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Abstract
Language modeling on large-scale datasets im-
proves performance of various downstream tasks.
The validation pre-training loss is often used as
the evaluation metric for language models since
the pre-training loss tends to be well-correlated
with downstream performance (which is itself
hard to evaluate comprehensively). Contrary to
the conventional wisdom, this paper shows that 1)
pre-training loss cannot fully explain downstream
performance and 2) flatness of the model is well-
correlated with downstream performance where
pre-training loss is not. We identify three ways to
produce models with the same pre-training loss but
different downstream performance: continue pre-
training after convergence, increasing the model
size, and changing the pre-training algorithms.
These experiments demonstrate the existence of
implicit bias of pre-training algorithms—among
models with the same minimal pre-training loss,
they implicitly prefer more transferable ones.
Toward understanding this implicit bias, we
prove that SGD with standard mini-batch noise
implicitly prefers flatter minima of pre-training
loss in language models, and empirically observe
a strong correlation between flatness (measured
by trace of Hessian) and downstream performance
among models with the same pre-training loss.
We also prove in a synthetic language setting that
among models with the minimal pre-training loss,
the flattest model transfers to downstream tasks.

1. Introduction
Large language models (LLMs) pre-trained on internet-scale
data have improved performance on a wide array of down-
stream tasks (Devlin et al., 2018; Yang et al., 2019; Radford
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Figure 1. The relationship between pre-training loss, flatness,
and linear probe accuracy on PCFG Task B. Each dot corre-
sponds to a model. Dots with the same color are models of the same
size but trained with different number of steps. All the models have
quite similar pre-training validation losses between 3.204-3.208.
The trace of Hessian of the pre-training loss correlates much better
with the downstream performance than the pre-training loss.

et al., 2019; Raffel et al., 2020; Brown et al., 2020). These
models are trained with a language modeling pre-training loss
to “fill in the blanks"—either predicting the next token/word
(autoregressive language modeling loss, or perplexity) or
masked tokens (masked language modeling (MLM) loss).

In common practice, the validation pre-training loss is
used to monitor the training process (Brown et al., 2020;
Zhang et al., 2022a) and compare different models since the
pre-training loss is generally strongly correlated with down-
stream performance (Hernandez et al., 2021). Moreover,
theoretical works on understanding LLMs also focus on
how the pre-training loss affects downstream performance.
Saunshi et al. (2020); Wei et al. (2021b); Xie et al. (2021)
show that good pre-training loss, or fitting the language
modeling conditional probability well, is a main reason for
downstream success of LLMs. Their analyses generally
treat the language models as blackboxes and do not take into
account how the models represent the conditional probability.

In this paper, we question the conventional wisdom on the
correlation between the validation pre-training loss and down-
stream performance for language modeling. Recent works
have demonstrated that models with different architectures
may have the same pre-training loss but different perfor-
mance (Saunshi et al., 2022; Tay et al., 2021). Due to the ex-
pressivity of modern neural nets, many parameter configura-
tions even within the same architecture can still have the same
pre-training loss. A priori, it is unclear why all these config-
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urations should have the same downstream performance.

We find that different parameter configurations with the
same pre-training loss can indeed have different downstream
performance. Concretely, with synthetic and real datasets,
we find three situations that demonstrate such a phenomenon:

• Models pre-trained with standard optimizers and reg-
ularization have better downstream performance than
models pre-trained with adversarial algorithms, improper
regularization, or a hypothetical “look-up table” model
that outputs the exact conditional probabilities, even when
they all have with the same pre-training loss.

• Even after the pre-training loss converges, models at a
later time step still tend to perform better.

• Larger models perform better downstream than smaller
models even when they have the same pre-training loss.

In each of the first two cases above, we find models with the
same pre-training loss and the same architecture; but some
have better performance than others. They only differ by
the pre-training algorithms. Therefore, this suggests the pre-
training algorithms have an implicit bias toward certain types
of models—standard algorithms with more training steps bi-
ases towards parameter configurations that transfer better to
downstream tasks. The third case has a more subtle but sim-
ilar interpretation. There exists a hypothetical large model
that represents the smaller model with worse downstream
performance (by filling zeros in the weights or replicating
the weights of the smaller model). The training algorithm on
the large architecture could have chosen it, but did not. This
suggests the algorithm has an implicit bias against the hypo-
thetical model (which has an equally good pre-training loss).

In supervised settings, optimizers are known to have an
implicit bias toward selecting generalizable models among
all models with small empirical loss. Recently, Damian
et al. (2021); Li et al. (2021) suggest that, among all the
minimizers of the empirical loss, stochastic optimizers
implicitly prefer flatter ones. Past works have suggested
theoretically and empirically that encouraging flatness tends
to improve generalization (Keskar et al., 2016; Dziugaite
& Roy, 2017; Neyshabur et al., 2017; Jastrzębski et al., 2017;
Jiang et al., 2019; Wei & Ma, 2019a;b; Wu et al., 2020;
Foret et al., 2021; Norton & Royset, 2021; Zheng et al.,
2021) (even though flatness is not a necessary condition for
generalization (Dinh et al., 2017)).

However, the role of implicit bias in self-supervised learning
has not been studied. We also claim that its role is conceptu-
ally different. Unlike in supervised learning, the gap between
empirical and population self-supervised losses is typically
small in self-supervised learning, and thus implicit bias does
not contribute to bridging this gap. Instead, the implicit bias
selects models that transfer better to downstream tasks.

Why do pre-training algorithms bias toward some type of
models? In Section 3, we provide a first-cut theoretical
analysis of the implicit bias in language modeling. Fortu-
nately, despite the conceptual differences, mathematical
tools from supervised settings can be straightforwardly
adapted to language modeling. We prove that mini-batch
SGD prefers flatter minima of population pre-training loss.
Interestingly, we obtain cleaner theoretical results for the
standard mini-batch SGD, without the artificial label noise
introduced in prior works (Damian et al., 2021; Li et al.,
2021), partly because the mini-batch noise for LLMs does
not vanish even at convergence.

We corroborate our theory with empirical evidence in Sec-
tion 4. We show that for models with the same pre-training
loss in the three situations above, the trace of Hessian of the
pre-training loss strongly correlates with the downstream
performance (See Figure 1). In addition, removing regular-
ization from standard pre-training algorithms makes both
flatness and downstream performance worse, while adding
explicit flatness regularization can recover both both of them.

Finally, to complement the theory and experiments, we rig-
orously formalize the connection between flatness and down-
stream performance in a simplified Dyck language setting
in Section 5. We prove that although there are many models
with good MLM pre-training loss; among them, the flattest
model learns the most useful features for downstream tasks.

2. Implicit Bias Affects Downstream Accuracy
In this section, we investigate the relationship between
pre-training loss and downstream performance. We find
that models with the same pre-training loss but different
training procedures can have different downstream perfor-
mance. Code is provided in https://github.com/
Liuhong99/implicitbiasmlmcode.

2.1. Formulations

Masked language modeling. Consider a vocabulary
W = {0, 1, ... , c}, where 0 is a special token for the
mask. Let x= [x1,...,xT ] denote the input sequence, and
x−t = [x1,...,xt−1,0,xt+1,...,xT ] denote the masked sen-
tence, where t is sampled uniformly randomly and indepen-
dently.1 The MLM conditional probability refers to the prob-
ability of xt given the rest of the sequence Pr(xt |x−t). We
usePr(· |x−t) to denote the c-dimensional probability vector
Pr(· |x−t) := [Pr(xt=1 |x−t) , ... ,Pr(xt=c |x−t)] ∈ Rc.
In MLM pre-training, the model outputs the predicted
MLM conditional probability vector fθ(x−t) ∈ Rc. The
model is trained to predict the masked token xt given
the rest of the sentence x−t with cross entropy loss,

1For simplicity, in the formulation we mask one token per sen-
tence. Empirically, we use standard 15% mask rate on real datasets.

2

https://github.com/Liuhong99/implicitbiasmlmcode
https://github.com/Liuhong99/implicitbiasmlmcode


Implicit Bias Matters for Language Models

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Steps / 1000

48

50

52

54

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

Linear Probe

3

4

5

6

7

8

Pr
e-

tra
in

in
g 

Lo
ss

(a) PCFG -> Task C, 41M

Pre-training

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Steps / 1000

53

54

55

56

57

58

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

Linear Probe

2

3

4

5

6

7

8

Pr
e-

tra
in

in
g 

Lo
ss

(b) OPT -> QNLI, 235M

Pre-training

200 400 600 800 1000 1200 1400
Number of Steps / 1000

85.5

86.0

86.5

87.0

87.5

88.0

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

Linear Probe

2.60

2.65

2.70

2.75

2.80

Pr
e-

tra
in

in
g 

Lo
ss

(c) OpenWebText -> SST-2, 25M

Pre-training

Figure 2. Models at a later time step perform better, even after the pre-training loss converges. (a) A model with 41M parameters pre-trained
on the PCFG-generated dataset, and evaluated on task C. (b) A model with 235M parameters pre-trained on the OPT-generated dataset, and
evaluated on QNLI. (c) A model with 25M parameters pre-trained on the OpenWebText, and evaluated on SST-2. Note that the pre-training
loss approaches its minimal value (3.196 for the PCFG and 1.865 for OPT) in (a) and (b) as we increase the number of steps.

L(θ)=Ex,t[ℓ(fθ(x−t),xt)]=Ex,t[−log([fθ(x−t)]xt)].
Downstream evaluation. The language model fθ is
composed of a feature extractor hψ, which outputs a
sequence of contextual representations, and a linear classifier
that outputs the conditional probability at every position.
On downstream tasks, we use a randomly initialized gϕ on
top of the pre-trained hψ. In fine-tuning, both gϕ and hψ
are trained, while in linear probe, only gϕ is updated. For
fine-tuning, we use the contextual representations of the
cls token. For linear probe, we concatenate the contextual
representations of all the tokens together.
Saturation regime. In order to factor out the impact of the
pre-training loss, we introduce the saturation regime, a family
of models with the same (optimal) pre-training loss. We say
a model is in the saturation regime if its output equals the true
conditional probability, fθ(x−t)=Pr(· |x−t), and the MLM
loss equals the entropy of the true conditional probability
L(θ) = Ex,t[− log(Pr(xt |x−t))] = 1

T

∑T
t=1H(xt | x−t),

which is also the lower bound of the pre-training loss.
Thus, all models in the saturation regime have the same
optimal pre-training loss. When the architectures are
sufficiently expressive, multiple parameter configurations
can compute the true conditional probability and thus be
in the saturation regime. As will be shown in Section 2.3,
interestingly, models in the saturation regime can still have
varying downstream performance (which is not caused by
the pre-training loss because it is the same.) Perhaps more
interestingly, this phenomenon also holds with linear probing
on contextualized presentations instead of fine-tuning.
Thus, even though the predicted conditional probabilities
of two models are the same (and correct), the contextualized
representations can behave differently.

We also conduct experiments on real large-scale data which
are typically not in the saturation regime due to limited train-
ing time and architecture size, which validate our findings
in the setup that is more representative of real-world use.

2.2. Experimental Setup

We design controlled experiments to study the correlation
between pre-training loss and downstream performance.

In particular, we find a set of models with almost the same
pre-training loss. We effectively use the same architecture
family so that the main difference between the models
only stems from pre-training algorithms. More details and
additional results are provided in Section A.

Datasets. We introduce three datasets produced by genera-
tive models. With the knowledge of the true generative mod-
els, we can compute the true conditional probability and scale
up the models until they approach the saturation regime to en-
sure they have almost the same pre-training loss. We also con-
sider two real-world large language modeling corpora, with
which we can demonstrate our findings in practical setups.
1) PCFG-generated dataset. PCFG (Chomsky, 1956)

generates sentences with probabilistic trees and is widely
used to understand natural language (Roark & Bacchiani,
2003; Kim et al., 2019). The symbols in the parse trees
are intrinsic quantities of the sentences such as syntax.
We design three downstream tasks A, B, and C to classify
symbols at different positions of the parse trees.

2) HMM-generated dataset. HMM samples hidden
variables from the transition probabilities and tokens
from the emission probabilities, which is used to analyze
the properties of pre-trained language models (Wei
et al., 2021b; Xie et al., 2021). The downstream task is
classifying hidden variables in the sentences. We use
task-k to refer to classifying the k-th hidden variable.

3) OPT-generated dataset. OPT is an autoregressive lan-
guage model (Zhang et al., 2022a). Starting from thebos
token, we sample tokens from the output of OPT. For com-
putational feasibility we only allow the top-2000 frequent
tokens in the OPT vocabulary. We use QNLI and SST-2
from GLUE (Wang et al., 2018) as downstream tasks.

4) OpenWebText. OpenWebText (Gokaslan et al., 2019) is
an open version of the large language corpus used to train
GPT-2 (Radford et al., 2019). It contains 40GB of text.

5) BookCorpus. BookCorpus (Zhu et al., 2015) is a 4GB
collection of novel books used to train BERT (Devlin
et al., 2018). We consider GLUE (Wang et al., 2018) as
downstream tasks for the two real-world datasets.

Note that the true conditional probability can be computed ef-
ficiently for the three synthetic datasets given the generative
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Figure 3. Larger models perform better downstream than smaller models, even with almost the same pre-training loss. (a) Pre-train on the
PCFG-generated dataset and evaluate on task B. (b) Pre-train on the HMM-generated dataset and evaluate on task-10. (c) Pre-train on the
OPT-generated dataset and evaluate on QNLI. For PCFG- and OPT-generated datasets, the vertical dashed line indicates the model size
where the pre-training loss saturates. For HMM, the smallest model is already close to the minimal loss. See Section 2 for details.

models. For PCFG- and HMM-generated datasets, we can
compute the true conditional probability with the inside algo-
rithm (Lari & Young, 1990) and the Viterbi algorithm (For-
ney, 1973), respectively. For the OPT-generated dataset, we
can calculate the MLM conditional probability from the joint
probability, and the joint probability can be decomposed into
the autoregressive conditional probability of the OPT model.

Models and algorithms. For PCFG, OPT and real language
datasets, we use transformers (Vaswani et al., 2017) from
2M to 950M. For the HMM-generated dataset, we use
LSTM (Hochreiter & Schmidhuber, 1997b) from 10M to
135M. All the models are pre-trained with AdamW following
the protocol of Izsak et al. (2021) with 0.1 dropout and 0.01
weight decay. Besides varying training steps and model
sizes, we also consider two other approaches that produce
models with the same pre-training loss. First, inspired by Liu
et al. (2020); Raghu et al. (2021), we pre-train models with
an additional meta-learning objective that messes up the
downstream performance while keeping the same MLM loss.
The second approach is to virtually implement a model that
produces the true conditional probabilities as the representa-
tions of the sentences, and we call this model a look-up table.
Note that such a model always has a perfect pre-training loss,
and can be implemented by a sufficiently large transformer
because transformers are universal approximators (Yun et al.,
2019; Wei et al., 2021a). Since we know the true conditional
probability from generative models, we can evaluate the
downstream performance of the “look-up table” by linear
probe on top of the concatenated conditional probabilities,
without explicitly constructing parameters of the transformer
that implements the look-up table. On BookCorpus, we
compare models pre-trained with standard 0.1 dropout
and 0.01 weight decay to models without these regulariza-
tions. Additionally, we evaluate models pre-trained with
sharpness-aware minimization (SAM) (Foret et al., 2020),
which explicitly encourages flatness.

2.3. Role of implicit bias on downstream accuracy

We compare the downstream performance of models with
the same pre-training loss in the following situations: (1)

training for different numbers of steps after the pre-training
loss converges, (2) pre-training using normal algorithms with
regularization vs. pre-training using adversarial algorithms
or without proper regularization, and (3) using different
model sizes. We plot the pre-training loss and downstream
accuracy of the models we obtain on PCFG datasets in
Figure 1 (Left). Our results demonstrate examples of implicit
biases that affect downstream accuracy when pre-training
loss fails to correlate with downstream accuracy.

Training longer improves downstream performance
despite obtaining the optimal pre-training loss. In
Figure 2, we plot the validation pre-training loss and the
downstream performance of different models checkpoints
during one pre-training run. After the pre-training loss
converges, although the pre-training loss does not improve,
the downstream accuracy continues increasing.

Table 1. Comparison of different pre-training algorithms.
PCFG Pre-training Task A % Task B %

AdamW 3.204 89.9 ±0.3 49.2±0.8
Adversarial 3.206 83.1 ±0.6 42.3±1.5
Lookup table 3.196 71.2 39.7

BookCorpus Pre-training QNLI % SST-2 %

AdamW (w/ dropout, WD) 1.85 84.4 90.8
-dropout-WD 1.85 83.0 89.5
-dropout-WD+SAM 1.89 84.4 90.1

Natural pre-training algorithms have better implicit
bias than adversarial algorithms despite reaching the
optimal pre-training loss. In Table 1, we evaluate the
235M transformers on PCFG tasks A and B with different
pre-training algorithms. Although the adversarially trained
transformer has almost the same pre-training loss as the
AdamW trained 235M transformer, it is more than 6% worse
than the AdamW model. Thus, these two models have very
different downstream accuracy with the same pre-training
loss and architecture. Similarly, the transformer model that
implements a lookup table has perfect pre-training loss, but it
performs worse than all other models in Figure 3(a) on task B.

Regularization matters for downstream accuracy and
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SAM can serve as a substitute. On BookCorpus, we train a
330M-parameter transformer with and without explicit regu-
larization (dropout and weight decay). Both models achieve
the same validation pre-training loss, but the model without
regularization performs worse after fine-tuning on QNLI and
SST-2 (Table 1). SAM recovers the decrease in downstream
performance, even with a slightly worse pre-training loss.

Larger models are better than smaller models even
with the same pretraining loss. In Figure 3, we plot
the pre-training loss and the downstream performance of
models with different sizes. As we increase the model size,
the pre-training loss approaches the entropy of the true
conditional probability. With the same pre-training loss,
scaling up the models improves linear probe performance
by 6.9%, 4.5%, and 2.0%, on PCFG, HMM, and OPT
generated data, respectively.

The experiments indicate that for models with the same archi-
tecture family and the same pre-training loss, the choice of
training algorithms, model sizes, and the number of steps that
the optimizer works affect downstream performance. This in-
dicates that implicit bias of the pre-training algorithms plays
a crucial role towards choosing more transferable models
among those with the same pre-training loss and architecture.

3. SGD Prefers Flatter Minima
in Language Modeling

Recent works (Damian et al., 2021; Li et al., 2021) show that
SGD with label noise prefers converging to the flattest local
minima in the supervised setting. In this section, we extend
these results to the language modeling setting. Interestingly,
the results here apply to the standard mini-batch SGD
without the artificial label noise in Damian et al. (2021);
Li et al. (2021) because SGD on language modeling loss
(which is a cross-entropy loss) with sufficient data still has
non-vanishing noise around the local minima, and thus the
artificial label noise is no longer needed.

Concretely, we analyze SGD on the population cross-entropy
loss L(θ) =Ex,t[−log([fθ(x−t)]xt

)] with freshly sampled
data at every iteration, because, as argued, the difference
between empirical and population pre-training loss is not
our focus. For simplicity, we present the results for batch
size =1, though they can be generalized to arbitrary batch
size (see discussion below Theorem 3.3). Let η be the
learning rate and let θηk denote the parameter at step k. We
drop the superscript η when there is no ambiguity. We will
show that the implicit bias kicks in when SGD reaches
a global minimizer—it drives the iterate towards global
minimizers with smaller trace of Hessian. For simplicity of
demonstration, we analyze the process starting from a global
minimizer θ, i.e., we assume that θη0 =θ (for all η). At each
iteration k, we get a fresh sample (x,t), where x is a sentence
and t is the position of the masked token, and update the

parameter θ by θk+1=θk−η∇θℓ(fθk(x−t),xt). We assume
the network is sufficiently expressive such that there are
many fundamentally different global minimizers of the
pre-training loss L. As a (non-trivial) regularity condition,
following prior works (Fehrman et al., 2020; Li et al., 2021;
Arora et al., 2022), we also assume that the minimizers of the
loss functionL are connected and form a smooth manifold.

Assumption 3.1. Assume that the loss L is a C4-smooth
function and that minθ∈RdL(θ)=Ex,t[−log(Pr(xt |x−t))].
We also assume that the set of global minimizers, Γ, is a
(d−M)-dimensional C2-submanifold of Rd for some integer
1≤M≤d, where for all θ∈Γ,rank

(
∇2L(θ)

)
=M .

A key observation for language models is that even if the
model reaches the saturation regime, that is, the model
reaches a point on the manifold Γ of the minimizers, the
optimization process still has non-vanishing gradient noise,
because the cross-entropy loss is typically non-zero at the
global minimizers and thus the stochastic gradient variance
is also non-zero.2 Therefore, the dynamics of SGD do
not completely stop; instead, the iterate oscillates around
the manifold Γ. It turns out that this oscillation in turn
encourages the parameter to move in a certain direction
along the manifold, determined by the covariance structure
of the stochastic gradient. The following lemma shows that
the covariance of stochastic gradient for language models
in the saturation regime has a favorable property, i.e., it is
equal to the Hessian of pre-training loss.

Lemma 3.2 (Bartlett identity). Suppose Σ(θ) is the
covariance of the stochastic gradient at θ, that is,
Σ(θ) = Et,x

[
∇θlog[fθ(x−t)]xt(∇θlog[fθ(x−t)]xt)

⊤] −
∇L(θ)⊤∇L(θ). For any θ∈Γ, we have Σ(θ)=∇2L(θ).

Though we give a proof of the lemma in Appendix F for
completeness, the formula holds for the MLE loss of any
well-specified probabilistic models at a global minimizer,
and both the gradient covariance and the Hessian equal to
the Fisher information matrix.

With Lemma 3.2, we can invoke Corollary 5.2 of Li et al.
(2021) to derive the following theorem which says that SGD
will locally decrease the trace of Hessian along the solution
of ordinary differential equation (1) defined below.

dθ̂(t)=−1/4·∇ΓTr[∇2L(θ̂(t))]dt, θ̂(0)=θ (1)

where ∇Γ=P
⊥
Γ ∇ is the Riemannian gradient on manifold

Γ, or just the ordinary gradient projected back to the tangent
space of Γ at θ. In other words, the ODE (1) is essentially
projected gradient descent with loss function Tr[∇2L(θ)],
the constraint set Γ, and infinitesimal learning rate. We show

2This is in contrast with supervised setting where the empirical
0-1 or cross-entropy loss can achieve zero and consequently the
mini-batch noise vanishes. Such a difference enables us to prove
cleaner results without the label noise than the supervised setting.
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Figure 4. The trace of Hessian correlates with downstream performance for model at different number of steps after the pre-training loss
converges. Left: A 235M model pre-trained on the PCFG-generated dataset, and evaluated on task C. Middle: A 67M model pre-trained on
the HMM-generated dataset, and evaluated on task-10. Right: A 25M model pre-trained on OpenWebText, and evaluated on SST-2.

that SGD effectively minimizes the trace of the Hessian
Tr[∇2L(θ)] with the constraint set Γ similarly to ODE in (1).
Theorem 3.3. Suppose the loss functionL and the manifold
of global minimizers Γ satisfy Assumption 3.1. For any
K>0 such that ODE (1) has a solution {θ̂(t)}Kt=0, it holds
that θηK/η2 converges in distribution to θ̂(K) as η→0.

Finally, we note that the above result can be extended to
an arbitrary batch size B. The covariance of stochastic
gradient at θ with batch size, denoted byΣB(θ), satisfies that
ΣB(θ)=

1
BΣ(θ). Therefore ΣB(θ)= 1

B∇2L(θ) and we can
again invoke Corollary 5.2 of Li et al. (2021) to derive the
same result as in Theorem 3.3 but with the coefficient 1

4 in
equation (1) replaced by 1

4B .

4. The Correlation between
Flatness and Downstream Performance

The previous section proves that SGD prefers flatter models
among all global minima with the same pre-training loss. In
this section, we empirically validate the positive correlation
between flatness of the model and downstream performance
among models with the same (minimal) pre-training loss.
Note that flatness has been shown to have a strong correlation
with the generalization performance in the supervised set-
tings (Keskar et al., 2016; Neyshabur et al., 2017; Jastrzębski
et al., 2017; Jiang et al., 2019). For language models, the
empirical and validation pre-training loss are nearly identical,
and we focus on the transferability to downstream tasks.

We demonstrate a strong correlation between flatness and
downstream performance in the models found in Section 2.
As illustrated in Figure 1 (Right), the trace of Hessian is a
good indicator of downstream performance when the pre-
training loss becomes near optimal and stops being a reliable
indicator. Moreover, we show that regularization techniques
that encourage flatness such as SAM (Foret et al., 2020) and
dropout (Srivastava et al., 2014) improve the downstream per-
formance (without changing the validation pre-training loss).

Evaluation of flatness. Similar to the pre-training loss, the
trace of Hessian of pre-training loss can also be calculated
as a function of the model and the pre-training data. Also
note that smaller trace of Hessian indicates flatter minima.
Inspired by Lemma 3.2 and Wei et al. (2020), we can

unbiasedly estimate the trace of Hessian with random
samples. Details are provided in Section B.1.

Table 2. Comparison of pre-training algorithms.

PCFG Pre-training Task C % Tr[∇2L(θ)]

AdamW 3.204 55.7±0.6 8.01±0.73
Adversarial 3.206 50.2±1.0 19.34±0.92

BookCorpus Pre-training RTE % Tr[∇2L(θ)]

AdamW (w/ dropout, WD) 1.85 62.9 24.55±0.18
-dropout-WD 1.85 60.2 34.91±0.40
-dropout-WD+SAM 1.89 62.5 22.15±0.26

Results. In Figure 4, we compare the downstream accuracy
and the trace of Hessian of different checkpoints obtained
at different times during pre-training. On PCFG- and HMM-
generated datasets, the trace of Hessian demonstrates a
clear decreasing trend after the validation pre-training loss
converges, following the prediction of Theorem 3.3. Fur-
thermore, as the trace of Hessian decreases, the downstream
performance improves by 1.6% and 4.0% on the PCFG- and
HMM-generated datasets, respectively. When we pre-train
on OpenWebText, we can observe a 1.25% increase in SST-2
accuracy and a 0.67 decrease in trace of Hessian as we
continue to train the models from 400K to 1400K steps.

On the PCFG-generated dataset, we compare the trace of
Hessian of the models pre-trained with adversarial algorithm
and standard AdamW in Table 2. The trace of Hessian of
the adversarially pre-trained model is 2 times larger than
the normally pre-trained model, and has a drop of 5.5% in
downstream performance.

We also study the impact of regularization on flatness and
downstream performance. Note that dropout is known to en-
courage flatter models (Wei et al., 2020). We remove dropout
and weight decay from pre-training on BookCorpus. Com-
pard to the baseline (row “AdamW” in Table 2), we observe
almost the same validation pre-training loss (despite the gen-
eralization gap of pre-training loss increase to 0.13), a 2.7%
worse downstream performance on RTE, and a 40% larger
trace of Hessian (see row “-droput-WD” in Table 2) Adding
SAM (Foret et al., 2020) does not improve the pre-training
loss, but improves the flatness and recovers the degradation
of downstream performance compared to the model without
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dropout (see last row of Table 2). These results suggest that
explicit flatness regularization can improve downstream per-
formance without changing the validation pre-training loss.

In Figure 5, we compare the downstream accuracy and the
flatness of transformers with different sizes. For a fair com-
parison, we view transformers of various sizes as parameter
configurations within a large transformer architecture, and
compare the trace of Hessian of the new views of these
models. Intuitively, we can view a small model as a large one
by filling zeros into additional parameters or replicating the
parameters of the small model. For MLPs, this maintains the
input-output functionality and the trace of Hessian. Although
the layer-norm in transformers causes subtleties, we can still
keep the functionality and the trace of Hessian with respect
to most parameters unchanged by replicating the parameters
properly (See Section B.4 for details). Therefore, the views
of these models have the same parameterization/architecture
and the same pre-training loss (because they have the
same representations as the corresponding original smaller
models), and we evaluate the relationship between the their
trace of Hessian and their downstream performance.

On the dataset generated by PCFG, the pre-training loss
is almost the same for models (technically, the new views
of these models) that are larger than 9M. As we increase
the model size, the trace of Hessian of the pre-training loss
decreases from 19.8 to 12.6, correlating with the increase
of linear probe accuracy from 40.4% to 50.5%. On the
OPT-generated dataset, we can also observe an increase in
linear probe accuracy that co-occurs with a sharp decrease
in the trace of Hessian, as we increase the model size.

Interaction between implicit bias and model size. Intu-
itively, the implicit bias drives both larger models and smaller
models toward flat minima. As justified above, the smaller
transformer architecture is a subset of the larger transformer
architecture. Thus, the implicit bias drives the trace of
Hessian to smaller value on a larger transformer compared
with a smaller transformer, and performs better downstream.
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Figure 5. The trace of Hessian correlates with downstream perfor-
mance for models with different sizes and almost the same pre-
training loss. As we increase the model size, the trace of Hessian
continues to decrease, as the downstream performance increases.

5. Flatness Regularization Identifies
Transferable Models on Synthetic Language

Toward formally proving the connection between flatness
and downstream performance, we consider a setting with
synthetic Dyck language. The simplicity of the data allows
us to sharply analyze the internal working of a single-layer
transformer (with an attention layer and an MLP layer)
for masked language modeling. We show that multiple
parameter configurations can predict the conditional
probability well, including one ideal model that learns the
correct representations capturing the intrinsic structure of
the sentence, and many “cheating” models that memorize
the ground truth using random features. We will prove that
the model with the smallest trace of Hessian is the desired
model that transfers to downstream tasks.

Pre-training Distribution. Consider a variant of the Dyck
language (Nivat, 1970) consisting of matching brackets. The
vocabulary of the language has two brackets ⟨ and ⟩. Each
sentence is composed of a sequence of tokens such that the
total numbers of ⟨’s and ⟩’s are equal. To sample from the pre-
training distribution P , we first draw a sentence uniformly
over all valid sentences with even length T , and randomly
select one position to replace the bracket with a mask.

Downstream Task. The most intrinsic property about the
synthetic language is the difference in the number of left
and right brackets, and thus we use it as the downstream
task. Concretely, for any sequence x in {⟨,⟩}∗ of length T ,
let g∗(x) count the number of mismatches in x:

g∗(x)≜# of ⟩’s in x− # of ⟨’s in x (2)

Thus, the sentence x is a valid string in the language if
and only if g∗(x) = 0. For MLM, the masked token can
also be recovered from g∗(x): g∗(x) = 1 if the masked
token is ⟨, and g∗(x) = −1 if the masked token is ⟩. To
evaluate if the model learns the structure, we consider a
downstream distribution where each token is sampled from
{⟨,⟩} uniformly, randomly, and independently.

Encoding of the Inputs. With a slight abuse of notation,
we also denote by xt the encoding of the t-th token. We
encode the input as a one-hot vector in dimension d= 2T ,
where the index of the nonzero element encodes the
position and the sign encodes the bracket. Concretely,
let et ∈ Rd be the natural basis vector where the t-th
entry is 1. Let xt = et if the t-th token is ⟨ and xt = −et
otherwise. If the position t is a mask, we set xt to v, where
v ∼ Unif({±et+T }). Note that the target function can be
expressed as g⋆(x) = −⟨1T ,[

∑T
t=1xt]1:T ⟩ with this input

encoding, where 1T is the all one vector in RT and [a]1:T
refers to the first T coordinates in a.

Models and Algorithms. Suppose Q, K ∈ Rk×d are
the query and key matrices, V ∈ Rm×d is the value
matrix and u ∈ Rm is the parameter of the output
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layer. Let ψ = (Q,K, V ). A single-layer transformer
is composed of an attention layer and an MLP layer.
[Attnψ,u(x)]t = 1

mu
⊤σ(

∑T
j=1 at,jV xj), where the atten-

tion score at,1:T = softmax(⟨Qxt,Kxt⟩, ··· ⟨Qxt,KxT ⟩).
σ(x)=max{x,0} is the relu activation. We use the output
of the first token, fψ,u(x)=[Attnψ,u(x)]1.

We use the squared loss for both MLM and downstream adap-
tation. The loss function of MLM isL(ψ,u). In downstream
adaptation, we have a finite dataset {x(i)}ni=1 sampled i.i.d.
from Pds. The training loss with n data is L̂Pds(ψ,u), and the
population loss for the downstream task isLPds(ψ,u).

Main Intuitions. We are interested in two kinds of parameter
configurations both with good pre-training loss: (1) learning
the natural and transferable features 1T and (2) fitting the
pre-training task by memorizing the masked sentences. We
construct the two solutions as follows. For solution (1), first
note that the softmax attention layer can take the average
of all the token encodings [xt]

T
t=1 in a sentence. Let us

denote the sum by z ∈Rd, z=
∑T
t=1xt. Note that the first

T coordinates in z are ±1 indicating the bracket type and
the last T coordinates indicate the position of the mask.
On top of z, two neurons can predict the masked token in
MLM perfectly. Consider the two neurons V1 = [1T ;0T ],
V2=[−1T ;0T ]. Then g∗(x)=σ(V ⊤

2 z)−σ(V ⊤
1 z), which is

the transferable solution. For solution (2), we set the entries
in V to i.i.d. samples from N (0,T ). Ifm is sufficiently large,
we can find the coefficient u to express g∗(x) with random
Gaussian features, i.e. g∗(x)=u⊤σ(V z).

We observe that the trace of Hessian of configuration (1)
is smaller than configuration (2), due to a main difference
between them–the cancellation between activated neurons.
In configuration (1), for every possible input, only one of the
neurons σ(V ⊤

1 z) and σ(V ⊤
2 z) is activated. In contrast, in

configuration (2), many neurons can be activated at the same
time. Among them, the output coefficient ui’s contain both
positive and negative values, leading to cancellation between
activated neurons. In Lemma G.1, we link the trace of the
Hessian with the cancellation between neurons. Indeed,
we show that the mimimum of trace of the Hessian can be
achieved only if there is no such cancellation. Therefore
solution (1) is also the minimizer of the trace of Hessian.
The intuitions are formalized in Theorem 5.1.

Theorem 5.1. Suppose m ≥ 2 and T ≥ 6. Consider
minimizing the trace of Hessian among all the solutions to
the MLM pre-training task: minimizeψ,uTr[∇2

ψL(ψ,u)]+

Tr[∇2
uL(ψ,u)], subject to L(ψ,u)=0. The flattest solution

ψ̂,û are defined as the solution of the optimization problem
above. Let ũ be the minimizer of downstream training loss on
top of ψ̂, that is, ũ∈argminu∥u∥2 subject to L̂Pds(ψ̂,u)=0.
Then with probability at least 1−2−n,LPds(ψ̂,ũ)=0.

6. Related Work
Language modeling and downstream adaptation. Starting
from Devlin et al. (2018), a line of works improve the
downstream performance various tasks with increasing
model size and data amount (Yang et al., 2019; Radford et al.,
2019; Raffel et al., 2020). LLMs even exhibit unexpected
emergent behaviors, such as in-context learning (Xie et al.,
2021; Min et al., 2022), step-by-step reasoning (Wei et al.,
2022), and zero-shot learning (Brown et al., 2020). Kaplan
et al. (2020); Hernandez et al. (2021) study the behavior of
language models with increasing size, and find out that the
pre-training loss is typically correlated with downstream
performance as model size increases. The pre-training loss
is widely used as an evaluation metric. For example, efficient
transformer works benchmark the pre-training loss given the
same computation constraint (Dai et al., 2020; Wang et al.,
2020; Choromanski et al., 2020; Liu et al., 2021).
Understanding the success of language modeling.
Empirical works on understanding MLM find out that
representations encode rich semantic and syntactic informa-
tion (Peters et al., 2018; Htut et al., 2019; Hewitt & Manning,
2019; Mamou et al., 2020). Zhang & Hashimoto (2021)
shows MLM recovers latent variables in graphical models.
Recently, (Saunshi et al., 2022) show that models with the
same pre-training loss but different architectures can have
different downstream performance. Tay et al. (2021) find
out that a narrow but deep transformer is better than a wide
but shallow one with the same pre-training loss. Zhang et al.
(2022b) demonstrate that Albert (Lan et al., 2019) generalizes
better OOD than Bert on a synthetic reasoning task. These
works indicate that architecture is an important factor for
downstream performance beyond pre-training loss. This pa-
per discovers the role of implicit bias in language modeling,
which happens with models in the same architecture.
Implicit bias in supervised learning. The training algo-
rithm chooses solutions with certain properties and usually
leads to better generalization (Gunasekar et al., 2018; Soudry
et al., 2018; Li et al., 2017b; Ji & Telgarsky, 2018; Arora
et al., 2019a; Lyu & Li, 2019; Vaskevicius et al., 2019; Li
et al., 2020; Yun et al., 2020; Amid & Warmuth, 2020a;b;
Woodworth et al., 2020; HaoChen et al., 2020; Lyu et al.,
2021; Azulay et al., 2021; Arora et al., 2022; Li et al., 2022;
Lyu et al., 2022). Recently, Blanc et al. (2019); Damian et al.
(2021); Li et al. (2021; 2022) demonstrate label noise SGD bi-
ases the models toward flatter minima. However, the setting
of implicit bias in supervised learning is different from lan-
guage modeling. In language modeling, we have access to gi-
gantic corpus, and cannot interpolate the pre-training dataset.
Moreover, we care about the adaptability of the solution on
downstream tasks instead of generalization in distribution.

Flatness and regularization. The idea that flatness is
related to generalization dates back to Hochreiter & Schmid-

8



Implicit Bias Matters for Language Models

huber (1997a). Jiang et al. (2019) demonstrated through
experiments that flatness strongly correlates with general-
ization. Flatness regularization improves generalization in
supervised learning (Foret et al., 2020; Zhang et al., 2021;
Norton & Royset, 2021) and fine-tuning (Bahri et al., 2021).
Recent work (Wen et al., 2022) theoretically shows that batch
size can affect the exact notion of flatness being regularized.
Fradkin et al. (2022) finds out contrastive pre-training favors
flatter solutions compared with supervised pre-training and
generalizes better. On the other hand, Dinh et al. (2017)
showed flatness is not a necessity for generalization by
constructing an artificially scaled network, while naturally
trained models are unlikely to have such a scaling because the
weight of different layers tends to keep balanced throughout
training with balanced initialization (Du et al., 2018)).

7. Conclusion
We study the relationship between pre-training loss and
downstream performance on language models. We discover
that implicit bias matters beyond pre-training loss, and
explore the mechanism of implicit bias in language modeling.
We wish this motivates future works on the relationship be-
tween implicit bias and the feature representations of neural
networks, as well as designing pre-training algorithms which
leverage implicit bias and work better on downstream tasks.
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A. Details in Section 2
A.1. Generating Simplified Datasets

PCFG-generated dataset. We consider a PCFG with vocabulary size 200. The state space isS, and |S|=50. All the production
rules have two symbols on the right side. The sentence length is limited to 32, which means the depth of the parse tree is limited
to 6. We generate a total of 2×107 sentences, which is 3.4×108 tokens. The downstream tasks are classifying the non-terminal
symbols in the parse tree of the PCFG (50-way classification). The label is defined as y=argmaxs∈SPr(s |x1,x2,...,x1+L).
Tasks A, B and C are defined on the symbols corresponding to span length L = 32,16 and 8, respectively. Each of the
downstream task contains 0.1M examples. Examples of the generated trees are provided in Figure 6.

Figure 6. An example of the genearated PCFG sentence.

HMM-generated dataset. We consider an HMM with vocabulary size 200 and state space size 100. The sentence length
is restricted to 16. We generate a total of 1×107 sentences, which is 1.6×107 tokens. The downstream task is to classify
the latent variable in the HMM generative model. We consider task-6 and task-10, which classify the 6-th and 10-th hidden
variables respectively. Each of the downstream task contains 0.1M examples.

OPT-generated dataset. We use the 125M OPT model to generate the training dataset. To simplify the dataset, we further
process the logit of OPT to select only from the top-2000 tokens in the vocabulary. Starting from the bos token, we sample
every token of the sentence from the predicted autoregressive LM probability. The sentence length is restricted to 24. We
generate a total of 2×108 sentences, which is 3.2×109 tokens. Examples of the generated text are provided in Figure 7.

Figure 7. An example of the genearated OPT sentence.

A.2. Real-world Datasets

We use OpenWebText https://huggingface.co/datasets/openwebtext and BookCorpus https:
//huggingface.co/datasets/bookcorpus from huggingface. The sequence length is 128, and the tokenizer is
the original one of bert-large-uncased. We always use 15% mask rate for real datasets.

A.3. Compute the True Conditional Probabilities from Generative Models

We can compute the true MLM conditional probability Pr(xt |x−t) from the joint probability Pr(xt,x−t),

Pr(xt=c |x−t)=
Pr(xt=c,x−t)∑
c∈WPr(xt=c,x−t)

.

Since we already know the generative model, we can compute the joint probability efficiently. For PCFG, we can
compute the joint probability with the inside algorithm, which decomposes the joint probability into lower layers
in the parse tree. For HMM, we can compute the joint probability with the Viterbi algorithm. For OPT, we have
Pr(x1,...,xT )=Pr(x1)

∏T−1
t=1 Pr(xt+1 |x1,...,xt).
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Table 3. Shape of the transformers in Section 2.
d-model n-nead #layers d-inter

64 1 1 256
128 2 4 512
192 3 5 768
256 4 6 1024
512 8 8 2048
768 12 12 3072
1024 16 16 4096
1280 20 20 5120
1536 24 24 6144

A.4. Models

We use transformers on PCFG and OPT-generated datasets. We use learning rate 1e-3 and warmup proportion 0.06. All
the models are trained based on the implementation of Izsak et al. (2021). We list the sizes of the transformers in Table 3.
d-model is the size of the hidden layers. d-inter is the size of the intermediate layers in MLP. n-head is the number of heads
per layer. #layers is the number of layers. For LSTMs, we use the implementation of PyTorch. We consider d-hidden in
[128,256,512,768,1024], and #layers in [4,6,8,12,16].

A.5. Algorithms

Standard Pre-training. We use AdamW with constant learning rate 0.001. β1=0.9 and β1=0.98. We linearly increase
the learning rate to do the warmup for 1000 steps on synthetic datasets and 5000 steps on real datasets. The reason why we use
constant learning rate is that we wish to compare checkpoints at different number of steps and want to continue pre-training
from checkpoints. Besides, The goal of the paper is to understand the relationship between pre-training loss, downstream
performance and flatness, instead of achieving state-of-the-art. We include standard regularization, which is 0.1 dropout
and 0.01 weight decay. We always use batchsize = 4096.

The lookup table. The lookup table can be thought of as a modeling whose input is the masked sentence and always output
the true conditional probabilities. Since we already know the true conditional probabilities from the generative models as
in Section A.3, and the pre-training loss of the lookup table is exactly the entropy of true conditional probability, we do not
need to actually implement the lookup table. To evaluate the downstream performance of the lookup table, we can concatenate
the true conditional probability vector at each token as the contextual embeddings and linear probe on top of it.

The adversarial algorithm. The adversarial algorithm we use to mess up the downstream performance is maximizing a
meta-learning objective in pre-training. Suppose the linear head of the downstream task is gϕ and the feature representation
is hψ. The meta-learning algorithm first trains the head gϕ to minimize the training loss of the downstream task, and
then update hψ to maximize the validation loss on the downstream tasks. Concretely, we randomly sample two disjoint
subsetsD1 andD2 from the downstream training datasetD. We train gϕ to minimize the loss of downstream tasks onD1,
ϕ̂(ψ)∈argmin 1

|D1|
∑

(x,y)∈D1
ℓ(gϕ(hψ(x)),y). Then we train hψ to maximize the validation loss onD2 during pre-training,

minimizeψL(ψ)−λ 1
|D2|

∑
(x,y)∈D2

ℓ(gϕ̂(ψ)(hψ(x)),y). The optimization can be efficiently carried out with closed form
solution of ϕ as shown in Liu et al. (2020).

SAM (Foret et al., 2020). We implement SAM on BookCorpus without dropout and weight decay. The SAM radius ρ is
set to 0.05. We split the 4096 batchsize in two halves and compute the adversarial point with the first half and the final update
with the second half.

Fine-tuning. Following the standard protocol of Devlin et al. (2018), we use the contextual embeddings of the CLS token
for fine-tuning. We use AdamW with learning rate 1e-4. We perform 200 warmup steps and train on the downstream tasks
for 10 epochs.

Linear probe. Since the CLS token is not trained in pre-training, we concatenate embeddings of all the tokens in the sentence
as the representations. We use AdamW with learning rate 1e-3 to train the linear head. We train on the downstream tasks
for 100 epochs. Note that to make the capacity of the linear probe itself controlled, we adopt a random Gaussian projection to
dimension 512 on the concatenation of the embeddings and find out that this does not affect the final performance. Therefore
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we report the results of standard linear probe by default. The error bar in the figures shows the standard deviation of 5 random
seeds in linear probe.

We report the standard deviation of linear probe and fine-tuning from 5 random seeds.

Evaluation of pre-training loss. Since we have access calculate the true conditional probability, we can calculate the cross
entropy loss as the sum of the entropy of the true conditional probability and the KL divergence between the predicted and true
conditional probabilities. This is more accurate than evaluating on the validation datasets in the standard ways. We report the
number of pre-training loss with 106 sentences, and calculate the standard deviation on 5 subsets, each of which has size 2×105.

A.6. Results on Other Downstream Tasks.

We also provide results on other downstream tasks in this subsection. On PCFG Task A, OPT SST-2 and the Task-6 of HMM,
we can also observe the increase in downstream performance as we scale up the models in the saturation regime.

2 5 9 12 41 80 235 436 730
Model Size / M

78

80

82

84

86

88

90

92

94

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

PCFG, Task A

Fine-tuning
Linear Probe

3.2
0

3.2
2

3.2
4

3.2
6

3.2
8

3.3
0

3.3
2

3.3
4

3.3
6

Pr
e-

tra
in

in
g 

Lo
ss

Pre-training

(a) PCFG→Task A

5 12 41 80 235 436 730
Model Size / M

50

55

60

65

70

75

80

85

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

OPT, SST2

Fine-tuning
Linear Probe

10

11

12

13

14

15

Pr
e-

tra
in

in
g 

Lo
ss

Pre-training

(b) OPT→SST-2

4 10 29 67 135
Model Size / M

40

50

60

70

80

90

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

HMM, Task-6

Fine-tuning
Linear Probe

3.7
5

3.7
6

3.7
7

3.7
8

3.7
9

3.8
0

Pr
e-

tra
in

in
g 

Lo
ss

Pre-training

(c) HMM→Task-6

Figure 8. The downstream accuracy continues to rise as we increase the model size, althought the pre-training loss remains unchanged.

A.7. Evaluation of Pre-training Loss with KL Divergence.

Since we have access to the true conditional probability from the generative models, we can decompose the cross entropy
into the KL divergence between prediction and true conditional probability plus the entropy of the true conditional probability.
When comparing different models in the saturation regime, we can use the KL divergence to reduce the variance of the loss
evaluation. We provide the results with KL divergence evaluation in Figure 9. Even with the log of the KL divergence as
the pre-training loss, we can still observe the models are saturating as training proceeds or as we scale up the models.

2 5 9 12 41 80 235 436 730
Model Size / M

30

40

50

60

70

80

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

PCFG, Task B

Fine-tuning
Linear probe, features

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Pr
e-

tra
in

in
g 

Lo
ss

, l
og

(D
_k

l)

Pre-training

(a) PCFG→Task B

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Number of Steps / 1000

42

44

46

48

50

52

54

56

Do
wn

st
re

am
 A

cc
ur

ac
y 

%

Linear Probe, Task C

5

4

3

2

1

0

1

2

Pr
e-

tra
in

in
g 

Lo
ss

, l
og

(d
_k

l)PCFG, SGD, 235M

Pre-training

(b) PCFG→Task C

Figure 9. Results with KL divergence evaluation.
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B. Details in Section 4
B.1. Unbiased Estimate of the Trace of Hessian.

Evaluating the trace of Hessian requires the norm of the Jacobian ∇θ log[fθ(x−t)]. Since the output dimension c and the
number of parameters are all very large, computing the Jacobian ∇θ log[fθ(x−t)] will be very inefficient. Instead, we can
estimate the trace of Hessian unbiasedly with random samples as follows. Suppose fθ(x−t) is the predicted probability of
the conditional probability. In the saturation regime, as fθ(x−t) approaches the true conditional probability, the Hessian
of the pre-training loss w.r.t. the parameters can be expressed as

∇2L(θ)=Et,x−t
Ext|t,x−t

[
∇θlog[fθ(x−t)]xt

(∇θlog[fθ(x−t)]xt
)⊤

]
.

Therefore we have

Tr(∇2L(θ))=Et,x−t
Ext|t,x−t

∥∇θlog[fθ(x−t)]xt
∥22.

To approximate this expectation, we can first sample t,x−t from the language, then draw i.i.d. samples xt from (fθ(x−t)),
and use the average as the unbiased estimate. For all experiments, we sample 10000 x−t and sample 50 xt for each x−t.

B.2. Details in Figure 4.

To verify Theorem 3.3 that SGD biases the model towards flatter minima, we conduct MLM on PCFG and HMM-generated
datasets with SGD. We set the proportion of warmup stage to 12% total number of steps, and fix the learning rate to 1e-3 after
the warmup. We evaluate the downstream performance and the trace of Hessian of different checkpoints along pre-training.
The standard deviation of trace of Hessian is calculated based on 5 times of sampling 50 examples as mentioned above. Apart
from the PCFG task C and HMM task-10, we also provide results on PCFG tasks A, B and HMM task-6 in Figure 10.
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Figure 10. The trace of Hessian correlates with downstream performance for model checkpoints with different number of steps after the
pre-training loss converges.

B.3. Details in Figure 5.

To compare the trace of Hessian of transformers with different sizes, we need to embed the smaller transformers into
larger transformers. However, this requires the width of the larger transformers to be a multiple of the width of the smaller
transformers. We set the width of the largest transformer to the least common multiple of the width of the smaller transformers
as in Table 4. For evaluation, we still use linear probe, and follow the setting of Section 2.

B.4. Embedding of a Smaller Transformer into a Larger Transformer.

In this subsection, we show that a smaller transformer can be embed into a larger transformer without changing the
functionality. We enable the embedding by considering two techniques (1) adding additional layers using residual connections
without changing the functionality and (2) increasing feature dimension / adding more attention heads without change the
functionality by duplicating the weights.

B.4.1. THE BASE CASE WITH MLPS.

To gain some insights of how to increase the feature dimension without changing the functionality, we start with vanilla
MLPs without layer-norm (Ba et al., 2016) and residual connections (He et al., 2016). Consider a multi-layer MLP fW,a(x).
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Table 4. Shape of the transformers in Figure 5.
d-model n-nead #layers d-inter

128 2 4 512
192 3 5 768
320 5 6 1024
384 6 7 2048
640 10 12 3072
960 15 16 4096
1920 30 20 5120

The weight matrices are W = [W0, ... ,WL−1].The dimensionality is Wl ∈ Rdl+1×dl . The representations are defined
recursively, hl+1(x)=σ(Wlhl(x)). We denote the input by h0(x)=x and the final output is defined as fW,a(x)=a⊤hL(x).
The activation σ here is relu or leaky relu. We aim to embed fW,a(x) into fW̃ ,ã(x), where W̃ = [W̃0, ... , W̃L−1] and
W̃l∈R2dl+1×2dl . We need to make sure fW,a(x)=fW̃ ,ã(x) for all x.

For this case, we can set W̃l = 1/2

[
Wl Wl

Wl Wl

]
for l ∈ [L− 1], W̃0 = 1√

2

[
W
W

]
, and ã = 1√

2

[
a
a

]
. We can verify that

h̃l(x)=
1√
2

[
hl(x)
hl(x)

]
inductively. Therefore we have

fW̃ ,ã(x)=ã
⊤h̃L(x)

=
1√
2
[a⊤,a⊤]

1√
2

[
hL(x)
hL(x)

]
=
1

2
fW,a(x)+

1

2
fW,a(x)

=fW,a(x).

B.4.2. REAL TRANSFORMERS.

Next we turn to transformers with residual connections and layer norm. We first use the same strategy as the MLP case to add
additional feature dimension and attention heads by replicating the weights, and then show how to add new layers using residual
connections. At a high level, replicating the weight maintains the mean and the variance calculated by the layernorm. Therefore
the representations inside the transformer also get replicated, without changing the values in each of the replicated groups.

Setup. A transformer is composed of an input embedding WE , L blocks of self-attention, and an output layer. Trans-
formers also contain layer-norm and residual connections. Suppose the input x = [x1, ... , xT ], where xi ∈ Rd. Each
block of the self-attention contains of an attention layer and an MLP layer, both equipped with residual connections
and layer-norm. Let us denote by [h0(x)]i = LN(WExi) the input embeddings. Suppose the hidden size is dh, i.e.
[hl(x)]i ∈ Rdh . The attention layer is defined as [vl(x)]i = LN([hl(x)]i+[Attnl(hl(x))]i), and the MLP layer is defined
as [hl+1(x)]i=LN([vl(x)]i+Ulσ(Wl[vl(x)]i+bl)). The activation σ is GeLU. The final output is [f(x)]i=W⊤

E [hL(x)]i.
Note thatWE is both the input embedding and the weight of the output layer. They are tied in training.

The layer norm is on the feature dimension. [LN(xi)]j = γj ∗ x̂ij+βj . x̂i is the normalized version of xi with zero mean
and unit variance. γ and β are trainable.

The multi-head attention consists of nh self-attention heads. The definition of the multi-head attention is
Attnl(hl(x)) = [(Al1hl(x)Vl1)

⊤, ... , (Alnh
hl(x)Vlnh

)⊤]⊤Ol. The output matrix Ol ∈ Rdh×dh . The attention heads
composes of the attention score times the feature matrix times the value matrix. The attention scoreAlk∈Rd′×d′ is computed
with softmax dot product. For each k∈ [nh],Alk=softmax(hl(x)QlkK⊤

lkhl(x)
⊤).

Following the implementation of Devlin et al. (2018), the dimension of the attention head is always d′=64, thus dh=64nh.
The dimension of the intermediate layer in the MLP is set to 4dh, which meansUl∈Rdh×4dh andWl∈R4dh×dh .

We aim to embed the smaller transformer f(x) into f̃(x), where d̃h=2dh, ñh=2nh, and L̃=L+L′.
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Increasing feature dimension with replication of the parameters. Although the transformers have layer-norm and
residual connections, we can still modify the strategy in the base case with MLPs slightly to increase the width of the model
and the number of attention heads without changing the functionality. Consider the following weight replication method.
For l∈ [0,...,L−1],

W̃E=
1

2

[
WE

WE

]
, γ̃l=

[
γl
γl

]
, b̃l=

[
bl
bl

]
, β̃l=

[
βl
βl

]
, W̃l=

1

2

[
Wl Wl

Wl Wl

]
, Ũl=

1

2

[
Ul Ul
Ul Ul

]
, Õl=

1

2

[
Ol Ol
Ol Ol

]
,

Q̃lk=
1

2
[Qlk,Qlk], K̃lk=

1

2
[Klk,Klk], Ṽlk=

1

2
[Vlk,Vlk] for k∈ [1,...,nh],

Q̃lk=
1

2
[Ql(k−nh),Ql(k−nh)], K̃lk=

1

2
[Kl(k−nh),Kl(k−nh)], Ṽlk=

1

2
[Vl(k−nh),Vl(k−nh)] for k∈ [nh+1,...,2nh].

We observe that the intermediate layers of the transformers are also replicated for the first L blocks, i.e. h̃l(x)=
[
hl(x)
hl(x)

]
and ṽl(x)=

[
vl(x)
vl(x)

]
for l∈ [1,...,L]. First note that [h0(x)]i=LN(WExi). Since replicating the features will not change

the mean and the variance, we have h̃0(x)=
[
h0(x)
h0(x)

]
. Then we can show that replicating the features will not change the

attention scores as well. This makes ṽl(x) =
[
vl(x)
vl(x)

]
. Finally note that we can apply the base case of the MLP to reason

about the MLP layer, and show h̃l+1(x)=

[
hl+1(x)
hl+1(x)

]
. Therefore we have shown h̃l(x)=

[
hl(x)
hl(x)

]
inductively.

Adding additional layers using residual connections. We have demonstrated that h̃l(x)=
[
hl(x)
hl(x)

]
for l∈ [0,...,L]. Now

let’s consider the added L′ blocks on top of the small model. Since the transformer contains residual connections, we can
add new blocks on top of a small model and fill in zeros to the added parameters. We will show that in this way, h̃l(x)= h̃L(x),

for any l∈ [L,...,L+L′]. This will indicate that h̃L+L′(x)= h̃L(x)=

[
hl(x)
hl(x)

]
. Recall that W̃E= 1

2

[
WE

WE

]
. This indicate that

[f̃(x)]i=W̃
⊤
E h̃L+L′(x)

=
1

2
[W⊤

E ,W
⊤
E ]

[
hL(x)
hL(x)

]
=
1

2
[f(x)]i+

1

2
[f(x)]i

=[f(x)]i,

which means we can add new layers on top of a small transformer without changing the functionality.

Now we show that Ul=0 andOl=0 for l∈ [L,...L+L′−1] will make h̃l(x)= h̃L(x), for any l∈ [L,...,L+L′]. This holds
because [vl(x)]i=LN([hl(x)]i+[Attnl(hl(x))]i) and [hl+1(x)]i=LN([vl(x)]i+Ulσ(Wl[vl(x)]i+bl)). IfOl=0, we have
vl(x) = hl(x) from the first equation. If Ul = 0, we have hl+1(x) = vl(x) from the second equation. Therefore we have
h̃l(x)= h̃L(x), for any l∈ [L,...,L+L′].

B.4.3. VIEWING A SMALL TRANSFORMER AS A SPECIAL CASE OF A LARGE TRANSFORMER

As demonstrated above, smaller transformers can be embedded into larger transformers with functionality preserved. The
smaller transformer architecture can therefore be viewed as a subset of the larger transformer architecture. In this sense, a
set of transformers with different sizes and the same pre-training loss found in Section 2 can be viewed as a set of transformers
with the same size after the embedding. Note that the training algorithm only finds out the natural larger models, instead
of the larger models which are embedded from the smaller models. This indicates that the implicit bias of the optimizer can
interact with the model architecture. The implicit bias drives the model toward flat minima on both larger models and smaller
models. The smaller transformer architecture is a subset of the larger transformer architecture, thus the flattest minima found
with a larger transformer is flatter than the minima found with a smaller transformer. (See Figure 12).
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C. Limitations
The implicit bias theory works with minibatch SGD. It is well known that Adam is better than SGD on transformers,
but there is few understanding about why Adam is better than SGD as an optimizer for language models (Zhang et al., 2020).
Although we prove minibatch SGD in language modeling in Theorem 3.3, we still need a more systematic understanding
of the implicit bias of Adam in language models.

More general theory on the correlation between flatness and transferability. We show in Section 5 that flatness
regularization leads to more transferable models in the simplified Dyck language setting. Note that such kind of general results
can be very challenging. Results from the supervised setting cannot be readily adapted since they are obtained (partially)
via generalization bounds (Wei & Ma, 2019a;b), which do not apply to the language modeling setting where the implicit
bias is not related to the gap between the empirical and population loss. A similar result is from Du et al. (2020), which shows
that learning representations with regularization leads to transferable features when the ground truth is from the same gaussian
distribution. Proving the correlation between flatness and downstream performance in more general settings likely requires
highly non-trivial and novel theoretical tools, and we hope to motivate future work on this topic.

D. Practical Implications
Pre-training Algorithms. Understanding the implicit biases needed for downstream performance may lead to better
training methods (instead of better evaluation methods) that might encourage the correct biases more strongly. Therefore,
a practical direction is to design better pre-training algorithms with more favorable biases which can lead to better downstream
performance than AdamW and SGD.

Better Metrics for Language Models. In common practice, the validation pre-training loss is used to monitor the training
process (Brown et al., 2020; Zhang et al., 2022a) and compare different models (Hernandez et al., 2021). However, Saunshi
et al. (2022); Tay et al. (2021) show that pre-training loss is not necessarily correlated with downstream performance when
comparing different architectures. We further show that pre-training loss may not always be a reliable indicator even for
the same architecture. While downstream tasks could be used as a proxy metric for evaluation, the main issue is that large
language models are trained to be general / multi-purpose models where the space of downstream tasks is large and unknown
during the time of pre-training. Thus from a fundamental standpoint, it is beneficial to design a more reliable indicator that
is agnostic to downstream tasks.

Explicit regularization. We show that implicit bias, especially the implicit bias of flatness matters for downstream
performance in language modeling. Especially, in Section 2 and Section 4 we observe that SAM recovers the performance
and flatness loss from removing dropout. Wei et al. (2020) show that dropout has an explicit and implicit regularization effect
to minimize the Jacobian norm, which is closely related to the trace of Hessian. This again corroborates the relationship
between flatness and downstream performance. Leveraging the implicit bias to design better explicit regularization in language
modeling is also an important direction. Bahri et al. (2021) show explicit flatness regularization with SAM (Foret et al., 2020)
can boost downstream performance when applying to downstream tasks themselves and the intermediate stages between pre-
training and fine-tuning, but they did not study this on pre-training, partly because SAM is not efficient enough for pre-training
(SAM requires back prop for 2 times per step, and more steps to reach the same level of pre-training loss (Foret et al., 2020)).

E. Additional Related Work
Understanding large language models. Saunshi et al. (2020) introduce the natural assumption, which states that down-
stream tasks can be solved linearly with the true conditional probability. Wei et al. (2021b) instantiate MLM on datasets
generated by HMMs and show linear probe on top of MLM models solves downstream tasks. In contrast, our empirical
evidence indicates that other factors related to the architecture and optimization also contribute to the performance beyond the
natural assumption—somewhat surprisingly, we show that linear probe on top of the features of language models is better than
linear probe on top of true conditional probability. Similar to our findings, Xie et al. (2021) also observe that despite similar
perplexity, larger models are better than smaller modes for in-context learning, while in this paper, we focus on the standard
fine-tuning and linear probe evaluation of language models, and provide a novel understanding of the mechanism behind the
superiority of large models over small models.
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Understanding self-supervised learning. Our work is also related to the broader theoretical self-supervised learning
literature. This line of works study why a seemingly unrelated self-supervised objective helps improve the performance
on downstream tasks. Arora et al. (2019b) prove that contrastive learning representations work on downstream linear
classification tasks. Lee et al. (2020) study reconstruction-based self-supervised learning algorithms and show that linear
probe on top of the self-supervised representations solves downstream tasks. HaoChen et al. (2021) show that the contrastive
learning loss can be viewed as a principled spectral clustering objective. With the spectral contrastive loss, self-supervised
representations recover the cluster structure in the augmentation graph. Recently, Saunshi et al. (2022) introduce the
disjoint augmentation regime, where the minimizer of the contrastive learning loss can perform poorly on downstream tasks.
Empirically, they find out that subtracting the mean of the representations of each class makes self-supervised models perform
worse on downstream tasks, and ResNet (He et al., 2016) can have better downstream performance on downstream tasks than
ViT (Dosovitskiy et al., 2020) and MLP-Mixer (Tolstikhin et al., 2021) on modified images. This indicates that pre-training
loss is not all that matters for good downstream performance in self-supervised learning.

Implicit bias in supervised learning. There are other prior works (Kushner & Yin, 2003; Borkar, 2009; Su et al., 2014; Li
et al., 2017a; Mandt et al., 2017; Duchi & Ruan, 2018; Li et al., 2019) on analyzing discrete-time dynamics via continuous-time
approaches, earlier than (Blanc et al., 2019; Damian et al., 2021; Li et al., 2021; 2022). Please see Wen et al. (2022) for a
more detailed discussion.

Larger  
architectureSmaller  

architecture

Flattest model 
within the smaller 

architecture
Flattest model within 

the larger architecture

Models with 
minimum loss 
(global min)

Flatness,
implicit bias

Flatness,
implicit bias

Models with 
minimum loss 
(global min)

Optimization trajectory 
(Theorem 3.3)

Figure 11. Left: The role of implicit bias. After the pre-training loss converges, implicit bias drives the model toward flat minima, as
predicted by Theorem 3.3. Right: The interaction between model size and implicit bias. Implicit bias drives models toward flat minima on
both larger models and smaller models. The smaller model architecture can be viewed as a subset of the larger model architecture as justified
in Section 4 and Section B.4. Therefore, larger models can achieve flatter minima than smaller models.
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F. Omitted Proofs in Section 3
Proof of Lemma 3.2. We first recall loss

L(θ)=Ex,t[−log [fθ(x−t)]xt
]=Et,x−t

Ext|t,x−t
[−log [fθ(x−t)]xt

].

Note that conditioned on any x−t,t, it holds that

Ext|t,x−t

[
−∇2

θlog [fθ(x−t)]xt

]
=Ext|t,x−t

[
−∇2

θ[fθ(x−t)]xt

[fθ(x−t)]xt

]
+Ext|t,x−t

[
∇θ[fθ(x−t)]xt

(∇θ[fθ(x−t)]xt
)⊤

[fθ(x−t)]2xt

]
=0+Ext|t,x−t

[
∇θlog[fθ(x−t)]xt

(∇θlog[fθ(x−t)]xt
)⊤

]
,

where in the last step, we use the assumption that θ∈Γ, that is, for all x,t, fθ(x−t)=Pr(· |x−t), which implies the following

Ext|t,x−t

[
−∇2

θ[fθ(x−t)]xt

[fθ(x−t)]xt

]
=−

c∑
xt=1

∇2
θ[fθ(x−t)]xt

=−∇2
θ

c∑
xt=1

[fθ(x−t)]xt
=−∇2

θ1=0.

Since θ is a global minimizer ofL, we have that ∇L(θ)=Et,x∇θlog[fθ(x−t)]xt
=0. Therefore, we have that

Σ(θ)=Et,x
[
∇θlog[fθ(x−t)]xt

(∇θlog[fθ(x−t)]xt
)⊤

]
−Et,x∇θlog[fθ(x−t)]xt(Et,x∇θlog[fθ(x−t)]xt)

⊤

=Et,x−tExt|t,x−t

[
∇θlog[fθ(x−t)]xt(∇θlog[fθ(x−t)]xt)

⊤]
=Et,x−t

∇2
θ

(
Ext|t,x−t

[−log [fθ(x−t)]xt
]
)

=∇2L(θ),

which completes the proof.
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G. Omitted Proofs in Section 5
G.1. Omitted Proofs of Theorem 5.1

Recall that the loss function of MLM is L(ψ,u)=Ex∼P [(fψ,u(x)−g∗(x))2]. In downstream adaptation, we have access
to a finite dataset {x(i)}ni=1 sampled i.i.d. from Pds. The training loss is L̂Pds(ψ,u)= 1

n

∑n
i=1[(fψ,u(x

(i))−g∗(x(i)))2], and
the population loss for the downstream task isLPds(ψ,u)=Ex∼Pds [(fψ,u(x)−g∗(x))2]. An example of the input embedding
and the two configurations is provided in Figure 12.
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Figure 12. Left: An example of input encodings with T =6. Right: Illustration of the two solutions. The attention sums the encodings into z.
Solution (1) contains two features transferable to the downstream task. The neurons in solution (2) are sampled randomly, and unrelated to
the downstream task. Both solutions output the correct prediction for pre-training, but solution (1) is much flatter.

Proof of Theorem 5.1. We first calculate the trace of Hessian of the pre-training loss and then derive a lower bound for it
in Lemma G.1. We then show that the lower bound can be achieved only if the output of the attention are in one direction
for all the downstream input in Lemma G.3. This translates to constant sample complexity for the downstream task.

Lemma G.1. Denote by hQ,K(x) =
∑T
j=1 ajxj the output of the attention head. In the setting of Theorem 5.1,

I+={i∈ [m] |ui>0} and I−={i∈ [m] |ui<0}. The trace of Hessian can be lower bounded,

Tr[∇2
ψL(ψ,u)]+Tr[∇2

uL(ψ,u)]≥
√

4

T
,

where the lower bound is achieved if and only if the following conditions are satisfied,

∀ i∈ [m],x∈{x |V ⊤
i hQ,K(x)>0}, V ⊤

i hQ,K(x)= |ui|∥hQ,K(x)∥2, (3)

∀x, i∈I+, i′∈I−, V ⊤
i xV

⊤
i′ x≤0, (4)

∀x, j∈ [T ], aj=
1

T
. (5)

Denote by D+ = {x | y = 1} and D− = {x | y = −1}. Ix is the set of index of neurons which is activated on x,
Ix={i∈ [T ] |V ⊤

i x>0}. By the condition in equation 5, the attention is taking the average of [xt]Tt=1. We can mapD+ and
D− to the feature space,H+={hQ,K(x) |y=1} andH−={hQ,K(x) |y=−1}. We first show that one neuron cannot be
activated on inputs from bothD+ andD−, and all non zero neuron has to be activated on some input. Also note that a neuron
cannot be activated on no input, unless the weight is 0.

Fact G.2. (1) ∀x∈D+, Ix⊆ I+. Similarly we have ∀x∈D−, Ix⊆ I−. (2) Suppose Vi ̸=0, then there exists h∈H+∪H−,
V ⊤
i h>0.

Proof of Fact G.2. (1) Otherwise, suppose j∈Ix∩I−, since y= 1
m

∑m
i=1uiσ(V

⊤
i hQ,K(x))>0, there has to be j′∈Ix∩I+,

which contradicts the condition in equation 4. (2) Suppose v⊤h ≤ 0 for all h ∈ H+ ∪H−. Then we have v⊤h = 0 for
all h, since v⊤h < 0 indicates v⊤(−h)> 0, and −h belongs to the support of P due to the symmetry of the distribution.
However, in Lemma G.5, we show that the matrix stacking all input together has full row rank, thus v has to be 0, leading
to a contradiction.
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We have the following lemma characterizing the solutions achieving all the qualities in Lemma G.1. Intuitively, all the neurons
can be divided into two sets, and each input can only activate neurons in one of the sets, leading to no cancellation between
activated neurons. This holds because of equation 4 and the properties of the input distribution.

Lemma G.3. Suppose Q,K,V satisfy the equality in Lemma G.1. For all i∈ I−, on downstream data x, if g∗(x)=1, we
have V ⊤

i hQ,K(x)=ci>0. ci is a constant which holds for every x if g∗(x)=1. If g∗(x)=−1, we have V ⊤
i hQ,K(x)=0.

For all i∈ I+, on downstream data x, if g∗(x)=−1, we have V ⊤
i hQ,K(x)= ci> 0. ci is a constant which holds for every

x if g∗(x)=1. If g∗(x)=1, we have V ⊤
i hQ,K(x)=0.

Now let us consider the downstream task. It suffices to consider the constant vector c. If samples satisfying g∗(x)=1 and
g∗(x) =−1 both show up in the downstream dataset, the minimal norm solution ũ is ũI− =

mcI−

∥cI−∥
2

2

, ũI+ =
−mcI+
∥cI+∥

2

2

, and

ũ[m]\(I+∪I−)=0. Then we can verify that

fψ̂,ũ(x)=
1

m

∑
i∈I+

−mci∥∥cI+∥∥22σ(V ⊤
i hQ,K(x))+

∑
i∈I−

mci∥∥cI−∥∥22σ(V ⊤
i hQ,K(x))


=

1

m

∑
i∈I+

−mci∥∥cI+∥∥22 ciI[g∗(x)=−1]+
∑
i∈I−

mci∥∥cI−∥∥22 ciI[g∗(x)=1]


=I[g∗(x)=1]−I[g∗(x)=−1]

=g∗(x).

Therefore,LPds(ψ̂,ũ)=Ex∼Pds [(fψ̂,ũ(x)−g
∗(x))2]=0, which completes the proof.

We first show that when the pre-training loss equals 0, the trace of Hessian equals the square of the norm of the gradient.

Lemma G.4. For any parameters θ, if the pre-training loss L(θ)=Ex[(fθ(x)−y)2] = 0, the trace of Hessian equals the
square of the norm of the gradient,

Tr[∇2
θL(θ)]=E[∥∇θfθ(x)∥22].

Proof of Lemma G.4. We can express the Hessian as follows.

∇2
θL(θ)=Ex[ℓ′(fθ(x),y)∇2

θfθ(x)]+Ex[
1

2
ℓ′′(fθ(x),y)∇θfθ(x)∇θfθ(x)

⊤].

SinceL(θ)=Ex[(fθ(x)−y)2]=0, we have with probability 1, ℓ′(fθ(x),y)=0 and ℓ′′(fθ(x),y)=2 is a constant.
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Proof of Lemma G.1.

Tr[∇2
ψL(ψ,u)]+Tr[∇2

uL(ψ,u)]=
∑

θ∈[Q,K,V,u]

E[∥∇θfψ,u(x)∥22] (By Lemma G.4)

≥E[∥∇V fψ,u(x)∥22+∥∇ufψ,u(x)∥22] (6)

=
1

m
E
[
∥σ(V hQ,K(x))∥22+

∥∥hQ,K(x)(I[V hQ,K(x)>0]⊙u)⊤
∥∥2
2

]
=

1

m
E

[
m∑
i=1

σ(V ⊤
i hQ,K(x))2+∥hQ,K(x)∥22I[V

⊤
i hQ,K(x)>0]u2i

]

≥ 2

m
E

[
m∑
i=1

σ(V ⊤
i hQ,K(x))∥hQ,K(x)∥2|ui|

]
(7)

≥ 2

m
E

[
∥hQ,K(x)∥2

∣∣∣∣∣
m∑
i=1

σ(V ⊤
i hQ,K(x))ui

∣∣∣∣∣
]

(8)

=2E
[
∥hQ,K(x)∥2|fθ,u(x)|

]
≥
√

4

T
. (9)

The equality in step 6 is achieved if and only if the gradient ofQ andK is 0. Equation (7) is from AM-GM, and the equality is
achieved iff

V ⊤
i hQ,K(x)= |ui|∥hQ,K(x)∥2 ∀ i∈ [m],x∈{x |V ⊤

i hQ,K(x)>0}.

The equality in step 8 is achieved iff on all input, there is no cancellation between activated neurons,

∀x, i∈I+, i′∈I−, V ⊤
i xV

⊤
i′ x≤0.

Since the attention score aj satisfies aj>0 and
∑T
j=1aj=1, and all embeddings xt in one masked sentence are orthogonal to

each other with norm 1, we have ∥hQ,K(x)∥2≥ 1√
T

. The equality is achieved iff aj= 1
T for all x and all j∈ [T ].

Proof of Lemma G.3 . Suppose Vi is a neuron with i∈ I−. Then there exists h∈H−, V ⊤
i h>0. Without loss of generality,

suppose the masked position in h is 1, i.e. h1=0, h2=1. Now let us consider the components in Vi corresponding to the
input positions and the mask positions separately. V (c)

i =[Vi,1,Vi,2,...,Vi,T ] and V (p)
i =[Vi,T+1,Vi,T+2,...,Vi,2T ].

We claim that V (c)
i 2:T =c1 for some c>0 and V (p)

i 1 is either 0 or c. To prove this, consider h̃, which is only different from
h on the mask, h−h̃=2e2. Also consider −h and −h̃. Due to the symmetry of the distribution, −h and −h̃ are inH+. By
Fact G.2, V ⊤

i (−h)≤0 and V ⊤
i (−h̃)≤0. V ⊤

i (−h) cannot be 0, because this will leads to V ⊤
i h=0.

Case 1. V ⊤
i (−h)<0 and V ⊤

i (−h̃)<0. We have V ⊤
i h=V

⊤
i h̃>0, indicating that V ⊤

i (h−h̃)=2V
(p)
i 1=0. Now we show

that V (c)
i 2:T =c1. Due to the condition of equation 3, we know that for any h∈H− masked on the first token, either V ⊤

i h=0
or they equal to the same positive value c for all h. We claim that V ⊤

i h=c for any h∈H−. Otherwise there existH−,1 and
H−,0,H−,0∩H−,1=∅ andH−,0∪H−,1=H−∩{h |h2=±1}. V ⊤

i h= c for any h∈H−,1 and V ⊤
i h=0 for any h∈H−,0.

This cannot happen for T ≥ 6. By Lemma G.5 we know that the matrix stacking all such h2:T together has full row rank,
thus V (c)

i 2:T =c1 for some c>0 and V (p)
i 1=0.

Case 2. V ⊤
i (−h)< 0 and V ⊤

i (−h̃)=0, which indicates V ⊤
i h=V

(p)
i 1. Consider another h′ ∈H− which is not equal to h

and h′2=1. Similarly we can find h̃′, h′−h̃′=2e2. Still we have V ⊤
i (−h′)<0 and V ⊤

i (−h̃′)=0, this tells us V ⊤
i h

′=V ⊤
i h,

due to the condition of equation 3. Applying this to different h′s, we have that V ⊤
i h equals the same positive value for all

h∈H− and the masked position is 0. By Lemma G.5 we know that the matrix stacking all such h2:T together has full row
rank, thus V (c)

i 2:T =c1 for some c>0 and V (p)
i 1=c.

We have proved that V (c)
i 2:T =c1 for some c>0 and V (p)

i 1 is either 0 or c. We continue to show that V (c)
i =c1 for the same

c>0 and either V (p)
i is 0 or its coordinates is ±c.
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For case 1, consider h′′ ∈H− whose masked position is 2, h′′4 = 1. Also suppose that h′′1 = 1 By Fact G.2, we know that
V ⊤
i (−h′′)≤0 and V ⊤

i (−h̃′′)≤0, this implies that −V (c)
i 1≤V

(p)
i 2≤V

(c)
i 1. Applying the same argument above, we know

that either V (p)
i 2=0 or V (p)

i 2=±V (c)
i 1, otherwise both V ⊤

i h
′′>0 and V ⊤

i h̃
′′>0 hold, and V ⊤

i h
′′ ̸=V ⊤

i h̃
′′, contradicting

condition in equation 3. If V (p)
i 2=V

(c)
i 1, from equation 3 we know V ⊤

i h
′′=V ⊤

i h, which indicates V (p)
i 2=V

(c)
i 1=

c
2 . In this

case we can find another h′′′ whose masked position is 2, h′′′4 =1 but h′′′1 =−1. Then V ⊤
i h

′′′ ̸=V ⊤
i h, contradicting equation 3.

Thus V (p)
i 2 ̸= V

(c)
i 1. Similarly V (p)

i 2 ̸=−V (c)
i 1. The only possible situation is V (p)

i 2 =0. Applying the argument in this
paragraph to other masked position, we have V (p)

i =0. SinceH− is invariant under permutation, V (c)
i 1=c, and V (c)

i =c1.

For case 2, exactly the same argument as the above paragraph with the sameh′′ andh′′′ shows that the coordinates ofV (p)
i is±c.

Therefore, we have shown that for any i∈ I−, V (c)
i = c1 for same c > 0. The symmetry of distribution immediately tells

us for any i∈I+, V (c)
i =c1 for c<0.

On the downstream distribution P∗, since there is no masked token, only V (c)
i is working. Since V (c)

i = c1 always holds,
we complete the proof.

Lemma G.5. SupposeM ∈R(2k+1)×(2k+1) is a matrix composed of ±1. The first row ofM is [1,...,1︸ ︷︷ ︸
k+1 1’s

,−1,...,−1︸ ︷︷ ︸
k -1’s

]. Define

a permutation ρ(1)=2, ρ(2)=3...ρ(2k+1)=1. For all i≥2,Mi,ρ(j)=Mi−1,j . Then the rank ofM is 2k+1.

Proof of Lemma G.5. Note thatMi+Mρk+1(i)=2ei for all i∈ [2k+1], which means we can express the orthonormal basis
as linear combination of the rows inM . Therefore, the rank ofM is 2k+1.
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G.2. The existence of random feature solutions G.6

Theorem G.6. Supposem≥Õ(2TT 3ϵ−2), and Vi∼N (0,T I2T ) for all i∈ [m]. With probability at least 1−δ over V , there
exists ψ′,u′, satisfyingL(ψ′,u′)≤ϵ and ∥u′∥22≤O(T 2δ−1).

Proof of Theorem G.6. Since the number of possible input in pre-training is finite, we can invoke Lemma 9 in Bai & Lee
(2020) to show that random Gaussian features can fit the pre-training task.

Lemma G.7 (Lemma 9 in Bai & Lee (2020)). Suppose ∥h∥2=
√

1
T , v∼N (0,T I2T ). There exists a random variable a(v)

such that

E[σ(v⊤h)a]=−
√
T1⊤h

and a satisfies Ev[a2]=O(T 2).

ConsiderQ=K=0. In this case we havehQ,K(x)= 1
T

∑T
j=1xj . Also note that for the pre-training task, y=−

√
T1⊤hQ,K(x)

for all x. Since xj are norm 1 orthogonal to each other, we have ∥hQ,K(x)∥2 = 1
T for all x. Now we can show that

Vi∼N (0,T I2T ), i∈ [m] independently is the random feature solution which can solve the pre-training task.

Suppose g(h)= 1
m

∑m
r=1σ(V

⊤
r h)a(Vr), and g(R)(h) :=

1
m

∑m
r=1σ(V

⊤
r h)a(Vr)I(∥Vr∥2≤

√
TR). R is large enough such

that Pr
(
supr∈[m]∥Vr∥2≥

√
TR

)
≥ 1−δ/2. We have g(h) = g(R)(h) on this event. Let g∗(R)(h) be the truncated version

of g∗(h)=−
√
T1⊤h, g∗(h)(R)=Ev[σ(v⊤h)a(v)I(∥v∥2≤

√
TR)]. We have

EV [(g(h)−g∗(h)(R))]≤
1

m
Ev[σ(v⊤h)2a(v)2I(∥v∥2≥

√
TR)]≤CR

2T 2

m
.

By Chebyshev and a union bound, we have

Pr

(
max
h

|g(h)−g∗(h)(R)|≥ t
)
≤Cn(h)R

2T 2

mt2
.

For t= ϵ
2 , we havem≥n(h)R2T 2ϵ−2.

|g∗(R)(h)−g
∗(h)|=Ev[σ(v⊤h)a(v)I(∥v∥2≥

√
TR)]

≤Ev[a(v)2]
1
2Ev[σ(v⊤h)4]

1
4Pr

(
∥v∥2>

√
TR

) 1
4

≤CTPr
(
∥v∥>

√
TR

) 1
4

.

Choosing R = Õ(
√

(T )) will make Pr
(
∥v∥>

√
TR

) 1
4 ≤ cϵ

T . Also note that n(h) = (T/2 − 1)
(

T
T/2+1

)
. Thus

m≥Õ(2TT 3ϵ−2) suffices.
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