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Abstract

Previous works have extensively studied the transferability of adversarial samples1

in untargeted black-box scenarios. However, it still remains challenging to craft2

the targeted adversarial examples with higher transferability than non-targeted3

ones. Recent studies reveal that the traditional Cross-Entropy (CE) loss function is4

insufficient to learn transferable targeted perturbations due to the issue of vanishing5

gradient. In this work, we provide a comprehensive investigation of the CE function6

and find that the logit margin between the targeted and non-targeted classes will7

quickly obtain saturated in CE, which largely limits the transferability. Therefore,8

in this paper, we devote to the goal of enlarging logit margins and propose two9

simple and effective logit calibration methods, which are achieved by downscale10

the logits with a temperature factor and an adaptive margin, respectively. Both of11

them can effectively encourage the optimization to produce larger logit margins and12

lead to higher transferability. Besides, we show that minimizing the cosine distance13

between the adversarial examples and the targeted classifier can further improve14

the transferability, which is benefited from downscale logits via L2-normalization.15

Experiments conducted on the ImageNet dataset validate the effectiveness of the16

proposed methods, which outperforms the state-of-the-art methods in black-box17

targeted attacks. The source code of our method is available at Link.18

1 Introduction19

In the past decade, deep neural networks (DNNs) have achieved remarkable success in various20

fields, e.g., image classification [24], image segmentation [19], and object detection [23]. However,21

Goodfellow et al. [5] reveal that the DNNs are vulnerable to adversarial attacks, in which adding22

imperceptible disturbances to the input can lead the DNNs to make an incorrect prediction. Many23

following approaches [3, 4, 1, 27, 29] have been proposed to construct more destructive adversarial24

samples for investigating the vulnerability of the DNNs. [5, 18] also show that the adversarial samples25

are transferable across different networks, raising a more critical robustness threat under the black-box26

scenarios. Therefore, it is vital to explore the vulnerability of the DNNs, which is very useful for27

designing robust DNNs.28

Currently, most of the works [3, 29, 16, 10, 28, 6] have been devoted to the untargeted black-box29

attack, in which adversarial examples are crafted to fool unknown CNN models to predict unspecified30

incorrect labels. For example, [3, 29] leveraged input-level transformation or augmentation to31

improve the non-targeted transferability. [10] proposed a powerful intermediate feature-level attack.32

[28, 6] demonstrated that backpropagating more gradients through the skip-connections can increase33

the transferability. Despite the success in non-targeted cases, the targeted transferability remains34

challenging, which requires eliciting the black-box models into a pre-defined target category label.35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

https://anonymous.4open.science/r/Target-Attack-72EB/README.md


50 100 150 200 250 300
Iterations

5

10

15

20

25

30

Lo
gi

ts
Top-1
Top-2
Top-3
Margin

(a) Cross-Entropy

50 100 150 200 250 300
Iterations

5

10

15

20

25

Lo
gi

ts

Top-1
Top-2
Top-3
Margin

(b) Po+Trip

50 100 150 200 250 300
Iterations

0

25

50

75

100

125

150

175

Lo
gi

ts

Top-1
Top-2
Top-3
Margin

(c) Logit

Figure 1: The average Top-3 logits and logit margin of 50 adversarial samples trained by the Cross-
Entropy, Po+Trip and Logit loss functions for crafting the ResNet-50. (* Training and computation
details of this figure are in Section 3.1)

For learning the transferable adversarial samples in untargeted cases, most methods have leveraged36

the Cross-Entropy (CE) as the loss function. However, [15, 30] recently showed that the CE loss is37

insufficient for learning the adversarial perturbation in the targeted case due to the issue of vanishing38

gradient. To deal with this issue, [15] adopt the Poincaré distance to increase the gradient magnitude39

during the optimization adaptively. [30] demonstrated that an effortless logit loss equal to the negative40

value of the targeted logits could alleviate the gradient issue and achieve surprisingly strong targeted41

transferability. Besides, [30] also showed that optimizing with more iterations can significantly42

increase the targeted transferability. Although [30] demonstrated that continually enlarging the logits43

of the targeted class can improve the transferability of adversarial samples, it still does not thoroughly44

analyze the insufficient issue in the CE loss function.45

In this study, we take a closer look at the vanishing gradient issue in the CE and find that the46

logit margin between the targeted and non-targeted classes will quickly get saturated during the47

optimization (as shown in Fig. 1(a)). Moreover, this issue will influence the performance of the48

perturbations and thus essentially limit the transferability. Specifically, along with the training49

iterations in CE, we observe that the logits of the targeted and non-targeted classes increase rapidly in50

the first few iterations. However, after reaching the peak, the logit margin between the targeted and51

non-targeted classes will get saturated, and further training will decrease the logits simultaneously52

to maintain this margin. This phenomenon is mainly due to the fact that the softmax function in53

CE will approximately output the probability of the target class to 1 when reaching the saturated54

margin (e.g., 10). Thus, it raises the problem that the transferability will not be further increased even55

optimized with more iterations. While in practice, we are encouraged to increase the transferability56

by maximizing both the logit for the targeted class and its margin against other non-targeted classes57

to cross the decision boundaries of other black-box models.58

In this paper, we devote to enlarging logit margins to alleviate the above saturation issue in CE.59

Inspired by the temperature-scaling used in the knowledge distillation [8], a higher temperature T60

will produce a softer probability distribution over different classes. We firstly leverage this scaling61

technique into the targeted adversarial attack to calibrate the logits. Then the logits margin between62

the targeted and non-targeted classes will not be saturated after only a few iterations and will keep63

improving the transferability. On the other aspect, instead of using a constant T , we further explored64

an adaptive margin-based calibration by scaling the logits based on the logit margin of the target65

class and the highest non-target class. In addition, we also investigate the effectiveness of calibrating66

the targeted logit into the unit length feature space by L2-normalization, which is equivalent to67

minimizing the angle between the adversarial examples and the targeted classifier.68

Finally, we conduct experiments on the ImageNet dataset to validate the effectiveness of the logits69

calibration for crafting transferable targeted adversarial examples. Experimental results demonstrated70

that the calibration of the logits helps achieve a higher attack success rate than other state-of-the-art71

methods. Additionally, we tested the logit calibration in Generative Adversarial Networks (GANs)-72

based TTP method [21] to train the target-class-specific generators, which is also beneficial for73

increasing the transferability in the resource-intensive method.74

2 Related Works75

In this section, we give a brief introduction of the related works from the following two aspects:76

untargeted black-box attacks and targeted attacks.77
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2.1 Untargetd Black-box Attacks78

After [25] exposed the vulnerability of deep neural networks, many attack methods [29, 4] have been79

proposed to craft highly transferable adversaries in the non-targeted scenario. We first review several80

gradient-based attack methods that focus on enhancing the transferability against black-box models.81

Iterative-Fast Gradient Sign Method (I-FGSM) [14] is an iterative version of FGSM [5], which82

adds a small perturbation with a small step size α in the gradient direction iteratively:83

x̂0 = x, x̂i+1 = x̂′
i + α · sign(∇x̂J(x̂

′
i, y)), (1)

where x̂′
i denotes the adversarial image in the ith iteration, α = ϵ/T ensures the adversaries be84

constrained within an upper-bound perturbation ϵ through the lp-norm when optimized by T iterations.85

Following the seminal I-FGSM [14], a series of methods have been proposed to improve the transfer-86

ability of attacking black-box models from different aspects, e.g., gradient-based, input augmentation-87

based. For example, the Momentum Iterative-FGSM (MI-FGSM) [3] introduces a momentum88

term to compute the gradient of the I-FGSM, encouraging the perturbation is updated in a stable89

direction. The Translation Invariant-FGSM (TI-FGSM) [4] adopts a predefined kernel W to con-90

volve the gradient ∇x̂J(x̂
′
i, y) at each iteration t, which can approximated the average gradient over91

multiple randomly translated images of the input x̂t. On the other aspects, the Diverse Input-FGSM92

(DI-FGSM) leveraged the random resizing and padding to augmentation the input x̂t at each iteration.93

Currently, most targeted attack methods [15, 30, 21] simultaneously use the MI, TI and DI to form a94

strong baseline with better transferability.95

2.2 Targeted Attacks96

Targeted attacks are different from non-targeted attacks, which need to change the decision to a97

specific target class. [13] integrates the above non-targeted attack methods into targeted attacks to98

craft targeted adversarial examples. However, the performance is limited because it is insufficient to99

fool the black-box model only by maximizing the probability of the target class with the CE loss.100

Po+Trip [15] found the insufficiency is mainly due to vanishing gradient issue in CE. Then, [15]101

leverage dthe Poincaré space as the metric space and further utilized Triplet loss to improve targeted102

transferability by forcing adversarial example toward the target label and away from the ground-truth103

label. To further address this gradient issue, Logits [30] adopts a simple and straightforward idea by104

directly maximizing the target logit to pull the adversarial examples close to the target class, which105

can be expressed as:106

LLogit = −zt(x
′), (2)

where zt(·) is the output logits of the target class.107

On the other hand, many studies employ resource-intensive approaches to achieve targeted attack,108

which train target class-specific models (auxiliary classifiers or generative models) on additional109

large-scale data. For example, the FDA methods [12, 11] used the intermediate feature distributions of110

CNNs to boost the targeted transferability by training class-specific auxiliary classifiers to model layer-111

wise feature distributions. The GAP [22] trained a generative model for crafting targeted adversarial112

examples. Subsequently, [20] adopted a relativistic training objective to train the generative model113

for improving attack performance and cross-domain transferability. Recently, the TTP [21] utilized114

the global and local distribution matching for training target class-specific generators for obtaining115

high targeted transferability. However, the TTP requires actual data samples from the target class116

and brings expensive training costs. Different from the above methods, we introduce three simple117

and effective logit calibration methods into the CE loss function, which can achieve competitive118

performance without additional data and training.119

3 Method120

Problem Definition Given a white-box surrogate model Fs and an input x not from the targeted121

class t, our primary goal is to learn an imperceptible perturbation δ that can fool the Fs to output the122

target t for x̂ = x + δ. Besides, the prediction of x̂ will also be t when feeding to other unknown123

black-box surrogate models. The l∞-norm is usually used to constrained the δ within an upper-bound124

ϵ, denoted as ||δ||∞ ≤ ϵ.125
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For the surrogate model Fs, we denoted the feature for the final classification layer of the input x as126

ϕ(x). The logit zi of a category i is computed by zi = WT
i ϕ(x) + bi, the Wi and bi are the classifier127

weights and bias. The corresponding probability pi after the softmax is pi = ezi∑
ezj

.128

3.1 Logit Margin129

When successfully attacked the Fs, the logit zt of the target class will be higher than the logits znt of130

any other non-target class in the classification task. Their logit margins can be computed by,131

G(ϕ(x̂)) = zt − znt = WT
t ϕ(x̂) + bt −WT

ntϕ(x̂) + bnt. (3)

[15, 30] showed that it is insufficient to obtain transferable targeted adversarial samples that are only132

close to the target class while not away from true class and other non-targeted classes. Based on this133

property, it encourages us to continually enlarge this logit margin to increase the separation between134

the targeted and other non-targeted classes.135

To have a better understanding of the relationship between the logit margins and the targeted136

transferability, we visualize the average Top-3 logits (1 targeted class and other two non-targeted137

classes) of 50 random adversarial samples trained for crafted ResNet50 by the CE, Po+Trip, and the138

Logit loss functions with MI, DI and TI following [30]. We also compute the average logit margin139

of the targeted class against the Top-20 non-targeted classes. The logit and margin are shown in140

Figure 1, and the transferability from ResNet50 to VGG16 is plot in Figure 2.141
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Figure 2: The targeted attack success rate
(%) on VGG-16 by using the ResNet-50
as the surrogate model.

From Figure 1, we can observe that the logits of the tar-142

geted class and the Top-2 non-targeted classes increase143

rapidly in the first few iterations for the CE and Po+Trip144

loss, as well as their logit margins. When reaching the145

peak, the margin is saturated, and the logits start to de-146

crease simultaneously to maintain the saturated margin.147

By comparing the CE and Po+Trip, the Po+Trip needs148

fewer more iterations to reach the saturated status and149

thus shows a marginal better transferability than CE, as150

shown in Figure 2. In comparison, the Logit loss function151

will keep increasing the logits of the targeted category152

and the logit margin. Thus, the Logit loss function shows153

a much better targeted-attack success rate than CE and154

Po+Trip. On the other hand, the Logit loss also signifi-155

cantly increases the logits for other non-targeted classes.156

To further analyze why the CE loss function saturated157

to this logit margin and explore the effectiveness of in-158

creasing the margin during training, in the following sections, we will revisit the cross-entropy loss159

function and introduce the logit calibration to achieve this goal.160

3.2 Revisiting the Cross-Entropy Loss161

Firstly, our objective is to maximize the logit margin in Eq. 3. After computing the gradient w.r.t. to162

ϕ(x̂), we can get163

∂G

∂ϕ(x)
= Wt −Wnt. (4)

This gradient indicates that the adversarial feature ϕ(x̂) needs to move towards the target class while164

apart from those non-target classes. Next, we compute the gradient w.r.t. to ϕ(x̂) in the Cross-Entropy165

loss function166

LCE = − log(pt) = −zt + log(
∑

ezk), (5)
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and get the gradient ∂Lce

∂ϕ(x̂) as167

∂Lce

∂ϕ(x̂)
= − ∂zt

∂ϕ(x̂)
+

1∑
ezk

· ∂
∑

ezk

∂ϕ(x̂)
(6)

= −
∑

ezi∑
ezk

· ∂zt
∂ϕ(x̂)

+
1∑
ezk

∑
ezi

∂zi
∂ϕ(x̂)

=
∑ ezi∑

ezk
· ( ∂zi

∂ϕ(x̂)
− ∂zt

∂ϕ(x̂)
) =

∑
−pi(Wt −Wi).

From Eq. 6, we actually can find the CE loss function is designed to adaptively optimize the ϕ(x̂)168

towards Wt and away from other Wi. However, after being optimized for several iterations, the pi of169

the non-targeted class will quickly approximate to 0 and then significantly vanish the Wt −Wi.170

Let’s consider the case only with 2 classes (t and nt), we have the probabilities pt and pnt as:171

pt =
ezt

ezt + eznt
=

1

1 + e−(zt−znt)
, (7)

172

pnt =
eznt

ezt + eznt
=

1

1 + e(zt−znt)
. (8)

As shown in Figure 3, the pt will get close to 1 when zt − znt > 6 (e.g., pnt ≈ 2e−9 when173

zt − znt = 20). In such a context, the gradient will significantly vanish. Recall that, in the CE174

loss function (Figure 1 (a)), the logit margin between Top-1 and Top-2 logits first increases rapidly175

but will reach saturated status when approaching a certain value. This further indicates that the176

optimization of the CE loss function is largely restrained when the logit margin reaches a certain value.177

0 2 4 6 8 10

zt − znt

0.5

0.6

0.7

0.8

0.9

1.0

p t

Figure 3: The probability of pt
under different zt − znt.

178

To this end, we raise the question if we explicitly enforce the179

optimization to enlarge the logit margin (zt − znt), could we get180

better transferable targeted adversarial samples?181

To answer this, we propose to downscale the zt − znt by a factor182

s in the CE and extent the informative optimization for more183

iterations. Since in such circumstance, zt − znt will be enlarger184

by the factor s. Specifically, suppose that the optimization will be185

saturated when zt − znt reaches a certain value v. Using zt − znt186

and zt−znt

s in the CE will both approach the saturated value of v.187

Then, it is easy to infer that, for the latter case, zt − znt will be188

v × s.189

3.3 Calibrating the Logits190

To downscale the zt − znt during the optimization, we investigate three different types of logit191

calibrations in this study, i.e., Temperature-based, Margin-based, and Angle-based.192

3.3.1 Temperature-based193

Inspired by the Temperature-scaling used in the Knowledge distillation [8], our first logit calibration194

directly downscale the logits by a constant temperature factor T ,195

z̃i =
zi
T
. (9)

After introducing the T , the probability distribution p will be more softer over different classes. The196

corresponding gradient can be compute by:197

∂LT
ce

∂ϕ(x̂)
=

ezj/T∑
ezj/T

· 1
T
(
∂zj
∂x

− ∂zt
∂x̂

) =
∑

−p̂i
(Wt −Wi)

T
. (10)

The p̂i will not quickly approach to 0 after only a few iterations.198

In Figure 4 (a)(b), we visualized the logits of using T = 5 and T = 20. We can find that targeted199

logits and the logit margin will keep increasing as the same as the Logit in Figure 1. Meanwhile, the200

trend of T = 20 is very similar with the Logit [30] and we show that the Logit loss function can be201

considered as a special case of calibrating the logits with a large T in the supplementary.202
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(a) T=5
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Figure 4: The average Top-3 logits and logit margin of 50 adversarial samples after the logit calibration
for crafting the ResNet-50.

3.3.2 Margin-based203

The previous Temperature-based logit calibration contains a hype-parameter T , which could be204

different for different surrogate model Fs. To migrate this issue, we further introduce an adaptive205

margin-based logit calibration. Specifically, we calibrate the logits by using the margin between the206

Top-2 logits in each iteration, denoted as:207

z̃i =
zi

ẑ1 − ẑ2
, (11)

where ẑ1 and ẑ2 are the Top-1 and the Top-2 logit, respectively.208

In this Margin-based logit calibration, we will enforce the pt and p1̂ of the Top-1 non-target class at209

each iteration meet the following constraints:210

pt =
1

1 +
∑

i ̸=t e
−(z̃t−z̃i)

<
1

1 + e−1
, (12)

211

p1̂ =
1

ez̃1̂−z̃t +
∑

i ̸=t e
z̃i−z̃1̂

>
1

N − 1
(1− 1

1 + e−1
). (13)

Then, it can adaptively deal with the vanishing gradient issue in the original CE loss function. The212

logits and the margin is shown in Figure 4 (c).213

3.3.3 Angle-based214

On the other aspect, different Wt usually has a different norm. To further alleviate the influence of215

various norms, we calibrate the logit into the feature space with unit length by L2-normalization,216

WT
i ϕ(x̂)+bi

||Wi||||ϕ(x)|| . If omit the bi, this calibration is compute the cos(θ) between ϕ(x̂) and Wi, and we term217

it as angle-based calibration. Since, this angle-based calibration will bound each logit smaller than218

one. Instead of using the CE loss function, we directly minimize the angle between the ϕ(x̂) and the219

targeted Wt. The optimization loss function is:220

Lcosine = − WT
t ϕ(x̂)

||Wt||||ϕ(x̂)||
. (14)

The angle-based classifiers have been widely using in Face-Recognition task [17, 2]. In the experi-221

ments, we evaluate the performance of using different logit calibrations and their mutual benefits.222

4 Experiments223

Experimental Setup In this section, we evaluate the effectiveness of logit calibration for improving224

transferable targeted adversarial attack. Following the recent study [30], we conduct the experiments225

on the difficult ImageNet-Compatible Dataset1. This dataset contains 1,000 images with 1,000 unique226

class labels corresponded to the ImageNet dataset. We implement our methods based on the source227

1https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/
examples/nips17_adversarial_competition/dataset
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Table 1: The targeted transfer success rates (%) in the single-model transfer scenario. (Results with
20/100/300 iterations are reported, and the highest one at 300 iterations is showed bold.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

CE 27.0/40.2/42.7 17.4/27.6/29.1 2.3/4.1/4.6 12.3/17.2/18.4 8.6/10.5/10.9 1.6/2.3/2.8
Po+Trip 27.9/51.2/54.8 17.9/35.5/34.7 3.2/6.8/7.8 11.0/14.8/15.0 7.3/9.2/8.6 1.6/2.8/2.8
Logit 31.4/64.0/71.8 23.8/55.0/62.4 3.1/8.6/10.9 17.4/38.6/43.5 13.7/33.8/37.8 2.3/6.6/7.5
T=5 33.3/69.9/77.8 24.8/59.9/66.1 3.1/9.4/12.2 19.3/43.4/47.5 14.6/36.6/39.4 2.3/7.3/8.8
T= 10 31.6/68.5/77.0 23.6/58.5/66.4 2.8/9.4/11.6 17.9/43.2/49.3 13.4/36.8/41.5 2.2/7.7/8.8
Margin 33.3/65.8/76.5 23.1/58.6/65.7 3.0/9.5/12.2 18.8/42.8/47.2 14.5/36.5/41.4 2.5/7.7/9.4
Angle 38.9/72.5/77.2 29.2/60.7/65.2 4.4/10.7/11.1 20.6/43.2/47.8 16.5/35.7/39.3 3.0/7.7/8.9

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

CE 0.5/0.3/0.6 0.6/0.3/0.3 0/0/0.1 0.7/1.2/1.8 0.6/1.3/1.9 0.4/0.8/1.3
Po+Trip 0.7/0.6/0.7 0.7/0.6/0.5 0.1/0.1/0.1 1.0/1.6/1.7 0.6/1.7/2.5 0.7/1.2/1.8
Logit 3.4/9.9/11.6 3.5/12.0/13.9 0.3/1.0/1.3 0.6/1.1/2.0 0.6/1.9/3.0 0.6/1.5/2.8
T=5 3.1/7.0/6.9 3.3/7.6/7.8 0.2/0.9/0.8 0.7/1.7/2.1 0.5/1.9/3.3 0.4/1.6/2.6
T= 10 3.6/9.0/9.7 3.4/10.5/11.7 3.2/1.1/1.3 0.5/1.3/1.9 0.6/2.0/2.7 0.4/1.5/2.8
Margin 3.3/10.3/12.0 3.5/12.5/14.5 0.3/1.1/1.3 0.5/1.4/1.7 0.7/2.1/3.1 0.5/1.7/2.7
Angle 0.4/0.7/0.5 0.6/0.4/0.5 0/0/0.1 0.8/1.8/2.6 0.8/2.2/3.0 0.9/1.7/2.4

code2 provided by the Logit [30]. The same four diverse CNN models are used for evaluation, i.e.,228

ResNet-50 [7], DenseNet-121 [9], VGG-16 with Batch Normalization [24] and Inception-v3 [26].229

The perturbation is bounded by L∞ ≤ 16. The TI [4], MI [3] and DI [29] were used for all attacks,230

and ||W ||1 = 5 is set for TI. The I-FSGM is adopted for optimization with the α = 2. The attacks231

are trained for 300 iterations on a NVIDIA-2080 Ti GPU. We run all the experiments for 5 times, and232

report the average targeted transfer success rates (%). More experimental results can be found in the233

supplementary.234

4.1 Comparison with Other Methods in Single-Model Transfer235

We first compare the proposed (temperature-based, margin-based and angle-based) logit calibrations236

with the original CE, Po+Trip [15], and Logit [30] in the single-model transfer task. In this task, we237

take one surrogate model for training, and test the targeted transferability in attacking other 3 models.238

As shown in Table 1, the original CE loss function produces a worst performance than the Po+Trip239

and Logit. But after performing the logit calibration in the CE loss function, we can find a significant240

performance boost compared with the original CE. All the calibration methods can outperform the241

Logit, especially when using the ResNet50 and Dense121 as the surrogate. These results indicate that242

the logit margin can significantly influence the performance of the targeted transferability. On the243

other aspect, we find that T = 10 has better performance than T = 5 on the VGG-16, suggesting244

that different models may need different T . Instead of finding the best T for a different model, the245

Margin-based calibration can solve the issue and reach the overall best transferability in all four246

models. However, we find that the Angle-based calibration is not working on the VGG16, which247

needs further investigation.248

4.2 The Influence of Different T in CE249

In this section, we evaluate the influence of using different T in the CE loss function. The results are250

reported in Table 2. From the Table, we can have the following observations. 1) The scaling factor251

T has a significant influence on the targeted transferability. Specifically, there is a large decrease in252

performance when using a small T = 0.5. After increasing the T , we can observe the number of253

successfully attacked samples will increase. 2) The optimal T for different model is different. For254

example, T = 5 can produce the overall best performance for ResNet50, Dense121, and Inception v3,255

while the VGG16 with fewer convolutional layers requires a large T to obtain better transferability.256

3) The performance are comparable when using T = 5 and T = 10 for ResNet50, Dense121, and257

Inception v3. This is because that we use I-FSGM for optimization, which only considers the sign of258

the gradients. 4) Using a larger T , the performance will be similar to the Logit loss function (see259

Table 1). We provide a deep analysis of this phenomenon in the supplementary material.260

2https://github.com/ZhengyuZhao/Targeted-Tansfer
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Table 2: The targeted transfer success rates (%) by using different T in CE loss function. (Results
with 20/100/300 iterations are reported.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

T=0.5 13.2/16.0/19.5 7.1/9.5/11.0 1.2/1.8/2.4 4.2/5.0/6.2 2.5/3.5/3.2 0.6/0.9/1.1
T=1 27.0/40.2/42.7 17.4/27.6/29.1 2.3/4.1/4.6 12.3/17.2/18.4 8.6/10.5/10.9 1.6/2.3/2.8
T=2 34.2/62.8/67.7 24.4/52.3/53.9 3.3/7.2/8.5 18.7/35.0/36.1 13.2/27.3/27.0 2.2/5.5/6.1
T=5 33.3/69.9/77.8 24.8/59.9/66.1 3.1/9.4/12.2 19.3/43.4/47.5 14.6/36.6/39.4 2.3/7.3/8.8
T= 10 31.6/68.5/77.0 23.6/58.5/66.4 2.8/9.4/11.6 17.9/43.2/49.3 13.4/36.8/41.5 2.2/7.7/8.8
T = 20 30.4/65.6/74.3 22.9/55.4/63.6 3.2/9.0/11.6 17.6/40.3/46.2 13.4/35.4/40.1 2.3/6.7/8.7

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

T=0.5 0.2/0.1/0.2 0.1/0.1/0.1 0/0/0 0.3/0.9/0.9 0.3/0.8/1.4 0.3/0.6/1.3
T=1 0.5/0.3/0.6 0.6/0.3/0.3 0/0/0.1 0.7/1.2/1.8 0.6/1.3/1.9 0.4/0.8/1.3
T=2 1.6/1.8/1.8 1.8/1.9/1.6 0.2/0.2/0.2 0.6/1.5/2.0 0.4/1.7/2.2 0.5/1.2/2.0
T=5 3.1/7.0/6.9 3.3/7.6/7.8 0.2/0.9/0.8 0.7/1.7/2.1 0.5/1.9/3.3 0.4/1.6/2.6
T= 10 3.6/9.0/9.7 3.4/10.5/11.7 0.3/1.1/1.3 0.5/1.3/1.9 0.6/2.0/2.7 0.4/1.5/2.8
T = 20 3.4/9.7/11.1 3.6/12.7/13.8 0.3/1.2/1.3 0.5/1.4/2.3 0.6/1.8/3.1 0.5/1.6/2.4

4.3 The Targeted Success rates for Transfer with Varied Targets261

In Table 3, we report the result of a worse-case transfer scenario by gradually varying the target262

class from the highest-ranked to the lowest one, and have the following findings: 1) The three263

types of logit calibration methods can improve the targeted transfer success rate over the original264

CE. The angle-based calibration has the best performance. But, we notice that the margin-based265

calibration doesn’t work well in this setting. 2) The Temperature-based (T=5/10) and the Angle-based266

calibrations can outperform the Logit loss by a large margin, especially the Angle-based calibration.267

4.4 The Mutual Benefits of Different Calibration Methods268

Table 3: Targeted transfer success rate (%)
when varying the target from the high-ranked
class to low.

2nd 10th 200th 500th 800th 1000th
Logit 83.7 83.2 74.5 71.5 64.9 52.4
CE 77.4 58.6 26.9 23.7 16.7 7.0
CE/5 91.3 88.7 77.1 75.8 70.1 58.8
CE/10 89.0 87.8 81.0 79.2 73.5 62.5
Margin 87.4 81.7 61.3 51.6 43.1 23.0
Angle 92.4 89.1 80.3 79.2 76.1 66.3

In this part, we evaluate the mutual benefits of269

combining different calibrations and can have the270

following findings. 1) Combining the T=5/10/20271

and Margin, there is no increase in performance272

compared with using one of them. This is because273

that the gradient directions of these two methods274

are very similar. 2) Combining the T=5 and An-275

gle, we can observe a further improvement when276

using ResNet50 and Dense121 as the surrogate277

model, e.g., the transferable rate of “ResNet50 →278

Dense121” is increased to 82.4% with 300 itera-279

tions. Since the Angle obtains poor performance on280

VGG16, the transferable rates of corresponding combinations are also low in T=5/10+Angle, but281

T=20+Angle can deal with this issue. 3) Combining the Margin and Angle, there are only slight282

improvements on ResNet50 and Dense121, while it can alleviate the negative effects caused by the283

angle-based calibration. Finally, by jointly considering the results in Table 1, 2 and 4, we suggest284

using T=5 + Angle for CNNs with more layers and the single Margin-based calibration for CNNs285

with fewer layers to achieve better targeted transfer attack.286

4.5 Comparison with The TTP Method287

In this section, we further evaluate the proposed temperature-based logit calibration in the GAN-based288

targeted attacks. Following the setting in TTP [21], we sampled 50K images from the ImageNet289

training set and 50K images from the Painting dataset3, which are used to train the targeted generators290

from different source domains. Instead of using the distribution matching and neighborhood similarity291

matching loss [21], we only use the cross-entropy function for training the targeted generators while292

keeping other settings identical. More training and evaluation details used by TTP can be referred to293

[21]. We used the ResNet50 as the surrogate model and reported the results in Table 5.294

3https://www.kaggle.com/c/painter-by-numbers
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Table 4: The comparison of combining logit calibrations. (The targeted transfer success rates (%)
with 20/100/300 iterations are reported.)

Attack Surrogate Model: ResNet50 Surrogate Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

T=5 + Margin 33.8/69.8/77.2 24.0/59.0/65.5 3.3/9.6/11.1 19.3/44.3/47.8 14.1/37.7/40.8 2.5/7.5/9.4
T=5 + Angle 34.5/74.3/82.4 25.6/66.5/72.2 3.6/10.5/13.1 20.3/52.7/61.9 15.8/45.0/53.6 2.3/9.2/12.7
T=10 + Margin 32.7/69.5/77.3 22.8/59.4/66.3 12.9/9.7/11.5 18.3/44.1/49.1 13.7/36.9/41.6 2.4/8.3/9.2
T=10 + Angle 33.0/69.8/79.1 24.4/59.0/68.9 3.4/10.0/12.9 19.4/47.2/56.1 14.8/40.1/47.0 2.5/8.3/11.0
T=20 + Margin 33.0/69.2/76.2 23.1/58.4/65.8 3.2/9.5/11.8 19.1/43.4/48.5 13.9/36.7/41.4 2.4/7.8/9.5
T=20 + Angle 34.2/68.6/76.5 24.7/58.7/66.6 3.4/9.7/12.7 20.0/44.4/50.9 15.5/38.4/43.7 2.5/8.2/9.5
Margin + Angle 34.4/70.8/78.1 24.3/60.2/67.4 3.5/10.4/12.6 19.9/46.6/52.7 15.2/39.3/44.5 2.7/8.2/9.9

Attack Surrogate Model: VGG16 Surrogate Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

T=5 + Margin 3.5/10.2/11.4 3.7/12.4/14.6 0.3/1.1/1.3 0.5/1.4/1.6 0.6/2.1/2.9 0.5/1.7/2.8
T=5 + Angle 2.2/2.5/2.3 2.4/2.6/2.3 0.2/0.1/0.2 0.5/1.6/2.4 0.6/2.0/3.1 0.5/1.7/2.5
T=10 + Margin 3.2/10.7/11.7 3.4/12.9/15.0 0.2/1.0/1.4 0.5/1.4/1.9 0.5/1.9/3.0 0.3/1.5/2.3
T=10 + Angle 3.4/6.2/5.1 3.5/7.5/7.0 0.2/0.6/0.6 0.6/1.3/1.9 0.6/2.0/3.2 0.5/1.6/2.6
T=20 + Margin 3.5/10.1/11.8 3.4/12.0/14.9 0.3/1.2/1.4 0.6/1.2/1.9 0.5/1.9/2.9 0.5/1.6/2.7
T=20 + Angle 3.2/9.7/10.1 3.9/11.9/13.3 0.3/1.0/1.2 0.6/1.6/2.0 0.6/2.0/3.5 0.5/1.7/2.9
Margin + Angle 3.3/9.8/11.1 3.5/12.6/14.6 0.3/1.2/1.4 0.6/1.4/2.0 0.6/1.7/3.1 0.5/1.5/2.6

Table 5: Comparison with TTP [21] on Target Transferablity. The averaged Top-1 targeted
accuracy (%) across 10 targets are computed with 49.95K ImageNet validation samples. Perturbation
budget: l∞ ≤ 16. * indicates the training surrogate model.

Dataset Loss ResNet50* VGG19BN Dense121 ResNet152 WRN-50-2 Average

ImageNet
TTP 97.02* 78.15 81.64 80.56 78.25 83.12
CE 97.15* 70.44 78.96 76.22 78.24 80.20

CE (T=5) 99.18* 86.65 90.55 90.30 93.22 91.98

Painting TTP 96.63* 73.09 84.76 76.27 75.92 81.33
CE (T=5) 98.95* 82.97 87.07 87.81 91.70 89.70

From Table 5, we make the following findings. 1) By using ImageNet as the training dataset, the TTP295

shows better transferability than the CE in attacking other black-box models. The average targeted296

accuracy of TTP is around 3% higher than that of CE. 2) After downscale the logit by 5 in the CE loss297

function (CE (T=5)), we can observe a significant boost of the Top-1 targeted accuracy for all models,298

reaching the average targeted accuracy of 91.98% (ImageNet). 3) For both ImageNet and Painting299

as the training source, the CE (T=5) can surpass the TTP by a large margin (91.98% vs. 83.12% &300

89.70% vs. 81.33%). These experimental results demonstrate that the proposed temperate-based logit301

calibration is also effective in training generator-based targeted attackers. Note that, compared to302

TPP, our logit calibration has the benefit of without using any data from the target class.303

5 Conclusion304

In this study, we analyzed the logit margin in different loss functions for the transferable targeted305

attack, and find that the margin will quickly get saturated in the CE loss and thus limited the306

transferablity. To deal with this issue, we introduce to use logit calibrations in the CE loss function,307

including Temperature-based, Margin-based, and Angle-based. Experimental results verified the308

effectiveness of using the logit calibration in the CE loss function for crafting transferable targeted309

adversarial samples. The proposed logit calibration methods are simple and easy to implement, which310

can achieve state-of-the-art performance in transferable targeted attack.311

Potential Social Impact. Our findings in targeted transfer attacks can potentially motivate the AI312

community to design more robust defenses against transferable attacks. In the long run, it may also313

be directly used for suitable social applications, such as protecting privacy. Contrariwise, some314

applications may use targeted transferable attacks in a harmful manner to damage the outcome of AI315

systems, especially in scenarios of speech recognition and facial verification systems. Finally, we316

firmly believe that our investigation in this study can provide valuable insight for future researchers317

by using the logit calibration for both adversarial attack and defense.318
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