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Abstract

Overparameterized Deep Neural Networks that generalize well underlie much of the
recent successes in Deep Learning. It has also been known that when training data
labels are noisy, Deep Networks, on training, exhibit the capacity to learn this label
noise, which hurts their generalization, as manifested by degraded test accuracies.
Here, we investigate whether we can extract more reliable predictions from these
models whose predictive power is impacted by such unreliable training data, while
sticking to the standard training paradigm. Specifically, we consider the question
of extracting better generalization from the latent representations of the layers of
the model, in this setting. To this end, we study the class-conditional subspaces
corresponding to the training data corrupted with label noise. Furthermore, we
examined the geometry of the layerwise outputs in relation to these subspaces.
We find, surprisingly, that doing so leads to a technique to extract significantly
better generalization than provided by the corresponding model. We show results
exemplifying this phenomenon on multiple models trained with a number of
standard datasets. Our work demonstrates that we can extract underutilized latent
generalization present in the internal representations of models trained with data
which has label noise.

1 Introduction

Much of modern Deep Learning utilizes overparameterized models which have been observed to be
able to generalize remarkably well to unseen data. However, Deep Network models have also been
shown to possess the ability to memorize training data. In particular, it has been shown [29, 30] that
when one shuffles class labels of data points from standard training datasets to varying degrees, Deep
Networks can still have high/perfect training accuracy on such corrupted training data; however, this
appears to typically be accompanied by poor performance on unseen test data (that have true labels).
This phenomenon has been called memorization, since it is thought that the model rote-learned the
training data at the expense of acquiring the ability to generalize to unseen examples. In real-world
settings, where training data has label noise, the phenomenon of memorization impacts the ability of
models to reliably perform on unseen data.

Here, we study the organization of subspaces of class-conditional training data on layerwise outputs
of a number of Deep Networks. We estimate these subspaces using Principal Components Analysis
(PCA). To further understand this organization, we built a simple classifier that leverages the ge-
ometry of the layer output of an incoming datapoint, relative to these class-conditioned subspaces.
Specifically, we measure the angle between this output vector and its projection on each of these
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class-conditioned subspaces. The classifier then predicts this datapoint’s class to be the class whose
subspace has the minimum such angle. We find, surprisingly that this classifier applied to certain
layers, has significantly better generalization performance than the model itself. This is remarkable
because it also indicates that the layerwise representations of the Deep Network retain significant
latent ability to generalize, even in the face of such noisy training data, and that this ability can be
extracted via a simple probe built only by using the corrupted training dataset.

2 Related work

The idea of probing intermediate layers of Deep Networks isn’t new. For example, [16, 1] do so
by using kernel PCA & linear classifiers respectively. However, this approach has not been used to
investigate memorization. Indeed, [1] explicitly avoid examining memorized networks from [29]
because they thought such probes would inevitably overfit. Our results are therefore especially
surprising in this context.

There is evidence that DNN’s learn simple patterns first, before memorizing [2], & DNNs learn lower
frequencies first [3]. [24] study memorized models, concluding that memorization happens in later
layers, since rewinding early layer weights to their early stopping values recovers some generalization,
but rewinding later layer weights doesn’t. On the contrary, our results suggest that later layers in most
models investigated retain significant ability to generalize, & we demonstrate this without modifying
the weights of the trained network.

There is an important line of theoretical work in deep linear models [21] where the question of gener-
alization has been studied. In this context, [12] offer a theoretical explanation for the phenomenon of
memorization in networks trained with noisy labels.

Experiments towards understanding training dynamics across layers using different Canonical Cor-
relation Analysis have be explored [18] and in various generalized and memorized networks is
analyzed [17]. Centered Kernel Alignment in different random initializations by [9] and network
similarity between model trained with same data and different initialization is examined by [27].
Also experiments related to using measures of the representational geometry towards understanding
dynamics of layerwise outputs [4, 5].

To deal with label noise, many heuristics have been explored [8, 22, 19, 31, 14] & for classification
task see [7, 20, 15, 23]. For over parameterized models, [13] shows that the memorized network
weights are far away from the initial random state in order for them to overfit the noisy labels. [25]
propose a theoretical model for epochwise double descent that suggests that for small-sized models,
moderate amounts of noise can cause generalization error to dip later on in training.

3 Methodology

To interpret and understand the organization of layerwise learned representations in memorized
networks, we first construct class-conditioned subspaces corresponding to the corrupted training data.

Creation of subspaces: For a specific layer, we estimate subspaces for each class. The class-
conditioned training data subspaces on layerwise outputs of Deep Networks are computed using PCA.
If the empirical mean of the class-conditioned data isn’t zero, PCA in effect, will provide us an affine
space, i.e. a linear space that doesn’t pass via the origin. However, we have determined subspaces –
which are linear spaces passing through the origin – here rather than affine spaces. In order to do so,
we add the negative of each sample to the dataset so it is guaranteed to have empirical mean be zero,
before running PCA. This created dataset is sent to the PCA algorithm to calculate PCA components
for a certain percentage of variance explained in the dataset. The span of these PCA components is
the subspace S. We illustrate the process of creating subspaces for a Multi-layer Perceptron (MLP)
model in Figure 1.

To studied the geometry of the layerwise outputs in relation to these subspaces, we build a Minimum
Angle Subspace Classifier (MASC) with the following steps:

Projection of the data point: Layer output of an incoming data point is projected onto the class-
specific subspaces.
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Figure 1: Class-conditioned training data subspaces on layerwise outputs of MLP using PCA. Top:
Schematic of MLP model used in the work. Bottom: Creating the class-conditioned training subspace
for ReLU (128) layer where 128 are the number of neurons.

Label assignment using minimum angle: For every data point, the angle between the original data
point and projected data point for each class is calculated. The Minimum Angle Subspace Classifier
(MASC) assigns to the datapoint, the label of the subspace having the minimum angle with the
original data point.

While the subspaces are estimated using the training data alone, accuracy of the Minimum Angle
Subspace Classifier is determined for the training data and the testing data separately. This process is
followed for all the layers in the network independently. For experiments in Section 4, MASC uses
corrupted training labels to create class-specific subspaces. We have used 99% as the percentage of
variance explained, unless otherwise mentioned.

3.1 Experimental Setup

We have used multiple models and datasets, namely Multi-layer Perceptron (MLP) trained on MNIST
[6] and CIFAR-10 [10] datasets, Convolutional Neural Networks (CNN) 1 trained on MNIST, Fashion-
MNIST [28], and CIFAR-10 and AlexNet [11] trained on CIFAR-100 [10]. We have trained these
models with training data having true labels (“generalized models”) as well as separately using
training data with labels shuffled to varing degrees (“memorized models”) [30].

For memorized models, when we say we train it with corruption degree p, we mean that with
probability p, we attempt changing the label for a training datapoint. Changing the labels happens
uniformly at random. Note that this may result in the label remaining the same; therefore the expected
fraction of datapoints whose labels changed are p− p/c where c is the number of classes. So, this
would mean that for corruption degrees of 20% , 40%, 60%, 80%, 100% the expected percentage of
training datapoints with changed labels is 18%, 36%, 54%, 72%, 90% respectively, when c = 10. We
have run experiments for values of p being 0% (generalized model), 20% , 40%, 60%, 80%, 100%
(memorized models).

A summary of the models and datasets with training set size and number of parameters is in Table 1.
The average training and testing accuracies of all the models over three runs are shown in Table 3 and
4 in section A.2. More details of these models, hyperparameters & training are available in Section
A.1. Following standard practice in probing memorized models (e.g. [24]), we do not use explicit
regularizers such as Dropout or batchnorm, or early stopping, as a result of which our baseline test
accuracy numbers are often much lower than what is usually found with standard training of these
models. All the models are trained to either reach very high training accuracies (i.e. 99%− 100%) or
trained until 500 epochs. Some models did not result in such high accuracies, in which case, results
have been shown on the model obtained at epoch 500. We trained 3 instances of each model and

1The CNN models were built along the lines of [26].
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Table 1: Training set size of the data sets and the number of parameters of the models.

Model Dataset Training
set size

Number of
parameters

MLP MNIST 60,000 5,433,994
CIFAR-10 50,000 5,726,858

CNN MNIST 60,000 344,042
Fashion MNIST 60,000 344,042
CIFAR-10 50,000 456,330

AlexNet CIFAR-100 50,000 38,738,952

results displayed are averaged over these instances with the shaded region indicating the range of
results also indicated in the plots.

Once the model is trained, we apply MASC on each layer of the network with respect to different
subspaces. For MLP models, MASC experiments were performed for all the layers in the network in-
cluding on the input (after it is pre-processed). For CNN models and AlexNet model, the experiments
were performed on flatten layer (Flat) and fully connected layers (FC). While we ran the experiments
on the input layer for CNNs, we did not do so for AlexNet.

3.2 Terminology

The general terminology used in this work is as follows:

• Model Training Accuracy: The model accuracy on the training set with corrupted labels.

• Model Testing Accuracy: The model accuracy on the testing data set with true labels.

• Minimum Angle Subspace Classifier (MASC) Accuracy on Corrupted Training: Train-
ing accuracy of MASC on training data set with respect to corrupted labels

• Minimum Angle Subspace Classifier (MASC) Accuracy on Original Training: Training
accuracy of MASC on training data with respect to true training labels.

• Minimum Angle Subspace Classifier (MASC) Accuracy on Testing: Testing accuracy of
MASC on testing data set with true labels was used.

4 Results

Models trained with corrupted labels have high training accuracy (on corrupted labels) while also
having low testing accuracy [30]. We sought to leverage the class-conditioned subspaces of the
hidden layers of these memorized models to obtain better generalization.

To do so, we build a Minimum Angle Subspace Classifier (MASC) using class-conditioned corrupted
training subspaces obtained from the memorized models’ hidden layer outputs. MASC is performed
layer-wise for all the layers of the network independently as described in Section 3. MASC accuracy
on corrupted training data, MASC accuracy on original training data, and MASC accuracy on testing
data over the layer of MLP trained on MNIST, CNN trained on Fashion-MNIST, AlexNet trained
on CIFAR-100 are shown in Figure 2. Experiments on MLP trained on CIFAR10, CNN trained on
MNIST and CIFAR10 are shown in Figure 3.

Importantly, for every corrupted model we have (with non-zero corruption degree), except those
with 100% corruption degree, we find that our Minimum Angle Subspace Classifier (MASC) in at
least one layer has better testing accuracy than the corresponding model itself. In many cases, the
MASC testing accuracy is dramatically better than that of the model. This is remarkable, because,
in addition to the layerwise outputs, the MASC used precisely the same information (including the
same corrupted training dataset) that was available to the model itself, and yet is able to extract better
generalization. This suggests that the model retains significant latent generalization ability, which
is not captured in its own test-set performance. Below, we make more specific observations on the
performance of the models.
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Figure 2: Minimum Angle Subspace Classifier (MASC) accuracy over the layers of the network
when the data is projected onto corrupted training subspaces with the indicated corruption degree, for
multiple models/datasets. Rows corresponds to plots with the same corruption degree & the columns
correspond to the models, as noted. Training accuracy (dashed line) & testing accuracy (dotted line)
of the model is shown. FC corresponds to fully connected layer with ReLU activation whereas Flat
corresponds to flatten layer without ReLU activation.
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Figure 3: Minimum Angle Subspace Classifier (MASC) accuracy over the layers of the network
when the data is projected onto corrupted training subspaces with the indicated corruption degree, for
multiple models/datasets. Rows corresponds to plots with the same corruption degree & the columns
correspond to the models, as noted. Training accuracy (dashed line) & testing accuracy (dotted line)
of the model is shown. FC corresponds to fully connected layer with ReLU activation whereas Flat
corresponds to flatten layer without ReLU activation.
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With generalized models i.e. those with 0% corruption degree, at the later layers of the network, it is
observed that in most of the cases MASC accuracy on training data approaches the models training
accuracy. Similarly, MASC accuracy on testing data is comparable to or performed better than the
models’ test accuracy.

Even for high corruption degrees, we find that the MASC performs well. For example, with 80%
corruption degree, which implies that approximately 72% of the training labels have been changed,
we observed good MASC testing accuracy in many cases. Notably, the MASC test accuracy on the
later layers is over 80% on MLP-MNIST, in comparison to 34% test accuracy by the model. Similarly,
MASC test accuracy on one of the layers is about 75%, 4.9%, 30%, 80%, 28% for CNN-Fashion-
MNIST, AlexNet-CIFAR-100, MLP-CIFAR10, CNN-MNIST and CNN-CIFAR10, in contrast to
25%, 3.4%, 20%, 29% and 19% model test accuracies respectively. In Table 2, for each degree of
corruption and model-dataset, we also specifically list by what percentage the MASC classifier (for
the best layer of the model) outperformed the models test accuracy.

Not only does the MASC have better accuracy than the model on the test data but it also does well
on the training data with the true labels. Although the model has memorized the training data with
corrupted labels, outputs from certain layers have the ability to predict the trained true labels. For
example, in MLP-MNIST, for low to moderate degrees of corruption, MASC on the middle layer
(FC (512)) has good accuracy on the true training labels, while also retaining good accuracy on the
test set. With 40% corruption degree, approximately 36% are changed labels and yet the model has
good accuracy on the true training labels in at least one layer of the network. e.g. MLP-MNIST
has over 90% true training accuracy at layer FC(512), CNN-Fashion-MNIST has approximately
85% in Flat (576) layer, AlexNet-CIFAR-100 has approximately 60% in FC (4096) layer, MLP-
CIFAR-10 has approximately 60% in FC (2048), CNN-MNIST has approximately 95% in Flat (576)
& CNN-CIFAR10 has approximately 65% in Flat (1024). This means that almost 20% of those
labels are predicted correctly even though the model was trained for 500 epochs or has reached high
training accuracy on corrupted labels. In the process of doing this, the model does not have any direct
information about the true labels and neither does the MASC.

Table 2: Percentage by which the MASC classifier (run on the best layer) outperformed the model’s
test accuracy. The accuracies in each case are averaged over three runs.

Corruption degree 20% 40% 60% 80%
MLP-MNIST 10.92% 31.63% 75.04% 159.93%
MLP-CIFAR-10 9.89% 24.41% 46.97% 64.74%
CNN-MNIST 9.81% 37.03% 98.69% 201.05%
CNN-Fashion-MNIST 7.48% 33.49% 84.92% 188.99%
CNN-CIFAR-10 2.29% 6.26% 27.03% 60.17%
AlexNet-CIFAR-100 33.57% 53.10% 64.85% 44.99%

One way to think about a Deep Network, is as one that successively transforms input representations
in a manner that aids in good prediction performance. Therefore, performance of the MASC on the
input is a good baseline measure to assess if subsequent layers have favorable accuracies. Naïvely, for
models trained with corrupted data, one would expect layered representations that enable the model
to do well on the corrupted training data, but not do well on the test data or the training data that
have true labels. While this expectation seems to hold with respect to the model itself, we find that
the layer-wise representations do not necessarily follow this expectation. That is, MASC applied to
subsequent layers, often have better true training accuracy and test accuracy than the MASC applied
to the input, suggesting that the Deep Network does indeed transform the data in a manner more
amenable to correct prediction, even if its labels are dominated by noise.

5 Discussion

In this work, we study models in the setting where they are trained with label noise. Such models are
known to fit the training label noise very well, which comes at the cost of degraded generalization
performance. We sought to leverage internal representations of such trained models in order to extract
better generalization than that manifested by the models. Specifically, we were interested in studying
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the geometry of the internals of the network, to this end. We constructed subspaces of the ambient
space of layerwise outputs of the network, corresponding to individual classes, as indicated in the
(corrupted) training data. On examining the geometry of where unseen datapoints mapped to in this
ambient space, relative to the aforementioned subspaces, we found surprisingly that they turned out
to be closer to the correct class label, more often than what the model itself would predict. This led to
the MASC classifier, which can be deployed on layerwise outputs of models trained on data with
label noise in order to obtain better test accuracies than the model itself. We demonstrated that the
MASC classifier works favorably on multiple models trained on a number of standard datasets.

An interesting question is about why this phenomenon even occurs; naïvely one would expect that
networks, on being trained with highly noisy data, discard the ability to generalize in favor of learning
noise. Are there specific inductive biases that promote such generalization? And, do such mechanisms
also promote generalization in networks whose training data isn’t corrupted significantly by such
noise? It would also be instructive to study the dynamics of this form of generalization during training.
It is known [2] that the model’s test accuracy transiently peaks in the early epochs of training with
corrupted data, before dropping while training accuracy of the corrupted training data rises. It is
unclear whether this transient rise in model generalization is caused by the subspace organization
seen here, and if so, why such subspace organization isn’t degraded as much as the model’s test error
over further epochs of training.

In closing, we demonstrate that models trained in the label noise setting retain latent representations
which allow for significantly improved generalization, which can be extracted without exorbitant
computational overhead. This phenomenon can be leveraged to extract more reliable predictions
from models trained on such unreliable data.
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A Appendix

A.1 Model Details

The MLP model has 4 hidden layers with 128, 512, 2048 and 2048 units respectively. ReLU
activation was used after every layer and for classification softmax activation was applied. Learning
rate of 1e-3 and momentum = 0.9 was used with SGD optimizer was used. Batch size of 32 was
used in all the models. Data set was normalized by dividing each pixel value with 255.

CNN network has 3 blocks, each consisting of two convolutional layers, one max pooling layer.
These blocks are followed by three fully connected layers. Convolutional layers have 16, 32, and 64
filters, respectively with stride=1 and filter size = 3 × 3. Max pooling layer has stride of 1 and filter
size of 2 × 2. The fully connected layers at the end has 250 units each. It was trained with Adam
optimizer with learning rate of 0.0002. For MNIST and Fashion-MNIST batch size of 32 whereas
for CIFAR-10 batch size of 128 were used. Data set was normalized by subtracting the mean and
diving by the standard deviation for each channel. ReLU activation was used after every layer except
pooling and softmax activation for classification.

AlexNet model was slightly modified for the use of the dataset. Batch size of 128 and Adam
optimizer with learning rate of 0.0001 was used. CIFAR-100 dataset before training was normalized
by subtracting the mean and diving by the standard deviation for each channel.

All experiments were conducted on servers and workstations equipped with NVIDIA GeForce RTX
3080, RTX 3090, Tesla V100, and Tesla A100 GPUs. The server environment was configured
with Rocky Linux 8.10 (Green Obsidian), while the workstation operated on Ubuntu 20.04.3 LTS.
Implementations were developed in Python using the PyTorch framework, with a fixed random seed
(torch.manual_seed = 42) to ensure reproducibility. Memory usage varied depending on the specific
models and experiments, and accuracy was employed as the primary evaluation metric for model
performance. Most experiments completed within 12–24 hours for each run, except for AlexNet on
CIFAR-100, which required more time.

A.2 Training and testing performance of the models

Average training and testing accuracies of the models over three different runs used in this paper are
shown in Tables 3 and 4.

Table 3: Average training accuracy in percentages of all the models over three runs over different
corruption degrees (indicated in the last six columns).

Model Dataset 0% 20% 40% 60% 80% 100%
MLP MNIST 99.99 99.99 99.99 99.99 100 100

CIFAR-10 99.99 99.99 99.99 99.99 99.99 99.99
CNN MNIST 99.90 99.32 98.62 97.25 95.11 94.92

Fashion-MNIST 99.15 99.14 97.90 96.25 91.65 83.14
CIFAR-10 99.70 99.29 99.26 99.03 99.02 39.69

AlexNet CIFAR-100 99.19 99.15 99.11 99.16 99.14 97.88

Table 4: Average testing accuracy in percentages of all the models over three runs over different
corruption degrees (indicated in the last six columns).

Model Dataset 0% 20% 40% 60% 80% 100%
MLP MNIST 97.87 87.38 73.28 54.16 32.09 9.81

CIFAR-10 56.37 48.62 40.35 30.55 19.68 9.80
CNN MNIST 99.15 87.51 69.44 47.10 28.30 9.85

Fashion-MNIST 90.74 77.74 61.35 43.26 25.57 10.08
CIFAR-10 74.95 60.48 46.15 30.96 18.32 9.89

AlexNet CIFAR-100 36.75 28.44 20.53 9.64 3.43 0.96
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: The paper has limitations, but those are not discussed in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Not presently.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer section 3.1 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[No]
Justification: Most experiments are computationally expensive, due to which we ran 3
independent runs per experiment. The plots report the average as well as the range from the
three independent runs. In particular, we do not report statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix section A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer section 3.1 and Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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