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Abstract
LLM-to-NAS is a promising field at the inter-
section of Large Language Models (LLMs) and
Neural Architecture Search (NAS), as recent re-
search has explored the potential of architecture
generation leveraging LLMs on multiple search
spaces. However, the existing LLM-to-NAS meth-
ods face the challenges of limited search spaces,
time-cost search efficiency, and uncompetitive
performance across standard NAS benchmarks
and multiple downstream tasks. In this work, we
propose Reflective Zero-cost NAS (RZ-NAS) that
can search NAS architectures with humanoid re-
flections and training-free metrics to elicit the
power of LLMs. We rethink LLMs’ roles in NAS
in current work and design a structured, prompt-
based to comprehensively understand the search
task and architectures from both text and code
levels. By integrating LLM reflection modules,
we use LLM-generated feedback to provide lin-
guistic guidance within architecture optimization.
RZ-NAS enables effective search within both mi-
cro and macro search spaces without extensive
time cost, achieving SOTA performance across
multiple downstream tasks.

1. Introduction
Neural Architecture Search (NAS) has rapidly advanced,
transforming neural network design by automating the
search for optimal architectures (Zoph & Le, 2017; Liu
et al., 2019; Termritthikun et al., 2021; Jiang et al., 2023;
Zhu et al., 2022). With increasing computational complex-
ity and demand for high-performance neural networks in
tasks such as image recognition (Real et al., 2019) and ob-
ject detection (Sun et al., 2022), NAS has proven to be a
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vital and useful tool. Recently, the combination of Large
Language Models (LLMs) with NAS represents a cutting-
edge development in automated machine learning, seeking
to alleviate the difficulties of manual designs and explore
novel architectures on diverse NAS tasks. However, most of
the existing work remains in the exploratory phase, where
LLMs generate neural architectures directly through tex-
tual prompts (Zhao et al., 2023; Yu et al., 2023; Wei et al.,
2023). This approach suffers from two key drawbacks: (1)
Reproducibility: Stochastic LLM responses hinder consis-
tent results. (2) Interpretability: Text-based prompts lack
clarity on the design rationale, making optimization and
trust difficult. Moreover, LLM-to-NAS methods that focus
on generating architecture code (Lehman et al., 2024) can
only support tiny search spaces and simplified networks,
thus exhibiting poorer performance compared to established
NAS algorithms on standard NAS benchmarks (Chen et al.,
2023). Furthermore, current LLM-to-NAS algorithms rely
on iterative or evolutionary methods, facing high computa-
tional costs, since each architecture requires full training for
evaluation. To address this, we aim to design a novel LLM-
to-NAS algorithm that (1) enhances LLMs’ understanding
of NAS architectures from both text-level and code-level,
(2) addresses the time-cost issue in existing LLM-to-NAS
methods, and (3) achieves better performance and scalability
for broader search spaces and standard benchmarks.

In this paper, we introduce a novel framework that com-
bines the text- and code-level comprehension capabilities
of LLMs with a Reflective Zero-Cost evaluation strategy
for NAS (RZ-NAS)1. To integrate the text- and code-level
understanding abilities of LLMs, we develop structured
prompts to precisely define NAS tasks. These prompts in-
clude: a high-level role, detailed instructions, an in-context
example, and the key reflective module. Moreover, we uti-
lize Zero-Cost proxies instead of training architectures to
reduce computational resources and time cost while main-
taining competitive performance (Abdelfattah et al., 2021;
Sun et al., 2023). The reflective module guides the LLM
to reflect on mutation performance and generates targeted
suggestions for further iteration improvements.

1RZ-NAS is available at https://github.com/
PasaLab/RZ-NAS.
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Algorithm Search Space Search Efficiency
on CIFAR10
(GPU days)

Support
Zero-Cost

NAS

LLM’s Role in NAS

Micro Macro Text-Level
Understanding

Code-Level
Understanding

GPT-NAS (Yu et al., 2023) ✗ ✓ 1.5 ✗ ✓ ✗
EvoPrompting (Chen et al., 2023) ✓ ✓ − ✗ ✗ ✓
GENIUS (Zhao et al., 2023) ✗ ✓ 1.0 ✗ ✓ ✗
LLMatic (Nasir et al., 2024) ✓ ✗ 41 ✗ ✓ ✗
FL-NAS (Qin et al., 2024) ✗ ✓ − ✗ ✓ ✗
RZ-NAS (Ours) ✓ ✓ 0.03 ✓ ✓ ✓

Table 1. Comparison of key capabilities across existing LLM-to-NAS work. Text-Level Understanding indicates providing the textual
description of NAS to LLMs, whereas Code-Level Understanding refers to supplying NAS code to LLMs. ✓ means that the property is
present in the algorithm, while ✗ indicates its absence. − denotes that the source code isn’t available, or the search cost is not mentioned.

Building on this, we adopt the evolutionary NAS strategy,
optimizing the random mutation process guided by the text-
and code-level understanding of LLM. In Table 1, we sum-
marize the improvements of our method compared to five
existing LLM-to-NAS studies. Through the reflective Zero-
Cost evaluation strategy, RZ-NAS can achieve better per-
formance than the original proxies. In addition, it can even
outperform traditional NAS methods while maintaining a
low search cost. The contributions of this work are summa-
rized as follows:

• We design a reflective Zero-Cost NAS strategy, coupling
architecture generation with humanoid reflections and
training-free metrics to elicit the power of LLM-to-NAS.

• We rethink the role of LLMs in NAS and design a struc-
tured, prompt-based approach by combining the text- and
code-level understanding of LLMs for architecture muta-
tion in evolutionary NAS.

• We show that RZ-NAS outperforms the SOTA LLM-to-
NAS and Zero-Cost NAS methods across various datasets
and search spaces.

2. Related Work
2.1. Zero-Cost Neural Architecture Search

Zero-Cost NAS means “NAS without training”, which has
emerged as a promising approach that addresses the expen-
sive computation cost in traditional NAS methods (Xiang
et al., 2023; Javaheripi et al., 2022). Using proxy metrics
with minimal computational overhead, Zero-Cost NAS al-
lows evaluating many architectures without the full training
cost. Some existing Zero-Cost proxies are based on the mod-
els’ gradient, such as Gradnorm (Abdelfattah et al., 2021),
Synflow (Tanaka et al., 2020), and SNIP (Lee et al., 2019),
others are built on different perspectives to evaluate models’
capacity and expressivity. Gradnorm (Abdelfattah et al.,
2021) measures the L2 norm of the gradients of network
parameters for a random loss, estimating how well the gradi-
ents propagate. Synflow (Tanaka et al., 2020) computes the

sum of the element-wise product of weights and gradients
to reflect the sensitivity of a network. Jacob (Lopes et al.,
2021) leverages the Jacobian matrix between the loss and
multiple input samples to quantify the capacity. MAE-DET
(Sun et al., 2022) leverages the differentiable entropy to
evaluate the amount of information the model extracts. The
most recent Zero-Cost NAS strategies (Abdelfattah et al.,
2021; Gao et al., 2022) use the evolutionary algorithm as the
search framework, mimicking the evolutionary process by
iteratively selecting, mutation and recombining candidate
architectures based on proxy scores. Recently, benchmarks
such as NAS-Bench-Suite-Zero (Krishnakumar et al., 2022),
have raised concerns about using them as full replacements
for accuracy. These insights motivate the careful selection
and combination of proxies in practice.

2.2. LLM for Evolutionary Algorithm

The LLM-based evolutionary algorithm is still at a very
early age. Pioneering work (Lehman et al., 2024) finds that
LLMs designed for code generation can significantly en-
hance the effectiveness of the mutation process in Genetic
Programming (GP). Building on this, recent studies explore
LLMs’ role in selection within evolutionary algorithms, re-
ducing reliance on black-box functions. (Hao et al., 2024)
encodes architectures as natural language via prompt engi-
neering and uses LLMs to predict proxy scores, reducing
computational costs. LLaMEA (van Stein & Bäck, 2024)
leverages LLM to automatically generate meta-heuristic
algorithms based on a given set of criteria and task defini-
tions. (Romera-Paredes et al., 2023) indicates that LLMs
can achieve state-of-the-art performance in the cap set prob-
lem in finite-dimensional spaces, revealing the potential of
LLMs to contribute to mathematical optimization problems.

2.3. LLM for Neural Architecture Search

Recent advancements in large language models have
sparked remarkable results in evolutionary algorithms for
neural architecture search, presenting a novel avenue for
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automating the design of neural networks. GPT-NAS (Yu
et al., 2023) utilizes a GPT model to predict components of
neural architecture based on an encoding scheme tradition-
ally employed for evolving architectures within evolutionary
algorithms. Similarly, GENIUS (Zhao et al., 2023) replaces
the architecture suggestion step with GPT-4, prompting it
iteratively to propose architectures, evaluate their perfor-
mance, and provide feedback for suggesting improvements.
EvoPrompting (Chen et al., 2023) leverages LLMs to under-
stand the code of crossover and mutation operators within
evolutionary algorithms, focusing on small search spaces
and simplified architectural constructions. LLMatic (Nasir
et al., 2024) designs candidate operation pools and utilizes
LLM to update operations in the architecture.

2.4. Self-Reflections of LLMs

The self-reflection mechanism in LLMs refers to the model’s
ability to review the outputs or reasoning process to iden-
tify and correct errors. While the theoretical support for
the effectiveness of reflection mechanism remains unclear,
in the context of LLMs, reinforcement learning with hu-
man feedback (RLHF) enables output refinement through
feedback, simulating the process of reflection (Lee et al.,
2024). Reflexion (Shinn et al., 2023) proposes a frame-
work to strengthen LLM agents through language feedback.
It introduces a “Generate-Evaluate-Reflect” loop, where
Actor generates a trajectory, Evaluator computes rewards,
and Self-Reflection provides natural language feedback to
guide subsequent decisions. ReEvo (Ye et al., 2024) com-
bines evolutionary computation with human-like reflection
to generate heuristic algorithms. Moreover, the reflection
mechanism greatly improves model performance on tasks
such as multiple-choice reasoning (Renze & Guven, 2024).

3. THE PROPOSED METHODOLOGY
In this section, we first discuss the role of LLM in Zero-
Cost NAS and formulate a systematic framework that can
be applied to multiple Zero-Cost NAS proxies. Then, we
integrate LLM into Zero-Cost NAS methods for better and
more intelligent search.

3.1. Problem Formulation

Let S and D denote the search space S and the dataset,
respectively. Our goal is to find the optimal architecture a∗

from the candidate architecture set A in S via computing
Zero-Cost score during LLM-guided architecture mutation.
The mutated architecture is evaluated via a Zero-Cost proxy
object function O. Given task T , search space S, dataset D,
and model M , the search process returns the architecture
with the maximum Zero-Cost proxy score. The optimization

problem can be expressed as follows.

a∗ = argmaxα∈AO(α, T, S,D,M) (1)

3.2. Overall Search Framework

As shown in Figure 1, RZ-NAS is an iterative NAS optimiza-
tion framework that combines LLMs, Zero-Cost proxy eval-
uation, and the LLM reflection mechanism. It leverages the
understanding of LLM on the specified task, search space,
model architecture, and metrics to mutate architectures and
evaluate them using Zero-Cost proxies, refining the search
for optimized designs through reflective feedback.

In Figure 1, we precisely extract the roles of LLM, which
includes two functions: a mutation generator for selected
architecture and a reflection module for yielding better muta-
tions. To help the LLM understand the mutation process, we
provide the genotype of the selected architecture in string
format and three system-related descriptions with corre-
sponding textual and code representations. The search space
description introduces each operation in the defined space.
The network construction description and the Zero-Cost
proxy description explain how the network is built and how
the proxy is computed, respectively, each using code and a
brief textual explanation. The above inputs are integrated
into a prompt template and fed into the LLM to guide the
mutation process, as detailed in Figure 2. Specifically, the
architecture textual genotype is incorporated into the user
prompt to request new mutations, while the three system-
related descriptions are embedded in the system prompt,
enabling the LLM to comprehensively understand the task
context. During each iteration, the three system-related
descriptions remain fixed, providing consistent context for
the specific NAS task, while the architecture genotype is
updated based on the mutations generated by the LLM.

After the LLM completes the mutation process, the muated
architecture is first validated and then evaluated using pre-
defined Zero-Cost proxies. Then, the LLM reflects on the
mutated operation and its performance through the reflection
module. The reflection module compares the architecture
before and after the mutation and prompts the LLM to gen-
erate better solutions based on the current mutation.

Population Construction. RZ-NAS maintains a dynamic
architecture population throughout the optimization process.
The initial population is randomly generated and the Zero-
Cost score is calculated for each architecture. RZ-NAS
supports both macro and micro search space. For the micro
search space, the genotype format follows the approach in
DARTS (Liu et al., 2019), where operations are organized
within a cell as a directed acyclic graph (DAG) and stacked
to form a supernet. In the macro search space, the operations
are connected sequentially and the architecture consists of
vanilla convolutional layers, where each layer includes a
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Selected Arch

LLM

LLM Prompt Template

System Prompt

In-context Example

User Prompt
Text-based Genotype

Search Space Description

Network Construction Description

Zero-cost Proxy Description

<NetworkConstruction Description>

<Each Operation Class descripton>

<Zero-cost Proxy Description>

Mutate the below architecture.

- Role
<Identify system’s role>

- Instructions

<|im_start|>user 
<input architecture example>

<|im_end|>

<|im_start|>assistant
<output of mutated architecture>
<explain the mutation process>

<|im_end|>

{{architecture}}

<Explain the details of the task>

“ConvK3BNRELU(3,32,1,1)ResK
1K5K1(32,120,1,40).....  “

LLM Reflection Module

Compute Zero-cost 
Proxy Score

Muated Arch 1

You are provided with 
{{arch}},{{score}} and 
{{exception}}. Generate 
suggestions for 
designing mutation with 
better performance.

Text-level Description Code-level Description 

<Zero-cost Proxy Computation Code>

<def forward()>

<def __init__()>
<def forward()>

Architecture 
Population

A   Pass Text-level and Code-level Descriptions into LLM B   LLM-guided Zero-cost
Evaluation Strategy  

Update Population

Validate Architecture

Figure 1. The pipeline of RZ-NAS. The workflow starts by initializing a population of architectures. One architecture is randomly selected,
and its text-based description along with system information including search space, network construction, and selected Zero-Cost proxy,
is sent to the LLM prompt template. The LLM generates a mutated architecture, which is then validated and scored using the proxy. The
mutation, along with its score and possible errors, is fed back into the LLM to guide better mutations in subsequent iterations.

convolutional operator followed by ReLU activation (Serra
et al., 2018; Hanin & Rolnick, 2019). Once the population is
initialized, we transform each architecture into string format
as shown in the text-based genotype in Figure 1.

Architecture Mutation. RZ-NAS understands both text-
and code-level descriptions to guide the LLM in mutating
the architecture genotype during each iteration. Rather than
directly mutating architecture code, the LLM performs text-
based mutation, which is more feasible since code-level
modifications may span multiple files and classes. The
LLM’s first role is to guide the mutation of a selected archi-
tecture by modifying operators in formatted textual geno-
type. These mutated operators are defined in the search
space and replace the original ones in the architecture geno-
type. As a result, the output of the mutation process is a
textual genotype, which is then transformed into executable
architecture code for performance evaluation. The code and
semantic descriptions used in the four input components
will be detailed in Section 3.3.

Mutation in NAS typically relies on random perturbations
to explore the search space. However, this often requires
extensive customization and domain-specific knowledge to
ensure meaningful and effective changes (Lehman et al.,
2024). LLMs with implicit knowledge of architecture de-
sign can guide architecture mutation more intelligently. Re-
cent research in evolutionary computation demonstrates that
LLMs can outperform traditional mutation in genetic pro-

gramming tasks (Liu et al., 2023; van Stein & Bäck, 2024),
showcasing their ability to embed domain knowledge and
intelligently explore the search space. Unlike prior stud-
ies (Zhao et al., 2023) that treat LLM as a black box by
replacing the entire NAS strategy with simplistic prompts,
our approach leverages LLM more strategically within the
mutation process.

Architecture Validation. After LLM generates the muta-
tion, RZ-NAS validates its construction for correctness (e.g.,
checking if the layer length is within the allowed limits). It
also adheres to the FLOPs budgets of Zero-Cost NAS to
search for optimal networks within various budgets. The
invalid architecture will not be added to the population.

Compute Zero-Cost Proxies. RZ-NAS provides a versa-
tile Zero-Cost evaluation strategy that supports different
Zero-Cost proxies. As discussed in Section 2.1, Zero-Cost
proxies initially originate from gradient-based methods such
as Grasp (Wang et al., 2020) and later evolve into more di-
verse proxies grounded in different theoretical frameworks,
such as Zen Score (Lin et al., 2021). As a general search
framework, RZ-NAS can incorporate different Zero-Cost
proxies. The Zero-Cost proxy computation module in Fig-
ure 1 provides a code block and proxy description for model
understanding. The user prompt includes a JSON list with
the current architecture, proxy type, and pre-mutation score.
The LLM is guided by structured prompts, I/O formats, and
in-context examples. Reflections from prior outputs further
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Algorithm 1 LLM-guided Mutation and Zero-Cost Evalua-
tion Strategy

INPUT: Search space S, inference budget B, maximal
depth L, total number of iterations T , evolutionary
population size N , initial structure F0, the selected
Zero-Cost proxy zc
OUTPUT: The architecture A with highest proxy score.

1: Initialize population P = {F0}.
2: for t = 1, 2, . . . , T do
3: Randomly select Ft ∈ P .
4: F̂t ← GENERATINGMUTATION(Ft, S).
5: if VALIDATE(F̂t) is True then
6: if F̂t meets the inference budget B then
7: Compute Zero-Cost score z = zc(F̂t).
8: Append F̂t to P .
9: if |P | > E then

10: Remove the architecture with the smallest
Zero-Cost score from P .

11: end if
12: end if
13: end if
14: Get exception e if Ft is invalid.
15: REFLECTION(F̂t, z, e).
16: end for
17: Return F ∗, the architecture with the highest score in P .

refine the process. To avoid hallucinations, Zero-Cost scores
are computed by code, not LLM.

LLM Reflection Module. We introduce an innovative LLM
reflection module that evaluates each mutated architecture
and its computed score, providing suggestions and insights
for improved designs in the next iteration. The reflection
mechanism includes two modules: internal reflection mod-
ule in the system prompt (e.g., Reflect to generate better
mutation) and external LLM reflection module (e.g., Gen-
erate suggestion for better mutation). The external module
takes as input the architecture before and after mutation
in the current iteration, the Zero-Cost proxy score, and
any encountered exceptions as input, and outputs dynamic,
structured reflection suggestions to guide future mutations.
These two modules form a closed-loop feedback system: the
external module provides explicit optimization directions,
while the internal module enables implicit semantic reason-
ing. Previous research on self-reflection in LLMs (Renze &
Guven, 2024; Ye et al., 2024) has demonstrated significant
improvements in performance, mitigated hallucination, and
smoother fitness landscapes by employing self-reflection on
problem-solving and heuristic tasks. A detailed example of
reflection is shown in Appendix A.2.

Population Update. All architectures including both the
original and the mutated candidates are first sorted by their

Zero-Cost scores. The architecture with the lowest score
is then removed to maintain a fixed population size. After
T iterations, the architecture with the highest score is re-
turned. More details on the search workflow can be found
in Algorithm 1.

3.3. Prompt Template Design

To achieve LLM-guided architecture mutation, we design
prompts with structured context and a specified output for-
mat. Figure 2 shows the system-level and task-specific
prompt template inspired by Copilot (Denny et al., 2023)
and multiple templates from OpenAI Library 2. The left
side outlines the full template structure, while the right
displays four input text-level and code-level descriptions.
The prompt template includes three components: system
prompts defining LLM’s role and task descriptions, illustra-
tive in-context examples, and specific user instructions.

• System Prompt. The instruction emphasizes the expert
role of LLM in Zero-Cost NAS and Python program-
ming. The role definition should be clear and concise
to generalize across domains without relying on specific
scenarios (Zhang et al., 2024), guiding the LLM to pro-
duce scientifically relevant and meaningful architectures.
Next, we provide a concise description of the search space.
Language models help us understand the structure of each
operation by detailing textual properties and construction
code. For each operation in the search space, the defi-
nition, parameters, and forward() function are explained
in detail in Appendix A.3. Furthermore, to enhance ex-
pertise in optimizing mutation, RZ-NAS introduces the
system reflection module, which reflects and gives hints
for the improved mutation design in the next step.
During the network construction process, we define the
input/output formats and mutation constraints, such as
kernel size and input channels, through textual descrip-
tions. In addition, in the code block, we illustrate the
architecture construction process. In Figure 2, we pro-
vide the input code where the architecture is formatted as
an operation string and instantiated within the function
create arch list from str() to build the architecture within
the Network class.
Figure 2 also shows the architecture mutation logic. Mul-
tiple Zero-Cost proxy computation codes are integrated
to ensure system compatibility with various evaluation
methods. Based on the type parameter in the user prompt,
the system selects the appropriate Zero-Cost proxy.

• In-context example. The in-context example provides
task-specific instructions, including a mutation example
and an explanation of the reasoning steps that lead to the
output. Moreover, we integrate the step-to-step reflection

2https://platform.openai.com/docs/
examples
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<|im_start|>user

           Mutate the architecture.

<|im_end|>

<|im_start|>assistant           



 

<|im_end|>

In-context Example

System Prompt

User Prompt

# I am an expert in understanding the zero-cost NAS methods and 
evolutionary algorithms of neural architecture search.

# My task is to guide the mutation process to get an optimal 
architecture with better zero-cost proxy score.

<|im_start|>system

<|im_start|>user

<|im_end|>

<|im_end|>

Mutate the architecture. 
{“arch”:{{architecture}},“type”:<type>,“score”:<score>}

- I should understand all operations in the search space. All 
operations are defined below.

<Search Space Description 
&


Code Block>

<Network Construction Description

&


Code Block>

# Understand Search Space and Operations

# Network Construction

- The input architecture is defined as a string variable named 
`block_str`. The format is: <operation1(para1,para2)>

<operation2(para1,para2)>.

- I should understand the key code of architectures and mutate 
the operation from the search space list...

# Compute Zero-Cost Proxy

- The type of zero-cost proxy is <zero-cost proxy>. The 
computing code is below.

# Reflect to generate better mutation

- I am the expert in the domain of evolutionary mutation. I 
should reflect and give hints to design better architectures.

<Zero-cost proxy description

&


Code Block>

{{architecture_input}}

<output of mutated architecture>

<thinking><explan the mutation process></thinking>

-` `: This class defines a 
block structure with several layers...
class ConvKXBNRELU

def

return

 self, x):

    output = x

    for block in self.block_list:

       output = block(output)

        output

forward(

... 

- The input architecture is defined as a 
string variable named ` `...arch_str

def compute_gradnorm_score():

    norm2_sum = 0

    with torch.no_grad():

        for p in model.parameters():

            if hasattr(p, 'grad') and 

                     p.grad is not None:

                norm2_sum +=  

                    torch.norm(p.grad) ** 2

    grad_norm = float(torch.sqrt(norm2_sum))

                  ...

- Gradnorm is to sum the Euclidean norm of 
the gradients... 

```

{"arch":<architecture genotype>,
"type":<zero-cost type>,"score":<zero-cost 
score>}

```

Define

Role and 

Task

Define

Search 
Space

System

Reflection

Network 
Construction

Architecture 
Mutation

Compute 
Zero-Cost 

Proxy

class
def

def

 (nn.Module):

     (self):

        self.arch_list =   

      create_arch_list_from_str(arch_str)

     (self, x):

        output = x

        for arch_ele_id, the_element in  

             enumerate(self.arch_list):

                 ...

Network
__init__

forward

Figure 2. Overview of architecture mutation prompt. Left: the structure of the whole prompt template. Right: four text-level and code-level
input descriptions.

mechanism which is highlighted with XML-like tags to
guide LLM in reasoning. The example can be tailored for
different downstream tasks. Previous research (Min et al.,
2022; Liu et al., 2024) has done extensive experiments
to show the effectiveness of contextual learning. The
in-context examples store successful cases as key-value
pairs, which help the induction heads of the transformer
to identify successful architectural patterns stored in the
context examples (Olsson et al., 2022). Our extensive
experimental results show that the example code is crit-
ical for LLM reasoning, leading to more consistent and
correct architectures without syntax exceptions and en-
suring good performance. To avoid the issue of prompt
leakage, we add restrictions in the system prompt to pre-
vent prompt leakage. Because there could be cases where
in-context examples are output as mutation results dur-
ing our experiments. To address this, we include “do not
disclose examples” in the system prompt. The Zero-Cost

NAS method in the in-context example should align with
the method selected by the user in the following prompt.

• User Prompt. This part defines the format and content of
user input. The user input is the architecture to be mutated,
which is randomly selected from the population. The
random selection stragegy aligns with existing Zero-Cost
methods such as Zen-NAS (Lin et al., 2021). The input is
provided in JSON format, containing three keys: “arch”,
“type”, and “score”. Users must specify the Zero-Cost
method to be applied. The “score” field is initialized with
the computed Zero-Cost score of the selected architecture.

The whole prompt design is presented in Appendix A.3.
After LLM-guided mutation, the mutated architecture is
subjected to a syntax correctness check and verified for
construction errors to prevent potential exceptions. If an
exception occurs, the process skips invalid architecture, and
the exception message is sent to the LLM reflection module
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Table 2. The test and validation accuracy on NAS-Bench-201. Top: traditional differentiable NAS strategies. Middle: previous LLM-to-
NAS methods. Bottom: comparison of each Zero-Cost method’s performance against our improved results. Each method is run 3 times.
The best results between the LLM-based and Zero-Cost methods are shown in bold.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120

valid test valid test valid test

DARTS(2nd) (Liu et al., 2019) 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00
SNAS (Xie et al., 2019) 91.10± 1.04 92.77± 0.83 69.69± 2.39 69.34± 1.98 42.84± 1.79 43.16± 2.64
PC-DARTS (Xu et al., 2020) 89.96± 0.15 93.41± 0.30 67.12± 0.39 67.48± 0.89 40.83± 0.08 41.31± 0.22
RLNAS (Zhang et al., 2021) 89.94± 0.00 93.35± 0.00 70.98± 0.00 70.71± 0.00 46.86± 0.00 43.70± 0.00
DrNAS (Chen et al., 2021) 91.55± 0.00 94.36± 0.00 73.49± 0.00 73.51± 0.00 46.37± 0.00 46.34± 0.00
β-NAS (Ye et al., 2022) 91.55± 0.00 94.36± 0.00 73.49± 0.00 73.51± 0.00 46.37± 0.00 46.34± 0.00

GENIUS 91.07± 0.20 93.79± 0.09 70.96± 0.33 70.91± 0.72 45.29± 0.81 44.96± 1.02
LLMatic 91.42± 0.13 94.26± 0.10 71.41± 1.44 71.62± 1.73 44.98± 0.87 45.87± 0.96

GraSP 89.69± 1.39 89.34± 2.16 61.11± 4.17 60.89± 3.88 24.17± 10.38 22.99± 11.01
Ours(GraSP) 90.11± 1.00 92.79± 0.80 69.69± 2.39 69.34± 1.98 42.84± 1.79 43.16± 2.64
Gradnorm 89.69± 1.39 89.27± 2.10 61.11± 4.17 61.06± 4.02 24.17± 10.38 24.10± 11.36
Ours(Gradnorm) 90.76± 1.77 93.99± 3.44 71.03± 2.34 71.61± 2.20 42.43± 1.40 42.61± 1.38
Synflow 91.03± 0.44 93.48± 0.00 71.36± 1.50 71.35± 1.51 44.87± 0.00 45.12± 0.00
Ours(Synflow) 91.45± 0.42 93.47± 0.74 73.23± 0.14 73.21± 0.12 46.37± 0.11 46.16± 0.30
Zen-NAS 90.20± 0.00 93.76± 0.00 70.21± 0.71 70.67± 0.62 40.78± 0.00 41.44± 0.00
Ours(Zen-NAS) 91.03± 0.44 93.48± 0.00 71.36± 1.51 71.35± 1.51 44.87± 0.00 45.12± 0.00
ZiCo 89.94± 0.00 93.35± 0.00 70.98± 0.00 70.71± 0.00 46.39± 0.03 46.18± 0.04
Ours(ZiCo) 91.45± 0.10 94.24± 0.12 73.35± 0.14 73.30± 0.21 46.53± 0.24 46.24± 0.23

for the error analysis, enabling the LLM to generate valid
architectures in the next iterations.

4. Experiment
We evaluate RZ-NAS on multiple widely adopted Zero-Cost
NAS proxies for different downstream tasks. The details of
Zero-Cost proxies are provided in Appendix A.1. We define
the mutation space based on the set of architecture opera-
tors specified in the system prompt. The search procedure
runs for 1500 evolutionary iterations. The population size
is set to 100 for NAS-Bench-201 and CIFAR-10, and 256
for CIFAR-100, ImageNet, and COCO. All populations are
initialized from scratch using random sampling. The search
spaces differ by task: for NAS-Bench-201, CIFAR-10, and
CIFAR-100, we use the micro cell-based search space; for
ImageNet, we adopt the MobileNet macro search space, con-
sistent with prior works like Zico and Zen-NAS. For COCO
object detection, we stack operators to build the backbone
following the same configuration used in MAE-DET (Sun
et al., 2022). In all experiments, we use the GPT4o model
to generate mutations. We also perform an ablation study
with different LLMs in Appendix A.4.2. We sample the
temperature of the model from [0.2, 0.4, 0.6, 0.8, 1.0] to
encourage output diversity. The other settings are identical
to different Zero-Cost proxies. In RZ-NAS, the number of
input tokens and output tokens is in the range of 2300-2600
and 150-200, respectively. We perform 1500 iterations for
one proxy in one search space per proxy. Therefore, the
total cost per proxy is around $75.

Table 3. The correlation coefficients between various Zero-Cost
proxies and test accuracy on NAS-Bench-201 (KT and SPR repre-
sent Kendall’s τ and Spearman’s ϕ, respectively). The best results
are shown in bold.

NAS-Bench-201

Method CIFAR-10 CIFAR-100 ImageNet

KT SPR KT SPR KT SPR

GraSP 0.37 0.54 0.36 0.51 0.40 0.56
Ours(GraSP) 0.43 0.57 0.41 0.55 0.44 0.59
Synflow 0.54 0.73 0.57 0.76 0.56 0.75
Ours(Synflow) 0.56 0.73 0.60 0.79 0.58 0.78
Zen-Score 0.29 0.38 0.28 0.36 0.29 0.40
Ours(Zen-Score) 0.37 0.54 0.36 0.51 0.40 0.56
ZiCo 0.61 0.80 0.61 0.81 0.60 0.79
Ours(ZiCo) 0.63 0.82 0.63 0.84 0.64 0.81

4.1. Performance Comparison

4.1.1. NAS-BENCH-201 SEARCH SPACE

We compare the accuracy performance on the NAS-Bench-
201 Benchmark as shown in Table 2. We train the network
with the best score for each proxy for three runs under its
training setting. RZ-NAS can significantly improve the per-
formance of all Zero-Cost proxies. We further compare the
performance with existing LLM-to-NAS methods available
in published results or open-source implementations. Ta-
ble 2 demonstrates the superior performance of RZ-NAS.
We also compute Kendall’s τ and Spearman’s ϕ correlation
coefficients between the Zero-Cost proxy and test accuracy
to evaluate whether these proxies accurately rank architec-
tures in Table 3. Our method improves the correlation scores
of all Zero-Cost proxies across the three datasets, indicating
that our method can help Zero-Cost proxies have a greater
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Table 4. Performance comparison on CIFAR-10 and CIFAR-100
on the DARTS search space. For the “Method” column, “MS”
represents multi-shot NAS; “OS” is short for one-shot NAS; “ZC”
is short for Zero-Cost NAS. The best results are shown in bold.

Method Test Error [%] Method Cost(GPU days)
CIFAR-10 CIFAR-100

PNAS (Liu et al., 2018) 3.41± 0.09 19.53 MS 225
ENAS (Pham et al., 2018) 2.89 19.43 RL 0.5

DARTS(2nd) (Liu et al., 2019) 2.76± 0.09 20.58± 0.44 OS 1
SNAS (Xie et al., 2019) 2.39 - OS 1.5
P-DARTS (Liu et al., 2018) 2.5 17.46 OS 0.3
R-DARTS (Chen et al., 2020) 2.95± 0.21 18.24 OS 1.6
DARTS+PT (Wang et al., 2021) 2.61± 0.08 19.05 OS 0.8
β-DARTS (Ye et al., 2022) 2.53± 0.08 17.43 OS 0.4
OLES (Jiang et al., 2023) 2.41± 0.11 17.33 OS 0.4

GraSP 6.0± 0.13 27.8± 0.17 ZC 0.01
Ours(GraSP) 5.4± 0.07 26.8± 0.12 ZC 0.02
Gradnorm 5.7± 0.05 25.7± 0.08 ZC 0.01
Ours(Gradnorm) 5.2± 0.12 24.6± 0.16 ZC 0.01
Synflow 5.9± 0.11 24.1± 0.12 ZC 0.02
Ours(Synflow) 4.3± 0.07 21.3± 0.20 ZC 0.02
Zen-NAS 2.55± 0.04 19.9± 0.11 ZC 0.01
Ours(Zen-NAS) 2.50± 0.17 17.77± 0.09 ZC 0.01
ZiCo 2.45± 0.11 17.78± 0.13 ZC 0.03
Ours(ZiCo) 2.41± 0.13 17.49± 0.08 ZC 0.03

ability to select better candidates.

4.1.2. DARTS SEARCH SPACE

We also evaluate RZ-NAS on CIFAR-10 and CIFAR-100
within the DARTS search space, two of the most widely
adopted datasets in the NAS research, which were not previ-
ously applied in existing LLM-to-NAS studies. As shown in
Table 4, we compare RZ-NAS with traditional image clas-
sification models, NAS methods, and previous Zero-Cost
methods. We adhere to the search space of each Zero-Cost
method without introducing additional operations. Follow-
ing the computation of each Zero-Cost proxy, our method
significantly outperforms previous Zero-Cost methods and
demonstrates competitive results compared to SOTA NAS
methods. Among all Zero-Cost proxies, ZiCo and Zen-
NAS emerge as the top-performing runners-up, followed by
Synflow.

4.1.3. MOBILENET SEARCH SPACE

We further adopt a widely used MobileNetV2-based search
space, where architectures are constructed by stacking mul-
tiple Inverted Bottleneck Blocks with SE modules (Howard
et al., 2017; Sandler et al., 2018). RZ-NAS is applied
to search for architectures under varying FLOPs budgets
(450M, 600M, and 1000M). As shown in Table 5, RZ-NAS
using ZiCo demonstrates significant improvements over
all prior NAS methods, solidifying its effectiveness in the
search for low-cost, high-accuracy neural architectures. For
example, with a FLOPs budget of approximately 450M, our
method achieves a remarkable 79.0% Top-1 test accuracy on
ImageNet, which is higher than the leading NAS approach
DONNA (Moons et al., 2021) and over 62 times faster in
search cost. This dramatic improvement in efficiency high-
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Figure 3. Ablation results on different search spaces.

lights the strength of RZ-NAS in balancing performance
and computational cost, making it particularly advantageous
in scenarios where fast architecture search is essential, es-
pecially in resource-constrained environments. Moreover,
for a given Zero-Cost method, our proposed search strat-
egy built on this Zero-Cost method can always achieve an
improvement in accuracy across different FLOP budgets.

Table 5. Top-1 test error on ImageNet under various FLOP budgets.
For the “Method” column, “MS” means multi-shot NAS; “OS”
is short for one-shot NAS; Scaling represents network scaling
methods; “ZC” is short for Zero-Cost NAS. ♢: The test error is
reported from (Li et al., 2023). The best results are shown in bold.

Budget(maximal #FLOPs) Approach Top-1(%) Method Cost(GPU days)

450M

EfficientNet♢ 23.9 MS 3800
NasNet-B♢ 27.2 MS 1800

DONNA 22.0 OS 25
Zen-NAS 27.9 ZC 0.3

Ours(Zen-NAS) 27.0 ZC 0.3
ZiCo 22.0 ZC 0.4

Ours(ZiCo) 21.0 ZC 0.4

600M

EfficientNet 21.9 Scaling 3800
DARTS♢ 26.7 OS 4

PC-DARTS♢ 24.2 OS 3.8
DONNA♢ 21.6 OS 25
Synflow 20.9 ZC 0.25

Ours(Synflow) 20.0 ZC 0.25
Zen-NAS 20.9 ZC 0.4

Ours(Zen-NAS) 20.0 ZC 0.4
ZiCo 20.6 ZC 0.4

Ours(ZiCo) 19.9 ZC 0.4

1000M

EfficientNet♢ 19.9 OS 3800
sharpDARTS ♢ 24.0 Scaling -

Zen-NAS♢ 19.9 ZC 0.5
Ours(Zen-NAS) 18.9 ZC 0.5

ZiCo 19.5 ZC 0.5
Ours(ZiCo) 18.7 ZC 0.5

4.2. Ablation Study

4.2.1. EXPLANATION OF REMOVING DIFFERENT
COMPONENTS

In Figure 3, we evaluate RZ-NAS without in-context ex-
ample, reflection module, code description, and textual de-
scription on NAS-Bench-201 and DARTS search spaces.
This investigation aims to uncover the contribution of each
prompt element to the overall effectiveness of RZ-NAS in
accurately navigating the search space and identifying high-
performing architectures. More detailed explanations and
more ablation studies can be found in Appendix A.4.1.

8



RZ-NAS: Enhancing LLM-guided Neural Architecture Search via Reflective Zero-Cost Strategy

Table 6. Performance comparison on CIFAR-10 using NAS-Bench-201 search space. RZ-NAS with the random selection strategy shows
competitive results compared to the highest Zero-Cost score-based selection stragety.

Method GraSP Zen-NAS ZiCo
Test Error

%
RZ-NAS 5.4± 0.07 2.50± 0.17 2.41± 0.13

RZ-NAS (Highest Proxy Score) 5.38± 0.12 2.52± 0.15 2.42± 0.20

Table 7. Perfromance comparison between the original prompt template and two other different prompts phrasing on CIFAR-10. By
keeping the in-context example and code block fixed in the prompt template, we use GPT-4o to rephrase the semantic prompt. Different
prompt phrasings can influence the outcomes, yet they still demonstrate superiority over the original Zero-Cost methods.

Method GraSP Gradnorm Synflow Zen-NAS ZiCo

Test Error
%

Original Zero-Cost Proxy 6.0± 0.13 5.7± 0.05 5.9± 0.11 2.55± 0.04 2.45± 0.11
RZ-NAS 5.4± 0.07 5.2± 0.12 4.3± 0.07 2.50± 0.17 2.41± 0.13

RZ-NAS (Prompt Rephrase 1) 5.5± 0.18 5.2± 0.08 4.3± 0.17 2.51± 0.08 2.40± 0.20
RZ-NAS (Prompt Rephrase 2) 5.7± 0.10 5.3± 0.07 4.7± 0.09 2.54± 0.14 2.44± 0.12

4.2.2. PERFORMANCE COMPARISON WITH DIFFERENT
ARCHITECTURE SELECTION STRATEGIES

In each iteration of RZ-NAS, the architecture selected for
mutation is randomly chosen from the population, rather
than selecting the architecture with the highest Zero-Cost
score. Table 6 shows that the random selection strategy
achieves competitive performance. The random selection
strategy maintains population diversity and avoids prema-
ture convergence. LLM-guided mutations steer low-scoring
candidates toward better solutions. Unlike traditional algo-
rithms, which may lead to inefficiency, LLM-guided mu-
tations intelligently explore architectures, maintaining di-
versity, and accelerating convergence. This aligns with
previous LLM-to-NAS work such as ELM (Lehman et al.,
2024) and EvoPrompting (Chen et al., 2023).

4.2.3. PERFORMANCE COMPARISON WITH REPHRASING
PROMPT

We further evaluate the effectiveness of the structured
prompt template. GPT4o is used to rephrase prompts. Ta-
ble 7 shows consistent performance with different rephras-
ing changes on CIFAR-10, demonstrating the robustness
of the structured prompt template in RZ-NAS. Previous
research confirms that LLMs are insensitive to phrasing
changes in structured tasks when examples, I/O formats,
and specific context remain consistent (Raffel et al., 2020).

4.3. Object Detection

RZ-NAS can also be applied to search efficient backbones
for object detection tasks, leveraging the Zero-Cost detec-
tion strategy MAE-DET (Sun et al., 2022). Following the
comparison setting, our method is designed to align with
traditional ResNet and the MAE-DET strategy with similar
FLOPs and parameter counts. For training, we use ResNet-
like backbones on the COCO dataset (Lin et al., 2014),
incorporating multi-scale training and Synchronized Batch
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Figure 4. Object detection with RetinaNet and FCOS.

Normalization. Figure 4(a) and Figure 4(b) present the per-
formance comparison across different heads (RetinaNet and
FCOS). Notably, RZ-NAS improves the COCO mAP while
maintaining similar FLOPs.

5. Conclusion
In this work, we proposed a LLM-to-NAS framework via
a reflective Zero-Cost strategy. We designed a structured,
prompt-based approach that combines text- and code-level
understanding, enabling the LLM to generate robust archi-
tectures tailored to diverse search spaces and tasks. By cou-
pling architecture generation with reflections and training-
free metrics, RZ-NAS effectively leverages the reasoning
capabilities of LLMs to enhance NAS performance. Ex-
perimental results demonstrate that RZ-NAS outperforms
state-of-the-art LLM-to-NAS and Zero-Cost NAS methods
across multiple datasets and search spaces, achieving com-
petitive or superior performance with significantly reduced
search costs. In future work, we will integrate more cost-
efficient open-source models into our framework to improve
cost-efficiency. These findings highlight the versatility and
scalability of LLMs as powerful tools for efficient and high-
performance architecture design.
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A. Appendix
A.1. Illustration of Zero-cost Proxyies

We illustrate the mentioned zero-cost proxies in our experiment.

GraSP (Wang et al., 2020). It attempts to approximate the change in gradient norm (instead of loss), which is denoted as,

S(θ) = −(HϑL

ϑθ
)⊙ θ (2)

where L is the loss function of a neural network with parameters θ, H is the Hessian.

Gradnorm (Abdelfattah et al., 2021). Gradnorm sums the Euclidean norm of the gradients after a single mini-batch of
training data, which can be denoted as,

SGradNorm(θ) =

N∑
i=1

∥∇θL(xi, yi; θ)∥2 (3)

where L(xi, yi; θ) is the loss function parameterized by θ, and ∇θ represents the gradient with respect to θ.

Synflow (Tanaka et al., 2020). Synflow simply computes the loss, which is the product of all the parameters in the network.

S(θ) =
ϑL

ϑθ
⊙ θ (4)

ZenNAS (Lin et al., 2021). ZenNAS approximates the gradient w.r.t feature maps and measures the complexity of the neural
network. It computes

σ̄i =
√∑

j σ
2
i,j/m (5)

where σi,j is the mini-batch standard deviation statistic of the j-th channel of the i-th BN layer.

ZiCo (Li et al., 2023). ZiCo is the SOTA Zero-Cost NAS method that can consistently surpass many conventional NAS
strategies. Zico has a relatively complicated computation method that considers both absolute mean and standard deviation,

D∑
l=1

log(
∑
ω∈θl

E [|∇wL(Xi, yi; Θ|]√
V ar(|∇ω(Xi, yi; Θ)|)

) (6)

where Θ denotes the initial parameters of the given network, Θl denotes the parameters of the network, and ω represents
each element in Θl, Xi and yi are the ith input batch and corresponding labels from the training set.

MAE-DET (Sun et al., 2022). Beyond image classification, MAE-DET extends to the field of object detection and instance
segmentation. DeepMAD regards the neural network as an information system and calculates the differential entropy H(x)
of the output feature map,

H(x) =
1

2
log(V ar(ĥD)) +

D∑
l=1

log(γl) (7)

where ĥD is the variance of the last feature map and γl is constant.

A.2. Example of Reflection

We provide an example of the iterative reflection under the NAS-Bench-201 search space and the GradNorm Zero-Cost
proxy.

• The input of the randomly selected architecture:

{"arch":"|nor_conv_1x1˜0|+|skip_connect˜0|skip_connect˜1|+|skip_connect˜0|skip_connect˜1|
skip_connect˜2|", "type":"Gradnorm", "score":3.5}
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• Output after LLM mutation:

{"arch":"|nor_conv_1x1˜0|+|nor_conv_1x1˜0|skip_connect˜1|+|nor_conv_3x3˜0|none˜1|skip_connect
˜2|", "type":"Gradnorm", "score":4.2, exception:""}

• Output of the LLM reflection module:

"Try replacing one of the skip_connect operations with 3x3 Conv to increase the expressiveness of
the cell. Convolution operations like 3x3 Conv can capture more spatial features compared to
skip connections, potentially improving the architecture's performance."
Our architecture Genotype might exceed the limit of MAX_LAYERS. The exception will output as "
Error: out of the limit of MAX_LAYERS."

• Output of reflection module with exception:

"The "MAX_LAYERS" error indicates that the architecture exceeds the allowed number of layers. You
can reduce the number of layers in the architecture. For example, consider reducing one of the
ResK1K5K1 layers to a simpler operation like ConvK1BNRELU or reduce the number of channels to
stay within the limit."

A.3. Prompts

We present an example below to illustrate how to design the prompt.

A.3.1. SYSTEM PROMPT

• Define Role and Task:

# I am an expert in understanding the zero-cost NAS methods and evolutionary algorithms of neural
architecture search.

# I am good at Python programming evolutionary algorithms.

# My task is to guide the mutation process of the architecture to get an optimal architecture
with a better zero-cost proxy score. I should understand the given task and dataset, search space
and network descriptions, and mutate the selected architecture textual genotype to generate
better models.

# I should only generate valid Python code.

• Define Search Space (Here we take an operation in the search space as an example):

- I should generate an optimal architecture by mutating an operation in the search space. All
operations are defined below.
- **class SuperResK1K3K1**: This class defines a residual block with convolutional layers having
kernel sizes of 1x3x1. It is designed for applications that require smaller kernel sizes to
extract local features while maintaining a residual connection for improved gradient flow.

- The `__init__(self, in_channels, out_channels, stride, bottleneck_channels, sub_layers)`
parameters are:

- `in_channels`: Number of input channels.
- `out_channels`: Number of output channels.
- `stride`: Stride length for the convolutional layers.
- `bottleneck_channels`: Number of channels in the bottleneck layer for reduced
dimensionality.
- `sub_layers`: Number of sub-layers in the block.

- Function `forward` code:
```python
def forward(self, x):

output = x
for block in self.block_list:

output = block(output)
return output

```

• System Reflection

- I am the expert in the domain of evolutionary mutation. I should reflect and give hints to
design better architectures.

• Network Construction
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- The input architecture is defined as a string variable named `block_str`. The format is: <
operation1(para1,para2)><operation2(para1,para2)>...<operationk(para1,para2)>. For example, the
block_str is "SuperConvK3BNRELU(3,64,1,1)SuperResK1K5K1(64,168,1,16,3)SuperResK1K3K1
(168,80,2,32,4)".
- The parameter `bottleneck_channels` and `out_channels` **must not exceed** 2048 and **must** be
a multiple of 8. The `sub_layers` should be at least 1.
- The output channels of the previous block should match the input channels of the next block.
```python
def create_block_list_from_str(s):

block_list = []
while len(s) > 0:

is_found_block_class = False
for the_block_class_name in blocks_dict.keys():

tmp_idx = s.find('(')
if tmp_idx > 0 and s[0:tmp_idx] == the_block_class_name:

is_found_block_class = True
the_block_class = _all_netblocks_dict_[the_block_class_name]
the_block, remaining_s = the_block_class.create_from_str(s, no_create=no_create, **
kwargs)
if the_block is not None:

block_list.append(the_block)
s = remaining_s
if len(s) > 0 and s[0] == ';':

return block_list, s[1:]
break

pass # end if
pass # end for
assert is_found_block_class

pass # end while
return block_list

class MasterNet(PlainNet.PlainNet):
def __init__(self,):

self.block_list = create_block_list_from_str(block_str)
def forward(self, x):

output = x
for block_id, the_block in enumerate(self.block_list):

output = the_block(output)
output = F.adaptive_avg_pool2d(output, output_size=1)
output = torch.flatten(output, 1)
output = self.fc_linear(output)
return output

```

• Architecture Mutation:

- I should understand the key code of architectures and mutate one operation of the architecture
by replacing it with another operation defined in the search space list. I can mutate the
operation type and parameters of operations.

• Compute Zero-Cost NAS Proxy:

- The type of zero-cost proxy is gradnorm. The computing code is below.

```python
import os, sys, time
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
from torch import nn
import numpy as np

def network_weight_gaussian_init(net: nn.Module):
with torch.no_grad():

for m in net.modules():
if isinstance(m, nn.Conv2d):

nn.init.normal_(m.weight)
if hasattr(m, 'bias') and m.bias is not None:

nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):

nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)

elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight)
if hasattr(m, 'bias') and m.bias is not None:

nn.init.zeros_(m.bias)
else:

continue
return net
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import torch.nn.functional as F
def cross_entropy(logit, target):

# target must be one-hot format!!
prob_logit = F.log_softmax(logit, dim=1)
loss = -(target * prob_logit).sum(dim=1).mean()
return loss

def compute_nas_score(gpu, model, resolution, batch_size):

model.train()
model.requires_grad_(True)

model.zero_grad()

if gpu is not None:
torch.cuda.set_device(gpu)
model = model.cuda(gpu)

network_weight_gaussian_init(model)
input = torch.randn(size=[batch_size, 3, resolution, resolution])
if gpu is not None:

input = input.cuda(gpu)
output = model(input)
# y_true = torch.rand(size=[batch_size, output.shape[1]], device=torch.device('cuda:{}'.format
(gpu))) + 1e-10
# y_true = y_true / torch.sum(y_true, dim=1, keepdim=True)

num_classes = output.shape[1]
y = torch.randint(low=0, high=num_classes, size=[batch_size])

one_hot_y = F.one_hot(y, num_classes).float()
if gpu is not None:

one_hot_y = one_hot_y.cuda(gpu)

loss = cross_entropy(output, one_hot_y)
loss.backward()
norm2_sum = 0
with torch.no_grad():

for p in model.parameters():
if hasattr(p, 'grad') and p.grad is not None:

norm2_sum += torch.norm(p.grad) ** 2

grad_norm = float(torch.sqrt(norm2_sum))

return grad_norm

A.3.2. IN-CONTEXT EXAMPLE

• Define Role and Task:

Here is the example:
<|im_start|>user
Mutate the below architecture.
```json
{"arch":"ConvK3BNRELU(3,32,1,1)ResK1K5K1(32,120,1,40)ResK1K5K1(120,176,2,32)", "type":"synflow",
"score":0.9}
```
<|im_end|>
<|im_start|>assistant
```json
{"arch":"ConvK1BNRELU(3,32,1,1)ResK1K5K1(32,120,1,40)ResK1K5K1(120,176,2,32)", "type":"synflow",
"score":1.9}
```
<Thinking>
- I can mutate `ConvK3BNRELU` into `ConvK1BNRELU` and get the optimal architecture by improving
the zero-cost NAS score from 0.9 to 1.9. Other mutation methods cannot get such high score.
</thinking>
<|im_end|>

A.3.3. USER PROMPT

• Define Role and Task:

Now given the new architecture below with a new user:
<|im_start|>user
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Mutate the below architecture.
```json
{``arch'':{{architecture}},``type'':<type>,``score'':<score>}
```
<|im_end|>
<|im_start|>assistant
```json

A.4. Ablation Study

A.4.1. EXPLANATION OF REMOVING DIFFERENT COMPONENTS

The Role of In-context Example We create a “w/o In-context Example” variant by removing the in-contextual example
module from the LLM input prompt and conducting the same search process on NAS-Bench-201. We found that this
setting performs worse with increased exceptions from 2% to 7% and worse accuracy. This demonstrates the critical role
that in-context examples play in guiding the LLM to make informed predictions and decisions by providing it with prior
examples of successful architectures. Without these examples, the model struggles to establish meaningful patterns in the
search space, leading to suboptimal architecture selections and a higher likelihood of generating invalid output.

Reflection Module The “w/o Reflection Module” variant is created to reflect on previous architecture performance and error
exceptions. The absence of reflection leads to a performance drop and increased exceptions. Without the reflection module,
we observe a significant decline in performance and a noticeable increase in exceptions from 2% to 5% during the search
process. This suggests that the absence of reflection leads to a lack of iterative improvement, as the system fails to learn
from past successes and failures.

The reflection module not only improves accuracy, but also reduces the exception rate by allowing the model to adjust its
search strategy dynamically. For instance, when encountering frequent invalid architectures, the reflection module helps
the system identify problematic patterns in the search and generate solutions that better adhere to the constraints of the
search space. Furthermore, reflection enables the system to adaptively refine its exploration of the search space, prioritizing
areas with higher potential while discarding unpromising regions. Without this module, the RZ-NAS framework essentially
operates in a static, trial-and-error manner, resulting in lower search efficiency and less competitive performance compared
to the full RZ-NAS setup.

Code Description We create a “w/o Code Description” variant by removing the three code descriptions in the system prompt
that detail the NAS process and architecture construction. This results in a significant decrease in RZ-NAS performance,
highlighting the importance of these descriptions in providing contextual guidance to the LLM. These descriptions help the
LLM understand the intricacies of the NAS process and ensure that its outputs align with the search objectives. Without
these descriptions, the model struggles to interpret the search space effectively, leading to less accurate and less efficient
architecture searches.

Textual Description We also create a “w/o Textual Description” variant by removing textual explanations from the system
prompt and relying solely on instructions in the user prompt and code blocks. The results show that textual descriptions
play a crucial role in aligning the LLM’s understanding of the problem and its objectives. Without them, the code blocks
alone are insufficient, especially given the complexity of the search space and network construction in RZ-NAS. Unlike
simpler and smaller search spaces in prior studies, RZ-NAS involves a more sophisticated setup, requiring detailed textual
descriptions to provide the necessary context for effective search guidance. This finding highlights the need for a balance
between textual and code-based inputs to maximize the effectiveness of the LLM in NAS tasks.

A.4.2. PERFORMANCE COMPARISON ON DIFFERENT LLMS

We evaluate RZ-NAS with different LLMs under the NAS-Bench-201 search space. This comparison allows us to assess
how the choice of LLM affects the overall effectiveness of our approach. To ensure a comprehensive comparison, we select
three widely used LLMs that have garnered significant attention in the research community. In addition to GPT4-o, which
has established itself as a leading model in various applications, we include LLaMA 3.1 3, which displays impressive code
generation capabilities. Furthermore, we incorporate Claude 3.5 4. Known for its strong performance in understanding and

3https://ai.meta.com/blog/meta-llama-3-1/
4https://claude.ai/
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Table 9. Accuray Comparison under the NAS-Bench-201 search space with different LLMs. The best results are shown in bold.

Method CIFAR-10 CIFAR-100 ImageNet-16-120

GPT4-o Llama 3.1 Claude3.5 GPT4-o Llama 3.1 Claude3.5 GPT4-o Llama 3.1 Claude3.5

Ours(GraSP) 92.79± 0.80 91.67± 1.02 89.97± 0.24 69.34± 1.98 67.45± 0.79 66.31± 0.33 43.16± 2.64 42.45± 0.39 41.23± 0.18
Ours(Gradnorm) 93.99± 3.44 93.41±0.30 93.21± 0.13 71.61± 2.20 67.48± 0.89 64.12± 1.95 42.61± 1.38 41.48± 0.59 41.83± 0.28
Ours(Synflow) 93.47± 0.74 93.51± 0.44 93.08± 2.42 73.21± 0.12 73.33± 0.40 71.59± 0.32 46.34± 0.32 46.44± 0.12 45.22± 1.10
Ours(Zen-NAS) 93.48± 0.00 93.34± 0.27 92.75± 0.81 71.35± 1.51 70.68± 0.60 60.91± 0.88 45.12± 0.00 41.44± 0.10 41.43± 0.40
Ours(ZiCo) 94.24± 0.12 93.31± 1.40 91.55± 0.72 74.30± 0.21 71.37± 2.13 71.23± 1.44 46.18± 0.33 45.57± 0.12 44.37± 0.30

Table 10. Performance comparison between the temperature sampling method and the fixed temperature setting on CIFAR10 under the
NAS-Bench-201 search space.

Temperature GraSP Gradnorm Synflow Zen-NAS ZiCo
valid test valid test valid test valid test valid test

0 89.91±0.11 92.11±1.24 90.65±0.41 93.12±0.63 90.90±0.33 92.89±0.56 90.37±0.31 92.76±0.24 90.65±0.22 93.68±0.32
0.2 90.08±0.45 92.55±0.53 90.74±0.65 93.44±0.94 91.47±0.58 93.47±0.86 90.52±0.45 92.81±0.25 90.94±0.20 93.89±0.23
0.4 90.10±0.34 92.79±0.46 90.76±1.10 93.91±1.07 90.89±0.32 92.85±0.44 90.83±0.30 92.82±0.47 91.22±0.14 94.11±0.22
0.6 89.92±0.44 92.34±0.27 90.44±1.21 93.02±0.89 91.01±0.29 93.18±0.61 91.03±0.87 93.46±0.61 91.15±0.12 94.04±0.14
0.8 89.98±0.74 92.20±1.08 90.48±1.32 93.20±1.72 91.10±0.27 93.02±0.53 90.77±0.55 92.41±0.44 90.93±0.63 93.62±0.41
1.0 89.45±1.10 89.33±1.20 90.10±1.89 93.10±2.01 90.91±0.85 92.89±0.76 90.63±0.66 92.97±0.83 89.96±0.13 93.48±0.40

Uniform sampling 90.11±1.00 92.79±0.80 90.76±1.77 93.99±3.44 91.45±0.42 93.47±0.74 91.02±0.44 93.48±0.00 91.45±0.10 94.24±0.12

generating natural language, Claude 3.5 has also shown potential in code-related tasks. The results are shown in Table 9,
our findings reveal that RZ-NAS delivers similar results across different LLMs, while the GPT4-o model consistently
outperforms the other LLMs in terms of accuracy.

A.4.3. PERFORMANCE COMPARISON UNDER DIFFERENT TEMPERATURE STRATEGIES

In RZ-NAS, the temperature of the large language model is sampled uniformly from the domain, not a fixed value. The
comparison with different fixed temperatures is shown in Table 10. The results demonstrate the superiority of the temperature
sampling approach in RZ-NAS.

(a) GraSP (b) Zen-NAS (c) ZiCo

Figure 5. Visualize the test accuracy of three original Zero-Cost strategies and our LLM-guided methods on CIFAR10 under the NAS-
Bench-201 search space over time. We record best test accuracy every 50 seconds in the population.

A.5. Visualization of Test Accuracy Comparison Between Original Zero-Cost Strategies and RZ-NAS

We visualize the test accuracy comparison between original Zero-Cost proxies and RZ-NAS over time in Figure 5. The
CIFAR10 dataset and the NAS-Bench-201 search space are used. The results show that our approach achieves higher test
accuracy during the training process compared to the original Zero-Cost strategies.

18


