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ABSTRACT

This paper is concerned with learning an optimal policy in a nonparametric con-
textual bandit from offline, and possibly adaptively collected data. Existing meth-
ods and analyses typically rely on i.i.d. offline data, and a uniform coverage con-
dition on the behavior policy. In this work, similar to the single-policy concen-
trability coefficient, we propose a relaxed notion of coverage that measures how
well the optimal action is covered by the behavior policy for the nonparametric
bandits. Under this new notion, we develop a novel policy learning algorithm by
combining the k-nearest neighbor method with the pessimism principle. The new
algorithm has three notable properties. First and foremost, it achieves the min-
imax optimal suboptimality gap for any fixed coverage level (up to log factors).
Second, this optimality is attained adaptively, without requiring prior knowledge
of the coverage level of the offline data. Last but not least, it maintains these
guarantees even with adaptively collected offline data.

1 INTRODUCTION

The contextual multi-armed bandit provides an elegant and powerful framework for modeling vari-
ous sequential decision-making problems. In this setup, the learner engages with an environment in
rounds: at each round, it observes contextual information, selects an action based on that context,
and receives a reward corresponding to the chosen action. Notable advances in bandit algorithms
over recent decades have led to successful applications in areas such as personalized medicine, on-
line recommendation, and crowdsourcing (Kim et al., 2011; Li et al., 2010; Kittur et al., 2008).

The abundance of data from past deployments presents an opportunity to improve future decision-
making via offline learning. This involves learning effective policies from batch datasets, a problem
widely investigated in offline reinforcement learning (RL) (Lange et al., 2012; Levine et al., 2020;
Chen & Jiang, 2019; Jin et al., 2021; Rashidinejad et al., 2021). Unlike online RL, which relies on
active exploration, offline RL focuses on extracting insights from pre-collected data and has demon-
strated effectiveness in high-stakes domains such as autonomous driving and healthcare (Bojarski,
2016; Yurtsever et al., 2020; Tang & Wiens, 2021).

Offline learning in the realm of contextual bandits has attracted growing attention in the past decade.
Rashidinejad et al. (2021) studied the tabular case and Li et al. (2022); Zhu et al. (2023) subsequently
considered offline learning in linear bandits. Another line of work (Swaminathan & Joachims, 2015;
London & Sandler, 2019; Jin et al., 2022; Wang et al., 2024; Gabbianelli et al., 2024; Sakhi et al.,
2024) advanced the understanding of parametric offline learning for contextual bandits by applying
the importance-weighting method to learn a given policy class. While parametric offline learning
has been extensively studied in the past literature, the problem of learning a policy from batch data
under the nonparametric model remains underexplored.

The nonparametric contextual bandit is a classical personalized decision-making framework, where
the expected reward for each action takes the form of a smooth function of the contexts (Yang &
Zhu, 2002). For the online learning setting, the minimax rate of the cumulative regret has been
established by (Perchet & Rigollet, 2013; Rigollet & Zeevi, 2010). Recent work Cai et al. (2024)
initiated the study of nonparametric bandit learning with offline data. Their result displayed the
ability of the offline dataset to improve the online learning regret. However, it imposed a uniform
coverage condition on the offline dataset which says all actions need to be taken with sufficient
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probability by the behavior policy in order for the offline data to be useful. Such uniform coverage
condition may not hold in many practical scenarios.

In this paper, we study the problem of nonparametric offline policy learning under a relaxed coverage
condition. Similar to the single-policy concentrability coefficient (Rashidinejad et al., 2021), we
propose a relaxed notion of coverage that describes how well the optimal action is covered by the
behavior policy for the nonparametric bandits. Since the quality of the offline data is often unknown
in reality, it would be desirable to develop an algorithm that can learn an optimal policy from the
batch data without knowing the coverage level. To that end, we introduce policy learning algorithms
that bridge techniques from nonparametric statistics and the pessimism principle from offline RL (Jin
et al., 2021; Rashidinejad et al., 2021). We summarize our theoretical results as follows.

1.1 MAIN CONTRIBUTIONS

First, we establish the fundamental limits of policy learning for nonparametric bandits under a re-
laxed coverage condition. Let β be the smoothness parameter of the nonparametric reward functions
(Assumption 2.1), and α be the margin parameter which measures the separation between the arms
(Assumption 2.2). Denote by C⋆ the coefficient that reflects the coverage of the optimal action
under the offline data (Definition 2.4), and denote by d the dimension of the covariates. We show
the minimax optimal suboptimality gap of policy learning for nonparametric bandits is of order
(N/C⋆)−

β(1+α)
2β+d , where N is the size of the offline dataset. Intuitively, the coverage coefficient C⋆

controls the effective sample size of the offline data. When C⋆ becomes larger, the quality of the
offline dataset degrades, and consequently the minimax rate of convergence decreases.

We introduce two nonparametric offline policy learning rules that nearly attain the optimal subop-
timality gap. BIN-LCB (Algorithm 1) is based on splitting the continuous covariate space into
smaller bins and applying the lower-confidence bound approach to each bin. By choosing the num-
ber of bins appropriately, we prove BIN-LCB achieves the optimal suboptimality up to log factors.
A limitation of BIN-LCB is that the optimal binning parameter depends on the coverage coefficient
C⋆, which is often unknown in practice.

To overcome this limitation, we propose KNN-LCB (Algorithm 2) that combines the k-nearest
neighbor regression (Kpotufe, 2011; Chaudhuri & Dasgupta, 2014; Reeve et al., 2018) with the
lower-confidence bound principle. The number of nearest neighbors considered at a covariate point
is determined in a data-driven fashion, thereby allowing KNN-LCB to achieve the optimal sub-
optimality (up to log factors) without any knowledge of C⋆. Finally, in contrast to previous work
that assume i.i.d. offline samples, our theoretical guarantees hold even when the batch dataset is
generated by running adaptive algorithms.

1.2 RELATED WORK

Nonparametric contextual bandits. Since Woodroofe (1979) incorporated contextual informa-
tion into the multi-armed bandits problem, there has been significant progress in the theory of con-
textual bandits. Auer (2002); Abbasi-Yadkori et al. (2011); Goldenshluger & Zeevi (2013); Bastani
& Bayati (2020) adopted a parametric perspective and studied linear contextual bandits in both low
and high dimensional settings. Meanwhile, modeling the reward function as a nonparametric func-
tion of the contexts was proposed by (Yang & Zhu, 2002). In the online learning setting, Rigollet
& Zeevi (2010) developed a UCB-type algorithm that nearly achieves the optimal regret for non-
parametric bandits and its results were further improved by (Perchet & Rigollet, 2013). Reeve et al.
(2018) designed the k-Nearest Neighbor UCB algorithm that is able to utilize the low intrinsic di-
mensionality of the contexts. Cai et al. (2024) studied transfer learning for nonparametric bandits
where the learner is given an offline dataset before starting to perform online learning. Additional
insights in nonparametric bandits were developed in (Qian & Yang, 2016; Guan & Jiang, 2018; Hu
et al., 2022; Suk & Kpotufe, 2021; Gur et al., 2022; Jiang & Ma, 2024).

Offline policy learning. Learning an optimal policy from batch data has received considerable
attention in the past decade. Earlier works relied on the all-policy concentrability condition which
requires the state-action pairs of all possible policies to be covered in the offline dataset (Munos &
Szepesvári, 2008; Kallus, 2018; Chen & Jiang, 2019; Zhang et al., 2020; Xie & Jiang, 2021; Zhou
et al., 2023). Nevertheless, such uniform coverage assumption can be violated in many practical
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applications. A line of work relaxed this requirement by using the principle of pessimism to optimize
conservatively on the batch data (Jin et al., 2021; Rashidinejad et al., 2021; Uehara & Sun, 2021; Xie
et al., 2021a; Zanette et al., 2021; Shi et al., 2022; Zhan et al., 2022; Li et al., 2024a). For contextual
bandits, Li et al. (2022); Zhu et al. (2023) studied pessimistic offline learning in linear bandits;
Swaminathan & Joachims (2015); London & Sandler (2019); Jin et al. (2022); Wang et al. (2024);
Gabbianelli et al. (2024); Sakhi et al. (2024) obtained policy learning guarantees via the importance
weighting method when given a policy class. The prevalence of adaptive online learning algorithms
has made it important to analyze situations where the offline dataset is adaptively collected (Zhan
et al., 2024; Jin et al., 2022; Bibaut et al., 2021). Using both offline and online data to reduce sample
complexity has been explored in hybrid RL (Xie et al., 2021b; Song et al., 2022; Wagenmaker &
Pacchiano, 2023; Yang et al., 2023; Li et al., 2024c; Nakamoto et al., 2024). Finally, off-policy
evaluation is a task related to policy learning but its main goal is to estimate the value function of
a target policy based on offline data, and has been widely studied in recent literature (Thomas &
Brunskill, 2016; Jiang & Li, 2016; Wang et al., 2017; Duan et al., 2020; Jiang & Huang, 2020; Ma
et al., 2022; Li et al., 2024b; Lee & Ma, 2024).

2 PROBLEM SETUP

A K-armed nonparametric bandit instance is specified by a sequence of i.i.d. random vectors

(Xi, Y
(1)
i , . . . , Y

(K)
i ), 1 ≤ i ≤ N.

Here, each context Xi is assumed to be from X := [0, 1]d, and is sampled from a distribution PX .
We assume PX has a density (w.r.t. the Lebesgue measure) that is bounded below and above by
some constants c, c̄ > 0, respectively. In addition, Y (a)

i denotes the potential reward associated with
choosing action a at the i-th round. Denote by I = [K] the set of arms. Given any a ∈ I and i ≥ 1,
we assume that Y (a)

i ∈ [0, 1] and

E[Y (a)
i | Xi] = fa(Xi),

where fa is the unknown mean reward function for the arm a.

Suppose that we have access to an offline dataset Doff = {(Xi, Ai, Y
(Ai)
i )}Ni=1 collected from

a behavior policy µ = {µi}Ni=1. More precisely, for 1 ≤ i ≤ N , the action obeys Ai ∼
µi(· | Xi,Fi−1), where µi is the behavior policy at step i that can depend on the history
Fi−1 = {X1, A1, Y1, . . . , Xi−1, Ai−1, Yi−1}.
Define the optimal arm at x to be

π⋆(x) ∈ argmax
a∈I

fa(x),

with ties broken arbitrarily.

Our goal is to learn a policy π : X → I based on the batch dataset Doff that minimizes the expected
suboptimality, which is defined as

E
[
fπ⋆(X)(X)− fπ(X)(X)

]
. (1)

2.1 ASSUMPTIONS

We adopt the following assumptions that are standard in nonparametric bandits (Rigollet & Zeevi,
2010; Perchet & Rigollet, 2013). The first assumption says the reward functions of different arms
are Hölder smooth.
Assumption 2.1 (Smoothness). We assume that the reward function for each arm is (β, L)-smooth,
that is, there exist β ∈ (0, 1] and L > 0 such that for any a ∈ [K],

|fa(x)− fa(x
′)| ≤ L∥x− x′∥β2 , ∀x, x′ ∈ X .

The second assumption depicts the separation of the reward functions of different arms. For any
x ∈ X , define the pointwise maximum of the reward functions at x to be

f⋆(x) = f (1)(x) = max
a∈[K]

fa(x).
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Besides, define the second pointwise maximum to be

f (2)(x) = max{fa(x) : a ∈ [K], fa(x) < f (1)(x)},

if f (1)(x) ̸= mina∈[K] fa(x), and f (2)(x) = f (1)(x) otherwise.
Assumption 2.2 (Margin). We assume that the reward functions satisfy the margin condition with
parameter α > 0, that is there exist Cα > 0 such that

PX

(
0 < f (1)(X)− f (2)(X) ≤ δ

)
≤ Cαδ

α, ∀δ ∈ [0, 1].

Assumption 2.2 originates from the margin condition in nonparametric classification (Mammen &
Tsybakov, 1999; Tsybakov, 2004; Audibert & Tsybakov, 2007). It has been introduced to non-
parametric contextual bandits by (Goldenshluger & Zeevi, 2009; Rigollet & Zeevi, 2010; Perchet &
Rigollet, 2013). The complexity of the decision boundary is affected by the margin parameter. As
the margin parameter α grows larger, the mean reward function of the optimal action becomes more
well-separated from the other arms and identifying the optimal arm is less difficult.
Remark 2.3. When αβ > 1, the problem reduces to a static multi-armed bandit where one arm
is always optimal, regardless of the context; see Proposition 2.1 in (Rigollet & Zeevi, 2010). In
this degenerate case, the context becomes irrelevant, and the decision-making task loses its inherent
complexity. Since our focus is on contextual bandits, we concentrate on the case αβ ≤ 1 in this
paper.

2.2 RELAXED COVERAGE CONDITION

To characterize the quality of the offline data, we define

µ(· | x) = 1

N

N∑
i=1

µi(· | x), (2)

which is the average of the behavior policies at x over all time steps. We consider the following
notion about the coverage of µ.
Definition 2.4. We define C⋆ to be the positive constant that satisfies

inf
x∈X

µ(π⋆(x) | x) ≥ 1

C⋆
. (3)

Namely, 1/C⋆ reflects the minimum probability that the optimal arm is taken over the covariate
space. Compared to Cai et al. (2024), which requires the minimum probability that any arm is
pulled to be lower bounded, our notion here is more relaxed because it only needs the optimal action
to be covered. More precisely, one would have infa∈[K],x∈X µ(a | x) ≤ infx∈X µ(π⋆(x) | x) since
the infimum is taken over all actions.

Definition 2.4 is related to the single-policy concentrability coefficient in offline tabular
RL (Rashidinejad et al., 2021). Under the nonparametric bandit setting, however, the continuity
of the covariate space together with the nonparametric reward function necessitates different tech-
niques for the algorithm design and analysis of policy learning.

Throughout the paper, we assume the number of arms K to be constant. We use F(α, β, C⋆) to
denote the family of K-armed bandit instances that satisfy the above conditions with parameters α,
β and C⋆.

3 MINIMAX RATES

The main challenge in learning an optimal policy from the batch dataset stems from the continuity
of the covariate space. A common approach in nonparametric bandits literature is to decompose
the state space into smaller bins and treat each bin as a multi-armed bandit problem without the
covariate (Rigollet & Zeevi, 2010; Perchet & Rigollet, 2013). However, their algorithms are mainly
designed for the online learning setup while in our case, the task is to learn a good policy from the
offline data. The principle of pessimism has been a widely adopted method in offline reinforcement
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Algorithm 1 Binning with lower confidence bound
Require: Test point x, offline dataset Doff , binning parameter M , confidence level δ.

1: Generate partition L ← {Bj : j ∈ [Md]}.
2: Find j ∈ [Md] such that x ∈ Bj .
3: Return π̂(x) = argmaxa∈I f̂a,j − bj(a).

learning (Jin et al., 2021; Rashidinejad et al., 2021). The key is to subtract an additional term from
the empirical estimate of the reward value of an action to account for the uncertainty of the offline
data. Motivated by these ideas, we propose Algorithm 1—Binning with lower confidence bound—to
perform policy learning from the offline dataset for the nonparametric bandits.

To facilitate the presentation, we first introduce some notations. Let L = {Bj : j ∈ [Md]} be a
regular partition of X for some positive integer M , where

Bj = {x ∈ X : (vl − 1)/M ≤ xl < vl/M, 1 ≤ l ≤ d},
and v = (v1, v2, . . . , vd) ∈ [M ]d. As a result, there are in total Md bins in L. For any j ∈ [Md], let

Nj(a) =

N∑
i=1

1{Xi ∈ Bj , Ai = a},

which is the number of times the covariate goes to bin Bj and the action taken is a. Define

f̂a,j =
1

Nj(a)
·

N∑
i=1

1{Xi ∈ Bj , Ai = a} · Y a
i ,

which is the empirical estimate of arm a’s reward in Bj . Define the uncertainty level of arm a in Bj

to be

bj(a) =

√
2 log(1/δ)

Nj(a)
,

for some δ > 0. For any x ∈ X , Algorithm 1 first assigns it to the corresponding bin Bj . Then, it
returns the action a ∈ I that maximizes f̂a,j − bj(a), which is the lower confidence bound of the
reward value within that bin.

We are ready to present the theoretical guarantee of Algorithm 1.
Theorem 3.1. Suppose αβ ≤ 1. Assume N ≥ (20c−1K log(2N5))(2β+d)/βC⋆. Algorithm 1 with
inputs M ≍ (N/C⋆)1/(2β+d), δ = 1/N5 outputs a policy π̂ that satisfies

sup
F(α,β,C⋆)

E
[
fπ⋆(X)(X)− fπ̂(X)(X)

]
≤ Õ

(
(
N

C⋆
)−

β(1+α)
2β+d

)
.

See Section 5.1 for the proof.

The coverage coefficient C⋆ controls the effective sample size of the offline dataset. When C⋆

gets larger, which means the offline dataset has worse coverage on the optimal action, the expected
suboptimality decays at a slower rate.

We complement the performance upper bound with the following minimax lower bound on the
suboptimality of policy learning for nonparametric bandits.
Theorem 3.2. Suppose αβ ≤ 1 and C⋆ ≥ 2. For any algorithm that takes in an offline dataset Doff
and outputs a policy π, one has

sup
F(α,β,C⋆)

E
[
fπ⋆(X)(X)− fπ(X)(X)

]
?
(

N

C⋆

)− β(1+α)
2β+d

.

See Appendix B for the proof.

Theorem 3.1 matches the lower bound in Theorem 3.2 up to log factors, and together they estab-
lish the minimax suboptimality gap of policy learning for nonparametric bandits under the relaxed
coverage condition.
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Algorithm 2 KNN with lower confidence bound
Require: Test point x, offline dataset Doff , confidence level δ.

1: for each a ∈ I do
2: k(a)← argmink∈[N ] U

a
k (x).

3: end for
4: Return π̃(x) = argmaxa∈I f̂a

k(a)(x)− Ua
k(a)(x).

4 ADAPTIVITY TO THE COVERAGE COEFFICIENT

While Algorithm 1 nearly achieves the minimax optimal rate, it requires knowledge of the coverage
coefficient C⋆ to determine the optimal binning parameter M . In practice, the quality of the offline
dataset is often unknown, and the learner could face difficulties in choosing the appropriate value
of M without knowing C⋆. A natural attempt is to estimate the coverage coefficient. However,
obtaining a faithful estimate of C⋆ is challenging because we do not know the optimal action at all.
Instead of estimating C⋆ directly, we consider the following procedure that can optimally adapt to
the quality of the batch dataset (Algorithm 2).

Our algorithm is inspired by the k-nearest neighbor UCB proposed in (Reeve et al., 2018). Their
approach combines the k nearest-neighbor method with the upper confidence bound to tackle the
online regret minimization problem. In our case, however, the main challenge lies in adapting to the
coverage of the offline dataset. On a high level, our procedure uses k-nearest neighbor regression
to estimate the nonparametric reward functions, and applies the pessimism principle to select the
action based on the batch data.

We start by introducing some notations. Given any x ∈ X , let {τq(x)}Nq=1 be an enumeration of [N ]
such that

∥x−Xτq(x)∥2 ≤ ∥x−Xτq+1(x)∥2,

for any q ≤ N − 1. Denote by Γk(x) = {τq : q ∈ [k]} the set of indices of the k-nearest neighbors
of x. Let

Na
k (x) =

∑
i∈Γk

1{Ai = a},

which is the number of times arm a is taken among the k-nearest neighbors of x. Let rk(x) =
∥x−Xτk(x)∥2. Define

Ua
k (x) =

√
2 log(1/δ)

Na
k (x)

+ logN · rk(x)β ,

which is the uncertainty value of arm a with k neighbors at x. Next, define

f̂a
k (x) =

∑
i∈Γk

1{Ai = a}Y a
i

Na
k (x)

,

which is the empirical estimate of arm a’s reward with the k-nearest neighbors of x among the batch
dataset. For any x ∈ X , Algorithm 2 first determines a value k(a) such that

k(a) = argmin
k∈[N ]

Ua
k (x), (4)

for each a ∈ I. Intuitively, k(a) is the number of neighbors that can balance the bias and variance
of the reward estimate at x for arm a. Then, it selects the action a ∈ I that maximizes f̂a

k(a)(x) −
Ua
k(a)(x), which is the lower confidence bound of the reward estimate of arm a at x. Now, we are

ready to state the suboptimality guarantee of Algorithm 2.

Theorem 4.1. Suppose αβ ≤ 1. Assume N ≥ (20c−1K log(2N5))(2β+d)/βC⋆. Algorithm 2 with
input δ = 1/N5 outputs a policy π̃ that satisfies

sup
F(α,β,C⋆)

E
[
fπ⋆(X)(X)− fπ̃(X)(X)

]
≤ Õ

(
(
N

C⋆
)−

β(1+α)
2β+d

)
.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

See Appendix A.1 for the proof.

Algorithm 2 attains the minimax optimal suboptimality up to log factors. In contrast to Algorithm 1,
it does not need any knowledge of the coverage coefficient. As mentioned earlier, C⋆ dictates the
effective sample size of the offline dataset. One can see from the proof of Theorem 1 that the optimal
choice of the binning parameter M balances the bias and variance in some sense based on the number
of effective samples. In Algorithm 2, however, the burden of adapting to the effective sample size is
left to the choice of k, the number of nearest neighbors to consider for reward estimation. Crucially,
the definition of k(a) in equation (4) allows for balancing the bias and variance of estimation in a
data-driven fashion. Such choice of k(a) in turn adapts to the local effective sample size at point x
for each arm a ∈ I.

5 PROOF OF MAIN RESULTS

In this section, we present the analysis of Algorithm 1. While the full proof of our adaptive procedure
(Algorithm 2) is postponed to Appendix A.1, the framework outlined here is instrumental for the
later proof.

A key difficulty stems from the challenge of partial coverage in the presence of continuous covari-
ates. With nonparametric reward functions, the optimal arm π⋆(x) ∈ argmaxa∈I fa(x) can switch
arbitrarily often, even within a tiny neighborhood, due to complex intersections among the reward
curves fa(·). Our key insight (Lemma 5.2) is the identification of at least one arm whose reward
curve closely tracks the pointwise maximum f⋆(·) and, crucially, receives sufficient coverage under
the behavior policy.

Moreover, a naı̈ve application of existing pessimistic MAB bounds after partitioning the context
space yields an excess risk guarantee that ignores the margin condition and is therefore loose. The
novelty of our analysis lies in carefully controlling the error incurred on the regions where the best
and second-best reward functions exhibit a sufficient gap. To do so, we further decompose the risk
on those regions based on whether a near-optimal arm is selected or not, and derive high-probability
bounds that can fully leverage the gap condition.

Motivated by (Perchet & Rigollet, 2013), we begin by partitioning the covariate space into different
types of regions based on the separation of the reward functions. Define

J = {j ∈ [Md] : ∃xj ∈ Bj , f
(1)(xj)− f (2)(xj) > cM−β}, (5)

where c > 0 is to be specified. For its complement, we partition J c into two smaller sets

J c
1 = {j ∈ J c : ∃xj ∈ Bj , f

(1)(xj) = f (2)(xj)}, (6)
and

J c
2 = {j ∈ J c : ∀x ∈ Bj , 0 < f (1)(x)− f (2)(x) ≤ cM−β}. (7)

For any j ∈ J c
1 , the following lemma shows that the regret incurred on Bj can be controlled by the

margin condition.
Lemma 5.1. For any j ∈ J c

1 and policy π : X → [K], one has

E

∑
j∈J c

1

(
f⋆(X)− fπ(X)(X)

)
1{X ∈ Bj}

 ≤ Cα · c1+α ·M−β(1+α).

See Section A.2.1 for the proof.

For any j ∈ J ∪ J c
2 , let

I⋆j = {a ∈ I : ∃x ∈ Bj , fa(x) = f⋆(x)},
which is the set of near optimal arms in Bj . Our proof relies on the following observation that there
always exists an arm in I⋆j that is sufficiently covered by the offline dataset.
Lemma 5.2. For any j ∈ J ∪ J c

2 , there exists a⋆ ∈ I⋆j such that

µ(a⋆ | Bj) =
1

PX(Bj)

∫
Bj

µ(a⋆ | x)dPX(x) ≥ 1

KC⋆
.

See Section A.2.2 for the proof.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1 PROOF OF THEOREM 3.1

To start with, let c1 = 2
√
c−1 log(2Kδ−1)K and c = c1 + 2Ldβ/2. For any j ∈ J ∪ J c

2 , denote
a⋆ ∈ I⋆j to be the near optimal arm with coverage in Bj given by Lemma 5.2. For any a ∈ I, define

fa,j := E[fa(X) | X ∈ Bj ] =
1

PX(Bj)

∫
Bj

fa(x)dPX(x).

Deote f⋆,j = fa⋆,j , and let π̂j to be the output of Algorithm 1 on Bj . Define

Aj = {Nj(a
⋆) ≥ 1

2K
PX(Bj) ·

N

C⋆
},

and
Ej = {f⋆,j − fπ̂j ,j ≤ 2bj(a

⋆)} ∩ Aj .

The next two lemmas state these good events happen with high probability.
Lemma 5.3. For any j ∈ J ∪ J c

2 , let π̂j be the output of Algorithm 1 on Bj . With probability at
least 1−N−3,

f⋆,j − fπ̂j ,j ≤ 2bj(a
⋆).

See Section A.2.3 for the proof.
Lemma 5.4. Assume µ(a⋆ | Bj) ≥ 1/(C⋆K). One has

P(Ac
j) ≤

1

N5
.

See Section A.2.4 for the proof.

The excess risk can be decomposed as

E
[
f⋆(X)− fπ̂(X)(X)

]
=

Md∑
j=1

E
[(
f⋆(X)− fπ̂(X)(X)

)
1{X ∈ Bj}

]
=
∑
j∈J

E
[(
f⋆(X)− fπ̂(X)(X)

)
1{X ∈ Bj}

]
︸ ︷︷ ︸

U

+
∑
j∈J c

E
[(
f⋆(X)− fπ̂(X)(X)

)
1{X ∈ Bj}

]
︸ ︷︷ ︸

V

.

5.1.1 CONTROL OF TERM V

We further decompose

V =
∑
j∈J c

1

E
[(
f⋆(X)− fπ̂(X)(X)

)
1{X ∈ Bj}

]
︸ ︷︷ ︸

V1

+
∑
j∈J c

2

E
[(
f⋆(X)− fπ̂(X)(X)

)
1{X ∈ Bj}

]
︸ ︷︷ ︸

V2

.

For term V1, Lemma 5.1 gives
V1 ≤ Cαc

1+αM−β(1+α).

Next, we upper bound V2. Fix any j ∈ J c
2 . Let a⋆ ∈ I⋆j be the near optimal arm with coverage in

Bj given by Lemma 5.2, so that µ(a⋆ | Bj) ≥ 1/(KC⋆). Applying Lemma A.3 we get

E[(f⋆(X)− fπ̂(X)(X))1{X ∈ Bj}] ≤ 3ccM−d−β .

Besides, the margin condition implies∑
j∈J c

2

cM−d ≤ PX(0 < f (1)(x)− f (2)(x) ≤ cM−β) ≤ Cαc
αM−βα. (8)

Therefore, |J c
2 | ≤ c−1Cαc

αMd−αβ and we reach

V2 ≤ c−1Cαc
αMd−αβ · (3ccM−d−β) = 3c−1cCαc

1+αM−β(1+α).

Combining the bounds of V1 and V2 yields

V = V1 + V2 ≤ (1 + 3c−1c)Cαc
1+αM−β(1+α).

8
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5.1.2 CONTROL OF TERM U

Fix any j ∈ J . Let I⋆j = {a ∈ I : fa(xj) = f⋆(xj)} where xj ∈ Bj satisfies f (1)(xj) −
f (2)(xj) > cM−β by definition of J . Let a⋆ ∈ I⋆j be the near optimal arm with coverage in Bj

given by Lemma 5.2, so that µ(a⋆ | Bj) ≥ 1/(KC⋆). Applying Lemma A.4 we obtain

E[(f⋆(X)− fπ̂(X)(X))1{X ∈ Bj}]
≤ cM−βP(X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β) + E[1{X ∈ Bj , f⋆,j − fπ̂j ,j ≥ c1M

−β}].
(9)

We further decompose the second term above into

E[1{X ∈ Bj , f⋆,j − fπ̂j ,j ≥ c1M
−β}]

= E[1{X ∈ Bj , f⋆,j − fπ̂j ,j ≥ c1M
−β}(1{Aj}+ 1{Ac

j})]
≤ E[1{X ∈ Bj , f⋆,j − fπ̂j ,j ≥ c1M

−β}1{Aj}] + P(Ac
j)

≤ E[1{X ∈ Bj , f⋆,j − fπ̂j ,j ≥ 2bj(a
⋆)}1{Aj}] + P(Ac

j)

≤ 2

N3
, (10)

where the penultimate inequality uses the fact that c1M−β ≥ 2bj(a
⋆) under Aj , and the last in-

equality is due to Lemma 5.3 and Lemma 5.4. Combining relations (9) and (10), we reach

U =
∑
j∈J

E
[(
f⋆(X)− fπ̂(X)(X)

)
1{X ∈ Bj}

]
≤
∑
j∈J

cM−βP(X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β) +Md · 2

N3

≤ cM−βP(0 < f (1)(X)− f (2)(X) ≤ cM−β) +Md · 2

N3

≤ 2Cαc
1+αM−β(1+α),

where the last inequality uses the margin condition. Therefore,

E
[
f⋆(X)− fπ̂(X)(X)

]
= U + V

≤ 2Cαc
1+αM−β(1+α) + (1 + 3c−1c)Cαc

1+αM−β(1+α)

= (3 + 3c−1c)Cαc
1+αM−β(1+α)

= (3 + 3c−1c)Cαc
1+α

(
N

C⋆

)− β(1+α)
2β+d

.

6 DISCUSSION

In this paper, we establish policy learning guarantees for the nonparametric contextual bandits under
a relaxed coverage condition which measures how well the optimal action is covered in the batch
dataset. We design an adaptive procedure (Algorithm 2) that combines the k-nearest neighbors
method with the pessimism principle to achieve the optimal suboptimality gap (up to log factors)
without knowledge of the coverage coefficient.

Our work opens a few possible directions to pursue in the future. First, the current upper and
lower bounds match up to log factors, and it would be interesting to remove the extra factors by
sharpening the analysis. Besides, the smoothness parameter β might be unknown in practice as
well. Nevertheless, in the nonparametric bandit literature, it is widely acknowledged that adapting
to the unknown smoothness parameter is generally impossible without additional assumptions on the
reward functions (Locatelli & Carpentier, 2018; Gur et al., 2022). Understanding what conditions
permit smoothness adaptation in offline policy learning is another direction to explore.

9
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A PROOF OF UPPER BOUNDS

A.1 PROOF OF THEOREM 4.1

Define M ≍ (N/C⋆)1/(2β+d). Let {Bj}M
d

j=1 be a regular partition of X . Define c1 =

2(
√
4c−1K log δ−1+logN ·dβ/2) and c = c1+2Ldβ/2. Let J , J c

1 , J c
2 be defined as in equations

(5), (6) and (7).

For any j ∈ J ∪ J c
2 and x ∈ Bj , let kj = max{q ∈ [N ] : Xτq(x) ∈ Bj}. Let a⋆ ∈ I⋆j be the

near optimal arm with coverage in Bj given by Lemma 5.2. Let π̃(x) be the output of Algorithm 2.
Define

Aj(x) = {Na⋆

kj
(x) ≥ 1

2K
PX(Bj) ·

N

C⋆
},

and
Ej(x) = {fa⋆(x)− fπ̃(x)(x) ≤ 2Ua⋆

kj
(x)} ∩ Aj(x). (11)

The next two lemmas state that these good events happen with high probability.

Lemma A.1. Suppose j ∈ J ∪ J c
2 and x ∈ Bj . With probability at least 1−N−3, one has

fa⋆(x)− fπ̃(x)(x) ≤ 2Ua⋆

kj
(x).

See Section A.2.5 for the proof.
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Lemma A.2. Suppose j ∈ J ∪ J c
2 and x ∈ Bj . Assume µ(a⋆ | Bj) ≥ 1/(C⋆K). One has

P(Ac
j(x)) ≤

1

N5
.

See Section A.2.6 for the proof.

The excess risk can be decomposed as

E
[
f⋆(X)− fπ̃(X)(X)

]
= E

Md∑
j=1

(
f⋆(X)− fπ̃(X)(X)

)
1{X ∈ Bj}



= E


∑
j∈J

(
f⋆(X)− fπ̃(X)(X)

)
1{X ∈ Bj}︸ ︷︷ ︸

U

+
∑
j∈J c

(
f⋆(X)− fπ̃(X)(X)

)
1{X ∈ Bj}︸ ︷︷ ︸

V

 .

A.1.1 CONTROL OF TERM V

We further decompose

V =
∑
j∈J c

1

E
[(
f⋆(X)− fπ̃(X)(X)

)
1{X ∈ Bj}

]
︸ ︷︷ ︸

V1

+
∑
j∈J c

2

E
[(
f⋆(X)− fπ̃(X)(X)

)
1{X ∈ Bj}

]
︸ ︷︷ ︸

V2

.

For V1, Lemma 5.1 gives
E[V1] ≤ c1+αCαM

−β(1+α).

Next, we upper bound V2. Fix any j ∈ J c
2 . Define I⋆j = {a ∈ I : ∃x ∈ Bj , fa(x) = f⋆(x)}. Let

a⋆ ∈ I⋆j be the near optimal arm with coverage in Bj given by Lemma 5.2, so that µ(a⋆ | Bj) ≥
1/(KC⋆). We have the following decomposition,

E[(f⋆(X)− fπ̃(X)(X))1{X ∈ Bj}] = E[(f⋆(X)− fπ̃(X)(X))1{X ∈ Bj}(1{Ej(X)}+ 1{Ecj (X)})]
≤ E[(f⋆(X)− fπ̃(X)(X))1{X ∈ Bj , Ej(X)}] + P(X ∈ Bj , Ecj (X))

≤ E[2Ua⋆

kj
(X)1{Aj(X)}]cM−d +

2

N3

≤ c1M
−β · cM−d +

2

N3
≤ 2cc1M

−d−β ,

where the second inequality is due to the definition of Ej(X), and uses Lemma A.1 and Lemma A.2;
the third inequality applies the definition of Aj(X). Reuse relation (8) we have |J c

2 | ≤
c−1Cαc

αMd−αβ . Consequently,

E[V2] ≤ c−1Cαc
αMd−αβ ·

(
2cc1M

−d−β
)
< 2c−1cCαc

1+αM−β(1+α).

Combining the bounds of V1 and V2 yields

E[V ] = E[V1] + E[V2] ≤ Cαc
1+αM−β(1+α) + 2c−1cCαc

1+αM−β(1+α) = (1 + 2c−1c)Cαc
1+αM−β(1+α).

A.1.2 CONTROL OF TERM U

Fix any j ∈ J . Let I⋆j = {a ∈ I : fa(xj) = f⋆(xj)} where xj ∈ Bj satisfies f (1)(xj) −
f (2)(xj) > cM−β by definition of J . Let a⋆ ∈ I⋆j be the near optimal arm with coverage in Bj

given by Lemma 5.2, so that µ(a⋆ | Bj) ≥ 1/(KC⋆). Applying Lemma A.4 we obtain

E[(f⋆(X)− fπ̃(X)(X))1{X ∈ Bj}]
≤ cM−βP(X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β) + E[1{X ∈ Bj , fa⋆(X)− fπ̃(X)(X) ≥ c1M

−β}].
(12)
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We can further decompose the second term above into

E[1{X ∈ Bj , fa⋆(X)− fπ̃(X)(X) ≥ c1M
−β}]

= E[1{X ∈ Bj , fa⋆(X)− fπ̃(X)(X) ≥ c1M
−β}(1{Aj(X)}+ 1{Ac

j(X)})]
≤ E[1{X ∈ Bj , fa⋆ − fπ̃(X) ≥ c1M

−β}1{Aj(X)}] + P(Ac
j(X))

≤ E[1{X ∈ Bj , fa⋆ − fπ̃(X) ≥ 2Ua⋆

kj
(X)}1{Aj(X)}] + P(Ac

j(X))

≤ 2

N3
, (13)

where the penultimate inequality uses the fact that c1M−β ≥ 2Ua⋆

kj
(x) under Aj(x); the last in-

equality is due to Lemma A.1 and Lemma A.2. Combining relations (12) and (13), we reach

E[U ] =
∑
j∈J

E
[(
f⋆(X)− fπ(X)(X)

)
1{X ∈ Bj}

]
≤
∑
j∈J

(
cM−βP(X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β) +

2

N3

)
≤ cM−βP(0 < f (1)(X)− f (2)(X) ≤ cM−β) +Md · 2

N3

≤ 2Cαc
1+αM−β(1+α),

where the last inequality is uses the margin condition. Therefore,

E
[
f⋆(X)− fπ̃(X)(X)

]
= E[U ] + E[V ]

≤ 2Cαc
1+αM−β(1+α) + (1 + 2c−1c)Cαc

1+αM−β(1+α)

= (3 + 2c−1c)Cαc
1+αM−β(1+α)

= (3 + 3c−1c)Cαc
1+α

(
N

C⋆

)− β(1+α)
2β+d

.

A.2 PROOF OF HELPER LEMMAS

A.2.1 PROOF OF LEMMA 5.1

For any Bj ∈ J c
1 , there exists xj ∈ Bj such that f (1)(xj) = f (2)(xj) = fa(xj) for all a ∈ I.

Consequently, the smoothness condition gives us f (1)(x) − fa(x) ≤ cM−β for all x ∈ Bj . Since
the set {x ∈ X : f (1)(x) = f (2)(x)} does not incur any error, we have∑
j∈J c

1

E
[(
f⋆(X)− fπ(X)(X)

)
1{X ∈ Bj}

]
≤
∑
j∈J c

1

cM−βPX

(
X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β

)
≤ cM−βPX

(
0 < f (1)(X)− f (2)(X) ≤ cM−β

)
≤ Cαc

1+αM−β(1+α).

A.2.2 PROOF OF LEMMA 5.2

By definition, for any k ∈ I \ I⋆j , one has f⋆(x)− fk(x) > 0 for all x ∈ Bj . Since∑
a∈I⋆

j

µ(a | Bj) =
1

PX(Bj)

∑
a∈I⋆

j

∫
Bj

µ(a | x)dPX(x)

=
1

PX(Bj)

∫
Bj

∑
a∈I⋆

j

µ(a | x)dPX(x)

≥ 1

PX(Bj)

∫
Bj

1

C⋆
dPX(x) =

1

C⋆
,
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where the inequality is due to
∑

a∈I⋆
j
µ(a | x) ≥ 1/C⋆, there exists a⋆ ∈ I⋆j such that

µ(a⋆ | Bj) ≥
1

C⋆
· 1

|I⋆j |
≥ 1

KC⋆
.

A.2.3 PROOF OF LEMMA 5.3

Denote A′
j = {f̂a,j − bj(a) ≤ fa,j ≤ f̂a,j + bj(a) for all a ∈ I}. By Lemma A.5, we have

P(A′
j) ≥ 1−N−3. Since A′

j implies

f⋆,j ≤ f̂⋆,j + bj(a
⋆) = f̂⋆,j − bj(a

⋆) + 2bj(a
⋆) ≤ f̂π̂j ,j − bj(π̂j) + 2bj(a

⋆) ≤ fπ̂j ,j + 2bj(a
⋆),

we can conclude P({f⋆,j − fπ̂j ,j ≤ 2bj(a
⋆)}) ≥ P(A′

j) ≥ 1−N−3.

A.2.4 PROOF OF LEMMA 5.4

For simplicity we drop the subscript on j and write B for Bj throughout the proof. Recall NB(a
⋆) =∑N

i=1 1{Xi ∈ B,Ai = a⋆}. Denote pi = P(Xi ∈ B,Ai = a⋆). Define

Zi = 1{Xi ∈ B,Ai = a⋆} − E[1{Xi ∈ B,Ai = a⋆} | Fi−1].

One has E[1{Xi ∈ B,Ai = a⋆} | Fi−1] = pi, and it can be easily verified that {Zi}Ni=1 is a
bounded martingale-difference sequence with |Zi| ≤ 1. Besides,

N∑
i=1

E[Z2
i | Fi−1] =

N∑
i=1

pi(1− pi) ≤
N∑
i=1

pi.

By Freedman’s inequality, we have

P

| N∑
i=1

Zi| ≥

√√√√2

(
N∑
i=1

pi

)
log(

2

δ
)

 ≤ δ.

Therefore, with probability at least 1− δ,

|NB(a
⋆)− PX(B) ·Nµ(a⋆ | B)| ≤

√
3 log(

2

δ
)PX(B) ·Nµ(a⋆ | B),

where we have used the relation µ(· | x) = 1
N

∑N
i=1 µi(· | x). Since PX(B) · (N/C⋆) ≥

20K log(2N5) and δ = 1/N5, one has with probability at least 1− 1/N5,

NB(a
⋆) ≥ PX(B) ·Nµ(a⋆ | B)−

√
3 log(

2

δ
)PX(B) ·Nµ(a⋆ | B)

≥ 1

2
PX(B) ·Nµ(a⋆ | B) ≥ 1

2K
PX(B) · N

C⋆
.

A.2.5 PROOF OF LEMMA A.1

Denote A′
j = {f̂a,k − Ua

k (x) ≤ fa(x) ≤ f̂a,k(x) + Ua
k (x) for all a ∈ I, k ∈ [N − 1]}. By

Lemma A.6, we have P(A′
j) ≥ 1−N−3. Under A′

j , we have

fa⋆(x) ≤ f̂a⋆,k(a⋆)(x) + Ua⋆

k(a⋆)(x)

= f̂a⋆,k(a⋆)(x)− Ua⋆

k(a⋆)(x) + 2Ua⋆

k(a⋆)(x)

(i)

≤ f̂π̃(x),k(π̃(x))(x)− U
π̃(x)
k(π̃(x))(x) + 2Ua⋆

k(a⋆)(x)

≤ fπ̃(x)(x) + 2Ua⋆

k(a⋆)(x)
(ii)

≤ fπ̃(x)(x) + 2Ua⋆

kj
(x),

where step (i) uses the definition of Algorithm 2, and step (ii) is due to Ua⋆

k(a⋆)(x) ≤ Ua⋆

kj
(x).

Consequently,
P({fa⋆(x)− fπ̃(x)(x) ≤ 2Ua⋆

kj
(x)}) ≥ P(A′

j) ≥ 1−N−3.
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A.2.6 PROOF OF LEMMA A.2

Recall kj = max{q ∈ [N ] : Xτq(x) ∈ Bj}. By definition, one has

Na⋆

kj
(x) ≥

N∑
i=1

1{Xi ∈ Bj , Ai = a⋆} = Nj(a
⋆).

By Lemma 5.4,

P(Ac
j(x)) ≤ P(Ac

j) ≤
1

N5
.

A.3 AUXILIARY LEMMAS

Lemma A.3. For any j ∈ J c
2 , one has

E[(f⋆(X)− fπ̂(X)(X))1{X ∈ Bj}] ≤ 3ccM−d−β .

Proof. We have the following decomposition,

E[(f⋆(X)− fπ̂(X)(X))1{X ∈ Bj}] = E[(f⋆(X)− fπ̂(X)(X))1{X ∈ Bj}(1{Ej}+ 1{Ecj })]
≤ E[(f⋆(X)− fπ̂(X)(X))1{X ∈ Bj , Ej}] + P(Ecj )
≤
(
E[(f⋆,j − fπ̂j ,j)1{Ej}] + cM−β

)
cM−d + P(Ecj ),

where the last inequality uses E[f⋆(X) | X ∈ Bj ] ≤ f⋆,j + cM−β under the smoothness condition.
Applying Lemma 5.3 and Lemma 5.4 , we reach

E[(f⋆(X)− fπ̂(X)(X))1{X ∈ Bj}] ≤
(
E[(f⋆,j − fπ̂j ,j)1{Ej}] + cM−β

)
cM−d +

2

N3

≤
(
E[2bj(a⋆)1{Aj}] + cM−β

)
cM−d +

2

N3

≤ (c1 + c)M−β · cM−d +
2

N3
≤ 3ccM−d−β ,

where the second inequality is due to the definition of Ej , and the third inequality uses the property
of Aj .

Lemma A.4. Assume c > 2Ldβ/2. For any j ∈ J and any policy π : X → [K], one has

E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}]
≤ cM−βP(X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β) + E[1{X ∈ Bj , fa⋆(X)− fπ(X)(X) ≥ (c− 2Ldβ/2)M−β}].

Furthermore, if π satisfies π(x) = πj ∈ [K] for all x ∈ Bj , one has

E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}]
≤ cM−βP(X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β) + E[1{X ∈ Bj , f⋆,j − fπj ,j ≥ (c− 2Ldβ/2)M−β}].

Proof. Recall I⋆j = {a ∈ I : fa(xj) = f⋆(xj)}. We have the following decomposition,

E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}]
= E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}1{π(X) ∈ I⋆j }] + E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}1{π(X) ∈ I \ I⋆j })].

(14)

For any x ∈ Bj and a ∈ I⋆j , we have

f⋆(x)− fa(x) ≤ cM−β1{0 < f (1)(x)− f (2)(x) ≤ cM−β}.
So the first term in (14) can be bounded by

E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}1{π(X) ∈ I⋆j }] ≤ cM−βP(X ∈ Bj , 0 < f (1)(X)− f (2)(X) ≤ cM−β).

17
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For any a′ ∈ I \ I⋆j and a ∈ I⋆j , by definition fa(xj) − fa′(xj) > cM−β . Consequently, the
smoothness condition gives us

fa(x)− fa′(x) ≥ (c− 2Ldβ/2)M−β (15)

for all x ∈ Bj . Therefore, the second term in (14) can be bounded by

E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}1{π(X) ∈ I \ I⋆j })] ≤ E[1{X ∈ Bj , π(X) ∈ I \ I⋆j }]

≤ E[1{X ∈ Bj , fa⋆(X)− fπ(X)(X) ≥ (c− 2Ldβ/2)M−β}].

Since relation (15) implies fa,j−fa′,j ≥ (c−2Ldβ/2)M−β , when π(x) = πj ∈ [K] for all x ∈ Bj ,
one has

E[(f⋆(X)− fπ(X)(X))1{X ∈ Bj}1{π(X) ∈ I \ I⋆j })] ≤ E[1{X ∈ Bj , π(X) ∈ I \ I⋆j }]

≤ E[1{X ∈ Bj , f⋆,j − fπj ,j ≥ (c− 2Ldβ/2)M−β}].

Combining all the above finishes the proof.

Lemma A.5. With probability at least 1−N−3, one has

f̂a,j − bj(a) ≤ fa,j ≤ f̂a,j + bj(a) for all a ∈ I.

Proof. Fix any a ∈ I. Recall

f̂a,j =
1

Nj(a)
·

N∑
i=1

1{Xi ∈ Bj , Ai = a}Y a
i .

Denote ϵi = 1{Xi ∈ Bj , Ai = a}, and Zi = 1{Xi ∈ Bj}(Y a
i − fa,j). By Corollary 5 in (Reeve

et al., 2018), one has

P
(
|f̂a,j − fa,j | > bj(a)

)
= P

| N∑
i=1

ϵiZi| >

√√√√2 log(1/δ)

N∑
i=1

ϵi

 ≤ e (log(1/δ) logN) δ.

Applying union bound we reach

P((A′
j)

c) ≤ Ke (log(1/δ) logN) δ ≤ 1

N3
.

Lemma A.6. For any x ∈ X , with probability at least 1−N−3,

f̂a,k − Ua
k (x) ≤ fa(x) ≤ f̂a,k(x) + Ua

k (x) for all a ∈ I, k ∈ [N ].

Proof. Fix a ∈ I and k ∈ [N ]. Denote Ga,k = {f̂a,k − Ua
k (x) ≤ fa(x) ≤ f̂a,k(x) + Ua

k (x)}. On
Gca,k, one has |f̂a,k(x)− fa(x)| > Ua

k (x). Besides,

|f̂a,k(x)− fa(x)| =|
1

Na
k (x)

∑
s∈Γk

(1{As = a}Ys − fa(x)) |

= | 1

Na
k (x)

∑
s∈Γk

(1{As = a}Ys − fa(Xs) + fa(Xs)− fa(x)) |

≤ | 1

Na
k (x)

∑
s∈Γk

(1{As = a}Ys − fa(Xs)) |+ |
1

Na
k (x)

∑
s∈Γk

(fa(Xs)− fa(x)) |

≤ | 1

Na
k (x)

∑
s∈Γk

(1{As = a}Ys − fa(Xs)) |+ logN · rk(x)β ,
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where the penultimate step uses triangle inequality, and the last inequality is due to

|fa(Xs)− fa(x)|
(i)

≤ L∥x−Xs∥β
(ii)

≤ L · rk(x)β
(iii)

≤ logN · rk(x)β .
Here, step (i) is due to Assumption 2.1; step (ii) uses the definition of rk(x); step (iii) holds for N
sufficiently large. This leads to√

2 log(1/δ)

Na
k (x)

+ logN · rk(x)β = Ua
k (x) < |

1

Na
k (x)

∑
s∈Γk

(1{As = a}Ys − fa(Xs)) |+ logN · rk(x)β ,

and we have
|
∑
s∈Γk

(1{As = a}Ys − fa(Xs)) | >
√

2 log(1/δ)Na
k (x).

By Corollary 5 in (Reeve et al., 2018),

P

(
|
∑
s∈Γk

(1{As = a}Ys − fa(Xs)) | >
√

2 log(1/δ)Na
k (x) | {Xs}s∈[N ]

)
≤ e (log(1/δ) logN) δ.

Therefore, using the law of total expectation we reach

P(Gca,k) ≤ P

(
|
∑
s∈Γk

(1{As = a}Ys − fa(Xs)) | >
√
2 log(1/δ)Na

k (x)

)
≤ e (log(1/δ) logN) δ.

Applying union bound to get

P(∪a∈[K],k∈[N ]Gca,k) ≤ e (log(1/δ) logN)KNδ ≤ 1

N3
.

B PROOF OF THEOREM 3.2

Step 1: introducing the family of problem instances. Take PX to be the uniform distribution on
X = [0, 1]d. Define M = ⌈(N/C⋆)1/(2β+d)⌉. Our construction of the reward instances is adapted
from (Rigollet & Zeevi, 2010). Let L = {Bj : j = 1, ...,Md} be a regular partition of X and let
qj be the center of Bj . Denote Ωm := {±1}m with m := ⌈Md−αβ⌉. For each ω ∈ Ωm, define a
function fω : [0, 1]d 7→ R:

fω(x) =
1

2
+

m∑
j=1

ωjφj(x), (16)

where φj(x) = CϕM
−βϕ(2M(x− qj))1{x ∈ Bj} with ϕ(x) = (1− ∥x∥∞)β1{∥x∥∞ ≤ 1}, and

Cϕ = min(2−βL, 1/4).

We take K = 2 and I = {1,−1}. Let µi(1 | x) = 1/C⋆ and µi(−1 | x) = 1 − 1/C⋆ for all
x ∈ X , 1 ≤ i ≤ N . By equation (2), we have µ(1 | x) = 1/C⋆ and µ(−1 | x) = 1− 1/C⋆ for any
x ∈ X . The family of problem instances of interest is

C :=
{(

µ, f1(x) = fω(x), f−1(x) =
1

2

)
| ω ∈ Ωm

}
. (17)

With slight abuse of notation, we also use C to denote {fω : ω ∈ Ωm}. It is straightforward to verify
that C ⊆ F(α, β, C⋆).

Step 2: reduction to the testing error. We can reduce lower bounding the suboptimality gap to
the testing error due to to the following lemma.
Lemma B.1 (Lemma 3.1 in (Rigollet & Zeevi, 2010)). Under the margin condition, one has

E
[
f⋆(X)− fπ(X)(X)

]
≥
(

1

D
· E
[
1{π(X) ̸= π⋆(X), f(X) ̸= 1

2
}
])α+1

α

,

for some constant D > 0.
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By Lemma B.1, we have

sup
C

E
[
f⋆(X)− fπ(X)(X)

]
≥ sup

C
(
1

D
)

α+1
α ·

(
E
[
1{π(X) ̸= π⋆(X), f(X) ̸= 1

2
}
])α+1

α

= (
1

D
)

α+1
α ·

(
sup
C

E
[
1{π(X) ̸= π⋆(X), f(X) ̸= 1

2
}
])α+1

α

.

Let Pω denotes the joint distribution of {(Xi, Ai, Yi)}Ni=1 under ω, and let Eω be the correspond-
ing expectation. The supreme term within the second parenthesis can be lowered bounded by the
average,

sup
C

E
[
1{π(X) ̸= π⋆(X), f(X) ̸= 1

2
}
]
≥ 1

2m

∑
ω∈Ωm

Eω

[
1{π(X) ̸= π⋆(X), fω(X) ̸= 1

2
}
]

=
1

2m

m∑
j=1

∑
ω∈Ωm

Eω [1{π(X) ̸= ωj , X ∈ Bj}]

=
1

2m

m∑
j=1

∑
ω[−j]∈Ωm−1

∑
l∈{±1}

Eωl
[−j]

[1{π(X) ̸= l,X ∈ Bj}]︸ ︷︷ ︸
Wj,ω[−j]

,

(18)

where ωl
[−j] is the same as ω except for the j-th entry being l. Here we have used the fact that for

fωl
[−j]

, the optimal arm in the bin Bj is l. We then relate Wj,ω[−j]
to a binary testing error. By Le

Cam’s method,

Wj,ω[−j]
=

1

Md

∑
l∈{±1}

Pωl
[−j]

(π(X) ̸= l | X ∈ Bj)

≥ 1

4Md
exp

(
−KL(Pω−1

[−j]
,Pω1

[−j]
)
)

?
1

4Md
exp

(
− N

C⋆
·M−(2β+d)

)
,

where the last inequality uses Lemma B.2. Plugging the above back to equation (18) we obtain

sup
C

E
[
1{π(X) ̸= π⋆(X), f(X) ̸= 1

2
}
]
≥ 1

2m

m∑
j=1

∑
ω[−j]∈Ωm−1

Wj,ω[−j]

?
1

2m

m∑
j=1

∑
ω[−j]∈Ωm−1

1

4Md
exp

(
− N

C⋆
·M−(2β+d)

)
≍M−αβ .

Therefore, we can conclude the proof by

sup
C

E
[
f⋆(X)− fπ(X)(X)

]
≥ (

1

D
)

α+1
α ·

(
sup
C

E
[
1{π(X) ̸= π⋆(X), f(X) ̸= 1

2
}
])α+1

α

? (M−αβ)
1+α
α = M−β(1+α) ≍

(
N

C⋆

)− β(1+α)
2β+d

,

where we have used the definition of M .

Lemma B.2. Fix j ∈ [m]. For any policy π, one has

KL(Pω−1
[−j]

,Pω1
[−j]

) >
N

C⋆
·M−(2β+d).
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Proof. By the standard decomposition of the KL divergence and the Bernoulli reward structure,

KL(Pω−1
[−j]

,Pω1
[−j]

) >
N∑
i=1

Eω−1
[−j]

[(
fω−1

[−j]
(Xi)− fω1

[−j]
(Xi)

)2
1{Ai = 1}

]

>
N∑
i=1

M−2βEω−1
[−j]

[1{Ai = 1, Xi ∈ Bj}]

=

N∑
i=1

M−(2β+d)Pω−1
[−j]

(Ai = 1 | Xi ∈ Bj)

=
N

C⋆
·M−(2β+d).
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