=1 i=1 j=1 Tij
N 4
= Z (UfjH —mij) = 0,
i=1 j=1
Thus, we have for all 7 € X:
N
> (Vaui(ol ™ oM, m — o) <.
i=1
This is equivalent to the first-order optimality condition for 7* € II*. Therefore, 0**! = o is a Nash equilibrium of the
underlying game. O
H.14. Proof of Lemma H.3
Proof of Lemma H.3. First, ~ we prove the statement for  a-divergence: G(okt1 ok) =
ﬁ (1 — Z;i=1 (aﬁ*l)“(afj)ko‘) From the definition of a-divergence, we have for all 7" € II*:

N 1 N d; ok 1-a
k+1 _k k+1 k+1
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Here, when « € (0, 1), wegetz (o k+1) ( Zk)1 ® < 1. Thus,

N 1 N d; ok l1-a N
Z(VﬂiG(0§+17Uf),Uf+1 -7 = tzzﬂ’; ( k?—l) -
; (07 - g,
i=1 i=1 j=1 Y]
N
zl_anp N;]Zl ij k+1 )
N ol N
zl_aex ZZﬂ”ln k+1 - —
=1 j=1
N 1-— N
=1 o P ( Na (KL(7*, o™ — KL(TF*,O'k))> RS

where the second inequality follows from the concavity of the In(-) function and Jensen’s inequality for concave functions.
Since In(-) is strictly concave, the equality holds if and only if o¥*1 = o*. Therefore, under the assumption that o**+1 £ g%,
we get:

N
N l-—«a
* k+1 * k k+1 k k+1 *
KL(7*, 0 )KL(W,J)<1_QIH<1+E (Vr,G(o;7,07),0; 7TZ>>

N
SZ(VWiG(U’-“Jrl ok), okt ¥y, (43)

where the second inequality follows from In(1 + x) < x for x > —1. From the first-order optimality condition for af +

we have for all 7* € II*:

N

S (Vi vi(o L o"H) — 1V, G0t oF), 1 — o) <0,
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Then,
N N
S (T GloEH, 0F), 054 =1ty < ST (0B R ok )
1=1 /1' =1
1 N
< P Ve vi(mf, ), o —at), (44)

*

where the second inequality follows from (1). Moreover, since 7* is the Nash equilibrium, from the first-order optimality

condition, we get:

N
S okt i Vi, w7,)) < 0. (45)

i=1
By combining (43), (44), and (45), if o*T! # o*, we have any 7* € II*:
KL(r*, 0"t — KL(7*,0") < 0.

Next, we prove the statement for Rényi-divergence: G(of ™!, o¥) = Lo In (Zdi (gkFlye (0’?)1_0‘). We have for all

7 o— Vi 1
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Again, by using Z (o k'H) (o f)l * <1whena € (0,1), we get:

N N d; k -«
« - ij Na
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1_aexp(N< (", ")~ KL(x* 0h) ) — o

where the second inequality follows from Jensen’s inequality for In(-) function. Since In(-) is strictly concave, the equality
holds if and only if o**! = ¢*. Therefore, under the assumption that c¥+1 £ %, we get:

% T4
—

N
N 1-—
KL(7*,o**1) — KL(n*, 0%) < - % (1+ aa > (Va,Glof T of), o m)

i=1

N
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where the second inequality follows from In(1+x) < x for # > —1. Thus, by combining (44), (45), and (46), if ¥+ # o*,
we have any 7% € II*:

KL(7*, ") — KL(7*, 6%) < 0.

Finally, we prove the statement for reverse KL divergence: G(o¥ 1 oF) = Zj LofIn oF +1 We have for all 7* € TI*:

k+1 _k k+1 *\ _ * k+1 ij
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where the inequality follows from Jensen’s inequality for In(-) function. Thus, under the assumption that o*+1 £ o*, we
get:

N
1
* k+1 * k k+1 k k+1 *
KL(7*,0"") = KL(7*,0") < NIn | 1 + E (Vr,G(o; ), 0% —7Ti>>

7171
i=1

Z Vo, G(oF T ok) okt — 77y, 47)
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where the second inequality follows from In(1+x) < x for x > —1. Thus, by combining (44), (45), and (47), if ohtl #+ ok,
we have any 7% € II*:

KL(7*, o) — KL(7*, 0*) < 0.

I. Additional Experimental Results and Details
L.1. Payoff Matrix in Three-Player Biased RPS Game

Table 2: Three-Player Biased RPS game matrix.

R P S
R 0 -1/3 1
P 1/3 0 —1/3

S -1 1/3 0

I.2. Experimental Setting for Section 6

The experiments in Section 6 are conducted in Ubuntu 20.04.2 LTS with Intel(R) Core(TM) 19-10850K CPU @ 3.60GHz
and 64GB RAM.

In the full feedback setting, we use a constant learning rate n = 0.1 for MWU and OMWU, and APMD in all three games.
For APMD, we set = 0.1 and T, = 100 for KL and reverse KL divergence perturbation, and set ;x = 0.1 and 7,, = 20 for
squared ¢2-distance perturbation. As an exception, n = 0.01, u = 1.0, and T,, = 200 are used for APMD with squared
¢2-distance perturbation in the random payoff games with 50 actions.

For the noisy feedback setting, we use the lower learning rate 7 = 0.01 for all algorithms, except APMD with squared
¢%-distance perturbation for the random payoff games with 50 actions. We update the slingshot strategy profile o* every
T, = 1000 iterations in APMD with KL and reverse KL divergence perturbation, and update it every T, = 200 iterations in
APMD with squared ¢2-distance perturbation. For APMD with ¢2-distance perturbation in the random payoff games with 50
actions, we set 7 = 0.001 and T, = 2000.

L.3. Additional Experiments

In this section, we compare the performance of APMD and APFTRL to MWU, OMWU, and optimistic gradient descent
(OGD) (Daskalakis et al., 2018; Wei et al., 2021) in the full/noisy feedback setting. The parameter settings for MWU,
OMWU, and APMD are the same as Section 6. For APFTRL, we use the squared ¢2-distance and the parameter is the
same as APMD with squared ¢2-distance perturbation. For OGD, we use the same learning rate as APMD with squared
¢2-distance perturbation.

Figure 4 shows the logarithm of the gap function for 7* averaged over 100 instances with full feedback. We observe that
APMD and APFTRL with squared ¢2-distance perturbation exhibit competitive performance to OGD. The experimental
results in the noisy feedback setting are presented in Figure 5. Surprisingly, in the noisy feedback setting, all APMD-based
algorithms and the APFTRL-based algorithm exhibit overwhelmingly superior performance to OGD in all three games.

L.4. Comparison with the Averaged Strategies of No-Regret Learning Algorithms

This section compares the last-iterate strategies m* of APMD and APFTRL with the average of strategies % 23:1 " of
MWU, regret matching (RM) (Hart & Mas-Colell, 2000), and regret matching plus (RM+) (Tammelin, 2014). The parameter
settings for MWU, APMD, and APFTRL, as used in Section 1.3, are maintained. Figure 6 illustrates the logarithm of the
gap function averaged over 100 instances with full feedback. The results show that the last-iterate strategies of APMD and
APFTRL squared ¢2-distance perturbation exhibit a lower gap than the averaged strategies of MWU, RM, and RM+.
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— MWU ~— APMD u = 0.1 D,=KL G=KL APMD p=1.0 Dy=L2 G=L2 0GD
OMWU  —— APMD pu=0.1Dy=KLG=RKL —— APFTRL =1.0 D,=L2 G=L2
3BRPS Random payoff (10 actions) Random payoff (50 actions)
0 1 0.0
= -2.51
T -5
< -5.01
S
2-10 =7.51
S -10.01
151, ‘ ‘ ‘ i ! ] ; ; i ; F] =125
10° 10! 10® 10® 10* 10° 10° 10! 10® 103 10* 10° 10° 10* 102 10%® 10* 10° 10°

Iterations

Figure 4: The gap function for ¢ for APMD, APFTRL, MWU, OMWU, and OGD with full feedback. The shaded area
represents the standard errors. Note that the KL divergence, reverse KL divergence, and squared ¢2-distance are abbreviated

to KL, RKL, and L2, respectively.

— MWU = APMD = 0.1 D,=KL G=KL APMD i =1.0 D,=L2 G=L2 0GD
OMWU  —— APMD p=0.1 D,=KL G=RKL === APFTRL y=1.0 D,=L2 G=L2
3BRPS Random payoff (10 actions) Random payoff (50 actions)

log1o (GAP(m"))

1.0 1.5 2.0
Iterations x10°

Figure 5: The gap function for 7t for APMD, APFTRL, MWU, OMWU, and OGD with noisy feedback. The shaded area
represents the standard errors.

—— MWU time average ~——— APMD p=0.1 Dy=KL G=RKL == APFTRL =1.0 Dy=L2 G=L2 RM+ time average
—— APMD p=0.1 D,=KL G=KL APMD 1 =1.0 Dy=L2 G=L2 RM time average
3BRPS Random payoff (10 actions) Random payoff (50 actions)
01 \ 0 o 0.0~
4:'5 . S . \ —2.51
T -5 _
b —5.0
Qe
S —104 -10 —7.5]
8 ~10.0{
-151 -15 -12.51
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Figure 6: Comparison between the gap function of the last-iterate strategy profile of APMD, APFTRL, and the averaged
strategy profile of MWU, RM, and RM+ with full feedback. The shaded area represents the standard errors.

L.5. Sensitivity Analysis of Update Interval for the Slingshot Strategy

In this section, we investigate the performance when changing the update interval of the slingshot strategy. We vary the 7T,
of APMD with L2 perturbation in 3BRPS with full feedback to be T, € {10, 100, 1000, 10000}, and with noisy feedback
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to be T,, € {10,100, 1000, 10000}. All other parameters are the same as in Section 6. Figure 7 shows the logarithm of the
gap function for 7! averaged over 100 instances in 3BRPS with full/noisy feedback. We observe that the smaller the T, the
faster 7t converges. However, if T}, is too small, 7t does not converge (See T, = 10 with full feedback, and T, = 100 with

noisy feedback in Figure 7).

0.0

—2.5]
—5.01
—-7.5
—10.01

log10 (GAP(1"))

s APMD 1 =1.0 T, =10
APMD 1 =1.0 T, =100

s APMD 1 =1.0 T, =1000

mes APMD = 1.0 T, = 10000

—12.51
—15.01

10 101 102 103 10* 10° 106

Iterations

(a) Full feedback

log1o (GAP(r))

= APMD u=1.0 T, =100
0.0 APMD 1=1.0 T, = 1000
e APMD = 1.0 T, = 10000
s APMD p=1.0 T, =100000
—0.51
—1.01
—1.51
00 02 04 06 08 1.0
lterations x10°
(b) Noisy feedback

Figure 7: The gap function for ¢ for APMD with varying T, in 3BRPS with full/noisy feedback. The shaded area represents

the standard errors.
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