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ABSTRACT

Current Large Language Models (LLMs) are able to generate texts that are seem-
ingly indistinguishable from those written by human experts. While offering great
opportunities, such technologies also pose new challenges in education, science,
information security, and a multitude of other areas. To add up, current approaches
in LLM text detection either are computationally expensive or need the LLMs’ in-
ternal computational states, both of which hinder their public accessibility. To
provide better applications for users, especially, in lower-resource settings, this
paper presents a new paradigm of metric-based detection for LLM contents that
is able to balance among computational costs, accessibility, and performances.
Specifically, the detection is performed through utilizing a metric framework to
evaluate the similarity between a given text to an equivalent example generated
by LLMs and determine the former’s origination. Additionally, we develop and
publish five datasets totalling over 95,000 prompts and responses from human and
GPT-3.5 TURBO or GPT-4 TURBO for benchmarking. In terms of performances,
our framework maintains 90-150% F1 scores of a finetuned RoBERTa, while only
spends 20-60% of times in training and inference across experiment settings.

1 INTRODUCTION

The advancement in computing technologies has enabled the emergence of large language models
(LLMs) (Zhao et al., 2023) packaging up to hundreds of billions of parameters. Examples of recent
LLMs are GPT-3 (Brown et al., 2020) at 175 billion parameters, PaML (Chowdhery et al., 2022),
540 billion parameters, and GPT-4, (OpenAI, 2023) 170 trillion parameters. These technologies
have brought tremendous potentials to numerous aspects of lives. However, LLMs also come with
major challenges. It is increasingly more difficult to determine if texts are written by human or
LLMs. This poses a major issue in multiple areas such as education, science, and information
security. To add up, detection methods for LLM contents are not widely accessible. A large number
of detection methods rely on training or finetuning computationally expensive supervised classifiers
(Guerrero & Alsmadi, 2022). Other detection algorithms such as DetectGPT (Mitchell et al., 2023)
or watermarking (Kirchenbauer et al., 2023) need access to the LLMs’ internal computations, which
is not always available to the public and therefore severely hinder their accessibility.

Aiming to assist a wider range of users, especially those who are using lower-resource systems,
we propose a metric-based approach for LLM content detection that is balanced among compu-
tational costs, accessibility, and performances. Specifically, the detection methods will rely on
comparing a given text to an AI-generated reference from LLMs. Having the assistance from the
generative models, a large part of the computational burdens will be relieved from the detection
models. In terms of architectures, the detection framework consists of a pretrained embedding lan-
guage model and an empirically-designed deep metric network. The metric network is trained to
signify the similarity between LLM responses while decreasing that between LLM and human re-
sponses. During the decision making phase, the context of a given text is first prompted to a LLM
to obtain a LLM-reference. The text and the LLM-equivalence are then fed to a metric framework
to obtain their similarity metric. Finally, the metric is compared against a selected threshold to
determine the text origination.
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(a) GPT-4 TURBO responses for the same context (b) Decision making framework

Figure 1: Example of repetition in LLM texts and the metric-based detection framework

A metric model can be trained either in pairs or in triplets of instances. Therefore, we further de-
velop five text datasets in the form of context - triplets of responses (one from human and two from
LLMs). Using GPT-3.5 TURBO, we obtain 59, 945 entries from the Natural Questions (NQ) dataset
(Kwiatkowski et al., 2019), 18, 813 from the Stanford Question-Answering Database (SQUAD) (Ra-
jpurkar et al., 2016), 4, 419, Scientific Questions (SciQ) dataset (Johannes Welbl, 2017), and 2, 071,
from Wikipedia Scientific Glossary (Wiki) (Wikipedia, 2017). Additionally, we sample 10, 290
prompts and human texts the NQ and SQUAD data and generate LLM texts using GPT-4 TURBO.
Experiment studies show that our beset architectures maintain F1 scores mostly in between 0.87 to
0.95 across the tested corpora in both same-corpus and out-of-corpus settings, either with or without
paraphrasing. Our framework also achieves much better training and inference time (20 - 60%) than
a supervised RoBERTa (Liu et al., 2019). To sum up, our contributions are as follows.

1. A metric-based approach that detects LLM contents that is more light-weighted and does
not require access to any LLMs’ internal computations. Instead, a given text is compared
to an equivalent reference from LLMs. The similarity of the two responses decides if the
former was written by LLM or a human.

2. Empirically designed end-to-end deep architectures that transform text data into embed-
ding vectors of which distances between LLM texts are minimized and that between LLM
and human-written texts are maximized. The architecture is trained using a same-context
sampling strategy to further reduce complexity.

3. Five text datasets totaling over 95,000 instances of contexts and triplet of responses in
topics ranging from daily lives to sciences for benchmarking. All datasets will be available
for the community after the publication of this paper.

The rest of the paper is organized as follows. Section §2 presents the developed methodologies in
details, including the detection algorithm, the sampling strategy, and the framework architecture.
Our experiment study is discussed in Section §3. Finally, we conclude our paper in Section §4.

2 METHODOLOGY

Due to the probabilistic models that LLMs use to create their contents, the same context will result
in repeated patterns in the generated texts (Welleck et al., 2019; 2020). Key technologies such as
autoregressive generation (Graves, 2013; Sutskever et al., 2014), beam search (Wiseman & Rush,
2016), and next-token sampling (Fan et al., 2018; Holtzman et al., 2019) yield outputs based on
probabilities of vocabulary tokens being the next ones, all of which are initialized from the start-
ing context. Therefore, same contexts will tend to result in similar pools of tokens for selection
which leads to repetitions of patterns. As an illustration, Figure 1(a) shows an example of responses
from GPT-3.5 TURBO for the prompt ”briefly explain machine learning” in four separate sessions.
Similar phrases across the responses are bolded and highlighted with the same colors.

With this observation, the detection framework will first learn to optimize similarities among text
data. To make decision, a given text is compared to a LLM-generated reference. If the similarity is
over a selected threshold, the text is classified as originated from LLM, otherwise, a person. This
process is illustrated in Figure 1(b). Next, we discuss the metric learning problem in the context of
LLM content detection and the architecture of the complete framework, respectively.
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2.1 METRIC LEARNING WITH SAME-CONTEXT SAMPLING

Metric models can be trained in pairs or triplets of inputs. Training in pairs, the model learns to
maximize similarities of texts generated by LLMs and minimize that between human texts and LLM
texts through Contrastive Learning (Bengio & Delalleau, 2009). Given a metric model M(·), the
constrastive learning objective is to minimize

∑
data(M(Xi, Xj)−Yij)

2 with Xi and Xj being two
text instances in training; Yij = 0 if both Xi and Xj are from LLMs, and Yij = 1 otherwise. On the
other hand, triplet training (Schroff et al., 2015) utilizes two inputs from LLMs, Xi and Xj , and one
from human, Xh. The training objective in this case is to learn a metric that is smaller between two
LLM texts, and higher when one input is from human. Mathematically, the model learns through
minimizing

∑
data max(M(Xi, Xj)−M(Xh, Xj) + α, 0) where α is a margin hyperparameter.

Sampling pairs or triplets randomly, the models have to optimize similarities among texts from
different topics which may result in a more complex training problem. This complexity then either
requires larger numbers of parameters or makes the models difficult to converge. To simplify the
problem, pairs or triplets will only come from similar contexts. Overall, the ultimate goal of metric
learning in identifying LLM generated contents is to increase similarity among LLM texts from
similar contexts, and decrease that between LLM texts and human texts, under the same condition.

2.2 MODEL ARCHITECTURE

The overall framework consists of an embedding model and a metric model. The embedding lan-
guage model vectorizes raw text data which are then fed to the metric model to output their distance
values. Decision making is performed based on the final output distances. To save computational
resources as well as utilize knowledge from external domains, we use a pretrained MPNet (Song
et al., 2020) which is available in the SentenceTransformer (Reimers & Gurevych, 2019) library.
We then develop two metric models, one at the full-text level, and the other, the sentence level.

The first metric model takes two full-text embeddings from MPNet and transforms them to higher-
level vector representations. Then, the Euclidean distance of the two vectors is computed and used
as the metric of the two original inputs. Architecture-wise, the full-text model consists of stacked
residual blocks similar to that in the transformer model (Vaswani et al., 2017), each of which has a
Rectified Linear Unit (ReLU) layer and a linear layer. The output of the linear layer is then added
with the original block input and normalized to the final block output.

The sentence-level metric network receives an array of MPNet sentence embeddings from each input
and is similar to the transformer architecture. Specifically, the model has two towers that take MPNet
sentence embeddings from the input text and its LLM reference. Each set of embeddings undergoes
a set of self-attention and feed-forward blocks. The outputs from the feed-forward blocks of the two
towers are then merged in a cross-attention block. The block of self-attention, feed-forward, and
cross-attention, is stackable as needed. Lastly, the output of the final cross-attention block is fed to
a feed-forward architecture, flattened, and go through a single-output Sigmoid layer to generate the
metric of the two original inputs. An illustration of the two frameworks is in Figure 2.

3



Published as a conference paper at ICLR 2024

(a) Same-corpus (b) Paraphrased same-corpus (c) Out of corpus

Figure 3: Models’ F1 (a)(b)(c) in experiment study

3 EXPERIMENT STUDY

We test our models in three experiment settings: same-corpus, same-corpus with paraphraser, and
out-of-corpus. In the two same-corpus settings, the five datasets mentioned earlier are split into
80% training, 10% validation, and 10% testing. In the same-corpus with paraphraser experiment,
we apply the Parrot model (Damodaran, 2021), which is a finetuned T5 language model (Raf-
fel et al., 2020), on all inputs. Then, the original version and paraphrased version of the train-
ing and validation data are merged, whereas the testing data only comes from the paraphraser.
Lastly, in the out-of-corpus setting, we perform four training/testing pairs: NQ/SQUAD, SciQ/Wiki,
NQ+SciQ/SQUAD+Wiki (All GPT3), and GPT4-NQ/GPT4-SQUAD (GPT4). In all cases, the ratio
of training-validation is 90%−10%. After finetuning, the final full-text architecture consists of three
residual blocks and the sentence framework consists of three attention block and three feed-forward
block. For models trained with triplet loss, α is set at 0.25. In all architectures, the number of neu-
rons in all blocks’ hidden layers are fixed at 768 which is the dimensionality of embeddings output
by the pretrained MPNet. To evaluate our model, we use F1 score. Furthermore, to make prediction,
a distance threshold is selected. If a response’s distance to its corresponding LLM reference is above
the threshold, the response is labeled as human-written, otherwise, it is LLM-generated. We finetune
the distance threshold separately each test run by optimize thing F1 in the validation data.

As a baseline, we apply the distance threshold approach on the embedding generated by the stan-
dalone pretrained MPNet (denoted MPNet). We also attempted to train classifiers on the responses’
MPNet embeddings, however, these supervised classifiers failed to converge even at much higher
numbers of parameters compared to the metric models (up to 20 layers - 12 million parameters).
While computationally expensive, we include finetuning a large language model, namely, RoBERTa,
as another baseline. For illustration, using a T4 graphical unit, the full-text model uses 8 seconds for
one epoch in the NQ data (about 51, 250 triplets in training and validation), and the sentence model
needs about three minutes. In contrast, one epoch of finetuning DistilBERT (Sanh et al., 2019) on
the NQ data split takes 70 minutes, and RoBERTa (Liu et al., 2019), 125 minutes. Probabilistic
and watermarking approaches are not considered as they need accesses to internal computations of
LLMs and do not fit in our target accessibility.

To measure performance, all models are tested in 10 runs. Hyper-parameters are fixed across runs
of the same experiment settings. The model F1 are illustrated as bar charts in Figure 3. First,
RoBERTa outperforms all models in the same corpus settings, however, the metric models maintain
85-95% of its performance. In the out-of-corpus setting, RoBERTa drops significantly to about 0.67
in three over four experiments. In metric models, the baseline MPNet models perform well in all
experiments and achieve F1 of 0.84 − 0.96. Furthermore, contrastive learning models outperform
triplet learning ones in the majority of experiments. In terms of data granularity, sentence-level
models seem to obtain very good results but only when the data size is large enough, i.e., in the
NQ or SQUAD data . This is explainable as their higher complexity leading to more data required
to generalize well, especially to out-of-corpus data. More specifically, the sentence model largely
outperforms others in NQ and SQUAD data in same-corpus settings, however, gradually becomes
worse in the GPT4, SciQ, and Wiki data. In the out-of-corpus setting, sentence models generalize
quite poorly, especially, the triplet learning ones.
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(a) Epoch time with embedding (b) Epoch time without embedding (c) Inference time

Figure 4: Comparison of metric models and RoBERTa in time complexity in seconds (c)(d)(e)

Finally, we compare the metric framework to RoBERTa in time complexity as showed in Figure 4
(a)(b)(c). In our experiments, the variation in time of the metric models is negligible, therefore, we
generalize them as metric model. The five markers in the plots represent the datasets, i.e., Wiki,
SciQ, GPT4, SQUAD, and NQ, in increasing order of data sizes (number of individual texts). For
one training epoch, the metric model only needs approximately 20-30% of the time that RoBERTa
needs to converge, as in Figure 4 (a). This result, however, also include the embedding time of MP-
Net before the metric model actually starts training. The time to train a single epoch is significantly
lower in the metric model, from milliseconds to below 10 seconds, compared to over two hours
that RoBERTa needs, as in Figure 4 (b). This difference will be further exaggerated if RoBERTa
needs more epoch to converge, or if the metric model utilizes a faster embedding language model.
Finally, in terms of inferences, the difference in time does narrow down, however, the metric model
is still faster at 50-60% time needed compared to RoBERTa. Similar to training, the inference time
of the metric model includes embedding times from MPNet which can be further reduced with
smaller embedding LLMs. Overall, we can conclude that the complexity of the metric framework
is significantly lower than finetuning supervised LLMs, especially in training. This advantage is
also important in that it allows an effective detection system to be trained much easier in consumer
hardware which means more accessibility to the general public.

4 CONCLUSION

The recent breakthrough in large language models, while offering tremendous potentials to society,
also brought forefront the needs of cheap and effective methods to identify if contents are generated
by human or artificial intelligence. With such motivation, in this paper, we focus on the task of
identifying whether texts are originated by human or LLM with a light-weighted and accessible
approach. For such purposes, our detection framework is trained to signify the similarities among
LLM responses while boosting their dissimilarities to human-generated ones. More specifically, the
framework consists of an embedding component and metric component. The embedding component
is pretrained to output vector representations for raw text data. The metric neural network then
further take the embedding vectors to generate their distances. Architecture-wise, we propose two
metric models, one at the full-text level, and one at the sentence level. The full-text model consists
of stacked feed-forward blocks, whereas the sentence model follows the transformer architecture.
Both models are trained using our same-context sampling strategy designed for LLM text detection
in both pairs and triplets. Experiments show that our best models obtain F1 in between 0.87− 0.96
in multiple settings, while offer much better time complexity than the supervised RoBERTa.

For future works, we will explore the following directions. First, we will explore more architectures
for the metric components, as they are the core of this detection paradigm. Second, we will develop
methods that can effectively reconstruct contexts from any texts, as this information is not always
available. Besides using questions, some works have utilize a start portion of the texts themselves,
which limit the use cases to longer inputs. Finally, we will adapt this work to the general cases such
as modeling longer texts in the form of essays or documents, or where the generative LLMs are not
known at decision-making times.
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