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Abstract

There has been increasing interest in synthesizing data to improve downstream
text-to-SQL tasks. In this paper, we examined the existing synthesized datasets and
discovered that state-of-the-art text-to-SQL algorithms did not further improve on
popular benchmarks when trained with augmented synthetic data. We observed
two shortcomings: illogical synthetic SQL queries from independent column
sampling and arbitrary table joins. To address these issues, we propose a novel
synthesis framework that incorporates key relationships from schema, imposes
strong typing, and conducts schema-distance-weighted column sampling. We
also adopt an intermediate representation (IR) for the SQL-to-text task to further
improve the quality of the generated natural language questions. When existing
powerful semantic parsers are pre-finetuned on our high-quality synthesized data,
these models have significant accuracy boosts and achieve new state-of-the-art
performance on Spider.

1 Introduction

Text-to-SQL semantic parsing translates a natural language question (NLQ) to a corresponding SQL
query. In recent decades, many industries have adopted high-level digitalization in their workflow and
possessed large-scale datasets—many of which are stored as relational databases. Extracting insights
from these relation databases to further drive business decisions is an important task. But due to the
complexity of these relational databases, query language experts are often needed to extract valuable
insights. Thus a high-performing text-to-SQL system with a natural language interface would greatly
lower the barrier for users to query their databases.

In order to obtain high-quality training data for the text-to-SQL parser, human annotators with
SQL expertise are needed to construct NLQ-SQL parallel data, which are difficult and expensive to
scale. Thus data scarcity is a well-known bottleneck in the text-to-SQL task [Yu et al., 2018b]. To
address the data scarcity issue, there is an increasing interest in leveraging synthetic data to improve
downstream performance. Yu et al. [2021] handcrafted high-quality rules to synthesize SQLs and
NLQs simultaneously, but these grammar rules need to be carefully designed through expensive
manual work. To automate the synthesis procedure, recent studies [Wang et al., 2021, Wu et al.,
2021, Shi et al., 2021, Zhong et al., 2020] utilize a two-stage approach that synthesizes SQLs first
and then composes NLQs with a SQL-to-text generator. Alternatively, Yang et al. [2021] proposed a
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reversed pipeline that uses an entity-to-question model to generate natural language queries and then
a text-to-SQL parser to generate SQL queries.

In this paper, we delve into the two-stage synthesizing method that first synthesizes SQL queries and
then generates NLQs. We propose a novel framework2 that has several strategies to reduce synthesis
errors present in existing methods. During the stage of SQL synthesis, we employ template synthesis
with strong typing, template key relationship preservation, and schema-distance-weighted column
sampling. During the stage of text generation, we propose an intermediate representation to bridge
the gap between SQL queries and natural language questions. We show that models trained with
our synthetic datasets outperform the models trained with previous synthetic datasets. Our model
achieves new state-of-the-art accuracy on the Spider benchmark.

In summary, our main contributions are:

• We systematically compare the existing text-to-SQL synthesis methods and identify three root
causes of low quality;

• We propose several novel strategies to data synthesis and demonstrate augmentation benefits when
using the state-of-the-art PICARD parser, underscoring the importance of the synthesis quality;

• We adopt an intermediate representation (IR) for the SQL-to-text task, which can further improve
the quality of the generated natural language questions.

2 Existing Synthesis Methods and Limitations

We conduct a detailed investigation towards the existing text-to-SQL synthesis methods to understand
each of their advantages and shortcomings, the details of which can be found in Appendix A. In
particular, Figure 3 summarizes and compares the key characteristics from different dimensions.

In this section, we first experimented with two recent synthetic datasets [Wang et al., 2021] and [Wu
et al., 2021] using the latest state-of-the-art text-to-SQL model PICARD [Scholak et al., 2021] to
assess their effectiveness and found that these two recent synthetic datasets show only negligible
impact on downstream accuracy when trained on the PICARD model in a data augmentation fashion.
We then discuss the three main issues in these synthetic datasets based our manual inspection.

2.1 Synthetic Data Effectiveness Assessment

As a pilot study, we use T5-Large PICARD as the baseline parser to examine the synthetic data
quality. As shown in Figure 1, the exact match (EM) accuracy on both synthetic datasets are less
than 0.2 during Stage 1 (trained with synthetic data only), in contrast to 0.6 with Spider training data
only. This gap indicates the limited transferability from existing synthetic data to real data. Further
finetuning on Spider training data in Stage 2 does not improve the baseline model. However, our
synthetic data (IR2NLQ and SQL2NLQ) show better performance on these two stages. In the next
sections, we reveal the synthetic data problems and detail our proposed method.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Training step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
id

er
 d

ev
 [e

xa
ct

 m
at

ch
]

Stage 1 Stage 2

Wang et al. 2021
Wu et al., 2021
SQL2NLQ (ours)
IR2NLQ (ours)
baseline

Figure 1: Training dynamics comparison of T5-Large with different synthetic data. The baseline
model uses Spider real data only. IR2NLQ and SQL2NLQ are our synthetic data with and without IR
during NLQ generation. We compare with previous synthetic datasets [Wu et al., 2021, Wang et al.,
2021]. We use synthetic data for stage-1 training and real data for stage-2 training.
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2.2 Synthetic Data Quality Analysis

We analyzed the previous synthesis methods to identify a few probable causes for obsolescence.

Illogical SQL from invalid grammars. The CFG designed by Wu et al. [2021] is constrained and
they limited SQL generation to one table. While Wang et al. [2021] designed flexible grammars, they
neglected the constraints between operators and column types. This neglect leads to mistakes such as
SUM(student.name), where an aggregation operator is applied to a text column.

Furthermore, PCFG generated SQL queries often failed to capture foreign-key and key rela-
tions between columns. This leads to invalid SQLs such as SELECT name, age FROM student
INTERSECT SELECT address FROM teacher, where it intersects two sub-queries with different
number of columns. In fact, designing a grammar to produce high coverage and logical SQLs is a
difficult task due to the implicit dependencies of SQL elements.

Over-Complex SQL from arbitrary joins. When SQLs are materialized, the column/table se-
lection from existing work is independent and result in SQL queries with unnecessary complexity.
Those queries often have unclear intent and thus are difficult to be correctly translated to natural
language questions. For instance, a simple template in Table 2 that requires only two columns can be
turned into a complicated and nonsensical SQL query with three table joins.

Language gap between SQL and NLQ. Recent work typically trains a sequence-to-sequence
model to obtain corresponding natural language queries (NLQ) from synthetic SQLs [Wang et al.,
2021, Shi et al., 2021]. The gap between SQL-NLQ pairs are well recognized in text-to-SQL task,
and intermediate representation (IR) is commonly used to reduce such mismatch [Gan et al., 2021b,
Guo et al., 2019a, Yu et al., 2018a, Shi et al., 2021]. However, the reverse of the source and target
in SQL-to-text brings in its own challenge, such as incorrect references for SELECT *, missing
conditions within long and complex SQL queries, and misinterpretation of ORDER phrases.

3 Proposed Method

This section outlines our proposed synthesis pipeline (Figure 2). We follow the template based SQL
synthesis approach similar to Zhong et al. [2020], Zhang et al. [2019] and generate corresponding
NLQs with a sequence-to-sequence model. We address the generation problems reviewed in the
previous sections by 1) introducing strong typing and encoding the key relation in templates for more
logical SQLs; 2) proposing a schema distance weighted column sampling strategy to avoid over-
complex joins; and 3) an improved IR to bridge the gap between SQL and NL questions specifically
for SQL-to-text.

Figure 2: Our NLQ-SQL synthesis framework. Novel components include strong-typing, key
relations, schema-distance-weighted column sampler, and SQL→ IR converter.

3.1 SQL Synthesis

To create new SQLs on training data schemas, we utilize a template-based approach following Zhong
et al. [2020]: First, a pool of SQL templates are created by normalizing the schema-related mentions
(column and value) and removing JOIN phrases. During SQL generation, a template is sampled
based on the training distribution and columns are sampled with constraints to fill in the normalized
slots of the template. We highlight several improvement made to the existing approach.

Strong Typing. When normalizing columns, we enforce strong typing of a template by enriching
and preserving the data type (e.g., text, number, date, etc) as well as key identity (key or not) for
each column. For example, in Table 1, we use textkey instead of key to normalize artist_name
because operators such as MAX can be applied to number key but usually not to other text key.
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Table 1: Our modifications for template extraction: strong typing is highlighted in blue and key
relation preservation is highlighted in pink.

SQL SELECT artist_name FROM song INTERSECT SELECT artist_name FROM artist

Previous SELECT col1_key INTERSECT col2_key
Ours SELECT col1_textkey INTERSECT col2_textkey_fk1

Template Key Relationship Preservation. A foreign key is a column in a table referring to the
primary key (unique identifier) of another table. In multiple table join scenarios, key and foreign key
are the most common columns to be joined on. Restricting a column to be a foreign key to another
key column is critical for a SQL to be valid especially in the following two cases: 1) queries including
INTERSECT, EXCEPT, UNION and 2) queries that contains nested queries in WHERE conditions. For
instance, the query in Table 1 implied the constraint that song.artist_name should be a subset of
artist.artist_name. FK1 in the template captures the constraint of key relationship between the
two artist_name columns, which prevents the template from generating nonsensical queries such
as SELECT gender FROM artist INTERSECT SELECT country FROM artist.

Schema-distance-weighted Column Sampling. To mitigate the issue of arbitrary multi-table joins,
we implement a weighted sampling function biased toward columns that are close, in terms of table
distance, to the columns already selected in a SQL template.

For a given database d, we first establish an undirected graph for all the tables in d. Each table
represents a node in the graph. The distance between any two tables, e(·, ·), is the least number of
joins necessary to join the two tables (i.e. shortest path distance) under the restriction that table join
can only take place with qualified primary key and foreign key pairs.

We design the schema-weighted column sampling algorithm (Algorithm 1 in Appendix B), which
utilizes the table distances to control the column sampling weights. In particular, to sample a column

c, we define the sampling weights for all other columns w(c̃) =

{
1, if Tc̃ = Tc

1
γe(c,c̃) , o.w.

, where Tc

denotes the table that column c is in. The discussion on how to choose γ can also be found in
Appendix B. Such implementation is motivated from the observation that over-lengthy SQLs resulted
from multiple tables joins are rare in real world scenarios under the only-join-on-primary-key-foreign-
key assumption. Table 2 shows an example of how adopting the schema-weighted sampling can help
reduce the unrealistic SQLs in the random case.

Table 2: Random sampling vs our schema-distance-weighted column sampling for a given template.
The former produced a query with three joins while ours have both columns from the same table.

Template SELECT col1_numberkey WHERE col2_name = VALUE

Random SELECT T1.Club_ID FROM club AS T1 JOIN coach as T2 ON T1.Club_ID = T2.Club_ID JOIN player_coach AS T3
ON T2.Coach_ID = T3.Coach_ID JOIN player AS T4 on T3.Player_ID = T4.Player_ID where T4.Rank = "3rd"

Ours SELECT Club_ID FROM club WHERE Club_Name="AIK"

3.2 NLQ Synthesis

Intermediate representation (IR) has been employed to simplify the SQL query with minimum
information loss [Gan et al., 2021a, Guo et al., 2019b, Gan et al., 2021b, Guo et al., 2019a, Yu et al.,
2018a, Shi et al., 2021]. Common operations include removing FROM/JOIN clauses and GROUP BY
clauses, and merging WHERE clauses and HAVING clauses. Previous works find the use of IR often
improves text-to-SQL performance.

In this section, we explore whether the SQL-to-text generation could also benefit from an IR.
According to a prior research by Wu et al. [2021], altering the query’s linearization order could already
affect the synthetic text quality. The objective of an IR here is to convert SQL to a representation that
more closely resembles the NLQ. This conversion involves both simplifications (such as removal
of redundant information) and specification (such as introducing information using heuristics). In
addition to the traditional designs,we introduced several additional rules to transform from SQLs to
IRs, as listed below (examples in Table 3):

• Only drop tables in the FROM/JOIN phrase if they appear in other SQL elements (EX2-EX4).
Removal of tables can simplify queries but tables in JOIN can also behave as filters and need to be
preserved to avoid information loss (EX1).
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Table 3: IR examples that illustrate the examples of removing tables, enriching * columns, specifying
most/least intent, removing redundant GROUP BY. Unwanted intents are in grey, redundant intents are
in green. Texts related to IR operations are highlighted with yellow.

EX1
SQL SELECT T1.name FROM student AS T1 JOIN has_pet AS T2 ON T1.student_id = T2.has_pet.student_id

IR SELECT name of student FROM has_pet

NLQ Find the name of students who have pets.

EX2
SQL SELECT T2.name, count(*) FROM concert AS T1 JOIN stadium AS T2 ON T1.stadium_id = T2.stadium_id GROUP BY T1.stadium_id

IR SELECT name of stadium, Count ( record of concert ) GROUP BY ( stadium_id of concert )

NLQ Show the stadium name and the number of concerts in each stadium.

EX3
SQL SELECT T1.neighbourhood_name neighbourhood AS T1 JOIN business AS T2 ON T1.business_id = T2.business_id WHERE T2.city = "Madison"

GROUP BY T1.neighbourhood_name ORDER BY COUNT ( DISTINCE T2.name ) DESC LIMIT 1

IR SELECT neighbourhood_name of neighbourhood WITH most Count ( DISTINCT name of business ) WHERE city of business = "Madison"

NLQ Which neighbourhood has the most number of businesses in Madison?

EX4
SQL SELECT T2.name FROM USER AS T2 JOIN review AS T1 ON T2.user_id = T1.user_id GROUP BY T2.name HAVING AVG (T1.rating) < 3

IR SELECT EACH ( name of user ) WITH Avg (rating of review ) < 3

NLQ Find users whose average review rating is below 3.

• Replace * in count(*) with the table whose columns in JOIN act as foreign key to provide
explicit context for counting. This is because, in multi-table join queries, foreign key represents
the many of the one-to-many relations and thus the rows from the table is more meaningful to be
aggregated (see EX2 replaces*with concert rather than stadium).

• When SQL contains ORDER BY COUNT (...) LIMIT ... , rewrite the query to explicitly
express the most or least intent for better intent alignment (EX3).

• Drop GROUP BY phrase if the column grouped by appears in SELECT and attach EACH to the
specific column if the query does not express the most/least intent (see GROUP dropped in EX3
- EX4 but not EX2). This aims to distinguish SQLs with GROUP BY and SELECT on the same
column from those without SELECT.

4 Experiments

We conduct experiment on the challenging Spider benchmark [Yu et al., 2018b], which contains
various complex SQL statements and realistic cross-database evaluation setting. We demonstrate the
effectiveness of our data synthesis framework from both text-to-SQL and SQL-to-text.

Spider Benchmark Spider [Yu et al., 2018b] is a large-scale text-to-SQL dataset, it has 10,181
annotated questions, 5693 unique complex SQLs and 200 databases with multiple tables. It also
contains Text2SQL datasets from previous work, which are compiled as train-others. The train/train-
others/dev/test sets contain 7000/1659/1034/2147 examples and 140/6/20/40 databases, respectively.
Since Spider test set is not publicly available, we use dev set for evaluation and train-others for
checkpoint selection.

Text-to-SQL Parser and SQL-to-Text Generator We use T5-3B [Raffel et al., 2020] as our
base parser, since previous work [Shaw et al., 2021] has shown that T5-3B can achieve competitive
performance for Text-to-SQL semantic parsing. We also apply PICARD [Scholak et al., 2021], a
constraint decoding method, to further improve the syntactic correctness of the generated SQLs.
We finetune a T5-large model on Spider training set for both SQL-to-text generator and IR-to-text
generator, the best checkpoint is selected with the highest BLEU score on train-others.

Configurations We train T5 with Adafactor and learning rate of 1e-4, and use batch size 2050 and
64 for T5-3B and T5-Large, respectively. Our experiments are based on NVIDIA A100-SXM4-40GB
GPUs, we use beam size 5 and top-2 predictions for PICARD decoding.

4.1 Spider Results and Analysis

The overall results3 are shown in Table 4. We can see that our synthetic data can further improve the
state-of-the-art model and achieve the best results on Spider development set4, including both exact
set match and execution accuracy. Specifically, we have 4.4 points of EM score improvement on top
of T5-3B model, while previous work [Wu et al., 2021, Wang et al., 2021] has marginal gain or even
hurt the performance, demonstrating the effectiveness of our proposed method.

3Some models do not predict cell values or access to database content, we leave ‘-’ for EX.
4Since the official test set is hidden, we have not received their evaluation results as of submission time
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Table 4: Comparison of the top-performing text-to-SQL models in Spider leaderboard, as well as
models trained with synthetic data. We report exact set match (EM) and execution accuracy (EX) for
Spider dev set. † means T5-3B is trained with database content.

Model EM EX Model EM EX

DT-Fixup SQL-SP [Xu et al., 2021] 75.0 - SmBoP + GraPPa [Rubin and Berant, 2021] 69.5 71.1
LGESQL + ELECTRA [Cao et al., 2021] 75.1 - GAP + NatSQL [Gan et al., 2021a] 73.7 75.0
S2SQL + ELECTRA [Hui et al., 2022] 76.4 - T5-3B† [Scholak et al., 2021] 71.5 74.4
DT-Fixup + Syn [Yang et al., 2021] 76.4 - T5-3B† + Syn data (ours) 74.5 78.6
T5-3B [Shaw et al., 2021] 70.0 - T5-3B† + PICARD [Scholak et al., 2021] 75.5 79.3
T5-3B + Syn data [Wu et al., 2021] 69.1 - RASAT + PICARD [Qi et al., 2022] 75.3 80.5
T5-3B + Syn data [Wang et al., 2021] 70.3 - T5-3B† + PICARD + Syn data (ours) 76.1 81.4
T5-3B + Syn data (ours) 74.4 -
T5-3B + PICARD [Scholak et al., 2021] 74.1 -
T5-3B + PICARD + Syn data (ours) 76.9 -

Table 5: Generated NLQ quality comparison between SQL→ NLQ and SQL→ IR→ NLQ. We
report BLEU [Papineni et al., 2002], ROUGE [Lin, 2004], and BERT [Zhang* et al., 2020] scores as
evaluation metrics.

Settings BLEU ROUGE-1 ROUGE-2 P-BERT R-BERT

SQL→ NLQ 27.7 59.6 35.3 93.6 93.2
SQL→ IR→ NLQ 29.3 60.5 36.8 93.9 93.3

PICARD is an incremental parsing method for constraint decoding, which can reduce the syntax
errors of language models for SQL generation. From Table 4, we see that T5-3B combined with
PICARD and our synthetic data performs the best, implying the orthogonality of synthetic data
augmentation and constraint decoding.

In order to understand the effectiveness of our proposed IR, we compared two generation paths in
Spider benchmark: SQL→NLQ and SQL→IR→NLQ. As shown in Table 5, we can see IR helps the
NLQ generation process and produces text closer to ground-truth NLQs.

4.2 Synthetic Data Efficiency

In this section, we study the efficiency of our synthetic data framework from two aspects:

Few-shot setting: How much real data do we need to rely on before achieving acceptable performance?
Since annotating text-to-SQL dataset takes extremely high human effort, in practice, it’s hard to create
a large-scale corpus with a limited annotation budget. Table 6 presents the text-to-SQL semantic
parsing results with different number of training examples. Interestingly, as training size decrease
from 7K to 128, our synthetic data becomes more essential, and the performance gain increases from
4.4 points to 27.2 points. Even with only 512 training examples, our synthetic data can assist the
T5-3B model to achieve ∼60% accuracy level.

Table 6: Text-to-SQL experiment with the few-shot setting. # tmpl and # syn represent the number
of templates and synthetic data size, we report exact set match on the Spider dev set.

Model
f -shot: 128 256 512 1024 full (7k)
# tmpl 68 116 205 318 746
# syn 7839 10775 14457 17002 21851

T5-3B real only 19.1 32.3 43.6 53.2 70.0
real + syn 46.3 54.4 59.9 62.2 74.4

Seen schema: How good of the synthetic data if we consider a broader coverage of database schema?
Since the cross-database evaluation setting presents generalization challenge for text-to-SQL parsers,
our synthetic framework can potentially overcome this by utilizing more database schemas, or even
ones that can implicitly cover the evaluation set. For example, we can take advantage of public
schemas, such as WikiTables [Bhagavatula et al., 2015], GitTables [Hulsebos et al., 2021], WikiSQL
[Zhong et al., 2017] and SQL tutorial websites, some of them are even schema source for Spider
benchmark. In practice, people adapt model to a new domain by including targeting database schemas,
we simply added 20 databases from dev set into our data synthesis pipeline, then trained text-to-SQL
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parser with a T5-Large model, where we observed ∼2 points of performance improvement compared
to that with training schema only.

5 Conclusion

In this work, we proposed a data synthesis framework for text-to-SQL semantic parsing. After
incorporating key relationships from schema, strong typing, schema-distance weighted column
sampling and intermediate representation to bridge SQL→ NLQ generation, we synthesized high-
quality dataset that can further improve the state-of-the-art performance on Spider benchmark.
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Madelon Hulsebos, Çağatay Demiralp, and Paul Groth. Gittables: A large-scale corpus of relational
tables. arXiv preprint arXiv:2106.07258, 2021. URL https://arxiv.org/abs/2106.07258.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 12–22, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1002. URL https://aclanthology.org/P16-1002.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics. URL https://aclanthology.org/W04-1013.

7

https://arxiv.org/abs/2109.05153
https://aclanthology.org/D18-1188
https://doi.org/10.18653/v1/p19-1444
https://aclanthology.org/P19-1444
https://arxiv.org/abs/2106.07258
https://aclanthology.org/P16-1002
https://aclanthology.org/W04-1013


Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://
aclanthology.org/P02-1040.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. Rasat: Integrating relational structures into pretrained seq2seq model for
text-to-sql, 2022. URL https://arxiv.org/abs/2205.06983.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Ohad Rubin and Jonathan Berant. SmBoP: Semi-autoregressive bottom-up semantic parsing. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, June 2021.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incrementally for con-
strained auto-regressive decoding from language models. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, November 2021.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova. Compositional gen-
eralization and natural language variation: Can a semantic parsing approach handle both? In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
August 2021.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. Learning contextual representations for semantic parsing with
generation-augmented pre-training. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 13806–13814, 2021.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caiming Xiong. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, June 2021.

Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan Xiao, Hua Wu, Min Zhang, and Haifeng Wang.
Data augmentation with hierarchical SQL-to-question generation for cross-domain text-to-SQL
parsing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, November 2021.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi Tang, Chenyang Huang, Jackie Chi Kit Cheung,
Simon J.D. Prince, and Yanshuai Cao. Optimizing deeper transformers on small datasets. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
August 2021.

Wei Yang, Peng Xu, and Yanshuai Cao. Hierarchical neural data synthesis for semantic parsing.
arXiv preprint arXiv:2112.02212, 2021.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir R.
Radev. Syntaxsqlnet: Syntax tree networks for complex and cross-domain text-to-sql task. In Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pages 1653–1663. Association for Computational Linguistics, 2018a. doi:
10.18653/v1/d18-1193. URL https://doi.org/10.18653/v1/d18-1193.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,

8

https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2205.06983
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/d18-1193


pages 3911–3921, Brussels, Belgium, October-November 2018b. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang, Dragomir
Radev, Richard Socher, and Caiming Xiong. Grappa: Grammar-augmented pre-training for
table semantic parsing. In International Conference on Learning Representations, 2021. URL
https://arxiv.org/abs/2009.13845.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. Editing-based SQL query generation for cross-domain
context-dependent questions. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5338–5349, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1537. URL https://aclanthology.
org/D19-1537.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke Zettlemoyer. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 6869–6882, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.558. URL
https://aclanthology.org/2020.emnlp-main.558.

9

https://aclanthology.org/D18-1425
https://arxiv.org/abs/2009.13845
https://aclanthology.org/D19-1537
https://aclanthology.org/D19-1537
https://openreview.net/forum?id=SkeHuCVFDr
https://aclanthology.org/2020.emnlp-main.558

	Introduction
	Existing Synthesis Methods and Limitations
	Synthetic Data Effectiveness Assessment
	Synthetic Data Quality Analysis

	Proposed Method
	SQL Synthesis
	NLQ Synthesis

	Experiments
	Spider Results and Analysis
	Synthetic Data Efficiency

	Conclusion

