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Abstract

Dynamic Graph Transformers (DGTs) have demonstrated remarkable performance in
various applications, such as social networks, traffic forecasting, and recommendation sys-
tems. Despite their effectiveness in capturing long-range dependencies, training DGTs
for large graphs remains a challenge. Mini-batch training is usually used to alleviate this
challenge but this approach often fails to capture complex dependencies or sacrifice per-
formance. To deal with the above problems, we propose the Adaptive Node Sampling in
Hierarchical Dynamic Graph Transformers (ASH-DGT) architecture that focuses on sam-
pling the set of suitable nodes preserving spatial-temporal relationships in the dynamic
graph for training DGTs. Unlike previous methods that use random sampling or structural
sampling, our motivation is that the contribution of nodes to learning performance can
be time-sensitive, while we still care about spatial correlation in the dynamic graph with
consideration to the global and local structure of the graph. Through extensive evalua-
tions on popular real-world datasets for node classification and link prediction, ASH-DGT
consistently outperforms multiple state-of-the-art methods, achieving both higher accuracy
and significant improvements in training efficiency.

Keywords: Graph Transformer, Laplacian Positional Encoding, Structural Encoding,
Adaptive Sampling.

1. Introduction

In recent years, GNNs have attracted a certain amount of attention from researchers and
have shown impressive results for problems where data can be represented as a graph, such
as recommendation system He et al. (2020), social network Hoang et al. (2021), and traffic
networks Kong et al. (2024). Traditionally, these graphs are static with a fixed number of
nodes and edges. However, in real-world applications, many graphs are dynamic, in which
their entities and interactions continuously evolve over time Skarding et al. (2021).
Existing works for dynamic graph modeling are divided into two categories: discrete-
time approaches Goyal and Ferrara (2018); Hajiramezanali et al. (2019); Pareja et al. (2020);
Sankar et al. (2020); Jiang et al. (2022), and continuous-time approaches Xu et al. (2020);
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Kumar et al. (2019); Trivedi et al. (2019); Rossi et al. (2020). Discrete-time methods improve
the snapshot-based approach that utilizes learning embedding by the GNN-base models by
adding temporal relations to the node representation, but there are issues in learning the
fine-grained temporal structure of the dynamic graph. Continuous-time methods avoid these
issues by seeing the dynamic graph as a sequence of nodes’ interactions with a timestamp.
Recently, transformer-based approaches have been employed in continuous-time dynamic
graph modeling due to their ability to capture long-range dependencies and complex tem-
poral patterns. For instance, DyGFormer Yu et al. (2023) leverages a neighbor co-occurrence
encoding scheme and a patching technique to capture node correlations and long-term tem-
poral dependencies from first-hop interactions. Another work on Spatial-Temporal Graph
Transformers Kong et al. (2024) has shown promise in predicting traffic flow patterns in
transportation networks. These advancements highlight the potential of transformer-based
approaches for dynamic graph learning. However, these transformer-based methods face
significant challenges in scaling to large graphs and maintaining spatial-temporal relation-
ships due to the computational complexity of the self-attention mechanism and the need
for extensive memory resources.

To reduce the computation requirements, sampling-based techniques can be used to
select the relevant neighbors to attend to a node’s local information. For dynamic graph
learning, previous work Rossi et al. (2020) uses uniform sampling from neighbors or sam-
ples from the most recent interactions. However, these methods have significant disadvan-
tages. Uniform sampling can lead to the selection of less informative or irrelevant neighbors,
thereby diluting the quality of the learned embeddings. While sampling only from the most
recent interactions may overlook important historical connections, thereby failing to cap-
ture long-term dependencies. Other approaches Trivedi et al. (2019); Ahmed et al. (2016)
employ random walk models to sample subgraphs, capturing both local and global struc-
tures, but they often require extensive computational resources and may overlook transient
patterns crucial in dynamic settings.

Graph coarsening is a technique used to reduce the size of a graph by merging nodes
and edges while preserving the essential structural properties of the original graph. This
process creates a hierarchical representation of the graph, which can significantly enhance
the efficiency and scalability of graph-based models. Hierarchical approaches enable multi-
scale learning, where features are progressively aggregated from finer to coarser levels, thus
providing a comprehensive understanding of the graph’s topology. Recent studies, such as
Cangea et al. (2018) and Ying et al. (2018) have demonstrated the benefits of hierarchical
graph representations in improving model performance and computational efficiency.

In this work, we enhance the general learning framework on dynamic graphs with the
transformer-based model by incorporating hierarchical information into the node sampling.
introduce an approach called Adaptive Node Sampling in Hierarchical Dynamic Graph
Transformers (ASH-DGT) that addresses these challenges by introducing an adaptive node
sampling mechanism that efficiently preserves spatial-temporal relationships while signifi-
cantly reducing computational overhead. By dynamically selecting the most relevant nodes
and operating on a coarser graph representation for hierarchy attention, our approach cap-
tures crucial spatial-temporal contexts and long-range dependencies, leading to more accu-
rate and scalable learning in dynamic graph scenarios. We evaluate our proposed ASH-DGT
model by extensive testing on 6 dynamic graph datasets with two downstream tasks, node
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classification and link prediction. The results highlight that our model increases the perfor-
mance 2-3% across different benchmarks while the training computation complexity reduces
significantly. Further testing with the node sampling module and graph coarsening module
reveals that our model can balance performance and computation speed and capture the
temporal information effectively.

2. Background

2.1. Dynamic Graph Modeling

We denote a dynamic graph as G = (V, &€, T, X) with a set of nodes V, edges £, times T and
node features X. G can capature from sequence of non-decreasing chronological interactions
G = {(u,v;, t;)} with 0 < t; < T, where u;,v; € V denote the source node and destination
node of the i-th link at timestamp ¢;. Each node u € V can be associated with node feature
x, € R¥W and each interaction (u,v,t) has edge features efw € R where dy and dg
denote the dimensions of the node features and edge features. If the graph is non-attributed,
we simply set the node features and link features to zero vectors, i.e., , = 0 and efw =0.

Given the source node u, destination node v, timestamp ¢, and historical interactions
before t, i.e., {(u/,v,t") | ' < t}, representation learning on dynamic graph aims to design
a model to learn time-aware representations h!, € R? and h! € R? for v and v with d as
the dimension. We validate the effectiveness of the learned representations via two classic
tasks in dynamic graph learning: (i) dynamic link prediction, which predicts whether u and
v are connected at ¢; (ii) dynamic node classification, which infers the state of u or v at ¢.

2.2. Transformer Architecture

The Transformer model, introduced by Vaswani et al. (2017), has revolutionized the field of
deep learning. At the core of the Transformer is the self-attention mechanism, which allows
the model to dynamically weigh the relevance of different elements in the input sequence.
Formally, given a sequence of input embeddings X = [z1,x9,...,zy], the self-attention
mechanism produces a set of output vectors Z = [z1, 22, . .., 2| where each z; is computed
as a weighted sum of linearly transformed input vectors:

T
Attention(Q, K, V') = softmax <C§/§7k ) V (1)

Here, @, K, and V' are matrices of queries, keys, and values derived from the input embed-
dings, and dj, is the dimension of the keys. The Transformer architecture also incorporates
multi-head attention, where multiple self-attention mechanisms (heads) are applied in par-
allel. This allows the model to capture diverse aspects of relationships within the data and
each head ¢ computes the self-attention output using different learned projections.

MultiHead(Q, K, V) = Concat(head;, heads, . . . , head;,)W©° (2)

3. Our proposed method

In this section, we present our proposed approach ASH-DGT, which is designed with two
main modules, the Graph Hierarchy module and the Adaptive Node Sampling module
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(Figure 1). At each update time step, both modules are used to extract relevant information
from the graph which is represented under a node sequence to improve the target node
embedding. Firstly, the Graph Hierarchy module coarsens the graph to a smaller one, the
results of this module are super nodes that represent the global structure of the graph.
Then, the Adaptive Node Sampling selects neighbor nodes of each target node instead of
relying on the full set of the target node’s neighbors using previous attention, and embedding
scores. Inspired by the work of Hwang et al. (2022) on enhancing expressiveness in graph
neural networks, we add virtual nodes in dynamic graph transformers (DGTSs) to augment
their ability to capture global and time-varying structural information. Then, the node
sequence constructed by nodes results in adaptive sampling, and super-nodes from the
coarser graph are fed into Transformer layers for capturing long-term dependencies. As the
self-attention operator of the Transformer needs to encode the structural information of the
node sequence, our proposed ASH-DGT employs a further Positional-Temporal Encoding
module to extract the global position information and temporal information into the raw
features of each node.

3.1. Graph Hierarchy and Adaptive Node Sampling
3.1.1. GrAPH HIERARCHY

In the Graph Hierarchy module, we use the graph coarsening technique introduced by
Loukas (2019); Ron et al. (2011), it summarize a larger graph into a smaller graph while
preserving the properties of the original graph. Given a graph G = (V,£) the graph coars-
ening algorithm aims to construct an appropriate coarser graph G’ = (', £’) that contains
certain properties of G. G’ is obtained from the original graph by calculating a partition
Cy, Cy...., Cjyr) of V. Each cluster C; corresponds to a super-node in G’. The partition can
also be characterized by a matrix P’ € {0, 1}Vl with P/; = 1 if and only if node v; in
G belongs to cluster Cj. Its normalized version can be defined by P £ P’ D_%, where D
is a |V| x [V'| diagonal matrix with |C;| as its i-th diagonal entry. The feature matrix and
weighted adjacency matrix of G’ are defined by X’ £ PTX and A’ £ PTAP. After graph

coarsening, the number of nodes/edges in G’ is significantly smaller than that of G. The
_ VI
c= 5.
VI

coarsening rate can be defined as

3.1.2. ADAPTIVE NODE SAMPLING

In a dynamic graph, the interactions of a node can be large due to the time expansion, thus
making the number of neighbors also huge. By that motivation, we utilize a module Adap-
tive Node Sampling, which decides what neighbor will be useful for learning representation.
Let hl denote the node embedding vector for node v at time step ¢, while we denote H' as
the matrix of node embedding of all nodes at time ¢. Note that from initial time ¢ = 0, the
embedding of a node is spatial and temporal features, H? = X.

Our goal is to learn the adaptive policy that maps the current node embedding vector
- the result of Graph Transformer layers to a probability distribution over nodes. This
policy guides the sampling process, determining which nodes are effectively neighbors with
the target node. To optimize the policy, adversarial bandit algorithms such as Exp3 Auer
et al. (2002) can be employed. These algorithms strike a balance between exploration and
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Figure 1: The ASH-DGT architecture for learning node embedding at time t3 for the target
node (index 1). The embedding of the target node (green) is updated by the
sampled nodes (blue) from the Adaptive Node Sampling module and virtual nodes
(red) from the Graph Hierarchy module. Extra global nodes (yellow) are added
to extract the global information at the specific time step. Before sending to the
Graph Transformer layers, the raw features X° are enhanced with the positional
encoding X©F and temporal encoding XT¥. Both the output node embedding
and attention scores are then used for the sampling process at the next time step.

exploitation based on the observed rewards. The policy learning process can be formulated



HoaNGg PHAM MA1 Ta

as follows:

Maximize R(T) = Z R! (3)
teT weV

Subject to Z p; =1,
iEN () (4)

0<y<l1

where R! represents the reward obtained at time step ¢ based on the selected subgraph of
node v. )
R, =< > AL (Rl (5)
veS(v)

The reward function is used to evaluate the attention-based performance in our algorithm.
For each node v, the contribution is computed as the product of the attention score A!
and the magnitude of the node embedding ||hl||. The attention score A’ represents the
relevance or importance of node v in the attention mechanism at time step ¢ taken from the
Transformer layer as from the equation 8. It is a measure of how much attention should
be given to that particular node based on its characteristics and its relationship with other
nodes in the graph.

By using this reward function, we aim to quantify the performance of the attention
mechanism in our algorithm solely based on the attention scores and node embeddings.
The reward value R; provides an indication of the quality and effectiveness of the atten-
tion mechanism in selecting relevant nodes at time step ¢. This measure can be utilized
to optimize and evaluate the attention-based aspects of our algorithm. It is important to

Algorithm 1: Extent EXP3 Algorithm for node-wise sampling

Input : K: number of chosen nodes, n: number of neighbor nodes, «: exploration

rate
Output: : p: policy distribution
Initialize w < (1,1,...,1);

for each iteration do
Compute p = (p1,p2,...,py) With

i=1 Wi n

Choose K nodes based on p; Compute reward r following eq.5,
Update the weights using the EXP3 update:

T

w; = w;-e K

end

note that the reward function 5 is specifically tailored to our algorithm and the problem
it addresses. Its usage allows us to assess attention-based performance and make informed
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decisions regarding the attention mechanism’s behavior and effectiveness based on the pro-
vided attention scores and node embeddings. To adapt to the changing dynamics of the
graph, the DGT model updates the node embedding vectors of the selected nodes in the
subgraph. This update incorporates information from the current time step and the previ-
ous state of the graph, allowing the node embeddings to reflect the evolving nature of the
graph accurately.

Algorithm 2: Adaptive Sampling Iterative Process

Input : G = (V,E,T): dynamic graph, Hy: initial node embeddings, ¢: maximum of
time steps
Output: H!: the updated node embedding
Initialize: i < 1, H < Ho;
while ¢ < numFEpoch do
for each node v in V do
Train the policy p following the Algorithm 1; Sample neighbor nodes from p;
end
Training DGT;
Updated node embeddings H? for time step ¢; i i+ 1
end

3.2. Dynamic Graph Transformer

Consider a temporal sequence S as a result of sampling by the adaptive sampler, super-
nodes from graph coarse, and the virtual nodes. The virtual nodes (a.k.a global nodes) help
the model capture better the long-range dependencies. This sequence captures the dynamic
nature of the graph, allowing us to track nodes and their interactions over time.
Positinal-Temporal Encoding For Dynamic Graph Transformer, we utilize Laplacian
absolute positional encoding to incorporate spatial information and encoder time steps to
embed temporal information. Formally, given a graph G with n nodes, the graph Laplacian
L is computed as: L = D — A where D is the degree matrix and A is the adjacency matrix
of the graph. The Laplacian absolute positional encoding PFE is then derived from the

eigenvalues and eigenvectors of L. Let A = diag(A1, A2,...,\,) be the diagonal matrix
of eigenvalues and U = [ug,ug, ..., u,] be the matrix of corresponding eigenvectors. The
positional encoding for node ¢ is given by:

XIE =U;A712 (6)

where U; is the i-th row of the eigenvector matrix U. Additionally, to capture temporal
information, we use a learnable cosine function with weights. Each time step ¢ is encoded
using a cosine function parameterized by learnable weights W. This allows the model to
learn the optimal temporal encoding during training. The temporal encoding T'F; for a
time step t is defined as:

XIF = cos(Wy -t +by) (7)

where W; and b; are learnable parameters specific to the time step ¢, and cos denotes the
cosine function. The spatial-temporal features X are transformed using multi-head self-
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attention mechanisms. This allows nodes to attend to other nodes within their temporal
context. Note that X = XPF||XTF||X°, where X° denotes original features of node. The
attended embeddings are given by:

H' = MultiHead Attention(X) (8)

To update the embedding of node v at time t. We employ a pooling step that averages the
embedding of all nodes to represent the v’s interactions.

h! = MEAN(H|[c,))W + b (9)

where ¢ is chosen nodes from node v, W, b is learning weights.

3.3. Learning in Dynamic Graphs with Downstream tasks

Node classification. During the training and inference, we sample S input sequences for
each center node and use the center node representation from the final Transformer layer
ht for prediction. Note that the computational complexity is controllable by choosing a
suitable number of sampled nodes. An MLP (Multi-Layer Perceptron) is used to predict
the node class:

J' = fne (RY) (10)
where 7t € R*! stands for the classification result, C' is the number of classes. In the
training process, we optimize the average cross entropy loss of labeled training nodes V7, :

S
L=—g 3 > ol ol 1y

v; €V s=1

where y; € RE*1 is the ground truth label of center node v;. In the inference stage, we take
a bagging aggregation to improve accuracy and reduce variance:

1 s
Ni:fE ot 12
g Ss:lyz ( )

Link Prediction In the task of time-aware link prediction, we aim to predict the existence
or absence of links between pairs of nodes in a temporal network. In both the training and
inference phases in the link prediction task as (u,v), we also sample S nodes from center u
and v and utilize the representations of the nodes from the final Transformer layer, denoted
as h!, and h!, respectively. To make predictions, we concatenate these representations and
pass the resulting vector through a Multi-Layer Perceptron (MLP):

g = fup((hy]. L) (13)
Here, y;; € RE*! represents the classification result for the link between nodes v; and v; at
time step t, where C' is the number of classes. During the training process, we optimize the
average cross-entropy loss for the labeled training links Erp:

S
_ 1 T 1.0 ~(8)
L= —g Z Z Yij log Yij (14)

(’Ui,’Uj)EEL s=1

Here, y;; € RE*1 represents the ground truth label of the link between nodes v; and ;.
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4. Experiments

This section represents the experimental setup for evaluating the performance of the pro-
posed method to compare with other popular baselines.

4.1. Experimental setup

Dataset For experimental analysis, we have selected a comprehensive set of datasets that
encompass a wide range of temporal dynamics across diverse domains. They include the
Wikipedia temporal dataset, which captures the temporal evolution of articles; the Reddit
temporal dataset Kumar et al. (2019), enabling the study of temporal patterns in online
discussions; the ENRON temporal dataset Shetty and Adibi (2004), providing insights
into communication dynamics within a corporate environment; the UCI temporal dataset
Panzarasa et al. (2009), encompassing various domains and offering temporal information
for research purposes; and the MOOC temporal dataset Kumar et al. (2019) captured
temporal aspects of a online course system such as enrollment, participation, and learning
behaviors over time. The detailed statistics of each dataset are described in Table 1.

We evaluate the efficiency of our model and baselines following the setting from Rossi
et al. (2020). More specifically, we split the data by time for training, validating, and
testing. We use the first 70% interaction to train, the next 15% to evaluate, and the final
15% to test. Note that because our proposed model can learn continuously, the duration
could be changed freely.

Table 1: The detail of the datasets used in our experiments.

Dataset Wikipedia | Reddit | SocialEvo | ENRON UCI MOOC
# Nodes 9227 10984 74 184 1899 7145
# Edges 157474 672447 352180 2099520 59835 | 411749
# Edge feature dim 172 172 0 0 0 4
# Timespan 30 days | 30 days | 30 days | 1316 days | 193days | 30 days

Baselines We compare our method against a variety of strong baselines on the task
of edge prediction and node classification on dynamic graphs. These baselines can be
categorized into two groups. (1) Continuous-based methods: TGAT Xu et al. (2020),
JODIE Kumar et al. (2019), TGN Rossi et al. (2020), and DyRep Trivedi et al. (2019). (2)
Snapshot-based methods: DynAERNN Goyal et al. (2020), VGRNN Hajiramezanali et al.
(2019), EvolveGCN Pareja et al. (2020), DySAT Sankar et al. (2020), and ASTGN Jiang
et al. (2022).

Details setting of ASH-DGT and baselines. ASH-DGT is implemented by the
PyTorch framework, and the codes for the baselines are published by the author on GitHub.
We conduct experiments on a GPU RTX 3090 with all baselines and our model with 10
random seeds. The models are training with Adam Optimizer. We select the search space
of hyper-parameters as described in Table 4.2. .

Evaluation Metrics. In evaluating the performance of our node classification model,
we utilize the accuracy metric. Accuracy measures the proportion of correctly classified
nodes and provides an overall assessment of the model’s ability to classify instances correctly.
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Table 2: Hyperparameter used in STASH-DGT and the baselines

Hyperparameter Values
Learning rate {0.01, 0.001, 0.0001, 0.0005}
Dropout {0.1, 0.2, 0.3, 0.4, 0.5}
Batch size {256, 512, 1024}
Number epochs < 1000
Attention head H 8
Number of layer L {2,3,4,556}
Number of global nodes {1, 2, 3}
Number of super-nodes {0, 3, 6, 9}
Number sampled neighbor nodes {5, 10, 15, 20, 25}

In evaluating the performance of our link prediction model, we utilize multiple metrics,
including AUC (Area Under the ROC Curve) and Average Precision (AP).

4.2. Results
4.2.1. NODE CLASSIFICATION TASK

We show the performances of our proposed ASH-DGT model alongside baseline methods
for node future classification in Table 3. Our proposed model, ASH-DGT, demonstrates
significantly improved performance in this task. Notably, ASH-DGT outperforms the previ-
ous best model, TGN, achieving accuracy improvements of 0.85%, 3.92%, and 1.85% on the
MOOC, Wikipedia, and Reddit datasets, respectively. These results highlight the effective-
ness of ASH-DGT in capturing the dynamic and hierarchical structure of graphs, leading
to more accurate node classification.

Table 3: The performance of our model (Accuracy - %) and baselines on node classification

task
Model MOOC Wikipedia Reddit

DySAT [2019] 72.11 £ 0.5 | 61.79 £ 0.3 | 74.82 £ 1.2

Jodie [2019] 73.39 £2.1 | 61.23 £ 2.5 | 84.35 £ 1.2
EvolveGCN [2020] | 70.26 £ 0.5 | 63.41 + 0.3 | 81.77 + 1.2
TGAT [2020] 74.23 £ 1.2 | 65.43 £ 0.7 | 83.12 £ 0.7

DyRep [2020] 75.12 £ 0.7 | 62.79 £ 2.3 | 84.82 £ 2.2

TGN [2020] 7747 £ 0.8 | 67.11 £0.9 | 87.41 £ 0.3
ASH-DGT (ours) | 79.08 £ 0.5 | 69.74 + 1.3 | 89.12 £+ 0.3

4.2.2. LINK PREDICTION TASK

Tables 4 and 5 present a comprehensive overview of the results attained from our proposed
model ASH-DGT, juxtaposed with the performance exhibited by various baseline methods,
in the domain of temporal link prediction. A thorough examination of the comparative
metrics reveals a consistent trend where our model significantly outperforms the baseline
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Table 4: The performance of our proposed model and baselines on the link prediction task
of Wikipedia, Reddit, and MOOC datasets.

Dataset Wikipedia Reddit MOOC
Metric AUC (%) 1+ | AP (%) t | AUC (%) 1| AP (%) T | AUC (%) t| AP (%) 1
DyRep [2019] 77.40+1.2 | 7520+ 1.1 | 67.36 +1.1 | 66.12+1.0 | 90.49+0.3 | 89.23 £0.4
JODIE [2019] 88.43+0.7 | 87.95+0.6 | 87.71+0.4 | 87.43+0.5 | 90.50 = 0.1 | 90.20 + 0.2
VGRNN [2019] 72.20+0.6 | 71.00+ 0.7 | 51.89 £ 0.2 | 50.56 0.3 | 90.03 £ 0.4 | 89.00 £ 0.3
EvolveGCN [2020] | 60.48 £0.5 | 58.74 +0.4 | 5842+ 0.4 | 57.33 £ 0.3 | 50.36 = 0.8 | 49.76 + 0.6
DynAERNN [2020] | 71.00£1.1 | 70.12+1.0 | 83.37+£1.4 | 8254+ 1.3 | 89.34 +0.2 | 88.23 +0.3
TGAT [2020] 95.47+0.1 | 94.89+0.2 | 96.65+0.1 | 95.98+0.1 | 72.094+0.3 | 70.95+0.3
TGN-attn [2020] 95.724+2.1 | 94.67+1.9 | 96.12+£1.1 | 95.65+1.0 | 81.64+1.3 | 80.23 £ 1.1
ASTGN [2022] 96.92+0.2 | 95.87£0.3 | 98.97+0.1 | 98.45+0.1 | 92.75+£ 0.8 | 91.45£0.7
ASH-DGT (ours) 97.45+0.3 | 96.50£0.2 | 99.024+0.1 | 98.76 £ 0.1 | 93.23+£0.4 | 92.10£ 0.3

Table 5: The performance of our proposed model and baselines on the link prediction task

of UCI, SocialEvo, and Enron datasets.

Dataset UCI SocialEvo Enron
Metric AP (%) 1+ | AUC (%) 1| AP (%) 1 | AUC (%) 1| AP (%) 1 | AUC (%) t
DyRep [2019] 79.76 £0.1 | 81.02+£0.3 | 62.024+1.7 | 64.35+1.1 | 67.28+1.3 | 68.55+1.4
JODIE [2019] 78.02+0.2 | 79.53+0.5 | 60.01£1.1| 61.56+1.2 | 63.10£1.3 | 64.72+1.0
EvolveGCN [2020] | 76.63 £0.2 | 78.12+0.4 | 56.90 £0.6 | 57.89 +0.5 | 57.37 £ 0.2 | 58.62 4+ 0.3
TGAT [2020] 60.25+0.2 | 61.32+0.6 | 57.37+0.6 | 58.91+0.5 | 60.36 0.7 | 61.67 0.9
TGN-attn [2020] | 64.21 +£0.2 | 65.55+0.4 | 58.11 £ 1.2 | 59.74 + 0.8 | 62.47 +£1.7 | 63.53 + 1.3
ASTGN [2022] 81.52+0.2 | 82.104+0.3 | 62.41+1.0 | 63.65+1.2 | 69.12+1.0 | 70.56 0.9
ASH-DGT (ours) | 82.34+0.2 | 83.21+£0.2 | 65.12+0.3 | 66.45+0.4 | 71.33+0.5 | 72.67 £0.4

alternatives by a considerable margin. Notably, the advancements introduced by ASH-DGT
coupled with the integration of adaptive sampling manifest as a driving factor behind the
observed performance boost. It is particularly intriguing to note that even in comparison to
the highly adept temporal attention model ASTGN, our model showcases a notable edge,
carving out a performance improvement in the range of 1 — 3%.

4.3. Ablation study

4.3.1. EFFECTIVENESS OF GRAPH COARSENING ALGORITHM

To comprehensively explore the influence of the Graph Hierarchy module, we conducted
an experimental analysis across three datasets: Wikipedia, UCI, and EnRon. The results
of this investigation are depicted in Figure 2. Notably, we observed that the choice of
the number of super-nodes significantly affects the performance of our proposed method.
Strikingly, for all three datasets, the AUC/AP values exhibited a prominent trend toward
optimization when the number of super-nodes was set at 10. This suggests a critical point
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at which the trade-off between effective information utilization and computational efficiency
is most favorable. While smaller numbers of super-nodes led to diminished performance due
to inadequate information capture, larger numbers introduced complexities that resulted in
only marginal improvements. This consistent trend across diverse datasets underscores the
generalizability of the observation and points to 10 super-nodes as a strong candidate for
achieving optimal representation learning outcomes.

—e— MOOC
uci

—e— Enron

0.9

0.8 1

AUC\AP

0.7 1

0.6

0.5

T T T T T T T T T
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Number of super-nodes

Figure 2: The performance of ASH-DGT with the number of super-nodes

In the ASH-DGT model, we use graph coarsen to compact the large graph into smaller
ones, which helps the transformers easily adapt with limited computation resources. Here,
we evaluate ANS-GT with different coarsening algorithms and different coarsening rates.
Specifically, the considered coarsening algorithms include Variation Neighborhoods (VN)
Loukas (2019), Variation Edges (VE) Loukas (2019), and Algebraic (JC) Ron et al. (2011).
We vary the coarsening rate from 0.01 to 0.50. In Table 6 we show the performances of
these coarsening methods on the node classification task (Wikipedia) with AUC and the
link prediction task (Enron) with AP. Note that the value ¢ = 1.0 denotes the use of
a full graph. We can see that the graph coarsening is helpful to ASH-DGT in learning
efficient representation, it can be demonstrated by the result of link prediction and node
classification.

4.3.2. EFFECTIVENESS OF ADAPTIVE SAMPLING

In order to comprehensively explore the influence of the number of sampled neighbor nodes
on each target node within dynamic graphs, we conducted an experimental analysis across
three datasets: Wikipedia, UCI, and EnRon. The results of this investigation are depicted
in Figure 2. Notably, we observed that the choice of the number of sampled neighbor
nodes significantly affects the performance of our proposed method. Strikingly, for all
three datasets, the AUC/AP values exhibited a prominent trend toward optimization when
the number of sampled neighbor nodes was set at 10. This suggests a critical point at
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Table 6: Sensitivity analysis of coarsening algorithms and coarsening rate on the node clas-
sification task (Wikipedia) and the link prediction task (Enron) without adaptive

sampling.
Dataset Method | ¢=0.01 | ¢=0.05| c=0.10 | ¢=0.50 | ¢ =1.00
Wikipedia VN 88.60 92.23 88.14 91.01 93.26
VE 87.95 88.13 88.30 87.32 87.22
JC 88.49 88.20 87.46 87.36 89.14
Enron VN 70.72 69.45 70.10 68.83 69.08
VE 69.20 69.66 67.51 68.94 68.06
JC 69.15 69.85 69.92 70.16 69.09

which the trade-off between effective information utilization and computational efficiency
is most favorable. While smaller numbers of sampled neighbor nodes led to diminished
performance due to inadequate information capture, larger numbers introduced complexities
that resulted in only marginal improvements. This consistent trend across diverse datasets
underscores the generalizability of the observation and points to 10 sampled neighbor nodes
as a strong candidate for achieving optimal representation learning outcomes.

To assess the computational efficiency of these models, we measured and compared the
time required for training on four diverse datasets, the results are represented in table
7. The models are evaluated on four datasets: MOOC, UCI, Wikipedia, and Reddit.
Among the models, ASH-DGT stands out as the most computationally efficient, consistently
outperforming the other models across all datasets. For example, on the MOOC dataset,
ASH-DGT achieves a remarkable training time of seconds per batch, significantly faster than
other models such as DyRep, TGAT, and TGN-attn. Similarly, on the UCI, Wikipedia, and
Reddit datasets, ASH-DGT consistently maintains its efficiency advantage. It can be seen
that ASH-DGT demonstrates computational efficiency compared to the baseline models,
making it a promising choice for training graph-based models, particularly in scenarios
where computational resources are limited or efficiency is a critical factor.

Table 7: The comparison of the computational time for training of the proposed model and
baseline. The average time is reported per batch with lower is better.

Model MOOC | UCI | Wikipedia | Reddit

[V] 7,144 1,899 9,227 10,984

| Etempl 411,749 | 59,835 | 157,474 | 672,447
DyRep [2019] 227.9 205.2 217.3 222.6
JODIE [2019] 182.1 178.5 187.3 191.1
TGAT [2020] 229.8 2204 236.5 237.0
TGN-attn [2020] | 242.2 225.3 260.2 250.8
ASTGN [2022] — 158.1 190.7 212.4
ASDGT (ours) 92.1 80.2 102.4 120.3




HoaNGg PHAM MA1 Ta

4.3.3. EFFECTIVENESS OF ASH-DGT IN LONG PERIOD

Time Projection: Our proposed model projects the embedding to capture temporal
information and predicts the future embedding at a time. After a short duration A; the
node 7’s projected embedding is updated to as follow:
hierary = (1 +w) x hyg (15)
where w is time-context vector is converted from At by using a linear layer: w = W,At.
The vector (14 w) works as a temporal attention vector to scale the past node embedding.
We test the accuracy of our proposed model by varying the time projecting window At.
The node classification task results on the Reddit dataset of our model and other baselines
are shown in Table 8. In general, it is more difficult to predict for a long period updating
time At than the short one. While all of the tested models drop accuracy, our model
still achieves the best accuracies. At the larger At = 7, the proposed ASH-DGT achieves
around 85.36% accuracy. The second highest accuracy is the TGN with 82.53% accuracy.
These outcomes reinforce our model’s adaptability to extended time horizons, affirming its
capability to navigate the complexities of temporal dynamics and offering promising insights
into its applicability across real-world scenarios.

Table 8: The accuracy of node classification task on Reddit dataset by varying the time
projection At(days) of different models

Model At=1 At =3 At=5 At =7

DySAT [2019] 82.32 £ 0.7 | 75.13 £ 0.5 | 74.05 & 0.4 | 71.39 £ 0.5
Jodie [2019] 84.35 £ 1.2 | 81.71 £ 0.8 | 81.13 £ 0.5 | 79.38 = 0.7
EvolveGCN [2020] | 81.77 £ 1.2 | 70.39 + 0.7 | 71.22 £ 0.5 | 74.07 + 0.5
DyRep [2020] 84.82 £ 2.2 | 80.33 £ 0.5 | 81.05 £ 0.5 | 79.77 £ 1.1
TGAT [2020] 83.12 £ 0.7 | 84.46 £ 0.5 | 83.18 £ 0.7 | 78.59 & 1.2
TGN [2020] 87.41 £ 0.3 | 87.58 £ 0.5 | 86.11 + 0.3 | 82.53 = 0.5
ASH-DGT (ours) | 89.28 + 0.3 | 88.15 + 0.2 | 86.62 &+ 0.5 | 85.36 + 0.6

5. Conclusion

In this work, we investigate adaptive sampling strategies for enhancing representation learn-
ing within the context of dynamic graphs using graph transformers. Our investigation has
shed light on the critical role of adaptively selecting nodes during training to capture both
short- and long-range dependencies, thereby improving the model’s efficacy in capturing dy-
namic interactions. Through comprehensive analysis and experimentation, we’ve showcased
the potential of our proposed adaptive sampling technique to yield significant enhancements
in performance, resulting in improved accuracy and convergence. This research marks a
substantial stride forward in the field of representation learning, addressing the challenges
posed by dynamic graph data and offering new avenues for refining graph-based models.
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