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Abstract

Controllability has become a critical issue in trust-
worthy machine learning, as a controllable learner
allows for dynamic model adaptation to task re-
quirements during testing. However, existing re-
search lacks a comprehensive understanding of
how to effectively measure and analyze the gen-
eralization performance of controllable learning
methods. In an attempt to move towards this goal
from a generalization perspective, we first estab-
lish a unified framework for controllable learning.
Then, we develop a novel vector-contraction in-
equality and derive a tight generalization bound
for general controllable learning classes, which
is independent of the number of task targets ex-
cept for logarithmic factors and represents the cur-
rent best-in-class theoretical result. Furthermore,
we derive generalization bounds for two typical
controllable learning methods: embedding-based
and hypernetwork-based methods. We also upper
bound the Rademacher complexities of commonly
used control and prediction functions, which serve
as modular theoretical components for deriving
generalization bounds for specific controllable
learning methods in practical applications such
as recommender systems. Our theoretical results
without strong assumptions provide general theo-
retical guarantees for controllable learning meth-
ods and offer new insights into understanding con-
trollability in machine learning.
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1. Introduction
Controllability has emerged as a crucial aspect of AI (Yam-
polskiy, 2020; Artificial Intelligence Safety Summit, 2023;
A16z, 2025), enabling AI models to be more reliable and
adaptable to user needs in dynamic environments. In the
context of machine learning, controllability ensures that
learners can dynamically adapt to evolving task require-
ments at test time, a concept known as controllable learn-
ing. In many real-world applications, such as information
retrieval and recommender systems, the ability to control
model behavior at test time is essential for accommodating
diverse user preferences, balancing competing objectives,
and adapting to dynamic information-seeking needs (Chen
et al., 2023; Mysore et al., 2023; Gao et al., 2024; Chang
et al., 2023; He et al., 2022). Existing methods for con-
trollable learning including embedding-based methods that
adjust model inputs, and hypernetwork-based methods that
generate task-specific model parameters, have demonstrated
empirical success (Chen et al., 2023; Chang et al., 2023;
Shen et al., 2025; Xie et al., 2025).

However, theoretically understanding controllability in ma-
chine learning remains an important open question in ma-
chine learning theory. Theoretical analysis of controllable
learning methods from the perspective of generalization
is an important research avenue. A comprehensive gener-
alization analysis of controllable learning faces two main
challenges: 1) How to establish the relationship between the
generalization bounds and controllability? 2) How to reduce
the dependency of the generalization bounds on the number
of task targets? First, controllable learning often needs to dy-
namically respond to the task requirement and often involves
multiple task targets. How to establish a unified theoretical
framework that can formally characterize these factors is the
primary issue of theoretical analysis. In addition, the ideal
theoretical framework should be general enough to cover
existing controllable learning methods and facilitate the de-
velopment of general analysis methods and theoretical tools
for generalization analysis of controllable learning. With an
effective unified theoretical framework, we can explicitly
introduce controllability in generalization analysis. Second,
intuitively, the multiple task targets involved in controllable
learning suggest that learning will become more difficult
as the number of task targets increases, but the empirical
success of controllable learning methods suggests that the
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impact of increased difficulty should be limited (Chen et al.,
2023; He et al., 2022; Chang et al., 2023), meaning that
the effective generalization bound is weakly dependent on
the number of task targets. It is clear that generalization
analysis can promote a better understanding of controllable
learning methods.

In this paper, we establish an effective unified theoretical
framework and derive tight bounds for controllable learn-
ing. Specifically, we develop a novel vector-contraction
inequality, which induces the state-of-the-art bound with
no dependency on the number of task targets except for
logarithmic factors for general controllable learning classes.
In addition, we derive general bounds for two typical con-
trollable learning methods, and we also develop modular
theoretical results for commonly used control and prediction
functions and show that the bounds for the specific control-
lable learning methods are flexible combinations of these
modular theoretical results.

Our goal is to deepen our understanding of controllable
learning methods through the systematic generalization anal-
ysis. Major contributions of the paper include:

• We establish a unified theoretical framework and de-
velop a novel vector-contraction inequality for control-
lable learning, which exploits the Lipschitz continuity
of losses w.r.t. `∞ norm and can induce tight bounds.

• We derive tight bounds for general controllable learn-
ing classes with no dependency on the number of task
targets, which provides general theoretical guarantees
for controllable learning methods.

• We derive bounds for two typical controllable learning
methods and reveal that different manipulation meth-
ods based on the input and control function will lead to
significant differences in the bounds. The theoretical
techniques and modular results on FNN and Trans-
former here serve as promising theoretical tools for the
generalization analysis of controllable learning.

2. Related Work
The theoretical analysis in this paper focuses on controllable
machine learning methods. Controllable learning empha-
sizes the model’s ability to adapt dynamically at test time
based on task requirements to meet specific task targets.
It can be broadly categorized into the following two cate-
gories.

Embedding-based controllable learning focuses on map-
ping task requirements into embeddings (Gao et al., 2024;
Mysore et al., 2023; Penaloza et al., 2024; Chang et al.,
2023; Kong et al., 2024), which are then integrated with
other inputs into the original model, serving as a pre-
processing method during testing. Mysore et al. (2023)

introduced LACE, an embedding-based controllable recom-
mendation model that constructs editable user profiles from
human-readable concepts, allowing users to modify them for
adaptive recommendations without retraining. Chang et al.
(2023) proposed PEPNet to address the imperfectly double
seesaw problem by incorporating controllable parameters in
dynamic, multi-domain recommendation scenarios. This ap-
proach facilitates controllable and personalized predictions
of user interactions across diverse tasks and domains.

Hypernetwork-based controllable learning generates
(partially) new model parameters through a control function
based on the given task requirements, replacing the origi-
nal model parameters to enable adaptive adjustment (Chen
et al., 2023; Shen et al., 2023; He et al., 2022; Li et al.,
2023; Yan et al., 2022). Since this approach modifies the
mapping between task requirements and model parameters
during testing, it can also be considered an in-processing
method. Chen et al. (2023) proposed a novel framework
named CMR, which leverages a feedforward neural network
as a hypernetwork to dynamically generate parameters for a
re-ranking model based on varying preference weights. This
approach enables online adaptability without retraining and
has demonstrated positive gains in online A/B tests within
e-commerce scenarios. He et al. (2022) presented Hyper-
prompt, a technique offering controllable task-conditioning
of transformers by dynamically adjusting prompts using a
hypernetwork for diverse tasks.

Controllable learning has broad applications in information
access. Existing theoretical work has focused solely on the
approximation properties of controllable learning (Galanti &
Wolf, 2020), while the study of its learning properties, par-
ticularly generalization analysis, remains an open problem.
This paper aims to bridge the gap in the generalization anal-
ysis of controllable learning and provide theoretical tools
for a broader exploration of its learning properties.

3. Preliminaries
Let [n] := {1, . . . , n} for any natural number n. In the
context of controllable learning, given a dataset D =
{(x1,y1) , . . . , (xn,yn)} with n examples which are iden-
tically and independently distributed (i.i.d.) from a proba-
bility distribution P on X × Y , where X ⊆ Rd denotes the
d-dimensional input space and Y denotes the label space,
x ∈ X , y ∈ Y .

3.1. Controllable Learning

Unlike traditional learning methods, where the learning ob-
jective is fixed during the training phase and cannot change
in the testing phase, controllable learning aims to dynami-
cally adapt to newly arrived task requirements during testing,
thereby achieving learner controllability. More specifically,
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in controllable learning, the learner receives not only the
input x ∈ X but also the task requirement z ∈ Z during
the testing phase. It adjusts adaptively based on any given
task requirement z ∈ Z , ensuring that the outputs for c task
targets are responsive to the dynamic changes in z.

Formally, for Y ⊆ Rc, the task of controllable learning
is to solve the problem of multi-output regression with a
given task requirement z, i.e., the j-th task target of the
learner fz = (fz1 , . . . , f

z
c ) : X 7→ Rc corresponds to

the regression of fzj , j ∈ [c]. For Y ⊆ {−1,+1}c, each
y = (y1, . . . , yc) is a binary vector and yj = 1(−1) denotes
that the j-th label is (ir)relevant, j ∈ [c], and the task of
controllable learning is to learn a classifier corresponding
to the task requirement z, which assigns each instance with
a set of relevant labels. A common strategy is to learn a
vector-valued function fz = (fz1 , . . . , f

z
c ) : X 7→ Rc and

derive the classifier by a thresholding function which divides
the label space into relevant and irrelevant label sets.

We consider the prediction function (also called controllable
learner) for task target j ∈ [c] of the general form: fzj (x) =
〈wj , ζj(φj(x, ψj(z)))〉, where the nonlinear mapping ψj
serves as a control function, while the manipulation function
φj represents the nonlinear transformation that integrates the
input and control function into the learner, and the nonlinear
mapping ζj corresponds to the classifier learned on the
controllable representation generated by φj . We define a
vector-valued function class of controllable learning as:

F = {x 7→ fz(x) :

fz(x) = (fz1 (x), . . . , fzc (x)),

fzj (x) = w>j ζj(φj(x, ψj(z))),

w = (w1, . . . ,wc) ∈ Rd×c, α(w) ≤ Λ,

β(ζ(·)) ≤ A, γ(φ(·, ·)) ≤ B, κ(ψ(·)) ≤ C,
x ∈ X , z ∈ Z, j ∈ [c],Λ, A,B,C > 0}, (1)

where α represents a functional that constrains weights,
β represents a functional that constrains nonlinear map-
pings ζj , γ represents a functional that constrains nonlin-
ear mappings φj , κ represents a functional that constrains
control functions ψj . For embedding-based controllable
learning methods, the task requirement z can be editable
user profiles, the control function ψ often uses Transform-
ers, and the nonlinear mapping ζ induced by classifier can
use FNNs. For hypernetwork-based controllable learning
methods, the task requirement z can be a task indicator, the
model corresponding to the control function is a hypernet-
work, and the nonlinear mapping ζ induced by classifier can
use Transformer-based models.

For any function fz : X 7→ Y , the prediction quality on the
example (x,y) is measured by a loss function ` : X ×Y 7→
R+. The goal of controllable learning is to find a hypoth-
esis fz ∈ F with good generalization performance from

the dataset D by optimizing the loss `. The generalization
performance is measured by the expected risk: R(fz) =
E(x,y)∼P [`(fz(x),y)]. We denote the empirical risk w.r.t.
training dataset D as R̂D(fz) = 1

n

∑n
i=1 `(f

z(xi),yi).
In addition, we define the loss function space as L =
{`(fz(x),y) : fz ∈ F}. However, the above mentioned
loss is typically the 0-1 loss, which is hard to handle in
practice. Hence, one usually consider its surrogate losses.

3.2. Related Evaluation Metrics

Although controllable learning has been implicitly used in
modern information retrieval. However, there is still a lack
of specific evaluation metrics to measure the generaliza-
tion performance of different controllable learning methods.
Here we focus on two commonly used evaluation metrics
in controllable learning, i.e., weighted Hamming loss and
bipartite ranking loss, and define their surrogate losses. The
surrogate loss for weighted Hamming loss is denoted by:

`W (fz(x),y) =
1

c

c∑
j=1

vj`j
(
fzj (x), yj

)
,

where `j is the loss of the j-th task target, vj is the weight
for the j-th task target and is bounded by |vj | ≤ V for any
j ∈ [c].

For bipartite ranking problems in controllable learning,
since they involve pairwise losses, we need to addition-
ally define the corresponding risks. Let pj be the probability
that the samples are relevant to the j-th label. D+

j denotes
the conditional distribution of the samples over X given that
the samples are relevant to the j-th label, and D−j denotes
the conditional distribution of the samples over X given
that the samples are irrelevant to the j-th label. We define
the expected risk w.r.t. multi-target bipartite ranking for
controllable learning as follows:

R(fz) =
∑
j

pjR(fz|j)

=
∑
j

pjExi∼D+
j

x′i∼D
−
j

1

c

c∑
j=1

`
0/1
j

(
fzj (xi)− fzj (x′i)

)
.

In addition, the empirical risk w.r.t. multi-target bipartite
ranking is defined as

R̂D(fz) =
∑
j

∣∣X+
j

∣∣
n

R̂D(fz|j) = (2)

∑
j

∣∣X+
j

∣∣
n

1∣∣X+
j

∣∣ ∣∣X−j ∣∣
∑
xi∈X+

j

x′i∈X
−
j

1

c

c∑
j=1

`
0/1
j

(
fzj (xi)− fzj (x′i)

)
,

where X+
j = {xi | yj = +1, i ∈ [n]} (X−j = {x′i | yj =

−1, i ∈ [n]}) corresponds to the set of the samples that are
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relevant (irrelevant) to the j-th label. The surrogate loss for
multi-target bipartite ranking loss is denoted by:

`R(fz(xi,x
′
i),y) =

1

c

c∑
j=1

`j
(
fzj (xi)− fzj (x′i)

)
,

where xi (x′i) corresponds to the instances that are relevant
(irrelevant) to the j-th label.

3.3. Related Complexity Measures

Here we introduce the related complexity measures involved
in our theoretical results. The Rademacher complexity is
used to perform generalization analysis for controllable
learning.
Definition 3.1 (Rademacher complexity). Let F be a class
of real-valued functions mapping from X to R. Let D =
{x1, . . . ,xn} be a set with n i.i.d. samples. The empirical
Rademacher complexity over F is defined by

<̂D(F) = Eε

[
sup
f∈F

1

n

n∑
i=1

εif (xi)

]
,

where ε1, . . . , εn are i.i.d. Rademacher random variables. In
addition, we define the worst-case Rademacher complexity
as <̃n(F) = supD∈Xn <̂D(F).

The vector-valued function class F of controllable learn-
ing makes traditional analysis methods developed for the
Rademacher complexity of scalar-valued function class in-
valid. Hence, we need to new analysis tools to convert the
Rademacher complexity of a loss function space associated
withF into the Rademacher complexity of a tractable scalar-
valued function class. The Rademacher complexity can be
bounded by other scale-sensitive complexity measures, e.g.
covering number and fat-shattering dimension (Srebro et al.,
2010; Zhang & Zhang, 2023). The relevant definitions are
provided in the appendix.

4. General Bounds for Controllable Learning
In this section, we first introduce the assumptions used.
Then, we develop a novel vector-contraction inequality for
the Rademacher complexity of the vector-valued function
class F . Finally, with the novel vector-contraction inequal-
ity, we derive bounds for general function classes of control-
lable learning with no dependency on the number of task
targets, up to logarithmic terms, which achieve the state
of the art. The proof sketches and detailed proofs of
the theoretical results in this paper are provided in the
appendix.
Assumption 4.1. Assume that the input features, the loss
function and each task target of the learner are bounded:
‖xi‖2 ≤ R, `(·, ·) ≤ M , |fzj (·)| ≤ E for i ∈ [n], j ∈ [c],
where R,M,E > 0 are constants.

Assumption 4.2. Assume that the loss function ` is µ-
Lipschitz continuous w.r.t. the `∞ norm, that is:∣∣`(f(x), ·)− `(f ′(x), ·)

∣∣ ≤ µ∥∥f(x)− f ′(x)
∥∥
∞ ,

where µ > 0, ‖t‖∞ = maxj∈[c] |tj | for t = (t1, . . . , tc).

Assumption 4.1 and 4.2 are mild assumptions. For Assump-
tion 4.1, The boundedness of the input features is easy to
satisfy since in practice normalization is often applied to the
input features. In addition, for the function class of control-
lable learning (1), we often use the assumptions ‖wj‖2 ≤ Λ,
‖ζj(·)‖2 ≤ A for any j ∈ [c] to replace the boundedness
of each task target of the learner, i.e., E := ΛA, and A
can be further refined by the specific model used in control-
lable learning. For Assumption 4.2, the Lipschitz continuity
w.r.t. the `∞ norm has been considered in several literature
(Foster & Rakhlin, 2019; Lei et al., 2019; Wu et al., 2021;
Zhang & Zhang, 2023; 2024a). The following Proposition
4.3 further illustrates that the commonly used loss functions
in controllable learning actually satisfy Assumption 4.2.

Proposition 4.3. Assume that the loss of each output task
target `j defined in Subsection 3.2 is µ-Lipschitz continuous,
then the surrogate weighted Hamming Loss is µV -Lipschitz
w.r.t. the `∞ norm, the surrogate multi-target bipartite
ranking loss is µ-Lipschitz w.r.t. the `∞ norm.

In fact, each task target in controllable learning can be com-
pletely different, hence the coupling relationship between
the weights of the functions corresponding to each task
target needs to be decoupled. To this end, we define a pro-
jection operator pj : Rc 7→ R to project the c-dimensional
output vector onto the j-th coordinate, pj ∈ P , j ∈ [c].
Then, we have the projection function class P(F) ={

(j,x) 7→ pj(f
z(x)) : pj(f

z(x)) = fzj (x),fz ∈ F , (j,x)
∈ [c]×X}, which decouples the relationship among dif-
ferent task targets. With Assumption 4.2 and the above
definitions, we develop the following novel vector-
contraction inequality for controllable learning to show that
the Rademacher complexity of the loss function space L
can be bounded by the worst-case Rademacher complexity
of the projection function class P(F):

Lemma 4.4. Let F be a function class of controllable learn-
ing defined by (1). Let Assumptions 4.1 and 4.2 hold. Given
a dataset D of size n. Then, we have

<̂D(L) ≤ 12M√
n

+96µ
√
c<̃nc(P(F))×

(1 + log2(4en2c2µ2) · ln M
√
n

µE
),

where <̂D(L) = Eε
[
sup`∈L,fz∈F

1
n

∑n
i=1 εi` (fz(xi))

]
is the empirical Rademacher complexity of the loss function
space associated with F , and <̃nc(P(F)) is the worst-case
Rademacher complexity of the projection function class.
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Remark 4.5. The difficulty of theoretical analysis for con-
trollable learning lies in two aspects. First, the development
of controllable learning is driven by real-world applications,
and the methods developed are quite different. It is diffi-
cult to establish a unified theoretical framework to cover
all these typical methods. The lack of a unified framework
is the most intuitive and primary obstacle to using exist-
ing analytical tools to establish an effective theory bound
for controllable learning. The definition of the controllable
learning function class and the modular theoretical results
provided ensure the establishment of a unified theoretical
framework. Second, about reducing the dependency on c.
The analysis of the number of task targets in the bounds can
be traced back to a basic bound with a linear dependency on
c, which comes from the typical vector-contraction lemma
in (Maurer, 2016). The dependency on c can be improved
to square-root or logarithmic by preserving the coupling
among different components, i.e., ‖w‖ ≤ Λ. However,
each task target in controllable learning can be completely
different, and the coupling relationship needs to be decou-
pled. Hence, we introduce the projection operator. We
found that the square-root dependency on c is inevitable for
`2 Lipschitz loss, which essentially comes from the

√
c fac-

tor in the radius of the empirical `2 cover of the projection
function class, but `∞ Lipschitz continuity of the loss can
eliminate it. Hence, the tight bounds with no dependency
on c, up to logarithmic terms, can be derived.
Remark 4.6. The construction of the auxiliary dataset in-
duced by projection functions can reduce the dependency on
the output dimension. For the construction of other types of
auxiliary datasets under different problem settings and simi-
lar ideas, please refer to (Lei et al., 2019; Wu et al., 2021;
Mustafa et al., 2021; Hieu et al., 2024; Lei et al., 2023; Graf
et al., 2022). Regarding the more desirable constant, the use
of discretized variant of Dudley’s integral inequality in (Lei
et al., 2023) suggests that this can be achieved.

With the vector-contraction inequality above, we can de-
rive the following tight bound for the surrogate weighted
Hamming loss:

Theorem 4.7. Let F be a function class of controllable
learning defined by (1). Let Assumptions 4.1 and 4.2 hold.
Given a dataset D of size n. Then, for the surrogate
weighted Hamming loss, for any 0 < δ < 1, with prob-
ability at least 1− δ, the following holds for any fz ∈ F:

R(fz) ≤R̂D(fz) + 3M

√
log 2

δ

2n
+

24M√
n

+

192µV ΛA(1 + log2(4en2c2µ2) · ln M
√
n

µE )
√
n

.

Remark 4.8. Although Lemma 4.4 contains a
√
c factor, the

term <̃nc(P(F)) ≤ ΛA√
nc

, which makes the Rademacher

complexity of the loss function space L actually indepen-
dent on c, and results in a tight Õ(1/

√
n) bound with no

dependency on the number of task targets. The projection
function class combined with the `∞ norm Lipschitz conti-
nuity of loss functions is the key to inducing a generalization
bound with no dependent on c except for logarithmic factors.
Theorem 4.7 shows that when the number of task targets in-
creases, the generalization bound will be slightly larger, i.e.,
only a logarithmic increase. This means that although the in-
crease in the number of task targets will affect the difficulty
of learning, since Theorem 4.7 implies that the increase in
difficulty is logarithmic, the real impact may only come
from a few important task targets. Therefore, a controllable
learning method can eventually obtain a learner with good
generalization performance as long as it can learn these task
targets well. Our theoretical results can provide general
theoretical guarantees for controllable learning methods that
can handle many task targets well in practice (Chen et al.,
2023; He et al., 2022; Chang et al., 2023).

Since the surrogate multi-target bipartite ranking loss in-
volves pairwise functions, a sequence of pairs of i.i.d.
individual observation in (2) is no longer independent,
which makes standard techniques in the i.i.d case for tra-
ditional Rademacher complexity inapplicable. Inspired by
(Clémençon et al., 2008), we convert the non-sum-of-i.i.d
pairwise function to a sum-of-i.i.d form by using permuta-
tions in U-process. Hence, for each task target, we define
the construction method of the set of i.i.d disjoint positive
and negative sample pairs for the j-th class label as follows:

1. We denote
∣∣X+

j

∣∣ and
∣∣X−j ∣∣ as tj and uj and tj +uj =

n for any j ∈ [c]. We denote the number of disjoint pos-
itive and negative sample pairs as sj = min{tj , uj}.

2. We uniformly select a positive sample from the set of
the samples that are relevant to the j-th label and select
a negative sample from the set of the samples that are
irrelevant to the j-th label, then construct the selected
positive and negative samples into a pair (xj+i ,xj−i ).

3. We construct the set of positive and negative sample
pairs by matching the samples from the set of the sam-
ples that are relevant to the j-th label with the samples
from the set of the samples that are irrelevant to the
j-th label until one of the sets of the positive samples
and the negative samples exhausts its available samples
for selection. We denote the set of i.i.d disjoint positive
and negative sample pairs for the j-th class label asDj ,
and |Dj | = sj .

With these definitions, we then derive the tight bound for
the surrogate multi-target bipartite ranking loss as follows:

Theorem 4.9. Let F be a function class of controllable
learning defined by (1). Let Assumptions 4.1 and 4.2 hold.
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Given a dataset D of size n. Then, for the surrogate multi-
target bipartite ranking loss, for any 0 < δ < 1, with
probability at least 1− δ, the following holds for any fz ∈
F:

R(fz) ≤R̂D(fz) +
24
√

2Mq
√
s0

+ 22Mq

√
ln 8c

δ

s0
+

384
√

2qµΛA× (1 + log2(4es2
0c

2µ2) · ln M
√
s0

µE )
√
s0

,

where s0 = nmin{minj pj ,minj(1−pj)} and q =
∑
j pj .

Remark 4.10. The above bound shows a logarithmic depen-
dency on the number of task targets with a faster conver-
gence rate Õ(1/

√
s0). When the examples of positive and

negative classes are balanced, which is the ideal situation,
we have tj = uj for any j ∈ [c], s0 = n

2 , then the order of
the bound is Õ(1/

√
n). When class-imbalance occurs, it is

obvious that s0 will be smaller than n
2 . If class-imbalance

is more serious, s0 will be smaller, which will lead to a
looser bound for the surrogate multi-target bipartite ranking
loss. It means that when class-imbalance becomes more
and more serious, if the learned classifier cannot handle the
problem of class-imbalance well, then its performance on
the multi-target bipartite ranking loss will be worse.
Remark 4.11. The term

∑
j pj is involved in the above

bound, which indicates that each sample is associated with
multiple labels, and each task target can correspond to a
label in controllable learning. Real-world scenarios and
practical tasks imply that the presence of the term

∑
j pj

introduces two challenges. First, in label-sparse tasks, en-
suring the applicability of the above theoretical result re-
quires establishing a connection between the term

∑
j pj

and appropriate sparsity conditions, thereby revealing how
sparsity influences generalization bounds. Second, in recom-
mendation systems, while users may simultaneously prefer
multiple product categories, excessive probability summa-
tion could lead to excessively long recommendation lists,
thereby diminishing personalization efficacy. Therefore, de-
signing suitable regularization terms may be necessary to
address this issue. In future work, we will further explore
solutions to the limitations induced by the term

∑
j pj from

these two perspectives.

5. General Bounds for Typical Controllable
Learning Methods

In this section, we analyze the generalization bounds for two
typical controllable learning methods, i.e., embedding-based
and hypernetwork-based controllable learning methods. In
order to improve the readability and enhance the applica-
bility of the developed theoretical tools, we decompose the
process of generalization analysis of these controllable learn-
ing methods into multiple modules. In this way, the bounds

corresponding to the specific controllable learning meth-
ods are flexible combinations of these modular theoretical
components.

Specifically, in Subsection 5.1, we establish refined formal
definitions for embedding-based and hypernetwork-based
methods (i.e., φj in class (1)) and give their general theo-
retical analysis methods. In Subsection 5.2, we give the
formal definitions of commonly used control and predic-
tion functions (i.e., ψj and ζj in class (1)), and derive their
Rademacher complexity. In Subsection 5.3, we derive the
corresponding generalization bounds for specific control-
lable learning methods. This process shows how to flexibly
apply the modular theoretical results developed in this pa-
per. We show that different manipulation methods based
on the input and control function will lead to significant
differences in the constant A of the generalization bound in
Theorem 4.7 and 4.9.

5.1. Theoretical Analysis Methods for Embedding-based
and Hypernetwork-based Methods

Embedding-based Methods

Embedding-based methods aim to map the task requirement
z into a latent space of inputs x. This can be seen as a
pre-processing technique at test time, where controllable
learners adapt to the task requirement solely by modifying
the input features, making them easy to implement in tasks
like recommender systems or classification.

Formally, for each task target, we denote the output of the
control function as aj := ψj(z) ∈ Rd′ , φj is a concatenate
function denoted as Concate(·, ·), which concatenate x and
aj , i.e., Concate(x,aj) = [x1, . . . , xd, a

j
1, . . . , a

j
d′ ]
> ∈

Rd+d′ . Then, a family of c classifiers fj with ρ-Lipschitz
nonlinear mapping (i.e., ζj is ρ-Lipschitz) are learned on
the generated concatenate representations.

With the above definitions, we can derive the upper bound
of the worst-case Rademacher complexity for embedding-
based controllable learning methods:

Theorem 5.1. Let F be a function class of embedding-
based controllable learning methods defined by (1). Let
Assumptions 4.1 and 4.2 hold. Given a dataset D of size
n. Then, the worst-case Rademacher complexity of the
corresponding projection function class can be bounded as:
<̃nc(P(F)) ≤ 2ρΛ(R+C)√

nc
.

The constant A of the generalization bound in Theorem 4.7
and 4.9 corresponds to 2ρ(R+ C) here.

Hypernetwork-based Methods

Hypernetwork-based methods use a network as the control
function ψ to generate the model parameters of the predic-
tion function, effectively allowing the control function to
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control and adjust the parameters of the prediction function.
These methods can be seen as an in-processing technique at
test time, offering flexibility in adapting model parameters
to various task requirements. This makes hypernetworks an
appealing approach for applications that require dynamic
and task-specific parameter adjustments.

Formally, for each task target, the weights of the nonlinear
function φj are generated by a hypernetwork ψj (i.e., the
model corresponding to the control function is a hypernet-
work), we denote the generated vector as wψj , and φj can
be denoted as φj(x;wψj ). Furthermore, wψj is determined
by minimizing the µctrl-Lipschitz loss `ctrl defined on the
control function ψj , and we denoted the loss function space
corresponding to `ctrl as Lctrl. We also define the class of
control function ψj as Gj , j ∈ [c], and use G

⊗
c to refer the

c-fold Cartesian product of the c function classes Gj .

With the above definitions, we can derive the upper bound
of the worst-case Rademacher complexity for hypernetwork-
based controllable learning methods:

Theorem 5.2. Let F be a function class of hypernetwork-
based controllable learning methods defined by (1). Let
Assumptions 4.1 and 4.2 hold. Given a dataset D of size
n. Then, the worst-case Rademacher complexity of the
corresponding projection function class can be bounded
as: <̃nc(P(H)) ≤ 2ρΛB√

nc
+ 2µctrlC√

nc
, where H = F +

Lctrl ◦ G
⊗
c is the whole function class corresponding to

the hypernetwork-based methods.

Remark 5.3. Since hypernetwork-based controllable learn-
ing method is two-stage, the hypernetwork is used to gener-
ate a vector of weights (i.e., model parameters) for each task
target in the first stage, and then these generated parameter
vectors are used in the learner of the second stage. Therefore,
in order to fully consider the capacity of the hypernetwork
corresponding to the first stage, it is necessary and appro-
priate to define the whole function class as the sum of the
function classesH = F+Lctrl ◦G

⊗
c corresponding to the

models of these two stages. The bound of the hypernetwork-
based method can be obtained by combining Theorem 5.2
with Lemma 4.4, but <̃nc(P(F)) in Lemma 4.4 should be
replaced by <̃nc(P(H)). The constant A of the bound in
Theorem 4.7 and 4.9 corresponds to 2ρB here. However,
unlike the embedding-based methods, the introduction of
the hypernetwork class Gj leads to an additional increase in
complexity, i.e., the last term in Theorem 5.2.

5.2. The Rademacher Complexities for Commonly-used
Control and Prediction Functions

In this Subsection, we first formally introduce the commonly
used control or prediction functions in controllable learn-
ing, mainly including two models, i.e., Feedforward Neural
Network (FNN) and Transformer, and then derive the upper

bounds of their Rademacher complexities. These theoretical
results can be used as components to derive the generaliza-
tion bounds for specific controllable learning methods.

Feedforward Neural Network (FNN)

We define a feedforward neural network as follows:

f(x) = w>σ(WLσ(WL−1 · · ·σ(W1x))),

where Wl are the parameter metrices, l ∈ [L], and σ is the
ReLU activation. With the above definitions, we can derive
the upper bound of the Rademacher complexity for FNN:

Theorem 5.4. Let F be a function class of FNN. Assume
that the parameter matrices in FNN are bounded, i.e.,
‖Wl‖ ≤ BF for any l ∈ [L], where BF > 0 is a constant.
Given a datasetD of size n. Then, the Rademacher complex-
ity of 5 layer FNN can be bounded as: <̂D(F) ≤ 25ΛB5

FR√
n

.

Remark 5.5. According to the proof process, it is obvi-
ous that <̂D(F) ≤ 2LΛBLFR/

√
n for L layer FNN. The

capacity-based generalization analysis of deep models in-
volved in Subsection 5.2 mainly uses the “peeling” argu-
ment, which is a commonly used method in capacity-based
theoretical analysis. The main idea of “peeling” is to reduce
the complexity bound for l layer networks to a complexity
bound for l − 1 layer networks, and for each reduction, a
product factor of a Lipschitz constant for the activation func-
tion and an upper bound for the weight matrix norm will
be introduced. After applying l reductions, the multiplica-
tion of product factors with exponential dependency on the
depth may make the bound vacuous (Neyshabur et al., 2015;
Bartlett et al., 2017; 2019). How to develop non-vacuous
capacity-based generalization analysis methods for deep
models is still an open question (Neyshabur et al., 2018;
Golowich et al., 2018; Zhang & Zhang, 2023) and we will
further explore it in the future. However, our goal here is to
provide modular theoretical results for generalization anal-
ysis of controllable learning, and the depth of the models
used in controllable learning is often limited or even shallow,
so the theoretical results in Subsection 5.2 are valid.

Transformer

We follow the definition and notation of self-attention
and Transformer in (Edelman et al., 2022). Let WC ∈
Rk×d,WV ∈ Rd×k, and WQ,WK ∈ Rd×k be trainable
weight matrices. Let X := [x1,x2, . . . ,xT ]> ∈ RT×d
be the input, i.e., a sequence of T d-dimensional tokens.
Let σ be an element-wise Lσ-Lipschitz activation func-
tion with σ(0) = 0. Then, a Transformer layer is defined
as σ

(
RowSoftmax

(
XWQW

>
KX

>)XWV

)
WC , where

RowSoftmax applies softmax on each row of its input.
For the convenience of analysis, we represent WQW

>
K with

a single matrix WQK ∈ Rd×d. Here we focus on the scalar
output from the Transformer. We construct a special extra
input in the length-T sequence with a index [CLS], which is

7
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a fixed or trainable vector x[CLS] ∈ Rd. Finally, the output
at index [CLS] is a linear function w>y[CLS], for a trainable
parameter w ∈ Rd. This setup for scalar output is used in
BERT (Devlin et al., 2019) and all of its derivatives. The
scalar one layer Transformer is w>y[CLS], where y[CLS] =

W>C σ
(
W>V X

>softmax
(
XW>QKx[CLS]

))
. Then, we have

the bound of the Rademacher complexity for Transformer:

Theorem 5.6. Let F be a function class of Transformer.
Assume that the parameter matrices in Transformer are
bounded, i.e., ‖w‖ ≤ Bw, ‖WC‖ ≤ BWC

, ‖WV ‖ ≤ BWV
,

‖WQK‖ ≤ BWQK
and ‖xt‖ ≤ R for any t ∈ T . Given

a dataset D of size n. Then, the Rademacher complexity
of the scalar one layer Transformer can be bounded as:

<̂D(F) ≤ 4BwBWCBWV BWQKLσR
3

√
n

.

Remark 5.7. Theorem 5.6 implies that the order of the bound
for Transformer is O( 1√

n
) with no dependency on the se-

quence length T , which is tight w.r.t. the dependency on T
and matches the recent theoretical bound for Transformer
(Trauger & Tewari, 2024). The key to reducing the depen-
dency on T is to avoid summation in the norm, where the
Lipschitz property of softmax is used, i.e., Corollary A.7 in
(Edelman et al., 2022). The symbol ‖ · ‖ denotes Frobenius
norm. (Edelman et al., 2022) mainly derives bounds for
Transformer through covering numbers. It uses the Lips-
chitz property of functions to convert the covering number
of Transformer function class into those of vector-valued lin-
ear classes, and uses the upper bounds of covering numbers
for vector-valued linear classes to obtain the result for Trans-
formers. The ‖ · ‖2,1 norm involved therein originates from
the upper bounds of covering numbers for vector-valued
linear classes. Specifically, when upper bounding the cover-
ing number of the vector-valued linear class, the summation
of covering numbers for scalar-valued linear classes cor-
responding to each component in the vector-valued linear
function induces the ‖ · ‖:,1 norm in the ‖ · ‖2,1 norm. Our
result is derived using the standard Rademacher analysis,
following the conventional neural network analysis method,
which naturally induce Frobenius norm. We do not empha-
size the tightness regarding norm constraints here. Our main
purpose here is to reduce the dependency on T , so we focus
on analyzing a single layer Transformer as an example. For
the bound of the deep case, similar to other deep models, the
peeling argument is also used for analysis. The dependency
of induced bound on depth is similar to existing theoretical
results (Edelman et al., 2022; Trauger & Tewari, 2024).

5.3. Generalization Bounds for Specific Controllable
Learning Methods

Recently, the controllability of AI has become a key issue
in many applications, particularly in information access ap-
plications such as recommender systems (Joachims, 2024;
Shen et al., 2024). This subsection will use state-of-the-art

controllable learning methods in recommender systems as
examples to concretize the nonlinear mapping ζ and the
control function ψ of controllable learner in (1), and further
provide generalization bounds for embedding-based and
hypernetwork-based controllable learning, which are flexi-
ble combinations of the above modular theoretical results.

Bounds for Embedding-based Controllable Learning

In embedding-based controllable recommendation models,
the task description z is often expressed in natural language
(e.g., editable user profiles). After being processed by a
Transformer language model encoder, the obtained embed-
dings are used for the subsequent recommendation task (i.e.,
the control function ψ is typically implemented using a
Transformer) (Gao et al., 2024; Mysore et al., 2023; Kong
et al., 2024). The nonlinear mapping ζ is often an FNN
(Shen et al., 2021; Chang et al., 2023; Penaloza et al., 2024),
which receives the embeddings generated by φ and aligns
them with the user’s preference patterns. Then, we have:

Theorem 5.8. Let F be a function class of embedding-
based controllable learning methods defined by (1), where
the control function is a Transformer and the classifier is
induced by a three-layer FNN. Let Assumptions 4.1 and 4.2
hold. Given a dataset D of size n. Then, for the surrogate
weighted Hamming loss, for any 0 < δ < 1, with probability
at least 1− δ, the following holds for any fz ∈ F:

R(fz) ≤R̂D(fz) + 3M

√
log 2

δ

2n
+

24M√
n

+

(1 + log2(4en2c2µ2) · ln M
√
n

µE
)×

192µV Λ23B3
F (R+ 4BWC

BWV
BWQK

LσR
3)

√
n

,

where BF , BWC
, BWV

, BWQK
, Lσ > 0 are constants.

Proof. According to Theorem 5.4 and 5.6, 2ρ and C in The-
orem 5.1 correspond to 23B3

F and 4BWC
BWV

BWQK
LσR

3.
This is obvious since the processes of upper bounding these
Rademacher complexities are similar. Therefore, we only
need to find the upper bounds for ζ and φ corresponding to
the specific models in Theorem 5.1 and replace them. Then,
according to Theorem 5.1, A := 2ρ(R + C). Finally, the
desired bound can be derived by replacing A in Theorem
4.7 with 23B3

F (R+ 4BWC
BWV

BWQK
LσR

3).

Bounds for Hypernetwork-based Controllable Learning

In hypernetwork-based controllable recommendation mod-
els, the task description z is often represented as a task
indicator or a preference weight vector for various metrics.
In such cases, a hypernetwork is typically chosen to be an
FNN (Chen et al., 2023; Shen et al., 2023; He et al., 2022; Li
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et al., 2023; Yan et al., 2022). The hypernetwork takes z as
input and outputs model parameters, which replace certain
parameters in the main recommendation model (i.e., nonlin-
ear mapping ζ). In this hypernetwork-based paradigm, the
method is model-agnostic, meaning the main recommenda-
tion model can be any representative architecture, including
Transformer-based models for modeling user behavior se-
quences (Kang & McAuley, 2018; Zhou et al., 2020; Wu
et al., 2020; de Souza Pereira Moreira et al., 2021). Then, we
have the following bound for hypernetwork-based models:

Theorem 5.9. Let F be a function class of hypernetwork-
based controllable learning methods defined by (1), where
the control function is a three-layer FNN and the classifier
is induced by a Transformer. Let Assumptions 4.1 and 4.2
hold. Given a dataset D of size n. Then, for the surrogate
weighted Hamming loss, for any 0 < δ < 1, with probability
at least 1− δ, the following holds for any fz ∈ F:

R(fz) ≤R̂D(fz) + 3M

√
log 2

δ

2n
+

24M√
n

+

192µV (1 + log2(4en2c2µ2) · ln M
√
n

µE
)×

4BWC
BWV

BWQK
LσR

3Λ + 24µctrlΛB
3
FR√

n
,

where BF , BWC
, BWV

, BWQK
, Lσ > 0 are constants.

Proof. The proof idea is the same as Theorem 5.8, accord-
ing to Theorem 5.6, 2ρB and C in Theorem 5.2 corre-
spond to 4BWC

BWV
BWQK

LσR
3 and 23ΛB3

FR. Then,
according to Theorem 5.2, A := 2ρB. However, the in-
troduction of the hypernetwork class leads to an additional
last term in Theorem 5.2, hence, for hypernetwork-based
methods, ΛA in Theorem 4.7 should actually be 2ρΛB +
2µctrlC. Finally, the desired bound can be derived by replac-
ing ΛA in Theorem 4.7 with 4BWC

BWV
BWQK

LσR
3Λ +

24µctrlΛB
3
FR.

Remark 5.10. Theorems 5.8 and 5.9 show that the order of
the bounds for specific embedding-based and hypernetwork-
based methods is Õ(1/

√
n). However, their constants are

different. The more complex constant term in Theorem 5.8
corresponds to C in Theorem 5.1, while the more complex
constant term in Theorem 5.9 corresponds to the first term
in Theorem 5.2. They show that to improve the capacity
of models, for embedding-based methods, the control func-
tion often chooses models with higher complexity, while for
hypernetwork-based methods, since the main model is used
for learning, the complexity of models selected for the main
model is higher than that of the hypernetwork. This can
improve the representation ability of models, so it is easier
to learn hypotheses with better generalization in the class.
These theoretical results are consistent with the actual meth-

ods and can provide an explanation for the models selected
in the actual methods cited in Subsection 5.3.

6. Discussion
To understand controllable learning more clearly and intu-
itively, we provide two real-world examples of controllable
learning scenarios: 1) A news aggregator adjusts article
rankings in real time using user-specified rules (e.g., ex-
clude gaming content today) to promote diverse topics. The
control function modifies inputs/parameters to enforce filters
while keeping recommendations relevant. 2) A trading al-
gorithm adapts portfolio strategies based on real-time goals
(e.g., protect capital during market drops) to minimize losses
and maximize risk-adjusted returns. The control function
tunes parameters dynamically to balance objectives with-
out retraining. These examples show how our framework
enables systems to adapt inputs/parameters at test time to
meet evolving task requirements (e.g., content preferences,
market conditions) while ensuring generalization guarantees
for targets like diversity and risk management.

Controllable learning and multi-label learning are different
learning settings, but there are some connections between
them. Specifically, from the perspective of the model output,
the outputs of both controllable learning and multi-label
learning can be expressed as vector-valued outputs. From
the perspective of the model itself and the input, they are
different. Controllable learning places more emphasis on
task requirements, i.e., the learner can adaptively adjust to
dynamically respond to the requirements of different task
targets, while multi-label learning does not involve task
requirements corresponding to different task targets, so con-
trollable learning is not a special case of multi-label learning.
However, when the control function ψ in controllable learn-
ing is ∅, controllable learning will degenerate into a specific
multi-label learning method, i.e., multi-label learning based
on the label-specific representation learning strategy (Zhang
& Zhang, 2024b). At this time, the relevant theoretical
results can be generalized to multi-label learning scenarios.

7. Conclusion
In this paper, we first establish a unified theoretical frame-
work for controllable learning. Then, we propose a novel
vector-contraction inequality and derive a tight bound with
no dependency on c for general controllable learning classes.
In addition, we derive general bounds for two typical con-
trollable learning methods and develop modular theoretical
results for commonly used control and prediction functions.

In future work, we will extend the analysis to more control-
lable learning methods, e.g., controllable generation models,
and derive theoretical results for a broader range of models
to enrich our modular theoretical tool set.

9



Generalization Analysis for Controllable Learning

Acknowledgements
The authors wish to thank the anonymous reviewers and
the area chair for their helpful comments and suggestions,
especially the area chair for his dedicated efforts and self-
less assistance in clarifying all ambiguities, ensuring the
soundness and enhancing the quality of the paper. This
work was supported by the National Science Foundation of
China (62225602, 62376275).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
A16z. Big ideas in tech 2025: Knowledge work

gets personalized. https://a16z.com/
big-ideas-in-tech-2025/, 2025.

Anthony, M. and Bartlett, P. L. Neural network learn-
ing: Theoretical foundations. cambridge university press,
2009.

Artificial Intelligence Safety Summit. The Bletchley decla-
ration. https://www.gov.uk/government/publications/ai-
safety-summit-2023-the-bletchley-declaration/the-
bletchley-declaration-by-countries-attending-the-ai-
safety-summit-1-2-november-2023, 2023.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3:463–482, 2002.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. Spectrally-
normalized margin bounds for neural networks. Ad-
vances in Neural Information Processing Systems, 30
(NIPS 2017):6240–6249, 2017.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight vc-dimension and pseudodimension bounds
for piecewise linear neural networks. Journal of Machine
Learning Research, 20(63):1–17, 2019.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
Inequalities - A Nonasymptotic Theory of Independence.
Oxford University Press, 2013.

Chang, J., Zhang, C., Hui, Y., Leng, D., Niu, Y., Song,
Y., and Gai, K. Pepnet: Parameter and embedding per-
sonalized network for infusing with personalized prior
information. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 3795–3804, 2023.

Chen, S., Wang, Y., Wen, Z., Li, Z., Zhang, C., Zhang, X.,
Lin, Q., Zhu, C., and Xu, J. Controllable multi-objective
re-ranking with policy hypernetworks. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3855–3864, 2023.
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A. Appendix
A.1. Appendix Outline

In the appendix, we give the detailed proofs of our theoretical results in the main paper. Our main proofs include:

• The `∞ Lipschitz continuity of the commonly used losses in controllable learning (Proposition 4.3).

• The novel vector-contraction inequality for `∞ Lipschitz surrogate loss (Lemma 4.4).

• The tight bound of the general controllable learning class for the surrogate weighted Hamming loss (Theorem 4.7).

• The tight bound of the general controllable learning class for the surrogate multi-target bipartite ranking loss (Theorem
4.9).

• The upper bound of the Rademacher complexity for embedding-based controllable learning methods (Theorem 5.1).

• The upper bound of the Rademacher complexity for hypernetwork-based controllable learning methods (Theorem 5.2).

• The upper bound of the Rademacher complexity for FNN (Theorem 5.4).

• The upper bound of the Rademacher complexity for Transformer (Theorem 5.6).

A.2. Preliminaries

A.2.1. DEFINITIONS OF THE CORRESPONDING COMPLEXITY MEASURES

Definition A.1 (`∞ norm covering number). Let F be a class of real-valued functions mapping from X to R. Let
D = {x1, . . . ,xn} be a set with n i.i.d. samples. For any ε > 0, the empirical `∞ norm covering numberN∞(ε,F , D) w.r.t.
D is defined as the minimal number m of a collection of vectors v1, . . . ,vm ∈ Rn such that maxi∈[n]

∣∣∣f (xi)− vji

∣∣∣ ≤ ε
(vji is the i-th component of the vector vj). In this case, we call

{
v1, . . . ,vm

}
an (ε, `∞)-cover of F with respect to D. We

also define N∞(ε,F , n) = supDN∞(ε,F , D).

Definition A.2 (Fat-shattering dimension). Let F be a class of real-valued functions mapping from X to R. We define
the fat-shattering dimension fatε(F) at scale ε > 0 as the largest p ∈ N such that there exist p points x1, . . . ,xp ∈ X and
witnesses s1, . . . , sp ∈ R satisfying: for any δ1, . . . , δp ∈ {−1,+1} there exists f ∈ F with

δi (f(xi)− si) ≥ ε, ∀i = 1, . . . , p.

A.2.2. THE BOUND FOR THE LOSS FUNCTION SPACE

According to McDiarmid’s inequality (McDiarmid et al., 1989) and the symmetrization technique, it is easy to obtain that
for any training dataset D = {(xi,yi) : i ∈ [n]}, `(·, ·) ≤M , with probability at least 1− δ, the following holds:

R(`) ≤ R̂D(`) + 2<̂D(L) + 3M

√
log 2

δ

2n
. (3)

A.3. General Bounds for Controllable Learning

A.3.1. PROOF OF PROPOSITION 4.3

We first prove that the surrogate weighted Hamming loss is µV -Lipschitz continuous with respect to the `∞ norm.∣∣`W (fz(x),y)− `W
(
fz
′
(x),y

)∣∣
=

∣∣∣∣∣∣1c
c∑
j=1

vj`j
(
fzj (x), yj

)
− 1

c

c∑
j=1

vj`j
(
fzj
′(x), yj

)∣∣∣∣∣∣

13
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=
1

c

c∑
j=1

vj
∣∣`j (fzj (x), yj

)
− `j

(
fzj
′(x), yj

)∣∣
≤V 1

c

c∑
j=1

µ
∣∣fzj (x)− fzj

′(x)
∣∣

≤V 1

c
µcmax

j∈[c]

∣∣fzj (x)− fzj
′(x)

∣∣
=µV

∥∥fz(x)− fz
′
(x)
∥∥
∞ .

Then, we prove that the surrogate surrogate multi-target bipartite ranking loss is µ-Lipschitz continuous with respect to the
`∞ norm. ∣∣`R(fz(xi,x

′
i),y)− `R(fz

′
(xi,x

′
i),y)

∣∣
=

∣∣∣∣∣∣1c
c∑
j=1

`j
(
fzj (xi)− fzj (x′i)

)
− 1

c

c∑
j=1

`j
(
fzj
′(xi)− fzj

′(x′i)
)∣∣∣∣∣∣

=
1

c

c∑
j=1

∣∣`j (fzj (xi)− fzj (x′i)
)
− `j

(
fzj
′(xi)− fzj

′(x′i)
)∣∣

=
1

c

c∑
j=1

µ
∣∣(fzj (xi)− fzj (x′i)

)
−
(
fzj
′(xi)− fzj

′(x′i)
)∣∣

=
1

c
µcmax

j∈[c]

∣∣(fzj (xi)− fzj (x′i)
)
−
(
fzj
′(xi)− fzj

′(x′i)
)∣∣

=µ
∥∥fz(xi,x

′
i)− fz

′
(xi,x

′
i)
∥∥
∞ .

A.3.2. PROOF OF LEMMA 4.4

Proof Sketch: First, with the refined Dudley’s entropy integral inequality (Ledent et al., 2021), the Rademacher complexity
of the loss function space L can be bounded by the empirical `∞ norm covering number. Second, according to the Lipschitz
continuity w.r.t the `∞ norm, the empirical `∞ norm covering number of F can be bounded by that of P(F). Third, the
empirical `∞ norm covering number of P(F) can be bounded by the worst-case Rademacher complexity of P(F) through
the fat-shattering dimension. Hence, the problem is transferred to the estimation of the worst-case Rademacher complexity.
Finally, we estimate the lower bound of the worst-case Rademacher complexity of P(F), and then combined with the above
steps, the Rademacher complexity of the loss function space L associated with F can be bounded.

We first introduce the following lemmas:

Lemma A.3 (Khintchine-Kahane inequality (Lust-Piquard & Pisier, 1991)). Let v1, . . . ,vn ∈ H, where H is a Hilbert
space with ‖ · ‖ being the associated p-th norm. Let ε1, . . . , εn be a sequence of independent Rademacher variables. Then,
for any p ≥ 1 there holds

min(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

≤

[
Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥
p] 1

p

≤ max(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

,

and

Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥ ≥ 2−
1
2

[
n∑
i=1

‖vi‖2
] 1

2

.

Lemma A.4 (Lemma A.2 in (Srebro et al., 2010)). For any function class F , any S with a finite sample of size n and any
ε > <̂S(F), we have that

fatε(F) ≤ 4n<̂2
S(F)

ε2
.
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Lemma A.5 (Theorem 12.8 in (Anthony & Bartlett, 2009), (Lei et al., 2023)). If any function in class F takes values in
[−B,B], then for any S with a finite sample of size n, any ε > 0 with fatε(F) < n, we have

logN∞ (ε,F , S) ≤ 1 + d log2

4eBn

dε
log

4nB2

ε2
,

where d = fatε/4(F).

Lemma A.6 (Refined Dudley’s entropy integral inequality (Ledent et al., 2021)). Let F be a real-valued function class
with f ≤ B, f ∈ F , B > 0, and assume that 0 ∈ F . Let S be a finite sample of size n. For any 2 ≤ p ≤ ∞, we have the
following relationship between the Rademacher complexity <̂S(F) and the covering number Np(ε,F , S).

<̂S(F) ≤ inf
α>0

(
4α+

12√
n

∫ B

α

√
logNp(ε,F , S)dε

)
.

Step 1: We first derive the relationship between the empirical `∞ norm covering number N∞(ε,L, D) and the empirical
`∞ norm covering number N∞(ε,P(F), [c]×D).

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:

max
i
|`(fz(xi),yi)− `(f

z ′(xi),yi)|

≤µmax
i
‖fz(xi)− fz

′
(xi)‖∞ (Use Assumption 4.2)

≤µmax
i

max
j
|fzj (xi)− fzj

′ (xi) |

≤µmax
i

max
j
|pj(fz(xi))− pj(fz ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definition of the empirical `∞ covering number, we have that an empirical `∞ cover of P(F) at
radius ε/µ is also an empirical `∞ cover of the loss function space L at radius ε, and we can conclude that:

N∞ (ε,L, D) ≤ N∞
(
ε

µ
,P(F), [c]×D

)
. (4)

Step 2: We show that the empirical `∞ norm covering number of P(F) can be bounded by the fat-shattering dimension,
and the fat-shattering dimension can be bounded by the worst-case Rademacher complexity of P(F).

According to Lemma A.4, for any ε > 2<̂[c]×D(P(F)), we have

fatε(P(F)) ≤
4nc<̂2

[c]×D(P(F))

ε2
.

Then, combining with Lemma A.5, for any ε ∈ (0, 2E], we have

logN∞ (ε,P(F), [c]×D) ≤ 1 + fatε/4(P(F)) log2
2

8eE2nc

ε2

≤ 1 +
64nc<̂2

[c]×D(P(F))

ε2
log2

2

8eE2nc

ε2

≤ 1 +
64nc<̃2

nc(P(F))

ε2
log2

2

8eE2nc

ε2
. (5)

Step 3: According to Assumption 4.1 in the main paper, we can obtain the lower bound of the worst-case Rademacher
complexity <̃nc(P(F)) by the Khintchine-Kahane inequality with p = 1:

<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))
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= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(fz(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f
z(xi))


= sup

[c]×D∈[c]×Xn
Eε

 sup
fz
j ∈Fj

1

nc

n∑
i=1

c∑
j=1

εijf
z
j (xi)


= sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖2≤Λ

n∑
i=1

c∑
j=1

εij〈wj , ζj(φj(xi, ψj(z)))〉


= sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijζj(φj(xi, ψj(z)))‖

≥ sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

Λ

nc

1√
2

 n∑
i=1

c∑
j=1

‖ζj(φj(xi, ψj(z)))‖2
 1

2

. (Use Lemma A.3)

Since ‖ζj(φj(xi, ψj(z)))‖2 ≤ A, we set sup‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]
1
nc

[∑n
i=1

∑c
j=1 ‖ζj(φj(xi, ψj(z)))‖2

] 1
2

=
A√
nc

. So,

<̃nc(P(F)) ≥ ΛA√
2nc

=
E√
2nc

. (6)

Step 4: According to Lemma A.6 and combined with the above steps, we have

<̂D(L)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(ε,L, D)dε

)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(

ε

µ
,P(F), [c]×D)dε

)
(Use inequality (4))

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
1 +

64ncµ2<̃2
nc(P(F))

ε2
log2

2

2eE2ncµ2

<̃2
nc(P(F))

dε

)
(Use inequality (5))

≤ inf
α>0

4α+
12√
n

∫ M

α

√
1 +

64ncµ2<̃2
nc(P(F))

ε2
log2

2(4en2c2µ2)dε


≤ inf
α>0

(
4α+

12M√
n

+ 96µ
√
c<̃nc(P(F)) log2(4en2c2µ2)

∫ M

α

ε−1dε

)

≤12M√
n

+ inf
α>0

(
4α+ 96µ

√
c<̃nc(P(F)) log2(4en2c2µ2) · ln M

α

)
≤12M√

n
+ 96µ

√
c<̃nc(P(F))(1 + log2(4en2c2µ2) · ln M

24µ
√
c<̃nc(P(F))

)

(Choose α = 24µ
√
c<̃nc(P(F)))

≤12M√
n

+ 96µ
√
c<̃nc(P(F))(1 + log2(4en2c2µ2) · ln M

√
n

µE
).
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A.3.3. PROOF OF THEOREM 4.7

Proof Sketch: We upper bound the worst-case Rademacher complexity <̃nc(P(F)), and then combined with Lemma 4.4
and Proposition 4.3 (i.e., substitute µV into µ in Lemma 4.4), the desired bound can be derived.

We upper bound the worst-case Rademacher complexity <̃nc(P(F)) as the following:

<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(fz(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f
z(xi))


= sup

[c]×D∈[c]×Xn
Eε

 sup
fz
j ∈Fj

1

nc

n∑
i=1

c∑
j=1

εijf
z
j (xi)


= sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖2≤Λ

n∑
i=1

c∑
j=1

εij〈wj , ζj(φj(xi, ψj(z)))〉


= sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijζj(φj(xi, ψj(z)))‖

≤ sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

Λ

nc

Eε‖ n∑
i=1

c∑
j=1

εijζj(φj(xi, ψj(z)))‖2
 1

2

(Use Jensen’s Inequality)

≤ sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

Λ

nc

 n∑
i=1

c∑
j=1

‖ζj(φj(xi, ψj(z)))‖2
 1

2

≤ ΛA√
nc
. (Use Lemma A.3) (7)

Then, combining with Proposition 4.3, we have

<̂D(L) ≤ 12M√
n

+ 96µV
√
c<̃nc(P(F))(1 + log2(4en2c2µ2) · ln M

√
n

µE
)

≤ 12M√
n

+
96µV ΛA(1 + log2(4en2c2µ2) · ln M

√
n

µE )
√
n

.

Combining with (3), then

R(fz) ≤ R̂D(fz) +
24M√
n

+
192µV ΛA(1 + log2(4en2c2µ2) · ln M

√
n

µE )
√
n

+ 3M

√
log 2

δ

2n
.

A.3.4. PROOF OF THEOREM 4.9

Proof Sketch: First, for the surrogate multi-target bipartite ranking loss, by using the U-process technique, we define the
empirical Rademacher complexity of a loss function space associated with the controllable learning class F over the set
of i.i.d disjoint positive and negative sample pairs for each j-th label, then with two-sided multiplicative Chernoff bound,
the generalization error can be bounded by <̂D0

(L) = Eε
[
supfz∈F

1
s0

∑s0
i=1

1
c

∑c
j=1 εi`j

(
fzj (xi)− fzj (x′i)

)]
, where

|D0| = s0 is the number of positive and negative sample pairs that can be constructed for any label. Second, combining
with Lemma 4.4 and Proposition 4.3, we have <̂D0

(L) ≤ 12M√
s0

+ 96µ
√
c<̃s0c(P(F))× (1 + log2(4es2

0c
2µ2) · ln M

√
s0

µE ).

Finally, we upper bound the worst-case Rademacher complexity <̃s0c(P(F)) ≤ 2ΛA√
s0c

, the desired bound can be derived.

According to the definitions of bipartite ranking problems in controllable learning in Subection 3.2, for the surrogate
multi-target bipartite ranking loss, we have
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R(fz)− R̂D(fz)

=
∑
j

pjR(fz|j)−
∑
j

tj
n
R̂D(fz|j)

=
∑
j

pjR(fz|j)−
∑
j

pjR̂D(fz|j) +
∑
j

pjR̂D(fz|j)−
∑
j

tj
n
R̂D(fz|j)

=
∑
j

pj

(
R(fz|j)− R̂D(fz|j)

)
+
∑
j

(pj −
∑
j

tj
n

)R̂D(fz|j)

≤
∑
j

pj

∣∣∣R(fz|j)− R̂D(fz|j)
∣∣∣+
∑
j

|pj −
tj
n
|M (8)

Rademacher complexity has proved to be a powerful data-dependent measure of hypothesis space complexity. However,
since the surrogate multi-target bipartite ranking loss involves pairwise functions, a sequence of pairs of i.i.d. individual
observation in (2) is no longer independent, which makes standard techniques in the i.i.d case for traditional Rademacher
complexity inapplicable. We convert the non-sum-of-i.i.d pairwise function to a sum-of-i.i.d form by using permutations in
U-process (Clémençon et al., 2008).

For each task target, we define the empirical Rademacher complexity of a loss function space associated with the controllable
learning class F over the set of i.i.d disjoint positive and negative sample pairs for the j-th label as follows:

<̂Dj (L) = Eε|j

[
sup
fz∈F

1

sj

sj∑
i=1

εi`R(fz(xj+i ,xj−i ))

]
= Eε|j

 sup
fz∈F

1

sj

sj∑
i=1

1

c

c∑
j=1

εi`j

(
fzj (xj+i )− fzj (xj−i )

) , (9)

where each εi is an independent Rademacher random variable. The corresponding expected Rademacher complexity is
defined as <sj (L) = ED|j<̂Dj (L).

We then proof the following lemma:
Lemma A.7. Let qτ : X × X 7→ R be real-valued functions indexed by τ ∈ T where T is some set. If x1, . . . ,xt and
x′1, . . . ,x

′
u are i.i.d., s = min{t, u}, then for any convex non-decreasing function ψ,

Eψ

sup
τ∈T

1

tu

t∑
i=1

u∑
j=1

qτ
(
xi,x

′
j

) ≤ Eψ

(
sup
τ∈T

1

s

s∑
i=1

qτ (xi,x
′
i)

)
.

Proof. The proof of this lemma is inspired by (Clémençon et al., 2008).

Eψ

sup
τ∈T

1

tu

t∑
i=1

u∑
j=1

qτ
(
xi,x

′
j

)
=Eψ

sup
τ∈T

1

t!

∑
πx

1

u!

∑
πx′

1

s

s∑
i=1

qτ

(
xπ(i),x

′
π(i)

)
≤Eψ

 1

t!

∑
πx

1

u!

∑
πx′

sup
τ∈T

1

s

s∑
i=1

qτ

(
xπ(i),x

′
π(i)

) (ψ is nondecreasing)

≤ 1

t!

∑
πx

1

u!

∑
πx′

Eψ

(
sup
τ∈T

1

s

s∑
i=1

qτ

(
xπ(i),x

′
π(i)

))
(Jensen’s inequality)

=Eψ

(
sup
τ∈T

1

s

s∑
i=1

qτ (xi,x
′
i)

)
.
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According to Lemma A.7 and the symmetrization technique, we can obtain

ED|jψ

(
sup
fz∈F

∣∣∣R(fz|j)− R̂D(fz|j)
∣∣∣) ≤ ED|j,ε|jψ

(
2 sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

εi`R(fz(xj+i ,xj−i ))

∣∣∣∣∣
)
. (10)

We denote supfz∈F

∣∣∣ 1
sj

∑sj
i=1 εi`R(fz(xj+i ,xj−i ))

∣∣∣ as HDj
L .

The details of inequality (10) are as follows:

ED|jψ

(
sup
fz∈F

∣∣∣R(fz|j)− R̂D(fz|j)
∣∣∣)

≤ED|jψ

 sup
fz∈F

∣∣∣∣∣∣∣∣∣∣
1∣∣X+

j

∣∣ ∣∣X−j ∣∣
∑

xj+i ∈X
+
j

xj−k ∈X
−
j

(
`R(fz(xj+i ,xj−k ))−R(fz|j)

)
∣∣∣∣∣∣∣∣∣∣


≤ED|jψ

 sup
fz∈F

∣∣∣∣∣∣ 1

tj ! · uj !
∑

πj+,πj−

1

sj

sj∑
i=1

(
`R(fz(xj+πj+(i),x

j−
πj−(i)))−R(fz|j)

)∣∣∣∣∣∣


≤ED|jψ

 sup
fz∈F

1

tj ! · uj !
∑

πj+,πj−

∣∣∣∣∣ 1

sj

sj∑
i=1

(
`R(fz(xj+πj+(i),x

j−
πj−(i)))−R(fz|j)

)∣∣∣∣∣


≤ED|jψ

 1

tj ! · uj !
∑

πj+,πj−

sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

(
`R(fz(xj+πj+(i),x

j−
πj−(i)))−R(fz|j)

)∣∣∣∣∣
 (ψ is nondecreasing)

≤ 1

tj ! · uj !
∑

πj+,πj−

ED|jψ

(
sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

(
`R(fz(xj+π(i),x

j−
π(i)))−R(fz|j)

)∣∣∣∣∣
)

(Jensen’s inequality)

≤ED|jψ

(
sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

(
`R(fz(xj+i ,xj−i ))−R(fz|j)

)∣∣∣∣∣
)

≤ED|jψ

(
sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

(
`R(fz(xj+i ,xj−i ))− ED|j`R(fz(xj+i ,xj−i ))

)∣∣∣∣∣
)

≤ED|jψ

(
sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

(
`R(fz(xj+i ,xj−i ))− ED′|j`R(fz(xj+

′

i ,xj−
′

i ))
)∣∣∣∣∣
)

(D′|j is the set of samples with the same distribution as D|j)

≤ED|j,D′|jψ

(
sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

(
`R(fz(xj+i ,xj−i ))− `R(fz(xj+

′

i ,xj−
′

i ))
)∣∣∣∣∣
)

(Jensen’s inequality)

≤ED|j,D′|j,ε|jψ

(
sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

εi

(
`R(fz(xj+i ,xj−i ))− `R(fz(xj+

′

i ,xj−
′

i ))
)∣∣∣∣∣
)

≤1

2
ED|j,ε|jψ

(
2 sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

εi`R(fz(xj+i ,xj−i ))

∣∣∣∣∣
)

+
1

2
ED′|j,ε|jψ

(
2 sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

−εi`R(fz(xj+
′

i ,xj−
′

i ))

∣∣∣∣∣
)

≤ED|j,ε|jψ

(
2 sup
fz∈F

∣∣∣∣∣ 1

sj

sj∑
i=1

εi`R(fz(xj+i ,xj−i ))

∣∣∣∣∣
)

(D′|j with the same distribution as D|j).

First, since the maximum difference caused by replacing one element in Dj or εi|j is 2M
sj

, according to McDiarmid’s
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inequality, we have

P (|HDj
L −<sj (L)| ≥ ε) ≤ 2e−

ε2sj

2M2 .

Then, according to the tail bound for sub-Gaussian random variables and Theorem 2.1 in (Boucheron et al., 2013), HDj
L is a

sub-Gaussian random variable with variance proxy 16M
2

sj
. With the definition of the sub-Gaussian random variable, we have

ED|j,ε|jetH
Dj
L ≤ et<sj (L)+ 8t2M2

sj , ∀t > 0. (11)

Then, for any ε > 0, we have

P

(
sup
fz∈F

∣∣∣R(fz|j)− R̂D(fz|j)
∣∣∣ ≥ ε|j)

=P
(
et supfz∈F |R(fz|j)−R̂D(fz|j)| ≥ etε|j

)
≤
ED|je(t supfz∈F |R(fz|j)−R̂D(fz|j)|)

etε
(Use Markov’s Inequality)

≤
ED|j,ε|je2tH

Dj
L

etε
(Use inequality (10) with ψ(x) = etx)

≤e
2t<sj (L)+ 32t2M2

sj

etε
(Use inequality (11)).

We set e
2t<sj (L)+

32t2M2

sj

etε = δ, then we have

ε = 2<sj (L) +
32tM2

sj
+

ln 1
δ

t
.

Hence, we upper bound the term with probability at least 1− δ

sup
fz∈F

∣∣∣R(fz|j)− R̂D(fz|j)
∣∣∣

≤2<sj (L) +
32tM2

sj
+

ln 1
δ

t

≤2<sj (L) + 8M

√
2 ln 1

δ

sj
. (12)

Next, we upper bound the term
∑
j |pj −

tj
n |.

First, since tj ∼ Binomial(n, pj), we have E = npj . With the two-sided multiplicative Chernoff bound, we have

P (|tj − npj | ≥ rnpj) ≤ 2e−
r2npj

3 , ∀r ∈ (0, 1).
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Then, we have

P

∑
j

| tj
n
− pj | ≥ r


≤P

(
∪j{|

tj
n
− pj | ≥ rpj}

)
≤
∑
j

P

(
| tj
n
− pj | ≥ rpj

)
(Use Union Bound Inequality)

≤
∑
j

2e−
r2npj

3

≤2ce−
r2nminj pj

3 .

We set 2ce−
r2nminj pj

3 = δ, then we have r =
√

3 ln 2c
δ

nminj pj
. Hence, the following holds with probability at least 1− δ:

∑
j

| tj
n
− pj | ≤

√
3 ln 2c

δ

nminj pj
. (13)

Since P
(
| tjn − pj | ≥ rpj

)
≤ P

(
∪j{| tjn − pj | ≥ rpj}

)
, according to the proof process of inequality (13), we also have

the following holds with probability at least 1− δ:

| tj
n
− pj | ≤ pj

√
3 ln 2c

δ

nminj pj
.

Solving the above inequality yields tj ≥ npj(1−
√

3 ln 2c
δ

nminj pj
). Similarly, we have |ujn − (1− pj)| ≤ (1− pj)

√
3 ln 2c

δ

nminj pj
,

and solving this inequality yields uj ≥ n(1− pj)(1−
√

3 ln 2c
δ

nminj pj
).

Hence, we have the following holds with probability at least 1− δ:

sj = min{tj , uj} ≥ min{npj(1−

√
3 ln 2c

δ

nminj pj
), n(1− pj)(1−

√
3 ln 2c

δ

nminj pj
)}. (14)

In order to ensure that for every j-th label, disjoint positive and negative sample pairs can be constructed, we need to derive
the lower bound for minj{sj} to obtain the number of disjoint positive and negative sample pairs that can be constructed for
every j-th label. Since

sj ≥ min
j
{sj} = min

j
{min{tj , uj}}

≥min{min
j
{npj(1−

√
3 ln 2c

δ

nminj pj
)},min

j
{n(1− pj)(1−

√
3 ln 2c

δ

nminj pj
)}}

= min{nmin
j
pj(1−

√
3 ln 2c

δ

nminj pj
), nmin

j
(1− pj)(1−

√
3 ln 2c

δ

nminj pj
)}

≥min{1

2
nmin

j
pj ,

1

2
nmin

j
(1− pj)} (Assume that n ≥

12 ln 2c
δ

minj pj
)

=
1

2
nmin{min

j
pj ,min

j
(1− pj)}

:=
1

2
s0 (Define s0 = nmin{min

j
pj ,min

j
(1− pj)}),
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then we have sj ≥ 1
2s0 with probability at least 1− δ.

According to inequality (12) and Union bound Inequality, we have the following holds with probability at least 1− δ:

∑
j

pj

∣∣∣R(fz|j)− R̂D(fz|j)
∣∣∣ ≤∑

j

pj

(
2<sj (L) + 8M

√
2 ln c

δ

sj

)
(15)

Combining inequalities (8), (15), (13) and Union bound Inequality, we have the following holds with probability at least
1− δ:

R(fz)− R̂D(fz)

≤
∑
j

pj

∣∣∣R(fz|j)− R̂D(fz|j)
∣∣∣+
∑
j

|pj −
tj
n
|M

≤
∑
j

pj

2<sj (L) + 8M

√
2 ln 2c

δ

sj

+M

√
3 ln 4c

δ

nminj pj

≤2
∑
j

pj<sj (L) + 8M
∑
j

pj

√
2 ln 2c

δ

sj
+M

√
3 ln 4c

δ

nminj pj
(16)

Next, we transform <sj (L) in inequality (16) into <̂Dj (L), according to McDiarmid’s inequality, it is easy to obtain that the
following holds with probability at least 1− δ:

<sj (L) ≤ <̂Dj (L) +M

√
ln 1

δ

2sj
.

With Union bound Inequality, we have the following holds with probability at least 1− δ:∑
j

pj<sj (L)

≤
∑
j

pj

(
<̂Dj (L) +M

√
ln c

δ

2sj

)

≤
∑
j

pj<̂Dj (L) +M
∑
j

pj

√
ln c

δ

2sj
. (17)

Combining inequalities (16), (17), and Union bound Inequality, we have the following holds with probability at least 1− δ:

R(fz)− R̂D(fz)

≤2
∑
j

pj<̂Dj (L) + 2M
∑
j

pj

√
ln 2c

δ

2sj
+ 8M

∑
j

pj

√
2 ln 4c

δ

sj
+M

√
3 ln 8c

δ

nminj pj

≤2
√

2
∑
j

pj<̂D0
(L) + 2M

∑
j

pj

√
ln 2c

δ

s0
+ 8M

∑
j

pj

√
4 ln 4c

δ

s0
+M

√
3 ln 8c

δ

s0
(Use sj ≥

1

2
s0 and nmin

j
pj ≥ s0)

≤2
√

2
∑
j

pj<̂D0
(L) + 22M

∑
j

pj

√
ln 8c

δ

s0
, (18)

where <̂D0
(L) = Eε

[
supfz∈F

1
s0

∑s0
i=1 εi`R(fz(xi,x

′
i))
]

= Eε
[
supfz∈F

1
s0

∑s0
i=1

1
c

∑c
j=1 εi`j

(
fzj (xi)− fzj (x′i)

)]
.
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Then, according to Lemma 4.4 and Proposition 4.3, we have

<̂D0
(L) ≤ 12M

√
s0

+ 96µ
√
c<̃s0c(P(F))× (1 + log2(4es2

0c
2µ2) · ln

M
√
s0

µE
).

We then upper bound the worst-case Rademacher complexity <̃s0c(P(F)) as the following:

<̃s0c(P(F))

= sup
[c]×D0∈[c]×X s0

<̂[c]×D0
(P(F))

= sup
[c]×D0∈[c]×X s0

Eε

 sup
pj(fz(xi))∈P(F)

1

s0c

s0∑
i=1

c∑
j=1

εijpj(f
z(xi,x

′
i))


= sup

[c]×D0∈[c]×X s0
Eε

 sup
fz
j ∈Fj

1

s0c

s0∑
i=1

c∑
j=1

εij
(
fzj (xi)− fzj (x′i)

)
= sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[s0],j∈[c]

1

s0c
Eε

 sup
‖wj‖2≤Λ

s0∑
i=1

c∑
j=1

εij〈wj , ζj(φj(xi, ψj(z)))− ζj(φj(x′i, ψj(z)))〉


= sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[s0],j∈[c]

Λ

s0c
Eε‖

s0∑
i=1

c∑
j=1

εij (ζj(φj(xi, ψj(z)))− ζj(φj(x′i, ψj(z)))) ‖

≤ sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[s0],j∈[c]

2Λ

s0c
Eε‖

s0∑
i=1

c∑
j=1

εijζj(φj(xi, ψj(z)))‖

≤ sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[s0],j∈[c]

2Λ

s0c

Eε‖ s0∑
i=1

c∑
j=1

εijζj(φj(xi, ψj(z)))‖2
 1

2

(Use Jensen’s Inequality)

≤ sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[s0],j∈[c]

2Λ

s0c

 s0∑
i=1

c∑
j=1

‖ζj(φj(xi, ψj(z)))‖2
 1

2

≤ 2ΛA
√
s0c

. (Use Lemma A.3) (19)

Then, we have

<̂D0(L) ≤ 12M
√
s0

+
192µΛA× (1 + log2(4es2

0c
2µ2) · ln M

√
s0

µE )
√
s0

.

Combining with (18), then

R(fz) ≤ R̂D(fz) +
24
√

2Mq
√
s0

+
384
√

2qµΛA× (1 + log2(4es2
0c

2µ2) · ln M
√
s0

µE )
√
s0

+ 22Mq

√
ln 8c

δ

s0
,

where q =
∑
j pj .

B. General Bounds for Typical Controllable Learning Methods
B.1. Proof of Theorem 5.1

Proof Sketch: First, according to the definition of `2 norm, we have that the upper bound of ‖φj(xi, ψj(z))‖ is R+ C for
any i ∈ [n], j ∈ [c]. Then, using Jensen’s Inequality and Khintchine-Kahane inequality, the desired bound can be derived.

First, according to the definitions in Subsection 5.1 and `2 norm, we have
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‖φj(x, ψj(z))‖ := ‖Concate(x, ψj(z))‖ := ‖Concate(x,aj)‖
=‖[x1, . . . , xd, a

j
1, . . . , a

j
d′ ]
>‖

=

√√√√ d∑
i=1

|xi|2 +

d′∑
i′=1

|aji′ |2

≤

√√√√ d∑
i=1

|xi|2 +

√√√√ d′∑
i′=1

|aji′ |2

=‖x‖+ ‖aj‖
=‖x‖+ ‖ψj(z)‖

Since ‖xi‖ ≤ R, ‖ψj(z)‖ ≤ C for any i ∈ [n], j ∈ [c], we have that for any i ∈ [n], j ∈ [c]:

‖φj(xi, ψj(z))‖ ≤ R+ C. (20)

According to the proof of Theorem 4.7 (i.e., the first five equations in (7)), we have

<̃nc(P(F)) = sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijζj(φj(xi, ψj(z)))‖ (21)

Then, we upper bound the worst-case Rademacher complexity <̃nc(P(F)) as the following:

<̃nc(P(F))

= sup
‖ζj(φj(xi,ψj(z)))‖2≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijζj(φj(xi, ψj(z)))‖

≤ sup
‖φj(xi,ψj(z)‖2≤B:i∈[n],j∈[c]

2Λρ

nc
Eε‖

n∑
i=1

c∑
j=1

εijφj(xi, ψj(z))‖ (Use ζj is ρ-Lipschitz)

≤ sup
‖φj(xi,ψj(z))‖2≤B:i∈[n],j∈[c]

2ρΛ

nc

Eε‖ n∑
i=1

c∑
j=1

εijφj(xi, ψj(z))‖2
 1

2

(Use Jensen’s Inequality)

≤ sup
‖φj(xi,ψj(z))‖2≤B:i∈[n],j∈[c]

2ρΛ

nc

 n∑
i=1

c∑
j=1

‖φj(xi, ψj(z))‖2
 1

2

(Use Lemma A.3)

≤2ρΛ(R+ C)√
nc

. (Use inequality (20)) (22)

B.2. Proof of Theorem 5.2

Proof Sketch: Since hypernetwork-based controllable learning method is two-stage, the hypernetwork is used to generate a
vector of weights for each task target in the first stage, and then these generated parameter vectors are used in the second
stage learning. Therefore, the corresponding whole function class is actually denoted asH = F + Lµctrl

◦ G
⊗
c. Since the

generated parameter vectors in the first stage are actually used as fixed parameters rather than inputs in the second stage, in
order to fully consider the capacity of the hypernetwork corresponding to the first stage, it is necessary and appropriate to
define the whole function class as the sum of the function classes F + Lµctrl

◦ G
⊗
c corresponding to the models of these

two stages. Then, the upper bound of the worst-case Rademacher complexity of the whole function class is transformed into
upper bounding the worst-case Rademacher complexity <̃nc(P(F)) and <̃nc(Lµctrl

◦ P(G
⊗
c)) respectively. Finally, using

Jensen’s Inequality and Khintchine-Kahane inequality, the desired upper bounds can be derived respectively.
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Since hypernetwork-based controllable learning method is two-stage, the hypernetwork is used to generate a vector of
weights for each task target in the first stage, and then the generated parameter vectors are used in the second stage learning.
Therefore, the corresponding whole function class is actually denoted asH = F + Lctrl ◦ G

⊗
c. Then, we have

<̃nc(P(H))

=<̃nc(P(F + Lctrl ◦ G
⊗
c))

=<̃nc(P(F) + P(Lctrl ◦ G
⊗
c))

=<̃nc(P(F) + Lctrl ◦ P(G
⊗
c))

≤<̃nc(P(F)) + <̃nc(Lctrl ◦ P(G
⊗
c)). (Use Theorem 12 in (Bartlett & Mendelson, 2002))

Hence, the upper bound of the worst-case Rademacher complexity for hypernetwork-based controllable learning methods is
transformed into upper bounding the worst-case Rademacher complexity <̃nc(P(F)) and <̃nc(Lctrl◦P(G

⊗
c)) respectively.

We first upper bound the worst-case Rademacher complexity <̃nc(P(F)) as the following:

<̃nc(P(F)) = sup
‖ζj(φj(xi;wψj ))‖2≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijζj(φj(xi;wψj ))‖ (Use inequality (21))

≤ sup
‖φj(xi;wψj ‖2≤B:i∈[n],j∈[c]

2Λρ

nc
Eε‖

n∑
i=1

c∑
j=1

εijφj(xi;wψj )‖ (Use ζj is ρ-Lipschitz)

≤ sup
‖φj(xi;wψj )‖2≤B:i∈[n],j∈[c]

2ρΛ

nc

Eε‖ n∑
i=1

c∑
j=1

εijφj(xi;wψj )‖2
 1

2

(Use Jensen’s Inequality)

≤ sup
‖φj(xi;wψj )‖2≤B:i∈[n],j∈[c]

2ρΛ

nc

 n∑
i=1

c∑
j=1

‖φj(xi;wψj )‖2
 1

2

≤ 2ρΛB√
nc

. (Use Lemma A.3) (23)

We then upper bound the worst-case Rademacher complexity <̃nc(Lctrl ◦ P(G
⊗
c)) as the following:

<̃nc(Lctrl ◦ P(G
⊗
c))

= sup
[c]×Z∈[c]×Zn

Eε

 sup
`ctrl(ψj(z))∈Lctrl◦Gj

1

nc

n∑
i=1

c∑
j=1

εij`ctrl(ψj(zi))


≤ sup
ψj(zi)∈Gj

2µctrlEε

 1

nc

n∑
i=1

c∑
j=1

εijψj(zi)

 (Use `ctrl is µctrl-Lipschitz)

≤ sup
|ψj(zi)|≤C:i∈[n],j∈[c]

2µctrl

nc

 n∑
i=1

c∑
j=1

ψj(zi)
2

 1
2

(Use Lemma A.3)

≤2µctrlC√
nc

.

Hence, we can derive the upper bound of the worst-case Rademacher complexity for hypernetwork-based controllable
learning methods:

<̃nc(P(H)) ≤ 2ρΛB√
nc

+
2µctrlC√

nc
.
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B.3. Proof of Theorem 5.4

We upper bound the Rademacher complexity <̂D(F) of 5 layer FNN as the following:

<̂D(F) = Eε

[
sup
f∈F

1

n

n∑
i=1

εif (xi)

]

=Eε

[
sup

‖w‖≤Λ,σ

1

n

n∑
i=1

εiw
>σ(W5σ(W4 · · ·σ(W1xi)))

]

≤ΛEε sup
σ

1

n
‖

n∑
i=1

εiσ(W5σ(W4 · · ·σ(W1xi)))‖

≤2ΛEε sup
‖W5‖≤BF ,σ

1

n
‖

n∑
i=1

εiW5σ(W4 · · ·σ(W1xi))‖ (ReLU activation is 1-Lipschitz)

≤2ΛBFEε sup
σ

1

n
‖

n∑
i=1

εiσ(W4 · · ·σ(W1xi))‖

≤22ΛBFEε sup
‖W4‖≤BF ,σ

1

n
‖

n∑
i=1

εiW4σ(W3 · · ·σ(W1xi))‖

≤22ΛB2
FEε sup

σ

1

n
‖

n∑
i=1

εiσ(W3σ(W2σ(W1xi)))‖

≤23ΛB2
FEε sup

‖W3‖≤BF ,σ

1

n
‖

n∑
i=1

εiW3σ(W2σ(W1xi))‖

≤23ΛB3
FEε sup

σ

1

n
‖

n∑
i=1

εiσ(W2σ(W1xi))‖

≤24ΛB3
FEε sup

‖W2‖≤BF ,σ

1

n
‖

n∑
i=1

εiW2σ(W1xi)‖

≤24ΛB4
FEε sup

σ

1

n
‖

n∑
i=1

εiσ(W1xi)‖

≤25ΛB4
FEε sup

‖W1‖≤BF

1

n
‖

n∑
i=1

εiW1xi‖

≤25ΛB5
FEε

1

n
‖

n∑
i=1

εixi‖

≤25ΛB5
F

n

[
Eε‖

n∑
i=1

εixi‖2
] 1

2

(Use Jensen’s Inequality)

≤25ΛB5
F

n

[
n∑
i=1

‖xi‖2
] 1

2

(Use Lemma A.3)

≤25ΛB5
FR√
n

.

B.4. Proof of Theorem 5.6

We first introduce the following lemma:

Lemma B.1 (Corollary A.7 in (Edelman et al., 2022)). For vectors θ1, θ2 ∈ Rp,

‖softmax (θ1)− softmax (θ2)‖1 ≤ 2 ‖θ1 − θ2‖∞ .
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Then, we upper bound the Rademacher complexity <̂D(F) of the scalar one layer Transformer as the following:

<̂D(F) = Eε

[
sup

w>y[CLS]∈F

1

n

n∑
i=1

εiw
>W>C σ

(
W>V X

>
i softmax

(
XiW

>
QKx[CLS]

))]

=Eε

[
sup

‖w‖≤Bw,σ

1

n

n∑
i=1

εi〈w,W>C σ
(
W>V X

>
i softmax

(
XiW

>
QKx[CLS]

))
〉

]

≤BwEε sup
‖WC‖≤BWC ,σ

1

n
‖

n∑
i=1

εiW
>
C σ

(
W>V X

>
i softmax

(
XiW

>
QKx[CLS]

))
‖

≤BwBWC

n
Eε sup

σ
‖

n∑
i=1

εiσ
(
W>V X

>
i softmax

(
XiW

>
QKx[CLS]

))
‖

≤2BwBWC
Lσ

n
Eε sup

WV ,WQK

‖
n∑
i=1

εiW
>
V X

>
i softmax

(
XiW

>
QKx[CLS]

)
‖

≤2BwBWC
BWV

Lσ
n

Eε sup
WQK

‖
n∑
i=1

εiX
>
i softmax

(
XiW

>
QKx[CLS]

)
‖

≤2BwBWC
BWV

Lσ
n

Eε sup
i,WQK

‖
n∑
i=1

εiX
>
i ‖2,∞‖softmax

(
XiW

>
QKx[CLS]

)
‖1 (Use ‖Px‖ ≤ ‖P‖2,∞‖x‖1)

≤2BwBWC
BWV

Lσ
n

sup
i,WQK

‖softmax
(
XiW

>
QKx[CLS]

)
‖1Eε‖

n∑
i=1

εiX
>
i ‖2,∞

≤4BwBWC
BWV

Lσ
n

sup
i,WQK

‖XiW
>
QKx[CLS]‖∞Eε‖

n∑
i=1

εiX
>
i ‖2,∞ (Use Lemma B.1)

=
4BwBWC

BWV
Lσ

n
sup
i,WQK

max
t
‖xit
>
W>QKx[CLS]‖Eε‖

n∑
i=1

εiX
>
i ‖2,∞

≤4BwBWC
BWV

Lσ
n

sup
i,WQK

max
t
‖WQKxit‖‖x[CLS]‖Eε‖

n∑
i=1

εiX
>
i ‖2,∞

≤
4BwBWC

BWV
BWQK

Lσ

n
max
i,t
‖xit‖‖x[CLS]‖Eε‖

n∑
i=1

εiX
>
i ‖2,∞

≤
4BwBWC

BWV
BWQK

LσR
2

n
Eε‖

n∑
i=1

εiX
>
i ‖2,∞

=
4BwBWC

BWV
BWQK

LσR
2

n
max
t

Eε‖
n∑
i=1

εix
i
t‖

≤
4BwBWC

BWV
BWQK

LσR
2

n
max
t

[
Eε‖

n∑
i=1

εix
i
t‖2
] 1

2

(Use Jensen’s Inequality)

≤
4BwBWC

BWV
BWQK

LσR
2

n
max
t

[
n∑
i=1

‖xit‖2
] 1

2

(Use Lemma A.3)

≤
4BwBWC

BWV
BWQK

LσR
3

√
n

.
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