
The 3rd Socially Responsible Language Modelling Research (SoLaR) workshop at COLM 2025

Large Language Models in the Task of Automatic Validation
of Text Classifier Predictions

Aleksandr Tsymbalov
Independent Researcher
9060860094s@gmail.com

Abstract

Machine learning models for text classification are trained to predict a
class for a given text. To do this, training and validation samples must
be prepared: a set of texts is collected, and each text is assigned a class.
These classes are usually assigned by human annotators with different
expertise levels, depending on the specific classification task. Collecting
such samples from scratch is labor-intensive because it requires finding
specialists and compensating them for their work; moreover, the number
of available specialists is limited, and their productivity is constrained
by human factors. While it may not be too resource-intensive to collect
samples once, the ongoing need to retrain models (especially in incremental
learning pipelines He et al. (2020)) to address data drift (also called model
drift IBM (2024)) makes the data collection process crucial and costly over
the model’s entire lifecycle. This paper proposes several approaches to
replace human annotators with Large Language Models (LLMs) to test
classifier predictions for correctness, helping ensure model quality and
support high-quality incremental learning.

1 Introduction

The creation of reliable text classifiers typically demands a carefully annotated gold-standard
corpus, benchmark metrics, and continuous monitoring for data drift - tasks that are costly
because they rely on domain-specialist human annotators. With the advent of large language
models (LLMs), which already demonstrate broad knowledge and flexible reasoning Sahoo
et al. (2025); Vatsal & Dubey (2024), researchers are investigating whether these models
can augment or even replace human annotators. Simply adding a second conventional
classifier would double the maintenance effort without reducing the annotation needs. In
the case examined, detecting Russian-language client intents in support chat messages,
misclassification prevents automated client request closure and forces human intervention.
Hence, high-quality annotation remains critical for maintaining classifier performance. This
study therefore evaluates the feasibility of substituting human annotation with LLM-based
annotation while preserving or improving the overall quality of the classifier.

2 Social impacts statement

Large-scale LLM-based automation of data annotation can transform supervised NLP,
cutting costs and latency, but it must be deployed responsibly.

Key benefits. (i) Democratisation: automating access to high-quality data for smaller firms,
research groups, and low-resource languages. (ii) Safety by design: a single-token inter-
face plus calibrated ”unk” (model rejection of annotation or classification) thresholds de-
fer low-confidence cases to humans, preserving a transparent human-in-the-loop work-
flow. (iii) Quality uplift: across benchmarks the ensemble beats regular annotators on accu-
racy–coverage and matches expert gold labels, raising the production “floor” for classifier
quality. Section F describes the types of human annotators.

1

Risks & mitigations. Labour displacement: reduce routine work but reallocate annotators
to edge-case triage and fairness audits, and provide reskilling paths. Bias amplification:
periodic bias audits on stratified test suites and diverse-model ensembles curb shared blind
spots. Privacy: keep data on-premises, log access, and add differential privacy noise when
sharing artefacts. Environmental cost: GPU inference is energy-intensive; model distillation,
quantisation, and renewable hosting mitigate net carbon versus distributed crowdsourcing.
Long-term accountability: dynamic threshold learning keeps abstention rates aligned with
data drift, and lightweight explainability interfaces expose rationale snippets without
leaking sensitive text.

3 Related work

Research on leveraging LLMs for classification falls into two streams: (i) LLMs as direct
classifiers via in-context learning (ICL) Brown et al. (2020) and (ii) LLMs as data annota-
tors.

3.1 LLMs as ICL classifiers

Recent work shows that a few carefully chosen demonstrations let GPT-4 outperform fine-
tuned masked-LMs on the 77-class banking77 benchmark Loukas et al. (2023); Casanueva
et al. (2020); OpenAI (2023), albeit at non-trivial inference cost. Follow-up studies report
that GPT-4 excels on ”generalization-heavy” tasks, whereas smaller fine-tuned models
match or beat it on easier ones; open-source Llama-2 can occasionally beat GPT-3.5 Yu et al.
(2023); Touvron et al. (2023); Ye et al. (2023). Multi-stage prompting (e.g., reranking with
varied prompts) further boosts GPT-4o on query–document matching Schnabel et al. (2025);
OpenAI (2024).

3.2 LLMs as data annotators

Another line replaces or assists humans during labeling. Zero-shot GPT-3.5 produced higher-
quality annotations than humans in 4/5 task types at 20× lower cost Gilardi et al. (2023).
Distillation of LLM-generated labels can train competitive classifiers quickly and cheaply
Pangakis & Wolken (2024). LLM annotation even works for medical images, yielding strong
CNNs from GPT-labeled X-rays Al Mohamad et al. (2025). Selective use of GPT-3.5 when
”confident” cuts labeling effort, though self-estimated confidence can be unreliable Rouzegar
& Makrehchi (2024); Li et al. (2024).

Limitations of prior work. 1) Many public datasets Loukas et al. (2023); Schnabel et al.
(2025); Rouzegar & Makrehchi (2024) were likely seen during LLM pre-training; our dataset
(Section 4.1) is novel. 2) Tasks usually have few classes; ours (Section 4.1.1) has >200. 3)
Most studies rely on proprietary models; we focus on open-weight LLMs (Section I). 4)
Text-based label extraction blurs rejection zones; we instead return calibrated probabilities
(Section 4.3.2).

4 Methodology

4.1 Dataset

4.1.1 Intent

A client intent is the customer’s underlying question or requested action. The taxonomy
contains ≈ 250 intents, some of which are closely related, so multi-stage retraining is used
to push borderline classes farther apart. Every intent has a definition plus typical and
contentious examples. Two meta-labels complete the set: unk (”cannot classify”) and conf
(”multiple plausible intents”, used only for analysis; see Section 4.2.2).

2

4.2 Human-grounded annotation

One common use of human annotation is to verify the correctness of predictions made by a
text classification model that outputs a large number of classes (a classic text classification
scenario). To maintain annotation quality, the same instance is shown to multiple annotators,
and an annotation is deemed correct if their answers coincide.
Assume that the classification model can return K best probability predictions, then two
types of annotations can be used to evaluate the model’s performance.

4.2.1 Binary annotation

Let C represent the predicted class with the highest probability of the text classifier, T is
client text. Then:

F : T × C → {“0”, “1”}, where |C| ≈ 250, |T| = ∞,

where F is an annotator who returns a response of 0 (”no”, ”the class does not match the text,
classification model made an incorrect prediction”) and a response of 1 (”yes”, ”the class matches
the text, classification model made a correct prediction”).

4.2.2 Multi-class annotation

Let C = {c1, c2, c3, ..., cn} be the set of all possible classes, and T be a set of texts.
Then:

F : T × C5 → C, where |C| ≈ 250, |T| = ∞,

F
(
t, (ci1 , . . . , ci5)

)
∈ {ci1 , . . . , ci5}

∀ t ∈ T, (ci1 , . . . , ci5) ∈ C5,

where C5 contains the classifier’s top-5 candidates for t.

Annotators pick the best label from these five, resolving tight semantic ties. As the model is
retrained on their choices, cross-entropy naturally widens margins between close intents,
and prior internal tests confirm that a 1–5 shortlist almost always covers the true class while
easing annotator load.

A special flag, ”conf” (”multiple intentions”), may be used for analysis when a request
genuinely blends intents, but in regular annotation annotators must still choose one of the
supplied labels - ”unk” (refusal) is always among them.

4.3 LLM annotation

This paper proposes two ways to obtain the LLM annotation. Depending on your require-
ments, you can choose one or the another. Combining approaches is not effective; the
reasons are described in Section D.2.

4.3.1 Text-approach

The ”text-approach” extracts the predicted label from the LLM’s generated text. Because
it treats the model as a black box - no probability access needed - most studies adopt it.
The natural-language rationale it returns supports prompt tinkering, multi-stage setups (a
second LLM audits the first), and selective tool calls (extra analysis only when uncertainty is
high). Its downside is a fuzzy rejection boundary, so for multi-class tasks we let the ”refuse”
label (”unk”) compete for a spot in the top-5 predictions, noting that the LLM may already
output a refusal on its own.

4.3.2 Prob-approach

The ”prob-approach” (Section E, Fig. 4) queries the likelihood of the first generated token.
The prompt forces the LLM to answer with ”0/1” for binary or a class index for multi-class

3

tasks, giving true label probabilities. A rejection zone (”unk”) is introduced by thresholding:
if the highest class probability among the N options falls below the cutoff, the LLM refuses
and the item is routed to a human annotator; otherwise the most-probable label is returned.
Because only one token is produced, no reasoning is available - Section D.2 shows that
allowing free-form reasoning actually degrades annotation metrics compared with this
single-token scheme.

4.4 Metrics

Tables with all metrics are provided in Section A.

4.5 Proposed approach

LLM

Predicted intent

Classifier

RAG

Documents
Base

Knowledge
(Q&A)

Examples
for intents

Base Query
Examples

 Search
by intent

Prompt

Relevant
documents

Predicted
intent

+
Few-shot
examples

Client
message

Forward
the result to text or

probabilistic
approachesClient

Figure 1: Proposed pipeline

The final proposed approach is shown in Fig. 1: First, the client’s request is sent to the
classifier and RAG. The RAG system searches the knowledge base for relevant documents,
which are then sent to the prompt. The classifier model predicts a class to the client request,
then sends one or more predicted intents to a dictionary where the key is the intent and the
values are examples of the intent and description. The values are then forwarded to the
prompt. Description of prompts in Section G. Prompts are presented in Section P.

Ensembles can be used to modify this approach. This requires obtaining token probabilities
using a prob-approach for multiple LLMs.

5 Results

Best RAG: Table N.3, Table N.5. Best LoRA: Table K.3. Metrics: Section N, Section K

5.1 Multi-class

Table 1 shows the best approach, which consists of averaging the prediction probabilities
of two LLMs and applying a tuned threshold. By slightly reducing the coverage with
threshold, it is possible to achieve an increase in the accuracy of the LLM separately and
of the ensemble as a whole. We achieved approximately the same accuracy on intents as
human annotators and the highest coverage.

4

MODEL
COVERAGE

(”conf”=”unk”)
ACCURACY
(w/o ”conf”) ACCURACYtotal

QWEN2.5-32B BEST-RAG
PROB-APPROACH
USE THRESHOLDS

0.4376 0.6831 0.2989

LLAMA3.3-70B BEST-RAG
PROB-APPROACH
USE THRESHOLDS

0.4374 0.6758 0.2957

HUMAN 0.2134 0.6977 0.1489

ENSEMBLE
LLAMA3.3-70B BEST-RAG
&
QWEN2.5-32B BEST-RAG
PROB-APPROACH
USE THRESHOLDS

0.4269 0.7030 0.3001

Table 1: Metrics for ensemble (Multi-class, Prob-approach)

MODEL ACC. F1-SCORE
(MACRO. AVG.)

COVERAGE
(PERC.)

QWEN2.5-32B
BEST-RAG
BEST-LORA

0.8430 0.8405 63%

LLAMA3.3-70B
BEST-RAG 0.8113 0.8106 61%

HUMAN 0.8018 0.7977 100%

HUMAN
BASED ON THE SAME
65% DATA AS LLM

0.8174 0.8133 65%

ENSEMBLE
LLAMA3.3-70B
BEST-RAG
&
QWEN2.5-32B
BEST-RAG BEST-LORA

0.8851 0.8292 65%

Table 2: Metrics for ensemble (Binary, Prob-approach)

5.2 Binary

In the case of binary annotation (Table 2), many of the approaches described in the paper
outperformed human metrics, therefore the goal was to increase coverage without signifi-
cantly lowering metrics. The quality of annotation on the same data (65%) as humans is
higher for LLMs. This may mean that LLM annotates simple tasks better than humans, but
with more complex tasks (where the probability of answers is below the threshold), human
annotators still perform better.
Fig. 7 (Section M) demonstrates that the increase in accuracy with a decrease in the threshold
(decrease in coverage) is non-linear.

5

6 Conclusion

We showed that Large Language Models (LLMs) can replace - or substantially supple-
ment - human annotators in a large-scale, multi-intent text-classification pipeline without
degrading quality.

Two paradigms. (i) Text-approach: the LLM produces a natural-language rationale and label.
(ii) Prob-approach: the LLM outputs a single token; its calibrated probability is thresholded
to accept or defer.

Enhancements. LoRA fine-tuning (reasoning & classifier heads), retrieval-augmented
generation (RAG) for domain documents, and heterogeneous LLM ensembles further boosted
coverage and confidence (Secs. K.1, D.3). Error propagation to the downstream classifier is
quantified in App. M.

Results. On both binary and multi-class benchmarks our best pipelines matched or exceeded
regular human annotators (Tabs. 1– K.3) while cutting average annotation time ×8 (Sec. H).

Implication. LLMs can act as primary annotators in production, enabling continuous,
high-quality incremental learning at scale.

Future work. We will study adaptive thresholds, transfer to new intent taxonomies, and
richer human-LLM collaboration interfaces.

6

References
Fares Al Mohamad, Leonhard Donle, Felix Dorfner, Laura Romanescu, Kristin Drechsler,

Mike P. Wattjes, Jawed Nawabi, Marcus R. Makowski, Hartmut Häntze, Lisa Adams, Lina
Xu, Felix Busch, Aymen Meddeb, and Keno Kyrill Bressem. Open-source large language
models can generate labels from radiology reports for training convolutional neural
networks. Academic Radiology, 32(5):2402–2410, 2025. doi: 10.1016/j.acra.2024.12.028. URL
https://www.sciencedirect.com/science/article/pii/S1076633224009966.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
Few-Shot learners. 2020.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić.
Efficient intent detection with dual sentence encoders, 2020. URL https://arxiv.org/
abs/2003.04807.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. BGE M3-
embedding: Multilingual, multi-functionality, multi-granularity text embeddings through
self-knowledge distillation, 2024. URL https://arxiv.org/abs/2402.03216.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei
Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai
Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang,
Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin
Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning
Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu,
Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei,
Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang,
Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha
Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Y. K. Wang, Y. Q. Wang,
Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou,
Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu,
Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang,
Yukun Zha, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun
Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-R1: Incentivizing reasoning capability in LLMs via
reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The Faiss library.
2024. URL https://arxiv.org/abs/2401.08281.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers
for text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30), July 2023.

7

https://www.sciencedirect.com/science/article/pii/S1076633224009966
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2401.08281

ISSN 1091-6490. doi: 10.1073/pnas.2305016120. URL http://dx.doi.org/10.1073/pnas.
2305016120.

Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. Incremental learning in online
scenario, 2020. URL https://arxiv.org/abs/2003.13191.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models, 2021.
URL https://arxiv.org/abs/2106.09685.

IBM. Model drift: Why it happens and how to detect it. https://www.ibm.com/think/
topics/model-drift, 2024. Accessed: 2024-07-16.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

Moxin Li, Wenjie Wang, Fuli Feng, Fengbin Zhu, Qifan Wang, and Tat-Seng Chua. Think
twice before trusting: Self-detection for large language models through comprehensive
answer reflection, 2024. URL https://arxiv.org/abs/2403.09972.

Lefteris Loukas, Ilias Stogiannidis, Prodromos Malakasiotis, and Stavros Vassos. Breaking
the bank with ChatGPT: Few-shot text classification for finance, 2023. URL https://
arxiv.org/abs/2308.14634.

Nexusflow. Introducing athene-v2: Advancing beyond the limits of scaling with targeted
post-training. https://nexusflow.ai/blogs/athene-v2, November 2024. Blog post an-
nouncing Athene-V2-Chat-72B.

Aleksandr Nikolich, Konstantin Korolev, Sergei Bratchikov, Igor Kiselev, and Artem Shel-
manov. Vikhr: Constructing a state-of-the-art bilingual open-source instruction-following
large language model for Russian. In Proceedings of the 4th Workshop on Multilingual
Representation Learning (MRL) @ EMNLP 2024. Association for Computational Linguistics,
2024. URL https://arxiv.org/abs/2405.13929.

NVIDIA Corporation and Mistral AI. NeMo Mistral toolkit for large language models.
https://developer.nvidia.com/nemo/mistral, 2024. Accessed: 2025-05-16.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.
08774. URL https://doi.org/10.48550/arXiv.2303.08774.

OpenAI. GPT-4o system card. https://openai.com/index/gpt-4o-system-card/, 2024.
Accessed: 2025-05-16.

Nicholas Pangakis and Samuel Wolken. Knowledge distillation in automated annotation:
Supervised text classification with LLM-generated training labels, 2024. URL https:
//arxiv.org/abs/2406.17633.

Qwen Team. Qwen2.5: A party of foundation models. https://qwenlm.github.io/blog/
qwen2.5/, September 2024.

Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25
and beyond. Foundations and Trends in Information Retrieval, 3(4):333–389, 2009.

Hamidreza Rouzegar and Masoud Makrehchi. Enhancing text classification through LLM-
driven active learning and human annotation, 2024. URL https://arxiv.org/abs/2406.
12114.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman
Chadha. A systematic survey of prompt engineering in large language models: Techniques
and applications, 2025. URL https://arxiv.org/abs/2402.07927.

8

http://dx.doi.org/10.1073/pnas.2305016120
http://dx.doi.org/10.1073/pnas.2305016120
https://arxiv.org/abs/2003.13191
https://arxiv.org/abs/2106.09685
https://www.ibm.com/think/topics/model-drift
https://www.ibm.com/think/topics/model-drift
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2308.14634
https://arxiv.org/abs/2308.14634
https://nexusflow.ai/blogs/athene-v2
https://arxiv.org/abs/2405.13929
https://developer.nvidia.com/nemo/mistral
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/gpt-4o-system-card/
https://arxiv.org/abs/2406.17633
https://arxiv.org/abs/2406.17633
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2406.12114
https://arxiv.org/abs/2406.12114
https://arxiv.org/abs/2402.07927

Julian A. Schnabel, Johanne R. Trippas, Falk Scholer, and Danula Hettiachchi. Multi-stage
large language model pipelines can outperform GPT-4o in relevance assessment, 2025.
URL https://arxiv.org/abs/2501.14296.

Artem Snegirev, Maria Tikhonova, Anna Maksimova, Alena Fenogenova, and Alexander
Abramov. The russian-focused embedders’ exploration: ruMTEB benchmark and russian
embedding model design, 2024. URL https://arxiv.org/abs/2408.12503.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Hussenot Léonard, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
Peter Liu, Pouya Tafti, Abe Friesen, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev,
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem,
Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin
Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, Francesco
Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack
Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh
Lipschultz, Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black,
Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe
Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly McNealus,
Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
Manvinder Singh, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt Miller,
Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie
Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar
Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin,
Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej,
Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause,
Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan,
Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas
Yadav, Vilobh Meshram, Vishal Haself, Warren Barkley, Wei Wei, Wenming Ye, Woohyun
Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta,
Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle
Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet,
Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a
practical size, 2024. URL https://arxiv.org/abs/2408.00118.

Hugo Touvron, Louis Martin, Kevin Stone, Paul Albert, Abdullah Almahairi, Yacine Babaei,
Nikita Bashlykov, Suchin Batra, Priya Bhargava, Shagun Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/
ARXIV.2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.

Laurens van der Maaten et al. The Llama 3 herd of models. 2024. URL https://arxiv.org/
abs/2407.21783.

Shubham Vatsal and Harsh Dubey. A survey of prompt engineering methods in large
language models for different NLP tasks, 2024. URL https://arxiv.org/abs/2407.12994.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei.
Multilingual E5 text embeddings: A technical report. arXiv, 2024.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui,
Zeyang Zhou, Chao Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui, Qi Zhang,
and Xuanjing Huang. A comprehensive capability analysis of GPT-3 and GPT-3.5
series models. CoRR, abs/2303.10420, 2023. doi: 10.48550/ARXIV.2303.10420. URL
https://doi.org/10.48550/arXiv.2303.10420.

9

https://arxiv.org/abs/2501.14296
https://arxiv.org/abs/2408.12503
https://arxiv.org/abs/2408.00118
https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.12994
https://doi.org/10.48550/arXiv.2303.10420

Hao Yu, Zachary Yang, Kellin Pelrine, Jean Francois Godbout, and Reihaneh Rabbany. Open,
closed, or small language models for text classification?, 2023. URL https://arxiv.org/
abs/2308.10092.

10

https://arxiv.org/abs/2308.10092
https://arxiv.org/abs/2308.10092

Appendix

A Metrics

A.1 Classifier metrics

Accuracy refers to the ordinary precision of predictions, and coverage refers specifically
to the number of classification non-refusals. A refusal is a special type of prediction that
shows it is better to transfer the client’s request to a hired specialist. Let’s call this special
class ”unk” (unknown). The coverage formula is:

Coverage =
1
N

N

∑
i=1

1{yCi ̸= unk},

where yCi is classifier prediction. The metric can also be used in annotation.

A.2 Annotation metrics

In the annotation task, the only effective way to assess an LLMs annotation capability is to
measure how often its predictions coincide with those of human annotators, since the models
initially have access only to human-provided labels. Confidence in human annotation can
be increased by collecting labels from several annotators on the same instance and retaining
it only if they all agree, thus forming a high-quality test set. Let N be the total number of
samples, yi be the prediction of annotator H (human) or M (LLM). Since human annotation
on the benchmark was collected only twice (data collection from experts and data collection
from regular annotators), we will fix H.
The accuracy of the LLM annotator M is:

AccuracyH(M) =
1
N

N

∑
i=1

1
(
y(M)

i = y(H)
i

)
,

where 1(·) is an indicator function that equals 1 if yMi = yHi , and 0 otherwise.

Finally, we can combine accuracy and coverage into a single overall metric:

Accuracytotal(M) = Accuracy(M)× Coverage(M),

which measures the fraction of instances that are both non-abstained and correctly labeled.
We can also treat the ”conf” class (”multiple intentions”) as equivalent to ”unk” for
LLMs metric calculation, since it appears only in experimental human annotations. In
binary annotation tasks, the usual F1 score (macro avg., because both classes are equally
important), precision, and recall remain appropriate.

B Alignment (SFT)

Two approaches were used to improve annotation quality: soft fine-tuning on the classifi-
cation task (adding a classification layer directly to the LLM) and Soft Fine-Tuning (SFT)
to enhance the LLM reasoning ability for correct annotation. To avoid modifying all LLM
parameters due to computational resource constraints, we employ a low-rank adaptation
(LoRA) Hu et al. (2021)

B.1 SFT reasoning

To enhance qualitative reasoning in base LLMs, supervised fine-tuning (SFT) can be applied
using high-quality labeled reasoning traces from human experts or advanced closed-source
models. This approach improves annotation quality for both text-based and probabilis-
tic methodologies, as SFT optimizes task representation even without explicit reasoning
generation. Section D.4 empirically confirms that SFT also elevates annotation metrics

11

for probabilistic approaches. Data for SFT (reasoning): 8,000 (Binary, Training data with
approximately equal distribution of the number of intents) and 2000 (Binary, Validation
data with prod distribution of intents).

C Experiment setup

C.1 LLMs

LLMs can be used with a text-based approach or a prob-approach, with or without RAG,
and can be fine-tuned using LoRA. List of LLMs in Section I

C.2 RAG

A combination of retrieval and reranking, selection of the number of documents to add to
the prompt, combination with a prob-approach were conducted. Main parameters reviewed:
number of documents appearing in the prompt, document and query similarity thresholds,
but only the number of documents is of particular value.
Experiments:
1. Selecting documents relevant to the client’s query sent directly to the chat (Table N.3).
2. Selecting documents relevant to the verifiable intent or intents in the annotation (Ta-
ble N.4). Since documents are searched not only at the client’s request, but also relevant to
each of the intent options (in fact, this is done in pre-set), LLM receives more context.

C.3 Alignment experiments (SFT)

For SFT, LoRA with Llama3.3-70b (for classification tasks) and Qwen2.5-32b (for reasoning
soft fine-tuning) were used. The main parameters (rank, alpha) were reviewed for LoRA.
Chosen attention projections: qproj, kproj, vproj, oproj

C.3.1 SFT (reasoning)

The collected training data using GPT-4o OpenAI (2024) and Deepseek-R1DeepSeek-AI et al.
(2025) were used to SFT the Qwen2.5-32b model. The reasoning of other Large Language
Models was parsed further, with the reasoning placed in the <think></think> block
and the answer placed in <answer></answer>. Generations were only used for training
if they led to the correct answer (the LLM answer matched the answer of professional
annotators with extensive experience). It’s also important not only to be able to reason
well about the question, but also to be able to work with the information given in the task.
Therefore, documents are also submitted in the prompt using RAG (Section D.3) in the
<retrieved></retrieved> block. It is important to note that the training data does not
overlap with the benchmark data.

C.4 Methodological notes

See Section L

D Results

D.1 Vanilla comparison of LLMs

The results of the benchmark measurements are shown in Table N.1. During the experiments,
it was decided to focus further work on two models, as they showed high and stable metrics,
good instruction following, and an interesting contrast between coverage and accuracy:
Llama3.3-70b and Qwen2.5-32b. Llama3.3-70b shows high coverage with lower accuracy,
indicating that it avoids ”unk” more often and is less uncertain, unlike Qwen2.5-32b, which
selects intents more often when confident and returns unk when uncertain.

12

From the beginning of the experiments, it’s clear that human annotators are more accurate
in multi-class annotation tasks than LLM.

D.2 Prob-approach after reasoning

Figure 2: Distribution of response probabilities without reasoning

Figure 3: Distribution of response probabilities with reasoning

Assume a binary task (0 = ”no”, 1 = ”yes”). We first run the text-approach, then delete the
final answer in the [ANSWER] block, leaving only the rationale. Feeding this rationale back
to the model with a single-token prompt yields a prob-after-text method that still supports
thresholding.

The baseline distribution (Fig. 2) is U-shaped with peaks at 0 and 1 - clear separation and
many confident cases. After injecting the rationale (Fig. 3), mid-range probabilities shrink as
examples migrate to the extremes; near 1–ϵ the model now forces a choice between opposite
labels, so thresholding rarely triggers. In practice the model looks ”more confident” even
when its reasoning may be flawed. As Table D.2 shows, hiding the answer and thresholding
53% of low-confidence cases (”unk”) yields metrics similar to the text-approach and still
below the pure probability method. Supplying a rationale therefore undercuts the main
advantage of the probabilistic approach - flexible, effective rejection - without boosting
accuracy.

13

MODEL ACC. F1-SCORE
(MACRO. AVG.)

COVERAGE
(PERC.)

QWEN2.5-32B
TEXT-APPROACH

0.8059 0.7543 100%

QWEN2.5-32B
PROB-APPROACH
USE THRESHOLDS

0.8530 0.8277 54%

QWEN2.5-32B
TEXT-APP.+PROB-APP

0.7971 0.7482 100%

QWEN2.5-32B
TEXT-APP.+PROB-APP.
USE THRESHOLDS

0.7646 0.7612 47%

Table 3: Metrics for prob-approach after text-approach (Binary)

D.3 RAG

D.3.1 Multi-class

Table N.3. With Llama-3-70B + multilingual-e5 retrieval, fetching 5 docs raises coverage but
trims accuracy, so Accuracytotal stays almost unchanged (0.2735 → 0.2834). BM25 shows the
opposite: 5 docs boost accuracy, coverage slips, and the total metric is again flat. Adding
the bge-m3 reranker to either retriever consistently lifts at least one metric and yields the
best overall score for Llama-3-70B (0.2925 vs. 0.2712).

Table N.4. Retrieving docs for every intent enlarges the prompt (1–5 extra snippets per
label), which invites hallucinations and inconsistent evidence, so Accuracytotal drops.

D.3.2 Binary

In the case of binary annotation (Table N.5), adding the best RAG approach from multi-class
annotating increases the annotation metrics for Llama3.3-70b prob-approach except for a
slight drop in precision on positives (probably due to the strong increase in precision on
negatives). Qwen2.5-32b also shows a significant increase in annotation metrics, but a severe
drop in recall on negatives. We should also notice an increase in coverage for both LLMs,
especially Qwen2.5-32b, which shows that adding more information increases the LLM’s
confidence in the answer while not decreasing the other metrics.

D.4 Result SFT (reasoning)

As shown in Table K.3, the metrics improved not only on the text-based approach (which
is the original training goal), but also on the prob-approach. Interesting how much the
recall on negatives has increased in the probabilistic approach. If before for good recall on
negatives reasoning from LLM in text-approach mode, now on probabilistic approach a
comparable recall on negatives is obtained. High-quality reasoning has indeed improved
LLM metrics in the annotation task. It’s also important to remember that RAG documents
were added to the prompt during retraining. The improvement in metrics can also be
attributed to the correct handling of retrieved documents, which Qwen2.5-32b learned from
Deepseek-r1 and GPT-4o.

E Prob-approach

F Additional documents and benchmarks

Some client intents can be resolved using prepared documents, employed by support staff
to answer client queries. Document length averages 500 characters, extending up to 2,000

14

Choose
only

answer
logitsLogits

LLMPrompt

the

ed

ing

ion

pre

<s>

03

0

1

N

markup
resultSoftmax

and argmax

Figure 4: Prob-approach

characters if necessary. It’s also important to note that the content of some documents may
overlap or even conflict each other in some cases. A trained specialists manage these cases
effectively. Binary benchmark: 18,000 (N-rows, Annotations of binary classifier predictions
(”yes”/”no”) for text classification correctness). Multi-class benchmark: 12,000 (N-rows,
Selections from top-5 predicted classes of a text classifier).

To verify the quality of LLM annotation, quality annotations were collected from highly
qualified, expensive experts. Then these data were marked up by the company’s regular
annotators, who currently annotate the predictions of the text classifier, as well as by
LLM annotation. Due to the high cost and lengthy annotation process required by expert
annotators, their services cannot be used for regular annotation. The number of unique
classes is approximately 250 for benchmarks, with classes distributed according to product
distribution.
The main criterion indicating that LLM annotation performs better than human annotation
is: all metrics obtained by LLM annotation must be equal to or better than regular human
annotations when compared to expert benchmark annotations. Despite this stringent
requirement, the impact of possible annotation errors on classifier performance has also
been studied (Section L.4), considering scenarios where solutions might reduce certain
classification metrics.

G Description of prompts

G.1 Text-approach prompt (reasoning)

In order for the LLM to follow the instructions a prompt was written consisting of the
following blocks: Domain introduction. Some information is given about the company,
the clients, why it’s important to do accurate annotation and check answers. Data details.
The concept of intent is explained, as well as the fact that they come from a text classifier.
Task. Depending on the modifications, the task includes at least the client’s text and a
description of the intent that needs to be checked to see if it fits the class, or a description of
several intents from which only one suitable description needs to be selected. Next, relevant
documents can be found (Section D.3) for the client’s text, which may contain the answer
to their question, explanations of terminology, and other useful information, as well as
high-quality examples (positive and negative) of texts for intents. Input and output format.
The LLM receives the task in the [USER] block. Then all reasoning should be done in the
[REASONING] block and the final answer should be given in the [ANSWER] block. In case
of binary annotation task, the final answer is ’yes’ or ’no’, in case of multi-class annotation
the final answer is one selected intent from the list passed in the task. Reasoning. The
prompt mentions that reasoning should go step by step, reveal the meaning of unfamiliar
words in the client’s request, use all the information provided, but not imagine it for the
client.

15

G.2 Prob-approach prompt

The difference from the text-based prompt is that the prob-approach does not require an
emphasis on reasoning. Also, after the instruction and task are given, before getting the
probabilities of answers, the [ANSWER] block is added to the LLM response block (chat
format depends on the specific LLM), therefore it’s enough for LLM to generate only 1
character, which can be either 0 or 1 (if binary annotation), or a number from 1 to 5 (in the
case of multi-class).

H Annotation completion time

Previous experiments conducted by the company showed that 1 multi-class annotation
takes 13.4 seconds on average, while 1 binary annotation takes 6.8 seconds on average (these
statistics take into account that several annotators can annotate tasks in parallel). When
using vLLM Kwon et al. (2023) and 1 GPU per 1 multi-class, the best approach with the
ensemble takes 0.85 seconds, which is 8 times faster than the binary annotation task and
15.7 times faster than multi-class annotation.
For example: multi-class benchmark took a human annotator almost two days to annotate,
while LLM annotation took only 3 hours. The problem of annotation duration is particularly
acute when several parallel annotations are running in a company. The ability to run LLM
annotation on multiple GPUs reduces the queue and speeds up the entire annotation
process.

I LLMs

• Llama3.3-70b van der Maaten et al. (2024)
Dense decoder-only Transformer (RMSNorm+SwiGLU) with 128k-token vocabu-
lary, pre-trained on 15T multilingual tokens and post-trained with SFT + Rejection
Sampling + Direct Preference Optimisation.
Native capabilities: multilingual Q&A, coding, reasoning and tool-use hooks.

• Qwen2.5-32b Qwen Team (2024)
32b dense Transformer with revamped tokenizer and 18T-token pre-training corpus
Model is purely dense, making it drop-in for GPU inference. Training focus: cold-
start data + reinforcement learning that explicitly rewards chain-of-thought quality,
bringing reasoning scores close to OpenAI-o1.

• Vikhr NeMo-12b Nikolich et al. (2024)
Bilingual Russian-English instruction Mistral-Nemo NVIDIA Corporation & Mistral
AI (2024) with a 40k SentencePiece vocab adapted to Russian.
Pipeline: rebuild tokenizer, 11b-token continued pre-training with KL regularisation
to avoid catastrophic forgetting, instruction tuning.

• Gemma2-27b Team et al. (2024)
Decoder-only Transformer with Grouped-Query Attention and interleaved local-
global attention, GeGLU activations and RMSNorm throughout.

• Athene-V2-Chat-72b Nexusflow (2024)
Fine-tuned from Qwen2.5 72b with a ”targeted post-training” RLHF pipeline; re-
leased under open weights by Nexusflow.
Specialties: strong function-calling agent variant and long-log extraction accuracy,
aimed at enterprise tool-use scenarios.

J RAG

J.1 Retrievals

• multilingual-e5-large-instruct Wang et al. (2024)
Instruction-Tuned Multilingual Embedder supports 100 languages, built on XLM-
RoBERTa-large. It’s fine-tuned with an instruction format.

16

• BM25 Robertson & Zaragoza (2009)
Okapi BM25 is a classic ranking function for document retrieval based on term
matching. It scores documents by term frequency in the document and inverse
document frequency of query terms, with length normalization. This yields a
bag-of-words relevance score for a given query.

J.2 Rerankers

• bge-m3 Chen et al. (2024)
Multi-Function Multilingual Embeddings is a Beijing Academy of AI model empha-
sizing Multi-Functionality, Multi-Linguality, and Multi-Granularity. The model can
produce BM25-like term weights alongside embeddings, enabling hybrid search
with no extra cost.

• FRIDA Snegirev et al. (2024)
FRIDA is a general-purpose text embedding model inspired by a T5 denoising
encoder.

J.3 Embedding storage

Document embeddings are stored in the faiss IndexFlatIP Douze et al. (2024). This index
stores all vectors in a ”flat” form, without additional structure or compression, and when
searching, simply calculates the scalar product between the query and each vector in the
index. This approach guarantees accurate search for the closest neighbors according to the
scalar product metric.

17

K SFT metrics

K.1 Classification

To further improve annotation metrics, we fine-tune the LLM directly on the annotation
task. First, annotation data are collected; then the LLM is modified to function as a classifier
by adding a linear layer (classification head). The hidden state of the LLM’s last token
is fed into this head, after which the resulting LLM–classifier is trained like a standard
classifier. All original LLM weights remain frozen except for the LoRA parameters and the
classification head weights. This approach restricts the LLMs reasoning abilities but yields
stable, high-quality annotation metrics, which is advantageous for automation.

DATASET N-ROWS DESCRIPTION

MULTI-CLASS TRAINING DATA 50,000
TRAINING DATA WITH

APPROXIMATELY EQUAL DISTRIBUTION
OF THE NUMBER OF INTENTS

MULTI-CLASS VALIDATION DATA 20,000 VALIDATION DATA
WITH PROD DISTRIBUTION OF INTENTS

Table K.1: Data for SFT (classification)

As can be seen in Table K.1, training and validation data were collected from the production
data stream, but in the training sample, the number of classes was balanced.

MODEL
COVERAGE

(”conf”=”unk”)
COVERAGE

(”conf” ̸= ”unk”)
ACCURACY
(w/o ”conf”)

ACCURACY
(”conf”=wrong) ACCURACYtotal

HUMAN 0.2134 0.5240 0.6977 0.3113 0.1489

LLAMA3.3-70B
TEXT-APPROACH

0.6585 0.6585 0.4118 0.4118 0.2712

LLAMA3.3-70B
TEXT-APPROACH
BEST RAG

0.6446 0.6446 0.4519 0.4519 0.2913

LLAMA3.3-70B
LORA
R=4, ALPHA=8
(1 EPOCH)

0.6712 0.6712 0.4055 0.4055 0.2722

LLAMA3.3-70B
LORA
R=4, ALPHA=8
(2 EPOCHS)

0.7328 0.7328 0.3455 0.3455 0.2532

Table K.2: Metrics after SFT (classification) (Multi-class)

As a result of training (Table K.2), the model began to choose unk more rarely, which led to
an increase in coverage but a decrease in accuracy on all other intents. It was also found
that the probability distribution had shifted in the direction described in Section D.2, which
also made the thresholds more difficult to choose. RAG provides better total accuracy
than this type of adaptation. Based on the results obtained on the multi-class data and the
impossibility of obtaining explanations from the model using this approach, experiments
on binary annotation were conducted using the method described in Section B.1.

18

K.2 Reasoning

MODEL
PREC.
1, pos.

PREC.
0, neg.

REC.
1, pos.

REC.
0, neg. ACC. F1-SCORE

(MACRO AVG.)
COVERAGE

(PERC.)

HUMAN 0.8748 0.7162 0.7834 0.8297 0.8018 0.7977 100%

QWEN2.5-32B
TEXT-APPROACH
BEST RAG

0.8787 0.6932 0.7591 0.8386 0.7904 0.7868 100%

QWEN2.5-32B
TEXT-APPROACH
LORA
r=4, alpha=8
dropout=0.1
BEST RAG

0.8947 0.7058 0.7565 0.8677 0.8012 0.7991 100%

QWEN2.5-32B
PROB-APPROACH
USE THRESHOLDS
BEST RAG

0.8993 0.8401 0.9712 0.5818 0.8908 0.8103 59%

QWEN2.5-32B
PROB-APPROACH
USE THRESHOLDS
LORA
r=4, alpha=8
dropout=0.1
BEST RAG
BEST LORA

0.9131 0.7641 0.8131 0.8867 0.8430 0.8405 63%

Table K.3: Metrics after SFT (reasoning) (Binary, Prob-approach)

L Methodological notes

L.1 Parameters

All parameters were searched through on separate samples without test data leakage
or adaptation to the test sample. To select the parameters, the load data was collected
from production and annotated separately; the benchmark was used exclusively for final
comparisons.

L.2 Completeness of experiments

If algorithms in one type of annotation (binary or multi-class) show a clear advantage in
experiments, they’re not repeated for another type of annotation, with some exceptions. The
reason for this is to reduce the amount of computation.

L.3 Threshold search policy for a prob-approach

The threshold values for the prob-approach were also chosen therefore the approach would
show results higher than human annotators on annotation metrics, but not the highest
possible, since rejecting classification logically reduces coverage and increases precision
(because only examples that the LLM is confident about are annotated). Since people also
tend to make mistakes, if the annotation metrics are higher for LLM, the classification
metrics will not only be closer to the true values when periodically measuring the quality of
the classifier, but the trained classifier will also perform better on new data (Section L.4).
It may be possible to achieve even better results by combining approaches that were not
described in detail in the experiments, or by carefully tuning all hyperparameters, but the

19

main goal of the experiments was achieved: the possibility of replacing humans with LLM
without loss of quality in the annotation task was demonstrated.

L.3.1 RAG design

RAG (Retrieval Augmented Generation) typically comprises two components: retrieval and
re-ranking. Retrieval selects a set of documents based on simple metrics (e.g., cosine similar-
ity between encoder embeddings of the query and the documents). Although retrieval is
fast, it does not order documents precisely by relevance. Retrieval can also be performed
using statistical algorithms without neural networks (e.g., BM25 Robertson & Zaragoza
(2009)). Retrieved documents are usually stored in a vector database. These documents
can then be re-ranked by a more complex model (cross-encoders) which helps to select the
most relevant documents and order them by importance to the query. Large documents
are split into smaller ones using various techniques (by paragraph, special symbols, or
sentence-similarity within a chunk). This chunking ensures each piece is small enough to
include in full without further division. Relevant documents are placed in the prompt, after
which the LLM solves the task in the usual format. The prompt instruction changes slightly,
with the addition of the [RETRIEVED] block, explaining to the model that this block will
contain information that may help to answer the client’s query. In the task-block, after the
description of the intents and examples, documents are added below the [RETRIEVED]
block.

L.4 The impact of False Negative and False Positive on the classifier

L.4.1 False Positive

0 10 20 30 40 50 60 70 80 90 100
Percentage of replaced intents

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (n
or

m
al

ize
d)

Figure 5: Impact of False Positive on the classifier (5 experiments)

If we replace the intent in the training sample with the closest similar one and train the
text classifier on this, the quality of the test sample begins to deteriorate in a predictable
manner. Starting at 70% replacements (Fig. 5), the quality begins to drop rapidly, but does
not reach zero. This may indicate several things: 1. One text in the data may correspond to
several intents, therefore the closest replacements do not significantly impair the classifier’s
training. 2. The marked data contains errors made by the annotators, and replacing it with
the closest intent actually corrects these errors, there are enough corrected examples in the
dataset for normal training.

L.4.2 False Negative

Removed examples (Fig. 6) in the annotation have a stronger impact on the accuracy of
the classifier; accuracy drops faster when the dataset is affected than in the False Positive

20

0 10 20 30 40 50 60 70 80 90 100
Percentage of removed intents

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (n
or

m
al

ize
d)

Figure 6: Impact of False Negative on the classifier (5 experiments)

example. It’s likely that the lack of removed examples in intents with a small number of
classes greatly affects the model’s ability to learn them, which is why the problems become
more noticeable in the test sample. It’s obvious that with zero records in the training sample,
no quality can be achieved. An experiment was also conducted to increase the proportion
of ”unk” in the training dataset, but this only resulted in the classifier starting with some
percentage of replacements predicting exclusively unk.

M The importance of mistakes

After a series of experiments, it became clear that it was necessary to achieve a quality
that was not inferior to human annotators across all selected metrics, since the classifier is
affected by even the first observable errors in the dataset, and the impact on business metrics
requires more in-depth analysis. If LLM can annotate data more accurately than human
annotators (i.e., correctly select 1 out of 5 intents or check a specific intent for accuracy), then
we can expect to improve the quality of the classifier itself when training on higher-quality
data. Also, it is worth considering that reducing the number of False Negative has a more
positive effect on the classifier.

0 10 20 30 40 50 60 70 80 90 100
Coverage

81

82

83

Ac
cu

ra
cy

Coverage 65%
Coverage 100%

Figure 7: Example of accuracy dependence on coverage for a binary ensemble

21

N Full metrics

MODEL
COVERAGE

(”conf”=”unk”)
COVERAGE

(”conf” ̸= ”unk”)
ACCURACY
(w/o ”conf”)

ACCURACY
(”conf”=wrong) ACCURACYtotal

HUMAN 0.2134 0.5240 0.6977 0.3113 0.1489

VIKHR NEMO-12B
TEXT-APPROACH

0.6254 0.6254 0.4250 0.4250 0.2658

GEMMA2-27B
TEXT-APPROACH

0.4688 0.4688 0.4931 0.4931 0.2312

ATHENE-V2-CHAT-72B
TEXT-APPROACH

0.5498 0.5498 0.4001 0.4001 0.2200

LLAMA3.3-70B
TEXT-APPROACH

0.6585 0.6585 0.4118 0.4118 0.2712

QWEN2.5-32B
TEXT-APPROACH

0.5243 0.5243 0.5399 0.5399 0.2831

Table N.1: Metrics for LLMs (Multi-class)

MODEL
PREC.
1, pos.

PREC.
0, neg.

REC.
1, pos.

REC.
0, neg. ACC. F1-SCORE

(MACRO AVG.)
COVERAGE

(PERC.)

HUMAN 0.8748 0.7162 0.7834 0.8297 0.8018 0.7977 100%

LLAMA3.3-70B
TEXT-APPROACH

0.8779 0.8178 0.9743 0.4600 0.8711 0.7562 100%

LLAMA3.3-70B
PROB-APPROACH
WITHOUT THRESHOLDS

0.8718 0.8067 0.9721 0.4496 0.8643 0.7483 100%

LLAMA3.3-70B
PROB-APPROACH
USE THRESHOLDS

0.8918 0.6825 0.7387 0.8624 0.7875 0.7850 57%

QWEN2.5-32B
TEXT-APPROACH

0.8613 0.6531 0.8726 0.6307 0.8059 0.7543 100%

QWEN2.5-32B
PROB-APPROACH
WITHOUT THRESHOLDS

0.8471 0.6365 0.8837 0.5606 0.7977 0.7306 100%

QWEN2.5-32B
PROB-APPROACH
USE THRESHOLDS

0.9398 0.6863 0.8518 0.8560 0.8530 0.8277 54%

Table N.2: Metrics for LLMs (Binary)

22

MODEL
COVERAGE

(”conf”=”unk”)
COVERAGE

(”conf” ̸= ”unk”)
ACCURACY
(w/o ”conf”)

ACCURACY
(”conf”=wrong) ACCURACYtotal

HUMAN 0.2134 0.5240 0.6977 0.3113 0.1489

QWEN2.5-32B 0.5243 0.5243 0.5399 0.5399 0.2831

LLAMA3.3-70B 0.6585 0.6585 0.4118 0.4118 0.2712

LLAMA3.3-70B
retriever:
multilingual-e5-large-instruct
FIND 1 DOCUMENT

0.6479 0.6479 0.4221 0.4221 0.2735

LLAMA3.3-70B
retriever:
multilingual-e5-large-instruct
FIND 5 DOCUMENTS

0.7062 0.7062 0.4013 0.4013 0.2834

LLAMA3.3-70B
retriever:
bm25
FIND 1 DOCUMENT

0.6440 0.6440 0.4209 0.4209 0.2711

LLAMA3.3-70B
retriever:
bm25
FIND 5 DOCUMENTS

0.6234 0.6234 0.4333 0.4333 0.2701

LLAMA3.3-70B
retriever:
multilingual-e5-large-instruct
reranker:
FRIDA
FIND 5 FROM 25 DOCUMENTS

0.6416 0.6416 0.4517 0.4517 0.2898

LLAMA3.3-70B
retriever:
multilingual-e5-large-instruct
reranker:
bge-m3
FIND 5 FROM 25 DOCUMENTS
BEST RAG

0.6446 0.6446 0.4519 0.4519 0.2913

QWEN2.5-32B
retriever:
multilingual-e5-large-instruct
reranker:
bge-m3
FIND 5 FROM 25 DOCUMENTS
BEST RAG

0.5483 0.5483 0.5334 0.5334 0.2925

Table N.3: Metrics for RAG (Multi-class, text-approach)

23

MODEL
COVERAGE

(”conf”=”unk”)
COVERAGE

(”conf” ̸= ”unk”)
ACCURACY
(w/o ”conf”)

ACCURACY
(”conf”=wrong) ACCURACYtotal

HUMAN 0.2134 0.5240 0.6977 0.3113 0.1489

LLAMA3.3-70B 0.6585 0.6585 0.4118 0.4118 0.2712

LLAMA3.3-70B
retriever:
multilingual-e5-large-instruct
FIND 1 DOCUMENT

0.6645 0.6645 0.3669 0.3669 0.2438

LLAMA3.3-70B
retriever:
multilingual-e5-large-instruct
FIND 5 DOCUMENTS

0.6427 0.6427 0.3141 0.3141 0.2018

Table N.4: Metrics for RAG few-shot for intents (Multi-class, text-approach)

MODEL
PREC.
1, pos.

PREC.
0, neg.

REC.
1, pos.

REC.
0, neg. ACC. F1-SCORE

(MACRO AVG.)
COVERAGE

(PERC.)

HUMAN 0.8748 0.7162 0.7834 0.8297 0.8018 0.7977 100%

LLAMA3.3-70B
TEXT-APPROACH

0.8779 0.8178 0.9743 0.4600 0.8711 0.7562 100%

QWEN2.5-32B
TEXT-APPROACH

0.8613 0.6531 0.8726 0.6307 0.8059 0.7543 100%

LLAMA3.3-70B
PROB-APPROACH
USE THRESHOLDS

0.8918 0.6825 0.7387 0.8624 0.7875 0.7850 57%

QWEN2.5-32B
PROB-APPROACH
USE THRESHOLDS

0.9398 0.6863 0.8518 0.8560 0.8530 0.8277 54%

LLAMA3.3-70B
retriever:
multilingual-e5-large-instruct
reranker:
bge-m3
FIND 5 FROM 25 DOCUMENTS
BEST RAG
PROB-APPROACH
USE THRESHOLDS

0.8835 0.7416 0.7674 0.8683 0.8113 0.8106 61%

QWEN2.5-32B
retriever:
multilingual-e5-large-instruct
reranker:
bge-m3
FIND 5 FROM 25 DOCUMENTS
BEST RAG
TEXT-APPROACH

0.8787 0.6932 0.7591 0.8386 0.7904 0.7868 100%

QWEN2.5-32B
retriever:
multilingual-e5-large-instruct
reranker:
bge-m3
FIND 5 FROM 25 DOCUMENTS
BEST RAG
PROB-APPROACH
USE THRESHOLDS

0.8993 0.8401 0.9712 0.5818 0.8908 0.8103 59%

Table N.5: Metrics for RAG (Binary)

24

O Discussion

Two approaches combining LLMs with RAG were proposed: binary pipeline uses two
LLMs (Llama3.3-70b, Qwen2.5-32b), and one of these (Qwen2.5-32b) was fine-tuned on
the reasoning outputs of two large proprietary models. Considering annotation metrics
(primarily accuracy and coverage), we replaced 65% of binary annotations with LLMs and
all multi-class annotations with LLMs, accelerating annotation speed by an average factor of
8 while improving overall quality. Adapting an LLM purely as a classifier did not yield the
same gains as fine-tuning an LLM for reasoning, although the reasoning-trained LLM also
showed improved performance in the prob-approach - even when reasoning generation
is disabled by design. The results of reasoning fine-tuning underscore the importance of
correct initial prompt processing by the LLM and suggest that the model may ”know” the
correct answer from the very start of its generation.
The focus of future work should be on: Threshold sensitivity. (Fig. 7); Abstention thresh-
olds for ”unk” were hand-tuned for each LLM and benchmark. Because token-probability cal-
ibration varies by model, prompt, and data distribution, these thresholds are unlikely to gen-
eralize across languages, models, or new datasets without ongoing monitoring and re-tuning.
Full distillation of the LLM. There may be a way to explore knowledge-distillation or struc-
tured pruning to compress the LLM while retaining cross-domain annotation accuracy.

These observations suggest that, while LLM-based annotation can match or exceed human
performance in our setting, deploying similar pipelines elsewhere will require careful
domain adaptation, re-ranking training, threshold calibration, and ongoing prompt and
model optimization.

25

P Prompts

Multi-class prompt

Hello! Here are the instructions you should follow when communicating with me:
1. You are an intelligent data annotation assistant. You receive text that a user has written in the
app’s support chat, along with several hypothetical intents (classes) that this text may refer to.
Along with the intent names, you will also receive a human-written description of the intent and
typical examples, also selected by a human. Carefully read and compare the intent description
and examples with the text that needs to be classified.
2. It is very important that you follow the instructions carefully and are very careful when making
decisions.
3. For each correctly completed task, you will receive bonuses that you can spend on self-
development and training.
4. If you are able to classify the text clearly, enter the correct class after the [ANSWER] tag. Use
the exact class name that was provided in the list, as this is necessary for subsequent quality
assessment.
5. The text may not belong to any of the provided classes or may not contain any intent at all. In
this case, display the answer in the format [ANSWER] ”unk” (”unk” number from the task list).
6. If the context of the user’s message is insufficient to provide an unambiguous answer using the
provided list of classes, display the answer in the format [ANSWER] ”unk” (”unk” number from
the task list). Please note that this intent should only be used in extreme cases when you find
it difficult to choose between several intents. This is a rare situation; therefore, read the intent
descriptions carefully and match them to the client’s phrase.
7. Write and reason in Russian. If you find this difficult, do it as you see fit and then translate
your thoughts into Russian.
8. When solving tasks, be sure to write down all your reasoning in the text and analyze it while
writing your answer.
9. Stick to the required output format:
1. [TEXT] user’s text
2. [REASONING] Reasoning regarding the selection of the appropriate class. Reason consistently,
consider all possible options, and use the class description and examples provided for it.
3. [ANSWER] Answer - the number of one of the intents in the list. If you decide that the answer
should be one of the intents in the list, make sure you answer **ONLY** with the number of that
intent.
10. You may also encounter additional data enclosed in the [RETRIEVED] tag. This data was
obtained from the internal information system and may contain additional useful information
about the user’s text.

26

Multi-class prob-approach prompt

Hello! Here are the instructions you should follow when communicating with me:
1. You are an intelligent data annotation assistant. You receive text that a user has written in the
app’s support chat, along with several hypothetical intents (classes) that this text may refer to.
Along with the intent names, you will also receive a human-written description of the intent and
typical examples, also selected by a human. Carefully read and compare the intent description
and examples with the text that needs to be classified.
2. It is very important that you follow the instructions carefully and are very careful when making
decisions.
3. For each correctly completed task, you will receive bonuses that you can spend on self-
development and training.
4. If you are able to classify the text clearly, enter the correct class after the [ANSWER] tag. Use the
exact number that was provided in the list, as this is necessary for subsequent quality assessment.
5. The text may not belong to any of the provided classes or may not contain any intent at all. In
this case, enter your answer in the format [ANSWER] ”unk” (”unk” number from the task list).
6. If the context of the user’s message from [TEXT] is insufficient to provide a clear answer using
the provided list of classes, enter your answer in the format [ANSWER]: ”unk” (”unk” number
from the task list). Please note that this intent should only be used in extreme cases when you
find it difficult to choose between several intents. This is a rare situation; therefore, read the intent
descriptions carefully and match them to the user’s phrase.
7. Stick to the required output format: [ANSWER] Answer - number of one of the intents in the
list. If you decide that the answer should be one of the intents in the list, make sure you respond
with **ONLY** the number of that intent.
8. You may also encounter additional data enclosed in the [RETRIEVED] tag. This data was
obtained from the internal information system and may contain additional useful information
about the user’s text.

27

Binary prompt

Hello! Here are the instructions you should follow when communicating with me:
1. You are an intelligent data annotation assistant. You receive text that a user has written in
the application’s support chat and the suggested class to which this text may belong. You need
to determine whether the text actually belongs to the suggested class or not. In addition to the
class descriptions written by a human, you will also receive typical examples, also selected by a
human. Read carefully and compare the class descriptions and examples with the text that needs
to be classified.
2. It is very important that you follow the instructions carefully and are very careful when making
decisions.
3. For each correctly completed task, you will receive bonuses that you can spend on self-
development and training.
4. Write and think in Russian. If you find this difficult, do it as you see fit and then translate your
thoughts into Russian.
5. Please note that the task text contains both suitable and unsuitable examples. Carefully
compare the text with the examples to avoid falling into a trap. It is also important to consider
product names or additional external context. If a class refers to one product or situation, but the
text mentions another product or situation, this means that the text does not fit the specified class.
6. When solving problems, be sure to write down all your reasoning in the text and analyze it
while writing your answer. Reason step by step; for convenience, you can break your reasoning
down into separate points.
7. Follow the required format for presenting your conclusions:
1. [TEXT] User’s text
2. [REASONING] Reasoning used to verify the correctness of the prediction. Reason consistently,
step by step, consider all possible options, and be sure to use the class description and examples
provided for it. Also, clarify the meaning of ambiguous words that may imply that the text does
not belong to this class. Do not guess what the client means or try to find hidden meanings in
their message. Evaluate whether a message belongs to a class based *only* on the text of the
message.
3. [ANSWER] The answer is a single line ”yes” or ”no” in lowercase (small letters). If the text
belongs to the intended class or is similar to the examples provided, answer ”yes.” If the text
cannot be related to this class and is not similar to any of the examples given, answer ”no.” Be
sure to give your final answer based on your previous reasoning.
8. You may also encounter additional data enclosed in the [RETRIEVED] tag. This data was
obtained from the internal information system and may contain additional useful information
about the user’s text.

28

Binary prob-approach prompt

Hello! Here are the instructions you should follow when communicating with me:
1. You are an intelligent data annotation assistant. You receive text that a user has written in
the application’s support chat and the suggested class to which this text may belong. You need
to determine whether the text actually belongs to the suggested class or not. In addition to the
class descriptions written by a human, you will also receive typical examples, also selected by a
human. Read carefully and compare the class descriptions and examples with the text that needs
to be classified.
2. It is very important that you follow the instructions carefully and are very careful when making
decisions.
3. For each correctly completed task, you will receive bonuses that you can spend on self-
development and training.
4. Please note that the task text contains both suitable and unsuitable examples. Carefully
compare the text with the examples to avoid falling into a trap. It is also important to consider
product names or additional external context. If a class refers to one product or situation, but the
text mentions another product or situation, this means that the text does not fit the specified class.
5. Follow the required format for presenting your conclusions: 1. [TEXT] User’s text, [ANSWER]
The answer is a single line ”0” or ”1” in lowercase (small letters). If the text belongs to the
intended class or is similar to the examples provided, answer ”1.” If the text cannot be related to
this class and is not similar to any of the examples given, answer ”0.”
6. You may also encounter additional data enclosed in the [RETRIEVED] tag. This data was
obtained from the internal information system and may contain additional useful information
about the user’s text.

29

	Introduction
	Social impacts statement
	Related work
	LLMs as ICL classifiers
	LLMs as data annotators

	Methodology
	Dataset
	Intent

	Human-grounded annotation
	Binary annotation
	Multi-class annotation

	LLM annotation
	Text-approach
	Prob-approach

	Metrics
	Proposed approach

	Results
	Multi-class
	Binary

	Conclusion
	Metrics
	Classifier metrics
	Annotation metrics

	Alignment (SFT)
	SFT reasoning

	Experiment setup
	LLMs
	RAG
	Alignment experiments (SFT)
	SFT (reasoning)

	Methodological notes

	Results
	Vanilla comparison of LLMs
	Prob-approach after reasoning
	RAG
	Multi-class
	Binary

	Result SFT (reasoning)

	Prob-approach
	Additional documents and benchmarks
	Description of prompts
	Text-approach prompt (reasoning)
	Prob-approach prompt

	Annotation completion time
	LLMs
	RAG
	Retrievals
	Rerankers
	Embedding storage

	SFT metrics
	Classification
	Reasoning

	Methodological notes
	Parameters
	Completeness of experiments
	Threshold search policy for a prob-approach
	RAG design

	The impact of False Negative and False Positive on the classifier
	False Positive
	False Negative

	The importance of mistakes
	Full metrics
	Discussion
	Prompts

