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Abstract

In safety-critical applications, guaranteeing the
satisfaction of constraints over continuous envi-
ronments is crucial, e.g., an autonomous agent
should never crash into obstacles or go off-road.
Neural models struggle in the presence of these
constraints, especially when they involve intri-
cate algebraic relationships. To address this, we
introduce a differentiable probabilistic layer that
guarantees the satisfaction of non-convex alge-
braic constraints over continuous variables. This
probabilistic algebraic layer (PAL) can be seam-
lessly plugged into any neural architecture and
trained via maximum likelihood without requiring
approximations. PAL defines a distribution over
conjunctions and disjunctions of linear inequali-
ties, parameterized by polynomials. This formu-
lation enables efficient and exact renormalization
via symbolic integration, which can be amortized
across different data points and easily parallelized
on a GPU. We showcase PAL and our integration
scheme on benchmarks for algebraic constraint in-
tegration and on real-world trajectory data.

1 INTRODUCTION

In safety-critical applications, a reliable AI system should
be uncertainty-aware and deliver calibrated probabilities
over its predictions. At the same time, it should confidently
and consistently assign zero probability to certain states
of the world if they are invalid, i.e., if they are violating
constraints. These constraints can encode prior knowledge
such as explicit rules [Marconato et al., 2023, 2024, Bor-
tolotti et al., 2024] that can be crucial for the safety of the
system and its users. For instance, they can encode that self-
driving cars should avoid crashing into obstacles or go off-
road [Xu et al., 2020, Giunchiglia et al., 2023].

Ground Truth GMM Flow PAL (ours)

Figure 1: PAL is guaranteed to place probability mass
only within a given constraint here represented as the
(non deleted) walkable area of a map from the Stanford
Drone Dataset, while unconstrained distribution estimators
violate the constraint (area shown in red). See Section 7.3.

The promise of probabilistic neuro-symbolic (NeSy) meth-
ods [Garcez et al., 2019, 2022, De Raedt et al., 2021] for
trustworthy AI is to integrate symbolic reasoning over these
high-level constraints into neural predictors. The simplest
way to achieve this is to encourage constraint satisfaction
via a loss penalty at training time [Xu et al., 2018, Fischer
et al., 2019, De Smet et al., 2023a]. However, such an ap-
proach might have catastrophic consequences at test time,
as it does not guarantee that invalid configurations will be
associated exactly probability zero: even a probability of
0.001% to violate a constraint can be considered harmful
in safety-critical applications such as autonomous driving.

A number of recent works overcome this issue by propos-
ing architectures that certify the satisfaction of given con-
straints by design [Manhaeve et al., 2018, Giunchiglia and
Lukasiewicz, 2020, Ahmed et al., 2022a, Hoernle et al.,
2022]. Unfortunately, they mostly consider constraints over
Boolean or discrete variables only [De Smet and Dos Mar-
tires, 2024] and extending them to continuous variables is
highly non trivial. This is because tackling constraints over
continuous variables poses unique challenges. First, ensur-
ing modeling a proper distribution over the constraint, i.e.,
renormalizing a density such that it exactly integrates to 1,
is a #P-hard problem [Baldoni et al., 2008] even when the



distribution and constraints have a relatively simple struc-
ture [Zeng et al., 2020b,a]. Second, real-world constraints
over continuous variables come in the form of intricate al-
gebraic relationships [Barrett et al., 2021, Morettin et al.,
2017]. Even considering simple linear inequalities among
variables will entail that the support of the induced densi-
ties can take the form of (disjunctions of) non-convex poly-
topes [Stoian and Giunchiglia, 2025]. While focusing on
single convex polytope constraints can be easier [Stoian
et al., 2024c], it fails to capture real-world scenarios, such
as modeling multiple obstacles that need to be avoided si-
multaneously on a map (Fig. 1). Scalability during learn-
ing is another major concern, as one would ideally want
to compute fast and exact gradients for each data point. In
practice, this is sometimes achieved by approximating or re-
laxing the constraint [De Smet et al., 2023a,b] thus giving
up learning by exact maximum likelihood.

In this work, we narrow these gaps by introducing a prob-
abilistic algebraic layer (PAL) that can be seamlessly
plugged as the last layer into any neural architecture while
guaranteeing probabilistic predictions to satisfy complex al-
gebraic constraints. Our formulation for PAL uses a sym-
bolic integration scheme that scales gracefully as it can be
amortized, i.e., computed once for all datapoints, while al-
lowing for exact gradients and hence exact maximum like-
lihood training, that is being retro-compatible with out-of-
the-box optimizers using automatic differentiation.

Contributions. After formalizing the problem of proba-
bilistic prediction over algebraic constraint in Section 2, we
C1) introduce PAL and its ingredients while discussing its
properties in Section 3; then we C2) introduce the GPU-
accelerated symbolic polynomial integrator that powers
PAL in Section 4. Finally, we C3) run an extensive set of
experiments, comprising both standard benchmarks for al-
gebraic constraint integration and real-world trajectory data
from the Stanford drone dataset [Robicquet et al., 2016],
which we augment by manually segmenting constraints rep-
resenting obstacles and buildings.

2 PROBABILISTIC PREDICTIONS
UNDER ALGEBRAIC CONSTRAINTS

Notation. Uppercase letters denote random variables
(X,Y ) and lowercase letters denote their assignments
(x, y). We use bold for sets of variables (X,Y), and their
joint assignments (x,y). We use lowercase Greek letters
for denoting algebraic constraints (ϕ) and uppercase Greek
letters for denoting (vectors of) learnable parameters. We
say that y satisfies ϕ (written y |= ϕ) if and only if substi-
tuting Y with y in ϕ makes ϕ true. We denote the indicator
function as 1{.}, therefore, 1{Y |= ϕ} evaluates to 1 for
all the values of Y satisfying ϕ and 0 otherwise.

Setting. We aim at learning a parameterized conditional
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Figure 2: A renormalized constrained density (right)
obtained by applying non-convex algebraic constraints
(left) over an unconstrained distribution (middle).

distribution of Y given X, i.e. pΘ(Y | X), from a dataset
D = (x(i),y(i)) of realizations of mixed continuous and
discrete variables X and Y. As discussed later, the chal-
lenge will be when some Y are continuous, and we can
always assume all of them to be continuous without loss of
generality. Differently from a classical supervised learning
scenario, the support of pΘ is not the whole R|Y|, but a
restriction encoded by a constraint ϕ defined over Y. This
constraint encodes which regions of the label space are in-
valid, i.e., should have exactly zero-probability and there-
fore should not be sampled nor predicted [Grivas et al.,
2024]. We give an example next.

Which constraints? We focus on algebraic constraints as
Boolean combinations of linear inequalities, which are flex-
ible enough to represent complex supports in the form of
disjunctions of non-convex polytopes. We do so in the lan-
guage of (quantifier-free) satisfiability modulo linear real
arithmetic (SMT(LRA)) formulas [Barrett et al., 2021]. A
constraint in SMT(LRA), from here on simply SMT for-
mula or constraint, is a logical formula with arbitrary com-
binations of the usual Boolean connectives (∧,∨,¬) over
atoms that are restricted to linear inequalities over Y:(∑

i
aiYi ▷◁ b

)
ai, b ∈ Q, ▷◁ ∈ {≤, <,≥, >,=}.

Example. Consider the problem of learning a conditional
distribution p(Y1, Y2 | X1, X2) subject to the following
constraint ϕ: Y ∈ [−1, 1]2 ∧ Y /∈ 4, where 4 de-
notes the triangle with vertices (−0.5,−0.5), (0, 0.5) and
(0.5,−0.5), as illustrated in Fig. 2 (left). We can encode
such a constraint into SMT(LRA) as:

ϕ = (−1 ≤ Y1) ∧ (Y1 ≤ 1) ∧ (−1 ≤ Y2) ∧ (Y2 ≤ 1)∧
[(Y2 < −0.5) ∨ (2Y1 + 0.5 < Y2) ∨ (−2Y1 + 0.5 < Y2)] .

In the more realistic obstacle-avoidance example in the in-
troduction (Fig. 1), ϕ can model the surface where cars and
pedestrians are allowed to move. One principled solution
to design a conditional distribution pΘ that is constraint-
aware is to realize a product of experts [Hinton, 2002]

pΘ(Y | X = x) ∝ qΘ(Y | x)1{Y |= ϕ} (1)

where qΘ is an unconstrained density whose support is the
full R|Y| (Fig. 2, middle) and 1{Y |= ϕ} encodes the sat-



isfaction of the constraint ϕ. Unfortunately Eq. (1) alone
does not encode a proper density, as it does not integrate to
1. Alternative ways to train such a product of experts are
possible [Hinton, 2002], but they are not retro-compatible
with the usual gradient-based optimization recipe to train
neural networks: maximum likelihood estimation (MLE).
To learn the parameters Θ by exact MLE, and hence to de-
sign a layer can be seamlessly plugged-in any network, we
would need to compute its renormalization constant, i.e.,∫

qΘ(y | x)1{y |= ϕ} dY (WMI)

which is also known as a weighted model integration
(WMI) problem [Belle et al., 2015], i.e., the probability that
the constraint is satisfied, Pr(ϕ). Appendix A discusses the
background and literature behind WMI in depth.

Here we first note that we treat all variables Y in
Eq. (WMI) to be continuous, something that we can do
without loss of generality as we can always reduce a
WMI problem over mixed discrete-continuous variables
to one over continuous variables only without increasing
the problem dimensionality [Zeng and Van den Broeck,
2019]. However, the complexity of solving a WMI prob-
lem exactly is #P-hard in general [Zeng et al., 2020a] and
tractable algorithms are available only when the constraints
ϕ come with certain structures [Zeng et al., 2020b]. In
the need to scale the computation of Eq. (WMI), many
NeSy approaches opted to approximate it. For example,
DeepSeaProblog (DSP) [De Smet et al., 2023a] (see Sec-
tion 6 for a discussion) designs a general probabilistic logic
programming framework for WMI problems parameterized
by neural networks. However, to practically compute the
WMI integral, DSP employs rejection sampling. Not only
does this require to relax the constraints to perform back-
propagation, yielding high-variance gradients, but it also
hinders scalability, as the WMI integral needs to be approx-
imated for each datapoint x.

To be able to scale neural networks with complex real-life
constraints such as the ones in Fig. 1, while retaining con-
straint satisfaction guarantees, we have to push the current
boundaries of the WMI literature. Next, we discuss how to
do so while selecting a parametric form for qΘ (Section 3)
that allows us to efficiently amortize the computation of
the WMI integral into a symbolic computational graph that,
once built, can leverage GPU parallelism (Section 4).

3 A PAL FOR GUARANTEED
CONSTRAINT SATISFACTION

We devise a differentiable probabilistic algebraic layer
(PAL) realizing the following conditional distribution:

pΘ(Y | x) = q(Y;λ = fψ(x))1{Y |= ϕ}∫
q(y′;λ = fψ(x))1{y′ |= ϕ} dY′

(PAL)

where Θ = {λ,ψ} and q(Y;λ = fψ(x)) is a flexible un-
constrained distribution whose parameters λ are the output
of a neural backbone fψ that takes as inputx and ϕ encodes
an SMT constraint as discussed above. As discussed in Sec-
tion 2, this construction guarantees that the density pΘ is
non-zero only inside the region defined by ϕ (Fig. 2, right).
Note that our layer can be used as a standalone distribution
estimator when there are no input variables to condition on,
i.e., to model pλ(Y).

We can design a neural backbone fψ by easily reusing any
existing architecture. Given any (possibly pretrained) neu-
ral network z = h(x) that outputs an embedding z for
each datapoint x, in fact we can realize f as λ = g(h(x))
by adding a simple gating function g that maps z to λ. Less
trivial is to select a suitable model family for qλ that allows
us to efficiently amortize the computation of the denomi-
nator of PAL. If we had to deal only with Boolean vari-
ables Y and propositional constraints ϕ, we could leverage
probabilistic circuits (PCs) [Darwiche and Marquis, 2002,
Choi et al., 2020], compact multilinear polynomials over
tractable functions as in Ahmed et al. [2022a]. Unfortu-
nately, there is no equivalent circuit representation for SMT
constraints with the required structural properties to guaran-
tee tractability [Vergari et al., 2021].

General polynomials to the rescue. Whereas we cannot
leverage the properties of structured polynomials such as
PCs, we can still employ general (piecewise) polynomi-
als to model the unconstrained density qλ in PAL. They
will still provide expressiveness as they can approximate
any density up to arbitrary precision [Morettin et al., 2021,
Cheng et al., 2024] and, more crucially, they are closed un-
der integration over a polytope [Zeng et al., 2020b]. The
general form of polynomials we consider is therefore:

q(y;λ) =
∑M

i=1
λi

∏
j
y
αij
j (2)

where each coefficient λi ∈ R is one of the outputs of the
backbone fψ and the exponents αij ∈ N are constant pa-
rameters. As we will discuss in the next section, the com-
plexity of integration will depend, among other things, on
the degree of the polynomial and on the number of mono-
mials M . At the same time, this will offer the opportunity
to design a fixed-parameter tractable integration scheme, as
we can bound the polynomial degree by construction.

How to construct polynomials? We can generate polyno-
mial structures in an exhaustive way given a max degree d,
i.e., by generating all possible monomials with degree ≤ d,
or by randomly subsampling them in order to have a com-
pact polynomial of high degree. Alternatively, we can use
piecewise polynomials such as splines, which have been
demonstrated to be very expressive in ML, even with low
degree [Durkan et al., 2019]. In particular, in our exper-
iments, we use cubic Hermite splines [Smith, 1980], see
Appendix B.2 for details.



Whereas all the aforementioned polynomials can always be
rewritten in the canonical form of Eq. (2), they might not
guarantee to model a valid density as they might yield neg-
ative values. To this end, we propose to use squared polyno-
mials in PAL, which have been recently investigated in the
PC literature for their expressiveness properties [Loconte
et al., 2024, 2025b, Loconte and Vergari, 2025]. Specifi-
cally, we consider sum of squared polynomials, i.e., poly-
nomials of the form:∑

k
wk

(∑
i
ui

∏
j
y
αijk
j

)2

(3)

where wk > 0 and ui ∈ R and therefore where λ =
{wk}k ∪ {ui}i when we rewrite Eq. (3) into Eq. (2). Now
we have all the ingredients to discuss how to parallelize the
computation of the denominator in PAL.

4 EXTREME PARALLELIZATION OF
POLYNOMIAL INTEGRALS ON A GPU

State-of-the-art (SoTA) WMI solvers propose various ways
to break the WMI integral over ϕ into smaller integrals over
disjoint convex polytopes µ1, ...µK such that

∨
i µi ≡ ϕ.

Hence, from here on, we will focus on the problem of in-
tegrating a polynomial in canonical form (Eq. (2)) over
a single convex polytope. Our solution to scale the com-
putation of this simpler problem will therefore speed up
any SoTA WMI solver. In practice, for PAL we will adopt
SAE4WMI [Spallitta et al., 2024] to break ϕ into µ1, ...µK ,
as it is the most advanced WMI solver that deals with ar-
bitrary non-convex algebraic constraints ϕ at the time of
writing. See Appendix A for a discussion.

Our solution, named GPU-Accelerated Simplicial !ntegra-
tor (GASP!), builds upon the idea that we can compile
once the WMI integral into a highly-parallelizable compu-
tational graph Iϕ(λ) that is a function over the polynomial
parameters λ, and reuse this compiled function to amortize
the evaluation of the denominator of PAL for every data-
point x. In fact, we can rewrite the WMI integral over a
convex polytope µ as a sum of integrals over monomials:

Iϕ(λ) =

∫
q(y;λ)1{y |= µ} dY

=
∑

i
λi

∫ ∏
j

y
αi,j
j 1{y |= µ} dY =

∑
i
λiηi.

By treating λ as symbolic variables, we have no depen-
dence on X anymore, and we recover Iϕ(λ) as a symbolic
polynomial whose coefficients are the results of the mono-
mial integrals ηi =

∫ ∏
j y

αi,j
j 1{y |= µ} dY. Note that

solving all these integrals is an embarrassingly paralleliz-
able problem (see Appendix C.1). While in principle one
could use a symbolic solver such as sympy [Meurer et al.,
2017a], or another exact WMI solver, these are extremely

Algorithm 1 GASP!(q,H)

Input polynomial q and a convex polytope H
Output The Integral

∫
H
q̂(y)dY

1: d← totalDegree(q)
2: (R,w)← prepareGrundmannMöller(d, dim(H))
3: {points and weights of the cubature, see algorithm 4}
4: V← HtoVDescription(H)
5: {turns inequalities into vertices spanning H}
6: S← Triangulate(V) {obtain simplices}
7: return GASPCubature(q̂, (R,w),S)

Algorithm 2 GASPCubature(q, (R,w),S)

Input a polynomial q, cubature points R ∈ Rlgm×n and
weights w ∈ Rlgm , simplices S ∈ Rls×(n+1)

Output the integral
∑
i

∫
si
q̂(y)dY

1: rgasp ← Array(Length(S))
2: for i← 1 to Length(S) do {this loop runs in parallel}
3: rgm ← array(length(x))
4: vol ← volume(S[i])
5: for j ← 1 to length(R) do
6: {this loop runs batched (e.g., 512 points)}
7: x← coordinateChange(R[j],S[i])
8: {transform from unit simplex to si}
9: rgm[j]← w[j] · polyEval(q̂,x)

10: {monomials are evaluated in parallel in polyEval}
11: end for
12: rgasp[i]← vol · stableSum(rgm)
13: end for
14: return stableSum(rgasp)

slow in practice and won’t allow PAL to scale, as we em-
pirically confirmed in Section 7.1.

To fully harness GPUs acceleration, we look at ways of
further parallelizing the integration of each monomial. An
approximate solver such as Sampo [Dos Martires et al.,
2019] could leverage the GPU to perform rejection sam-
pling. However, the quality of this approximation scheme
will degrade quickly with the number of dimensions and
complexity of ϕ, as observed in Section 7.1.

Our GASP! pushes parallelism to the limit and consists
of a further decomposition in sub-problems (Algorithm 1)
which in turn are run as small numerical quadrature tasks
that can fully leverage the tensor operations of a GPU (Al-
gorithm 2). In a nutshell, we aim to integrate monomials via
the Grundmann and Möllers integration formula [Grund-
mann and Möller, 1978], which is a simple cubature rule
that however operates on the unit-simplex.

Therefore, we first decompose each convex polytope µ into
simplices using Delaunay triangulation1 (L5−7 in Algo-
rithm 1). Then we transform all these simplices in unit-

1We use the QHull library [Barber et al., 1996].
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Figure 3: An overview of our pipeline with GASP!. The integrand q is decomposed into parallelizable monomial inte-
grations (top). The non-convex constraint is first decomposed into several convex regions (Appendix A) that are further
decomposed into (colored) simplices (bottom). The resulting computational graph is highly parallelizable on a GPU.

simplices (L5,8 and 12 in Algorithm 2). We finally apply
the Grundmann and Möllers cubature rule which reduces
to the evaluation of the (transformed) monomials at spe-
cific points on the unit-simplex, summing them according
to some precomputed weights. This cubature rule guaran-
tees exact integration by generating a number of points that
is a function of the polynomial degree. Fig. 3 provides an
overview of the full integration pipeline in GASP!. Note
that GASP! can be used also as a standalone numerical in-
tegrator for polynomials, e.g., when there is no neural net-
work fψ and the coefficients λ are constants.

Complexity. Integrating an arbitrary polynomial on a con-
vex polytope is an NP-hard task, which however becomes
tractable if the dimensionality is bounded while the polyno-
mial degree and the dimension of the simplex are allowed
to vary [Baldoni et al., 2011]. Our scalability will therefore
depend on the complexity of the constraint ϕ through the
number of simplices, on the polynomial degree through the
number of monomials and cubature points, and finally on
the number of dimensions we integrate over. Appendix C.2
provides an in-depth discussion of how these parameters
impact GASP!. Additionally, we expand on the overall
complexity of PAL in relationship to the constraint ϕ and
w.r.t. the number of bins for the piecewise spline. We re-
mark that we have to run GASP! only once, before training,
and we can reuse the computational graph Iϕ(λ) for all dat-
apoints x, greatly amortizing computation (see Fig. 4).

5 PROBABILISTIC REASONING WITH
PAL

As GASP! allows us to feasibly marginalize out all vari-
ables Y in order to compute the WMI integral, it allows us
also to compute arbitrary marginals as we integrate out a
subset of Y. This enables PAL to query for the probabil-
ity of different events defined over the labels. Specifically,
it crucially allows us to answer other probabilistic reason-
ing tasks at test time, such as exactly computing the prob-
ability of satisfying (or violating) a new constraint, e.g.,
the area around a new obstacle that just appeared on a

map like Fig. 1. This can be easily done by computing
Pr(ϕ ∧ γ)/Pr(ϕ) where Pr(ϕ) is the usual WMI integral,
ϕ ∧ γ the conjunction of the old SMT constraint ϕ with a
new one γ (e.g., representing the obstacle) over which one
can compute the updated WMI probability Pr(ϕ ∧ γ).

Sampling with GASP! As GASP! allows us to marginal-
ize out all variables Y in order to compute the WMI in-
tegral, it allows us also to compute arbitrary marginals as
we integrate out a subset of Y. This in turn enables us
to draw samples from PAL that naturally satisfy the con-
straint ϕ without rejection but using inverse transform sam-
pling. Given a variable ordering Y1, Y2, . . . , Yn, we can it-
eratively sample y1 ∼ p(Y1|x) and yi ∼ p(Yi|y<i,x) for
i ∈ {2, ..., n}, where each sampling step requires numer-
ically inverting the corresponding conditional cumulative
distribution function (another WMI integral computable
with GASP!), which can be efficiently done via binary
search. This procedure is detailed in Appendix F.

6 RELATED WORK

Many probabilistic NeSy [Marra et al., 2024] approaches
try to satisfy constraints only in expectation. These include
incorporating the constraints as a loss term, applied to vari-
ous formalisms such as propositional logic [Xu et al., 2018,
Ahmed et al., 2023], fuzzy logic [Diligenti et al., 2017],
physical laws [Stewart and Ermon, 2017] or other algebraic
constraints on the outputs of the NNs [Fischer et al., 2019].
Compared to PAL, these approaches do not guarantee the
satisfaction of the constraints.

A series of other works, instead, guarantees the satisfaction
of constraints by embedding them in the network architec-
ture. For example, Stoian et al. [2024a,b] take a similar
approach to PAL, by adding a constraint layer on top of
NNs, which however is limited to constraints in the form of
conjunctions of inequalities. Stoian and Giunchiglia [2025]
goes beyond this limitation and devise a layer that projects
samples into non-convex constraints. Differently from us,
these layers do not yield densities or probabilities associ-
ated to the sampled points or to given constraints. How-



ever, their sampling schemes scale much better than autore-
gressive sampling with PAL. Multiplexnet [Hoernle et al.,
2022] introduces a layer restricted to constraints in disjunc-
tive normal form, which must be relaxed during learning.
As a result, it struggles to scale to the intricate constraints
in our setting. DeepSade [Goyal et al., 2024] takes a dif-
ferent route, pairing gradient descent with constrained op-
timization to guarantee SMT constraints for classification
and regression tasks. This approach supports SMT formu-
las with quantifiers, however, its extension to the probabilis-
tic setting is highly non-trivial. Our work is inspired by
semantic probabilistic layers (SPL) [Ahmed et al., 2022b],
which combines neural networks with probabilistic circuits
[Loconte et al., 2025a] in the propositional logic case. We
generalize SPL to constraints involving both logical and
continuous variables. Similar to SPL, DeepProbLog [Man-
haeve et al., 2021] uses probabilistic logic programming to
create a layer, but considers only Boolean logic and fully-
factorized distributions [van Krieken et al., 2024].

As discussed in Section 2, closer to our work is
DeepSeaProbLog (DSP) [De Smet et al., 2023a], which ex-
tends DeepProbLog to continuous domains. In contrast to
PAL, in their implementation, densities are not guarantee-
ing constraint satisfaction. In fact, DSP is trained to max-
imize the probability of the constraint being satisfied, i.e.,
the WMI integral, via sampling. We detail the DSP-Loss in
the appendix. As a side effect, one cannot avoid the rejec-
tion layer in DSP as samples directly drawn from the uncon-
strained probability of a DSP program can violate the con-
straints. Appendix D discusses additional related works.

7 PAL IN ACTION

In this section, we aim to answer the following research
questions:2 RQ1 How does GASP! compare with other in-
tegration solvers? RQ2 Can PAL learn and scale with an
increasing number of constraints? RQ3 Can PAL handle
real-world data and its constraints?

7.1 RQ1) BENCHMARKING GASP!

We compare GASP! first against approximate numerical
schemes such as rejection sampling, which is commonly
used to scale probabilistic NeSy approaches such as DSP
(Section 6), and then against SoTA exact polynomial inte-
grators such as LattE [Baldoni et al., 2014].

GASP! vs numerical approximations for PAL. We eval-
uate GASP! w.r.t. an implementation of rejection sam-
pling that runs on the GPU, on random non-convex inte-
gration problems of increasing dimensionality and degree.
Appendix E.1 details this experimental setting and Fig. 12

2The source code and the instructions to reproduce our results
can be found at: github.com/april-tools/pal
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Figure 5: GASP! can
be 1 to 2 orders of
magnitude faster than
a SoTA polynomial
integrator such as
LattE when evaluated
on standard WMI bench-
marks from Spallitta
et al. [2024]

reports all results. Here we show in Fig. 4 (left and cen-
ter) how rejection sampling struggles to obtain accurate re-
sults in higher dimensions for a fixed time budget (1 hr)
and polynomials of degree 8 and 12, as the number of re-
jected samples grow exponentially. Notably, the complexity
of the constraints is fixed in this experiment to 4 random
simplices. We expect rejection sampling to perform much
worse with increasingly complex regions. GASP! instead
provides exact computation and scales better (notice that
the y-axis is log-scale). More crucially, GASP! can amor-
tize computation as the compiled polynomial Iϕ(λ) can be
reused throughout the training of PAL. Fig. 4 (right) illus-
trates this for a degree 12 polynomial in 10 dimensions: in-
tegrating over a single convex polytope for 104 predictions,
i.e. 104 different values for λ, takes less then 10 seconds
with GASP! thanks to the amortization and up to 1 hour
with rejection sampling. This is fundamental to use GASP!
in PAL, as the number of evaluations of WMI integrals can
easily be orders of magnitude larger than that.

GASP! as a stand-alone integrator. We compare GASP!
against LattE, a SoTA exact polynomial integrator based
on cone decomposition [Baldoni et al., 2014], in the context
of WMI integration (details in Appendix E.2). We adopt
SAE4WMI (also used in PAL, see Section 4), and compare
it while using either GASP! or LattE on 270 WMI in-

https://github.com/april-tools/pal


ground truth NN+PAL NN + GMM

Figure 6: While PAL naturally handles constraints on the
N -Star, the neural network + GMM has trouble fitting both
constraints and data. More quantitative results in Table 1
and qualitative ones in Appendix E.3.1.

stances of varying complexity taken from Spallitta et al.
[2024]. Compared to the previous experiment, these WMI
problems are highly non-convex, requiring the computation
of up to hundreds of integrals each. Notably, here GASP!
cannot harness its amortization capabilities and needs to
instantiate a different computational graph every time. De-
spite this, GASP! proves faster than LattE in 263 in-
stances over 270, speeding computation up to one or two
orders of magnitude, as shown in Fig. 5. Lastly, and as a
sanity check, we compare GASP! against classical sym-
bolic integrators such as sympy in Appendix E.2.1. While
we retrieve the same computation, we achieve a speed up of
1200 times. Overall, our results confirm that GASP! is the
best available solver for PAL, positively answering RQ1.

7.2 RQ2) SCALING CONSTRAINTS WITH PAL

In this experiment, we evaluate PAL in a controlled setting
to explore how accurately learning in PAL scales when in-
creasing the number of constraints, while keeping the di-
mensionality fixed. The task is learning the distribution
p(Y1, Y2 | X1, X2) constrained by a N -pointed star, as
shown in Fig. 6, for N = 7 whose unconstrained distri-
bution is a Cauchy with constant scale and mode X. Ta-
ble 1 reports the average test log-likelihood of PAL versus
an unconstrained NN, a mixture density network [Bishop,
1994] with a Gaussian mixture model (GMM) with differ-
ent components (K) as output, and DSP. All models use
the same fully-connected NNs with ReLUs as a backbone.
Appendix E.3.1 further details our setting.

As N increases, the gap between PAL and our the com-
petitors widens as the mode tends to be closer to the ex-
tremes of the feasible region. Being agnostic to the con-
straint ϕ, the NN+GMM has an hard time fitting both the
data and respecting the constraints. The same goes for DSP
which is hindered by having to fit a single multivariate
Gaussian while maximizing the mass inside ϕ, i.e., Pr(ϕ),
see DSP-Loss. This has often the unwanted effect of push-
ing the learned mode far from the target mode. This aspect
prompted us to report the performance of DSP selecting
the model according to best log-likelihood on holdout data
as opposed to the standard best loss criterion. PAL in com-

Table 1: PAL can be more accurate than unconstrained
networks and other NeSy baselines in terms of aver-
age test log-likelihood on the NStar-dataset. We report the
mean over 10 repetitions, more results in Appendix E.3.1.

NN + PAL NN + GMM DSP

N d = 10 d = 14 K=8 K=32 by logLike by Loss

3 -4.749 -4.674 -4.740 -4.723 -5.027 -42.821
7 -4.529 -4.527 -4.708 -4.612 -5.019 -206.411
11 -4.570 -4.584 -4.791 -4.620 -83.042 -43.151
19 -4.506 -4.492 -4.925 -4.652 -5.001 -155.139

parison has an easier time, it naturally handles constraints
and therefore just has to move the probability mass around,
prompting us to answer RQ2 positively.

7.3 RQ3) STANFORD DRONE DATASET

After showing PAL scalability to many constraints, we now
evaluate it on real-world data where the ground truth is un-
available. As the majority of existing approaches are unable
to process non-convex constraints (Section 6), established
benchmarks are lacking. We fill this gap by introducing a
new, challenging task based on the Stanford drone dataset
(SDD) [Robicquet et al., 2016], which shoes aerial views of
pedestrians, cars and bikes traversing different scenes in the
Stanford campus. 3 We extract trajectories as in Wu et al.
[2023] and we manually annotate two scenes, number 12,
which contain the most trajectories, and 2, which contains
highly non-convex constraints.

Specifically, we create constraints in SMT by segmenting
the images over the areas that are non-walkable. Fig. 7
shows an example of an intersection from scene 12 and the
extracted constraints. We evaluate two settings: where we
model all trajectories together, and when the task is to prob-
abilistically predict the future position given an observed
partial trajectory. In contrast to RQ1 and RQ2, the proba-
bility mass in the SDD is less spread out and more local-
ized at regions of high density. This setting is less suited
to be modeled by a single polynomial and more applica-
ble to a piecewise construction. We therefore choose Her-
mite splines because they are easy to train and scale well
with our dataset. The exact construction of the splines is
described in Appendix B.2.

Modeling joint trajectories (p(Y)). We tackle the prob-
lem of estimating the joint distribution of all trajectories,
i.e., p(Y). This means we optimize PAL as a standalone
distribution estimator, without any neural backbone. Ap-
pendix E.4 details our experimental setting, in which we
compare PAL with polynomial splines of increasing com-

3The dataset can be found at https://github.com/april-
tools/constrained-sdd

https://github.com/april-tools/constrained-sdd
https://github.com/april-tools/constrained-sdd


scene trajectories constraints

Figure 7: Our dataset combines challenging constraints
with real-world data on trajectories (middle) and aerial
maps (left) taken from Robicquet et al. [2016]. We manu-
ally label the data, segmenting invalid areas out (right).

Table 2: PAL does not trade expressiveness for
constraint-satisfaction when compared against a GMM
and a neural spline flow with t=1 and t=5 transformations,
as it provides competitive average test log-likelihood but
never violates constraints for test-set predictions (Pr(¬ϕ)).
We report the mean over 10 repetitions, more results in Ap-
pendix E.4. The setting is the unconditional P (Y)-case.

PAL GMM Flow

10 knots 16 knots K=50K=100 t=1 t=5
scene (params) (410) (650) (300) (610) (2670) (13350)

1 ll −2.98 −2.93 −2.98 −2.91 −3.10 −2.94
Pr(¬ϕ) 0.0% 0.0%≈2.3% ≈1.2%≈5.6% ≈1.6%

2 ll −3.35 −3.30 −3.34 −3.26 −3.43 −3.26
Pr(¬ϕ) 0.0% 0.0%≈1.2% ≈0.6%≈2.2% ≈0.7%

plexity against a GMM with increasing number of com-
ponents and finally a neural spline flow [Durkan et al.,
2019] with multiple transformation layers. PAL is able
to achieve competitive test log-likelihoods w.r.t. similarly
sized GMMs and much larger flows (with one order of mag-
nitude more parameters), as reported in Table 2. More cru-
cially, PAL never places probability mass outside the given
constraint, while the other competitors do so as shown in
Fig. 1 and under p(¬ϕ) in Table 2, denoting the probabil-
ity of bumping into an obstacle, here approximated with
106 samples for the GMM and the flow. Note that violating
the constraint less than 2% of the time can still be greatly
harmful for safety-critical applications. In summary, PAL
is able to guarantee constraint satisfaction while not com-
promising accuracy, nor time. In fact, GASP! takes only 17
seconds on an NVIDIA RTX A6000 to integrate the largest
polynomial we consider (d=12) on the intricate constraint
in Fig. 7 (right).

Modeling future positions (p(Y | X)). After showing that
our layer can effectively model the joint distribution, we
consider estimating the distribution over future positions
given some observations on the current trajectory. To this
end, we subsample five equidistant points from a trajectory
that we consider as input variable X, and we predict the

NN+PAL (10 knots) NN+GMM (K = 80)

Figure 8: PAL captures meaningful modes when mod-
elling how a trajectory might evolve (p(Y | X)) while
never violating the constraint differently from a NN with
a GMM output. The observed test trajectory and ground-
truth on scenario 1 completion are reported in green/solid
and dashed/yellow. Additional plots in Table 20.

probability of the model of being in any other point Y1, Y2

in the map. Appendix E.5 completely details our stoetting.

Figure 8 and 9 depict the conditional distributions mod-
eled by PAL and NN+GMM for a single observed trajec-
tory. As expected, multiple future trajectories are visible in
the distribution modelled by PAL. In contrast, the condi-
tional GMM is less good at capturing the multimodality of
p(Y | X), while also clearly violating the constraints. Ta-
ble 3 reports a quantitative comparison of NN+PAL with
NN+GMM and DSP (finer grained results are reported in
Table 19 and 22) showing the average log-likelihood of the
points in the (unobserved) trajectory completions and the
average probability of sampling future positions that vio-
late ϕ (estimated using 106 samples for NN+GMM and
DSP). We do not compare against flows in this setting, as
parameterized them with a neural network turned out infea-
sible: it would have required millions of parameters just to
realize a linear gating function g (Section 3). Results in Ta-
ble 3 show that the constraint violation is on average around
the 18% for the baselines across all trajectories. This value
raises up to 70% for the GMM model on certain trajecto-
ries. We highlight that the probability of violating the con-
straint is higher for conditional predictions because of less
data: having direct access to the constraint ϕ greatly im-
prove data efficiency for PAL.

All in all, these results show that PAL, both alone and com-
bined with NNs and in contrast to the other baselines, show
promise in effectively modelling complex real world dis-
tributions, without trading off expressiveness for constraint
satisfaction. We answer RQ3 positively.

8 CONCLUSION

In this work, we introduced PAL, a probabilistic NeSy layer
that can be plugged as the prediction layer in any neural net-



NN+PAL (14 knots) NN+GMM (K=32)

Figure 9: PAL wraps around the boundaries of our con-
straints, in contrast to the NN with an GMM, which pre-
dicts a trajectory straight trough the constraint. The ob-
served test trajectory and ground-truth completion on sce-
nario 2 are reported in green/solid and dashed/yellow re-
spectively.

Table 3: PAL shows competitive likelihoods while guar-
anteeing constraint-satisfaction when compared to neu-
ral GMM and DSP, for which we provide statistics for the
fitted neural distributional fact. We approximate the proba-
bility of violating the constraints (Pr(¬ϕ)) at test time nu-
merically per data point and average it. We report the mean
over 10 repetitions, further details in Table 19 and Table 22.
The setting is the conditional P (Y|X)-case.

NN + PAL NN + GMM DSP

scene 10 knots 14 knots K=50 K=100 -

1 ll −2.08 −2.27 −2.64 −2.83 −3.87
Pr(¬ϕ) 0% 0% ≈21% ≈20% ≈ 49%

2 ll −2.23 −2.09 −2.39 −2.42 −3.61
Pr(¬ϕ) 0% 0% ≈15% ≈14% ≈ 36%

work that has to deal with multiple continuous labels and
in the presence of algebraic constraints over them. To scale
PAL to real-world data, we had to advance the field of WMI
by proposing GASP!, a parallelizable polynomial integra-
tor that challenges even established scientific software such
as LattE reaching a speed-up of up to one or two orders
of magnitude. Furthermore, PAL offers flexible marginal-
ization over new constraints at test time. While this also
allows us to use GASP! to sample from PAL, it does not
allow us to easily tackle maximum a posteriori (MAP) in a
similar way. How to compute MAP-style queries for PAL
remains an open research question [Zeng et al., 2021]. In
the future, we plan to investigate and scale GASP! further
as a standalone software for a number of computationally
intense applications using polynomials such as inference in
Bayesian [Zeng and Van den Broeck, 2023] and physics
informed neural networks [Lu et al., 2021].

At the same time, PAL offers a number of interesting fu-
ture directions such as enforcing constraints in several ap-
plications ranging from fairness [Pfrommer et al., 2022,
Ren et al., 2024] to climate modeling [Beucler et al.,
2021, Harder et al., 2023, Willard et al., 2020, Beucler

et al., 2020] and probabilistic verification [Morettin et al.,
2024]. Furthermore, we plan to extend PAL to deal with
more types of constraints than SMT(LRA). Building on
the work of Chin and Sukumar [2020], we aim to extend
GASP! to handle parametric curved boundaries, such as B-
splines. This would then unlock further applications, e.g.
in engineering, as it allows us to apply PAL to domains de-
fined by NURBS surfaces, a common format to describe
shapes in engineering design.
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A BACKGROUND ON WEIGHTED MODEL INTEGRATION

The task of marginalizing over a distribution defined by a density over SMT(LRA) constraints is known as weighted
model integration [Belle et al., 2015]. WMI generalizes weighted model counting (WMC), i.e. the task of summing over
the models of a propositional logic formula, to the hybrid logical/continuous domain. In WMC, each satisfying truth
assignment µ is a model, whose weight typically factorizes over the literals:

WMC(ϕ,w) =
∑
µ|=ϕ

∏
ℓ∈µ

w(ℓ)

In WMI, each µ induces a convex (and disjoint) subregion of ϕ. For WMI(ϕ,w) to be finite, ϕ must encode a closed region.
In those cases, each µ induces a convex polytope containing infinitely many models, i.e. assignments x |= µ. The weight
function w can be interpreted in probabilistic terms as an unnormalized density over X. Then, obtaining the weight of each
µ additionally requires integrating w over those models:

WMI(ϕ,w) =
∑
µ|=ϕ︸︷︷︸

(1)

∫
w(x)1{x |= µ} dX︸ ︷︷ ︸

(2)

(4)

Computing WMI requires solving two subtasks:

(1) enumerating all the µ |= ϕ;

(2) integrating w inside each µ.

For our purposes, WMI exactly corresponds to the problem of computing the normalizing constant in Eq. PAL:∫
w(x)1{x |= ϕ} dX =

∑
µ|=ϕ

∫
w(x)1{x |= µ} dX (5)

Partial enumeration. In GASP!, we solve Eq. 5 by decomposing the integral into convex polytopes first and then further
decomposing each polytope into simplices. Clearly, obtaining a compact decomposition of ϕ into disjoint convex regions
is paramount for reducing the size of the computational graph. In this work, we leverage the enumeration procedure of
SAE4WMI [Spallitta et al., 2024] for solving subtask (1). SAE4WMI builds upon a line of work that leverages advanced
SMT techniques [Morettin et al., 2017, Spallitta et al., 2022] for minimizing the number of integrations. A key idea of these
solver is the enumeration of partial (as opposed to total) satisfying truth assignments. For the purpose of WMI, the set of
satisfying truth assignments TA(ϕ) must be complete (

∨
µ∈TA(ϕ) µ ≡ ϕ) and it must contain mutually exclusive/disjoint

elements (∀i 6= j . µi ∧ µj |= ⊥). As opposed to total assignments, partial assignments are not required to map every
inequality of ϕ to {True, False}.



Figure 10: A decomposition of the non-convex constraint in our running example with total (left) vs. partial (right) satisfy-
ing truth assignments.

It is easy to show that the latter can exponentially reduce the number of partitions of ϕ by considering a disjunction among
N atomic formulas: ϕ =

∨N
i=1 Ai. While the size of the set of total satisfying truth assignment is 2N − 1, we can fully

characterize the formula with N disjoint partial assignments ϕ =
∨N
i=1 µi, where:

µ1 = A1

µ2 = ¬A1 ∧A2

µ3 = ¬A1 ∧ ¬A2 ∧A3

...

µN = ¬A1 ∧ ¬A2 ∧ ... ∧ ¬AN−1 ∧AN

The benefits of enumerating partial truth assignments is evident even in our lower dimensional example, as depicted in
Figure 10.

B TRAINING AND PARAMETRIZING POLYNOMIALS

We tested PAL with two kinds of polynomial density: single polynomials and cubic, hermite splines.

As expressiveness is tied to increasing the total degree, the former might be difficult to employ in fitting very complex
distributions. We turned to the latter in the Stanford Drone use cases, partitioning the overall density into equally-sized
bins, each encoded as the product of squared univariate splines. Furthermore, we consider a mixture of the parametric
form above. The resulting parametric form is both stable to train and expressive, while also leveraging the amortization
capabilities of GASP! for each bin.

We will first specify the exact re-parametrization and methods we used for both raw polynomials and splines, and then
detail the loss.

B.1 POLYNOMIALS

We experienced some difficulty during training when trying to directly predict coefficients of single polynomials, due to
the different scale-sensitivity of the monomials. We tackled this issue for the N -pointed star experiments in by adding a
re-parametrization layer in front of the polynomial. Let I(Λ) =

∑
i

∑
j ΛiΛjηij be the integrated, squared polynomial.

Then our re-parametrization is the following:

r(zi) = sign(zi)

√
zi + d′ −

√
d′

√
ηii

with d′ = 0.1. This dampens the impact of coefficients of high-degree monomials, as they are often associated with large
ηii.

Additionally, before training, we initialize the magnitude of the output of our last layer by fitting a constant scalar per
dimension using L-BFGS [Liu and Nocedal, 1989] over the first 1000 training samples.

While, with these methods, we are able to train PAL for a single, high-degree polynomial in a stable manner, we want to
stress that they are not needed for the spline-parametrization.



B.2 POLYNOMIAL SPLINES

We use univariate, cubic, Hermite splines [Smith, 1980], which we then square to guarantee non-negativity and multiply to
create multivariate splines.

Each spline is specified by the value and derivative at the knots. In order to evaluate and integrate, we create the explicit
polynomial. We will now focus on a specific bin [ki, ki+1]. We view the spline just as a re-parametrization of a polynomial
and compute the coefficients explicitly, in order to plug into the our framework to quickly compute the integral I(λ). In
comparison to the usual way to construct splines, in which the spline is constructed on the standard-bin [0, 1], we have to
account for scale. We therefore construct the parameters corresponding to the polynomial on the [0, ki+1 − ki] and shift
the monomials m via m′(x) = m(x − ki+1) before handing them to GASP!. The flexibility of shifting via a coordinate
transform, instead of transforming the parameters of the polynomial, which is numerically instable, shows the adaptability
and versatility of GASP!. The computed parameters of GASP! belong to the polynomial on [0, ki+1 − ki] per bin, and are
numerically significantly more stable to evaluate than explicitly constructing the parameters of the shifted polynomial on
[ki, ki+1].

Given ki and ki+1, we compute the parameters as follows, which is a straightforward adaptation of the standard construction
on [0, 1].

First, we construct the parameters a + b · x + c · x2 + d · x3 on [0, 1]. With vi, vi+1 we denote the value and v′i, v
′
i+1 the

derivative:

a = vi

b = v′i

c = 3 · (vi+1 − vi)− 2 · v′i − v′i+1

d = 2 · (vi − vi+1) + v′i + v′i+1

We then scale the polynomial by transforming the parameters. Let ∆ = (ki+1 − ki), then:

a′ = a

b′ = b · (1/∆)

c′ = c · (1/∆2)

d′ = c · (1/∆3)

These are the coefficients corresponding to the unsquared polynomial. The squared polynomial (of degree 6) is then just
the combination of these parameters with itself, just as the multiplication of two splines is a combination of the respective
parameters. Additionally, we take a mixture of these splines. These form λ.

We integrate by enumerating the bins, shifting the monomials, and then obtain the coefficients for I(λ) and during training,
we view the piecewise spline as a re-parametrization layer that transforms the output of the neural network, so value and
derivative at the knots, into the coefficients of the polynomial.

B.3 LOSS

For PAL, we minimize the following loss:

l(x[1:b],y[1:b]) = (−1) ∗
∑
b

log pΘ(y(b) | x(b))︸ ︷︷ ︸
constrained log-likelihood

+
∑
b

1{log ib ≥ 10} (log ib − 10)2︸ ︷︷ ︸
penalty on too large values of I(λ = fψ(x

(b)))

(6)

with ib = I(λ = fψ(x
(b))). This loss biases the neural network towards more numerically-stable range of integral-values.

Due to the scale-invariance, this does not influence the expressivity and only influences numerical stability. Although we



use it for both raw polynomials and splines, it’s main use is to stabilize training of raw polynomials as the splines are
inherently easier to train.

C GASP!

C.1 HANDLING THE SYMBOLIC POLYNOMIAL

We start with an symbolic polynomial q(y,λ) of the form:

q(y,λ) =
∑
i

λi
∏
j

y
αij
j

=
∑
i

λimi(y)

where mi(y) denotes the ith monomial. This induces the vector-valued version of the polynomial:

v⃗q(y) =


mi1(y)
mi2(y)

...
min(y)


This function v⃗q is completely independent of λ, and can be directly plugged into GASP! to obtain the integral over each
monomial mi(y). This construction also makes it straightforward to parallelize using existing frameworks like PyTorch
[Paszke et al., 2019b].

We therefore use the following algorithm for the symbolic integration using GASP!:

Algorithm 3 SymbolicIntegral(q,H)

Input Polynomial q(y,λ), Polytope H
Output I(λ) =

∫
H
q(y,λ)dY =

∑
λiηi

1: v⃗q ← ToVectorValued(q)
2: η ← GASP!(v⃗q,H) {see Algorithm 1}
3: return λ→ I(λ; η) {a function (computational graph) that maps λ to the integral I(λ; η) }

C.2 EXTENDED COMPLEXITY ANALYSIS OF GASP!

C.2.1 Detailed Analysis of GASP!

We will now detail the algorithm used to solve the non-symbolic integration problem over the convex polytope H:∫
H
q(y)dY, where q denotes a polynomial that is only over y (not y and λ).

The main entry-point for GASP! is Algorithm 1, which takes a polynomial q and a convex polytope H in H-description,
so defined via H = {y|Ay ≤ b}, and returns the integral

∫
H
q(y)dY. Being based on a cubature integration-formula

over the unit-simplex, the first step is first querying the total degree of q and then creating the cubature points and weight
(L2, Algorithm 1). The total number of points and weights depend on the degree, but are exact for any polynomial up to
the respective degree. The cubature points and weights follow theorem 4 of Grundmann and Möller [1978], also provided
in Algorithm 4. Given a polynomial of total degree d and dimension n, enumerating the points has a complexity of O(r ·(
r+n−1
n−1

)
) for r = dd2 − 1e. In practice, this is done on the CPU and re-used for every polytope we want to integrate over.

We then move our polytope H = {x | Ax ≤ b} fromH description into its V-description and call it V (L4, Algorithm 1).
This operation has a complexity of O(m⌊n/2⌋), with m being the number of inequalities [Chazelle, 1993], so polynomial
for some fixed dimension n. Afterwards, we triangulate the vertices V into an array of simplices S (L6, Algorithm 1).



While finding the minimal triangulation is NP-complete [Kaibel and Pfetsch, 2002], finding some triangulation using
the Delaunay-algorithm can be done in O(v⌈n/2⌉) [Amenta et al., 2007], with v being the number of vertices obtained
previously. These computations are also executed on the CPU using QHull [Barber et al., 1996]. We are now prepared for
the actual numerical integration, which will happen on the GPU (L7, alg. 1).

This algorithm is detailed in Algorithm 2. It takes the polynomial q, points and weights (R,w) from the cubature rule
and simplices S. In practice, these are PyTorch [Paszke et al., 2019a] tensors. We then loop over each simplex in si (L2,
Algorithm 2) and compute the cubature over all cubature points and weights (R,w) (L6, Algorithm 2). As these cubature
points are distributed over the unit-simplex, we need a coordinate change to transform the points from the unit-simplex
to points on si (L8, Algorithm 2), which is just a matrix-vector multiplication. We also need to calculate the absolute
determinant of the Jacobian of this transformation for the pullback-measure, which coincides with the volume of the
simplex (L5,Algorithm 2) and has the complexity n3 due to the determinant. We then evaluate the polynomial on each
point and add the sum weighted according to the cubature weight w (L10 and 13, Algorithm 2). In the end we sum up our
integral over each simplex to arrive at the integral over our polytope (L15, Algorithm 2). In order to increase numerical
accuracy, we first divide into positive and negative parts, sort each, and then sum up the elements via stableSum. In practice,
this is done per batch in the inner loop, as it runs batched. Every loop in this algorithm, including over multiple monomials
arising due to the symbolic integral, is done in parallel and leverages the parallelism of the GPU.

Finally, we want to stress that every computation in our algorithm uses established, heavily optimized numerical routines.
This approach allows us to exploit the unique performance characteristics and heavy parallelism of GPUs to tackles this
challenging problem. Therefore, the overall complexity of algorithm 2 is O(ls · (lgm · (n2 + log lgm) + n3) log ls), with ls
being the number of simplices and lgm the number of cubature points.

This enables us to compute the overall complexity of gasp by noting that the number of simplices grows with O(m⌈n/2⌉2)

[Seidel, 1995] with m being the number of inequalities. We arrive atO(m⌈n/2⌉2 · (lgm · (n2+log lgm)+n3)dn/2e2 logm)
and lgm = r ·

(
r+n−1
n−1

)
. While this complexity seems unwieldy, we first want to note that the problem is fundamentally

hard, as integrating an arbitrary polynomial over a single simplex is already NP-Hard [Baldoni et al., 2011]. Furthermore,
in many applications, we can assume dim(Y) � dim(X) and therefore dim(Y) is actually reasonable. Finally, we can
amortize this computation as it must only be done once per constraint, enabling fast and efficient training.

C.2.2 Grundmann-Möller-Cubature

Algorithm 4 PrepareGrundmannMöller(d, n)

Input Total degree d, dimensions n
Output Cubature points R ∈ Rlgm×n and weights w ∈ Rlgm

1: R← []
2: w← []
3: s← dd2 − 1e
4: {According to Theorem 4 of Grundmann and Möller [1978]}
5: for i← 0 to s do
6: wi ← (−1)i2−2s (d+n−2i)d

i!(d+n−i)!
7: Γ← combinationsSummingTo(n, s− i)
8: {All combinations of n natural numbers summing to s− i}
9: for γ ∈ Γ do

10: r←
(

2γ0+1
d+n−2i , . . . ,

2γn+1
d+n−2i

)
11: Append(R, r)
12: Append(w, wi/Len(Γ))
13: end for
14: end for
15: return R,w
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Figure 11: The integration time for splines on the Stanford drone dataset (scene 1) does not grow linearly with the number
of bins. In this figure, we compare the time it takes to integrate our squared spline for an increasing number of bins versus a
simple linear scaling, which we would expect if the empirical computational complexity per bin would stay approximately
constant.

C.2.3 Overall Complexity

When analyzing the overall complexity of PAL, there are two major additional sources of computational complexity: the
complexity of the SMT formula and, assuming the use of splines, the number of bins.

We will first focus on the complexity originating from the logical formula. The WMI problem in general is #P-hard [Zeng
et al., 2020a]. Coarsely speaking, the SAE4WMI procedure may require exponential time in the worst case. It begins with
an AllSMT step that enumerates all partial assignments satisfying the formula—potentially exponentially many. Each of
these assignments is then checked forLRA consistency, which takes polynomial time per assignment. Afterwards, we have
the integration of the polynomial on each polytope described by the LRA-consistent truth assignment a task that is NP-
hard in itself, as discussed in the previous section. Thus, the logical component alone can dominate the overall complexity,
especially when the number of satisfying assignments grows rapidly. That said, this compilation cost is amortized: we pay
it only once before training.

Another source of complexity arises from the number of bins when using a spline-based density, as our pipeline must be
executed once per bin. While this might seem at first like a significant disadvantage for using a spline, in practice the
complexity of the logical formula per bin, and therefore the overall time required for the compilation, decreases with an
overall increasing number of bins. This is due to the space being partitioned into smaller and smaller patches as we increase
the number of bins, with fewer constraints intersecting the average bin. For example, the time it takes to integrate a 169-bin
spline over scene 1 of the Stanford drone dataset is just 3.77x the time it takes to integrate a spline with a single bin over
the scene, instead of 169x. We show the relationship between linear scaling and our actual measured integration times in
figure 11.

D ADDITIONAL RELATED WORKS

Other constraints in deep learning. Many approaches have been proposed for dealing with a variety of specialized
constraints in neural networks. An abundant body of work investigates architectures that guarantee specific properties,
such as monotonicity [You et al., 2017] or permutation invariance of inputs [Zaheer et al., 2017]. Other works impose
constraints over they dynamics of a neural network, e.g., to follow a physics-based constraint or a PDE [Raissi et al., 2019,
Li et al., 2020, Beltran et al., 2024]. These approaches are orthogonal to ours and cannot be easily generalized in our
framework where constraints are algebraic.

Sampling with constraints. It is well known that (algebraic) constraints pose significant challenges for sampling proce-
dures.Afshar et al. [2016] addressed these challenges with Markov Chain Monte Carlo, which is however unsuited for
training PAL via gradient descent. Abboud et al. [2022] introduce an FPRAS scheme to approximate WMI problems
whose constraints are represented in disjunctive normal form (DNF). While this approach provides some guarantees, it



would still require many samples to get an accurate estimate of a WMI integral and DNFs are not compact representations
of many real-world constraints [Hoernle et al., 2022]. Another recent work on sampling under algebraic constraints is the
Disjunctive Refinement Layer [Stoian and Giunchiglia, 2025], which is an iterative projection onto non-convex sets defined
by quantifier-free conjunctions, disjunctions and negations of linear inequalities. It allows for sampling with guaranteed
constraint satisfaction, but the iterative projection of the invalid probability mass leads to a clustering of projected samples
at the boundaries and obstructs gradient flow.

Learning constraints. The problem of learning SMT(LRA) constraints from positive/negative examples was first ad-
dressed by INCAL [Kolb et al., 2018b], an incremental approach built upon SMT solvers. LARIAT [Morettin et al., 2020]
addressed the problem of jointly learning the SMT(LRA) constraints and a piecewise polynomial density from unlabelled
data. These two components are learned separately and then combined into a probabilistic model that can be queried using
WMI solvers. In this paper, we assume the constraints are given and they are accounted for when learning the parameters
of the density function. Combining PAL with the above approaches is an interesting future direction.

E EXPERIMENTAL DETAILS

E.1 REJECTION SAMPLING VS. GASP!

The polynomials with dimension n and total degree d we want to integrate are all of the form ∑
αi∈Nn
1Tαi≤d

ci
∏
j

y
αij
j


2

.

The coefficients ci are distributed as follows: ci
∑
±Poisson(2), where ± denotes a random, equal chance, sign.

We generate the random simplices by following the same procedure as many times as needed:

1. draw a random unit simplex;

2. scale it between 0.5 and 1.5 (uniformly);

3. transform the vertices using a random orthonormal matrix;

4. translate it between 0 and 6;

5. keep the simplex if it does not overlap any previous simplex.
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Figure 12: Runtime (in seconds) of rejection sampling vs a single GASP!-run for integrating random polynomials of
varying degree over 4 random simplices. For rejection sampling, we additionally report its relative error. This benchmark
was run using an NVIDIA RTX A6000, an AMD EPYC 7452 32-Core Processor and 528 Gigabyte RAM.

E.2 SAE4WMI(LATTE) VS. SAE4WMI(GASP!)

For this experiment, we used the benchmarking suite originally released with SAE4WMI [Spallitta et al., 2022] (https:
//github.com/unitn-sml/wmi-benchmarks) for generating random WMI problems. These instances are com-
posed of a SMT(LRA) formula encoding the support of the distribution and a piecewise polynomial weight function. The
weight functions have arbitrary SMT(LRA) conditions as internal nodes and non-negative polynomial leaves. In contrast
with the benchmarks employed by Spallitta et al., our weight functions do not have sums or product as internal nodes. This
minor modification was made to enforce a tighter control over the maximum overall degree of the weight function. The
problems have n ∈ {3, 4, 5} real variables and are generated in a recursive manner, with formulas and weight functions
having depth r ∈ {2, 3, 4}, the latter having polynomial leaves with maximum degree d ∈ {0, 2, 4}. For each configuration
of 〈n, d, r〉, we generated 10 instances, for a total of 270 WMI problems. This benchmark was run using an NVIDIA RTX
A6000, an AMD EPYC 7452 32-Core Processor and 528 Gigabyte RAM.

E.2.1 GASP! vs SymPy

Another option is to compare the whole GASP! pipeline, including PA [Morettin et al., 2017] to enumerate the convex
Polytopes, to a completely orthogonal approach. XADD [Kolb et al., 2018a] tackles the weighted model integral via
symbolic manipulations. In practice, this means integrating via an explicit anti-derivative and then replacing the variable

https://github.com/unitn-sml/wmi-benchmarks
https://github.com/unitn-sml/wmi-benchmarks


with the symbolic lower and upper bounds, analogously on how solving an integral by hand is done. As the symbolic
polynomial is represented using SymPy [Meurer et al., 2017b], our polynomial over both variables and coefficients can be
naturally expressed and running XADD [Kolb et al., 2018a] on this polynomial directly results in Iϕ(Λ). We benchmark
GASP! vs. XADD equipped with SymPy on the NStar-constraints, which is just an n-pointed star where we always connect
with opposite points. An example of the constraints can be seen in figure 9. Using our algorithm GASP!, we were able to
reduce the runtime for the integral a polynomial of total degree 12 for a star with 17 corners from 6 hours and 20 minutes to
19 seconds, a significant speedup of 3 magnitudes or approximately 1200 times faster. Detailed results for the benchmark
are in the Appendix in table 4 and 5.

total degree 0 1 4 6 8 10 12
n

3 00:00:00 00:00:00 00:00:00 00:00:02 00:00:05 00:00:17 00:00:40
5 00:00:01 00:00:01 00:00:05 00:00:14 00:00:41 00:02:09 00:05:19
7 00:00:04 00:00:06 00:00:14 00:00:42 00:02:04 00:07:07 00:17:55
9 00:00:10 00:00:14 00:00:33 00:01:43 00:05:14 00:19:19 00:49:46
11 00:00:19 00:00:25 00:01:01 00:03:14 00:10:02 00:37:02 01:36:09
13 00:00:31 00:00:41 00:01:38 00:05:08 00:15:51 00:59:36 02:36:15
15 00:00:53 00:01:09 00:02:42 00:08:21 00:25:55 01:37:29 04:19:17
17 00:01:17 00:01:39 00:03:46 00:11:28 00:35:24 02:16:39 06:20:02

Table 4: We show the results for integrating the NSTar-Benchmark using the XADD-Algorithm equipped with SymPy
[Kolb et al., 2018a]. Results in hh : mm : ss.. This benchmark was run on the same machine as in 5. This benchmark
was run using an NVIDIA RTX A6000, an AMD EPYC 7452 32-Core Processor and 528 Gigabyte RAM. The results for
GASP! are provided in table 5.

total degree 0 1 4 6 8 10 12
n

3 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01 00:00:04 00:00:10
5 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01 00:00:06 00:00:15
7 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01 00:00:06 00:00:16
7 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01 00:00:06 00:00:16
9 00:00:00 00:00:00 00:00:00 00:00:01 00:00:02 00:00:07 00:00:16
11 00:00:01 00:00:01 00:00:01 00:00:01 00:00:02 00:00:07 00:00:16
13 00:00:02 00:00:02 00:00:02 00:00:02 00:00:03 00:00:08 00:00:17
15 00:00:02 00:00:02 00:00:02 00:00:03 00:00:04 00:00:09 00:00:18
17 00:00:03 00:00:03 00:00:03 00:00:04 00:00:05 00:00:10 00:00:19

Table 5: GASP! is significantly faster compared to XADD [Kolb et al., 2018a]. We show results for integrating the NSTar-
Benchmark using GASP!. Results in hh : mm : ss.. This benchmark was run using an NVIDIA RTX A6000, an AMD
EPYC 7452 32-Core Processor and 528 Gigabyte RAM. The results for XADD are provided in table 4.

E.3 NSTAR

For the NStar dataset, we generate 800.000 (x,y)-points on the NStar via rejection sampling. The NStar-constraints are
formed by taking the n-pointed star on the circle with radius 10, where the the constraints are constructed by connecting
each corner-point with the two most-opposite points. The distribution of X is uniform over the star, the distribution of Y
is a cauchy-distribution with location X and scale 1.5

√
10. The star is located in [−10, 10]2.

We form train, test and validation datasets by dividing the points with a share of 70%, 15% and 15%.

E.3.1 Models

All models are trained with a batch-size of 512.



PAL We will now describe our settings for the PAL-models on the NStar-Dataset. For every variant of the star, we perform
a grid-search over the following configurations, picking the best-performing according to the log-likelihood on the held-out
dataset:

• epochs: 1500

• learning rate:1e− 06, 1e− 05

• network hidden layers: [1024, 1024], [1024]

The network is a fully-connected neural network using ReLU [Glorot et al., 2011] as activations. We use the schedule-
free version of Adam [Defazio et al., 2024]. We use a single polynomials, with the re-parametrization as detailed in
Appendix B.1 and train using a loss composed of log-likelihood and a penalty on very large integral-values detailed in
Appendix B.3.

In this experiment, our density is modeled by a single, squared polynomial over Y with the maximum number of terms
given the required total degree. So, for example, the polynomial with a total degree of 10 squared has a total degree of 5
unsquared. Therefore we collect all multivariate monomials up to the total degree of 5 to build our parametrized polynomial
over Y.

GMM For the GMM-Models, we perform the following grid-search:

• covariance: full and independent (although full covariance leads to better performing models for our dataset)

• epochs: 1500

• learning rate: 1e− 04, 1e− 05

• network hidden layers: [1024, 1024], [1024]

We use the Adam optimizer [Kingma and Ba, 2015a].

DSP For DeepSeaProbLog, when performing the grid-search, we select the model according to the loss with the constant,
final multiplier for the continous approximation for the inequality. The grid is over the following parameters:

• epoch: 1500

• learning rate: 0.001, 0.0001, 0.00001

• minimum-multiplier for the inequality-relaxation: 0.1, 1.0

• maximum-multiplier: 5

• network hidden layers: [1024, 1024], [1024]

• optimiser: AdaMax and Adam [Kingma and Ba, 2015a]

Due to the slower training speed, we train DSP with a patience of 200-epochs (the other models are picked as the model
with the best validation-score over all 1500 epochs). Finally, we train with sampling 50 times per input x(b) in order to
approximate P (valid).

DSP is trained by optimizing both the fit on the data, as well as constraint satisfaction:

ldsp(x
[1:b],y[1:b]) =

∑
i

(−1) · log p(yi|xi) + CE(p(Y |= ϕ | X = xi)) (DSP-Loss)

where p(Y |= ϕ | X = xi) is approximated numerically in DSP in comparison to PAL. CE denotes the binary cross-
entropy loss against the constant 1 label.

E.3.2 Results



NN + PAL NN + GMM DeepSeaProblog

N deg 10 deg 14 deg 18 K=1 K=4 K=8 K=32 by LL by Loss

3 -4.749 ±0.169 -4.674 ±0.009 -4.840 ±0.251 -5.016 ±0.001 -4.792 ±0.003 -4.740 ±0.003 -4.723 ±0.006 -5.027 ±0.012 -42.821 ±41.989
7 -4.529 ±0.008 -4.527 ±0.009 -4.741 ±0.287 -5.009 ±0.000 -4.850 ±0.014 -4.708 ±0.007 -4.612 ±0.005 -5.019 ±0.010 -206.411 ±132.409

11 -4.570 ±0.223 -4.584 ±0.171 -4.591 ±0.180 -4.988 ±0.000 -4.922 ±0.015 -4.791 ±0.018 -4.620 ±0.008 -83.042 ±58.990 -43.151 ±42.199
19 -4.506 ±0.034 -4.492 ±0.004 4.616 ±0.228 -4.995 ±0.000 -4.981 ±0.003 -4.925 ±0.010 -4.652 ±0.003 -5.001 ±0.001 -155.139 ±101.533

Table 6: Average log-likelihood on the test-set for the NStar-dataset. We test on a 3, 7, 11 and 19-Star and compare our ap-
proach (NN+PAL) to a conditional GMM and the neural distributional fact fitted by DeepSeaProblog. For DeepSeaProblog,
we report the performance of two model, one selected by best log-likelihood (LL) and one by best loss (Loss), which takes
into consideration both the fit and the probability of violating the constraints. After choosing the hyper-parameters, all runs
were repeated 10-times and we report mean and standard deviation.

Ground Truth NN + PAL NN + GMM DeepSeaProblog (by LL)

deg 52 deg 72 deg 92 K=1 K=4 K=8 K=32 density query

Table 7: Densities of the Ground-Truth compared to the polynomial, GMM and DeepSeaProbLog for the 3-Star problem
with a cauchy-density. For the DSP model selected by log-likelihood, we show the density of the neural distributional
fact, and we also show the result of querying the ProbLog program representing our constraints 10000 times. The samples
associated with an true-label are shown in green, the samples associated with a false-label are shown in red.

Ground Truth DeepSeaProblog (by loss)

density query

Table 8: Densities of the Ground-Truth compared to the DeepSeaProbLog for the 3Star problem with a cauchy-density.
DeepSeaProbLog is selected by loss, and due to avoiding the constraints, more concentrated and therefore visualized
separately. We show the density for the neural distributional fact and the samples obtained by the query. The samples
associated with an true-label are shown in green, the samples associated with a false-label are shown in red. We choose to
visualize this separately in order to keep the color-scheme in figure 7 reasonable.



Ground Truth NN + PAL NN + GMM DeepSeaProblog

deg 52 deg 72 deg 92 K=1 K=4 K=8 K=32 density query

Table 9: Densities of the Ground-Truth compared to the polynomial, GMM and DeepSeaProbLog for the 7-Star problem
with a cauchy-density. For the DSP model selected by log-likelihood, we show the density of the neural distributional
fact, and we also show the result of querying the ProbLog program representing our constraints 10000 times. The samples
associated with an true-label are shown in green, the samples associated with a false-label are shown in red.

Ground Truth DeepSeaProblog (by loss)

density query

Table 10: Densities of the Ground-Truth compared to the DeepSeaProbLog for the 7Star problem with a cauchy-density.
DeepSeaProbLog is selected by loss, and due to avoiding the constraints, more concentrated and therefore visualized
separately. We show the density for the neural distributional fact and the samples obtained by the query. The samples
associated with an true-label are shown in green, the samples associated with a false-label are shown in red. We choose to
visualize this separately in order to keep the color-scheme in figure 9 reasonable.



Ground Truth NN + PAL NN + GMM DeepSeaProblog

deg 52 deg 72 deg 92 K=1 K=4 K=8 K=32 density query

Table 11: Densities of the Ground-Truth compared to the polynomial, GMM and DeepSeaProbLog for the 11-Star problem
with a cauchy-density. For the DSP model selected by log-likelihood, we show the density of the neural distributional
fact, and we also show the result of querying the ProbLog program representing our constraints 10000 times. The samples
associated with an true-label are shown in green, the samples associated with a false-label are shown in red.

Ground Truth DeepSeaProblog (by loss)

density query

Table 12: Densities of the Ground-Truth compared to the DeepSeaProbLog for the 11Star problem with a cauchy-density.
DeepSeaProbLog is selected by loss, and due to avoiding the constraints, more concentrated and therefore visualized
separately. We show the density for the neural distributional fact and the samples obtained by the query. The samples
associated with an true-label are shown in green, the samples associated with a false-label are shown in red. We choose to
visualize this separately in order to keep the color-scheme in figure 11 reasonable.



Ground Truth NN + PAL NN + GMM DeepSeaProblog

deg 52 deg 72 deg 92 K=1 K=4 K=8 K=32 density query

Table 13: Densities of the Ground-Truth compared to the polynomial, GMM and DeepSeaProbLog for the 19-Star problem
with a cauchy-density. For the DSP model selected by log-likelihood, we show the density of the neural distributional
fact, and we also show the result of querying the ProbLog program representing our constraints 10000 times. The samples
associated with a true-label are shown in green, the samples associated with a false-label are shown in red.

Ground Truth DeepSeaProblog (by loss)

density query

Table 14: Densities of the Ground-Truth compared to the DeepSeaProbLog for the 19Star problem with a cauchy-density.
DeepSeaProbLog is selected by loss, and due to avoiding the constraints, more concentrated and therefore visualized
separately. We show the density for the neural distributional fact and the samples obtained by the query. The samples
associated with an true-label are shown in green, the samples associated with a false-label are shown in red. We choose to
visualize this separately in order to keep the color-scheme in figure 13 reasonable.



E.4 STANFORD DRONE DATASET - JOINT DISTRIBUTION

E.4.1 Details of the Dataset - Scenario 1

We focus on image 12, the image with the most trajectories. We first want to note that the time-resolution, due to it being
extracted from a 30-fps video, is quite high. In order to eliminate outliers, we first delete all points without movement
(trajectories with a total variance of less than 20 and points with a distance of less than 0.1 compared to the previous).
Then, we clean the data by discarding all short trajectories (= length of less than 50). We arrive at 415 moving trajectories
out of the 499 we started with. We split this dataset, by trajectory, into train, test and validation (70%, 15% and 15%) and
then concatenate all the points. We arrive at 124998 train points, 26786 validation points and 26786 test points. While this
appears like a significant of points, we want to stress that many are heavily autocorrelated due to the high resolution, and
the actual, total, amount of trajectories is only 415.

type detail num. params Pr(¬ϕ) log-like

PAL (Spline) 8 knots, 10 mixtures 330 0.000 -3.013 ±0.002
PAL (Spline) 8 knots, 8 mixtures 264 0.000 3.023 ±0.003
PAL (Spline) 8 knots, 4 mixtures 132 0.000 -3.067 ±0.009
PAL (Spline) 10 knots, 10 mixtures 410 0.000 -2.984 ±0.002
PAL (Spline) 10 knots, 8 mixtures 328 0.000 -2.995 ±0.005
PAL (Spline) 10 knots, 4 mixtures 164 0.000 -3.045 ±0.008
PAL (Spline) 12 knots, 10 mixtures 490 0.000 -2.971 ±0.003
PAL (Spline) 12 knots, 8 mixtures 392 0.000 -2.979 ±0.003
PAL (Spline) 12 knots, 4 mixtures 196 0.000 -3.025 ±0.010
PAL (Spline) 14 knots, 10 mixtures 570 0.000 -2.950 ±0.002
PAL (Spline) 14 knots, 8 mixtures 456 0.000 -2.961 ±0.002
PAL (Spline) 14 knots, 4 mixtures 228 0.000 -3.009 ±0.008
PAL (Spline) 16 knots, 10 mixtures 650 0.000 -2.937 ±0.003
PAL (Spline) 16 knots, 8 mixtures 520 0.000 -2.948 ±0.003
PAL (Spline) 16 knots, 4 mixtures 260 0.000 -2.998 ±0.010

GMM K=5 30 ≈ 12.475 ±0.761 -3.359 ±0.034
GMM K=10 60 ≈ 8.887 ±0.224 -3.223 ±0.008
GMM K=20 120 ≈ 4.229 ±0.142 -3.081 ±0.012
GMM K=50 300 ≈ 2.375 ±0.112 -2.983 ±0.004
GMM K=100 600 ≈ 1.190 ±0.052 -2.917 ±0.005

Flow 1 transformation (t), 128x2 hidden 22830 ≈ 5.643 ±0.487 -3.098 ±0.013
Flow 1 transformation (t), 64x2 hidden 7342 ≈ 5.245 ±0.516 -3.089 ±0.017
Flow 1 transformation (t), 32x2 hidden 2670 ≈ 5.651 ±0.596 -3.109 ±0.016
Flow 2 transformations (t), 128x2 hidden 45660 ≈ 2.616 ±0.221 -2.986 ±0.008
Flow 2 transformations (t), 64x2 hidden 14684 ≈ 2.157 ±0.250 -2.972 ±0.011
Flow 2 transformations (t), 32x2 hidden 5340 ≈ 2.468 ±0.612 -2.979 ±0.016
Flow 5 transformations (t), 128x2 hidden 114150 ≈ 1.771 ±0.159 -2.940 ±0.007
Flow 5 transformations (t), 64x2 hidden 36710 ≈ 1.930 ±0.130 -2.949 ±0.007
Flow 5 transformations (t), 32x2 hidden 13350 ≈ 1.677 ±0.231 -2.943 ±0.012
Flow 10 transformations (t), 128x2 hidden 228300 ≈ 1.502 ±0.109 -2.919 ±0.007
Flow 10 transformations (t), 64x2 hidden 73420 ≈ 1.698 ±0.202 -2.943 ±0.018
Flow 10 transformations (t), 32x2 hidden 26700 ≈ 1.826 ±0.252 -2.938 ±0.007

Table 15: Results for the p(Y)-case of the Stanford-Drone dataset for scenario 1. All Spline models have equal number of
knots in y1 and y2. The average percent of probability mass covering invalid space (Pr(¬ϕ)) over our test-set is given in
percent. After choosing the hyper-parameters, all runs were repeated 10-times and we report mean and standard deviation.



Before Filtering: After Filtering:

Figure 13: The trajectories before/after filtering for image 12 in the Stanford Drone Dataset. The constraints are shown in
red.

Training Data PAL (8 knots) PAL (10
knots)

PAL (12
knots)

PAL (14 knots) PAL (16 knots)

GMM 5-
comp.

GMM 10-
comp.

GMM 20-
comp.

GMM 50-
comp.

GMM 100-
comp.

Flow t = 1 Flow t = 2 Flow t = 5 Flow t = 10

Table 16: Densities on the p(Y)-case of the Stanford-Drone dataset for scenario 1. All Spline models have 10-mixture com-
ponents and equal number of knots in Y1 and Y2. The flow-models have two hidden layers of size 128 per transformation.



E.4.2 Details of the Dataset - Scenario 2

We focus on image 2, which consists only of 119 trajectories. We perform the same filtering etc. as in scenario 1 and arrive
at 53504 train points, 10197 validation points and 13860 test points.

type detail num. params perc. invalid log-like

PAL (Spline) 8 knots, 10 mixtures 330 0.000 -3.376 ±0.007
PAL (Spline) 8 knots, 8 mixtures 264 0.000 -3.376 ±0.007
PAL (Spline) 10 knots, 10 mixtures 410 0.000 -3.348 ±0.005
PAL (Spline) 10 knots, 8 mixtures 328 0.000 -3.362 ±0.006
PAL (Spline) 12 knots, 10 mixtures 490 0.000 -3.329 ±0.003
PAL (Spline) 12 knots, 8 mixtures 392 0.000 -3.343 ±0.004
PAL (Spline) 14 knots, 10 mixtures 570 0.000 -3.313 ±0.003
PAL (Spline) 14 knots, 8 mixtures 456 0.000 -3.333 ±0.007
PAL (Spline) 16 knots, 10 mixtures 650 0.000 -3.301 ±0.004
PAL (Spline) 16 knots, 8 mixtures 520 0.000 -3.322 ±0.004

GMM K=5 35 ≈ 12.220 ±0.053 -3.701 ±0.002
GMM K=10 70 ≈ 6.589 ±0.283 -3.564 ±0.012
GMM K=20 140 ≈3.223 ±0.542 -3.449 ±0.019
GMM K=50 350 ≈ 1.289 ±0.159 -3.351 ±0.014
GMM K=100 700 ≈ 0.656 ±0.042 -3.259 ±0.005

Flow 1 transformation (t), 32x2 hidden 2670 ≈ 2.274 ±0.214 -3.431 ±0.012
Flow 2 transformations (t), 32x2 hidden 5340 ≈ 1.210 ±0.285 -3.332 ±0.020
Flow 5 transformations (t), 32x2 hidden 13350 ≈ 0.710 ±0.126 -3.266 ±0.015
Flow 10 transformations (t), 32x2 hidden 26700 ≈ 0.867 ±0.126 -3.273 ±0.012

Table 17: Results for the p(Y)-case of the Stanford-Drone dataset for scenario 2. All Spline models have equal number of
knots in y1 and y2. The average percent of probability mass covering invalid space (Pr(¬ϕ)) over our test-set is given in
percent. After choosing the hyper-parameters, all runs were repeated 10-times and we report mean and standard deviation.

Training Data PAL (8 knots) PAL (10
knots)

PAL (12
knots)

PAL (14 knots) PAL (16 knots)

GMM 5-
comp.

GMM 10-
comp.

GMM 20-
comp.

GMM 50-
comp.

GMM 100-
comp.

Flow t = 1 Flow t = 2 Flow t = 5 Flow t = 10

Table 18: Densities on the p(Y)-case of the Stanford-Drone dataset for scenario 2. All Spline models have 10-mixture com-
ponents and equal number of knots in Y1 and Y2. The flow-models have two hidden layers of size 32x2 per transformation.



E.5 STANFORD DRONE DATASET - CONDITIONAL DISTRIBUTIONS

E.5.1 Details of the Dataset

The goal in this task is to fit the distribution of possible future trajectories, so if our random variable for the coordi-
nates at timestep t is Ct, then our goal is to predict Y = Ct≥t′ given the current a window of 5 equidistant points
X = (Ct=t′−0·∆,Ct=t′−1·∆, . . . , ,Ct=t′−5·∆), with ∆ being some step-size. This challenging construction induces multi-
modality and uncertainty in the predictive distribution, because if there is a chance of visiting a certain area in the future
given the 5 steps, it must have some probability mass assigned to it.

In order to bias our models towards more well-connected paths, we bias the network towards the closer in time data-
points. The distribution is therefore a mixture of both a uniform distribution over the whole future trajectory and a uniform
distribution over the future trajectory of length step-size s, so 70 in our case. Both choices have equal chance.

E.5.2 Scenario 1

For this task, we focus on image 12, the image with the most trajectories. We want to note that the time-resolution, due to
it being extracted from a 30-fps video, is quite high. As we want to focus on the trajectory, we eliminate all points without
movement, so points with a distance of less than 0.1 compared to the previous. We take a step-size of 70 for the window
of 5 points that form our X, which we will slide through the trajectory. We also discard all trajectories that are too short to
fill our window, so where the length is less than 5 · 70, as we want to focus on long trajectories. We split the trajectories
into 70% train, 15% validation and 15% test. We then create a static validation and test-dataset by sampling 10 future
Y points per window X = x at creation statically. For the train-dataset, we sample the during training, so for the same
X = x it will see different future points. We arrive at 22619-train datapoints, with Y dynamically sampled per X = x,
42740-validation datapoints and 49660-test datapoints.

Model Details

All our models are simple, fully connected neural networks with ReLu as an activation function [Glorot et al., 2011].

We denote the following sizes:

• large: 2 hidden layers of size 2048 each

• medium: 2 hidden layers of size 1024 each

• small: 2 hidden layers of size 512 each

We train all models for a maximum of 500 epochs with a patience of 20 epochs and run the hyper-parameter search for
each network-size per model-type.

PAL For the PAL models, we do a grid-search over the following parameters:

• number of mixtures: 8 and 10

• number of knots: 10 and 14 (equal over y1 and y2)

• optimizer AdamW schedulefree [Defazio et al., 2024] with learning rate: 0.001, 0.0001, 0.00001
and batch-sizes 16, 32 and 128

• net-sizes: large/medium/small

GMM For the conditional GMM-models, we do a grid-search over the following parameters:

• number of components K: 4, 32, 50, 80, 100 with full covariances

• net-sizes: large/medium/small

• optimizer Adam [Kingma and Ba, 2015b] with learning rates: 0.001, 0.0001, 0.00001 and batch-sizes 16, 32
(128 led to worse performance due to overfitting on initial-runs and was excluded)

DSP For the DSP models, we do a grid-search over the following parameters:



• optimizer AdaMax [Kingma and Ba, 2015b] with learning rates 0.01, 0.001, 0.0001, 0.00001 and batch-sizes 16, 32
(128 led to worse performance due to overfitting on initial-runs and was excluded)

• annealing starting-multiplier: 0.1, 1.0

• end-multiplier: 5

• net-sizes: large/medium/small

We use a tanh-scaling of the annealing multiplier with an alpha of 1e− 4 and train with the loss DSP-Loss.

Results

type size dist. net size log-like num. params dist. Pr(¬ϕ)
PAL (Spline) 14 knots, 10 mixtures medium -2.209 ±0.136 570 0.000
PAL (Spline) 10 knots, 8 mixtures medium -2.942 ±1.204 328 0.000
PAL (Spline) 14 knots, 8 mixtures small -2.086 ±0.144 456 0.000
PAL (Spline) 10 knots, 8 mixtures small -2.272 ±0.130 328 0.000
PAL (Spline) 14 knots, 10 mixtures large -2.174 ±0.120 570 0.000
PAL (Spline) 10 knots, 8 mixtures large -2.263 ±0.168 328 0.000

GMM K=100 medium -3.323 ±0.738 700 ≈ 20.191 ±1.937
GMM K=80 medium -11.173 ±8.202 560 ≈ 72.969 ±34.192
GMM K=50 medium -2.932 ±0.361 350 ≈ 21.706 ±2.727
GMM K=32 medium -2.989 ±0.345 224 ≈ 21.620 ±2.672
GMM K=4 medium -3.262 ±0.379 28 ≈ 20.955 ±1.366
GMM K=100 small -2.838 ±0.485 700 ≈ 20.321 ±1.672
GMM K=80 small -2.835 ±0.410 560 ≈ 20.096 ±1.964
GMM K=50 small -2.644 ±0.258 350 ≈ 20.989 ±1.774
GMM K=32 small -2.735 ±0.379 224 ≈ 19.842 ±1.584
GMM K=4 small -3.235 ±0.970 28 ≈ 21.859 ±1.600
GMM K=50 large -3.074 ±0.273 350 ≈ 24.721 ±3.632
GMM K=32 large -6.383 ±6.179 224 ≈ 36.660 ±33.943
GMM K=100 large -4.963 ±4.690 700 ≈ 30.516 ±24.794
GMM K=80 large -16.420 ±9.413 560 ≈ 83.409 ±31.042
GMM K=4 large -7.553 ±5.529 28 ≈ 48.345 ±35.762

DSP (by loss) 1 Gaussian large -8.532 ±11.325 6 ≈ 29.035 ±3.074
DSP (by loss) 1 Gaussian medium -6.176 ±5.132 6 ≈ 36.648 ±9.670
DSP (by loss) 1 Gaussian small -3.876 ±0.466 6 ≈ 49.046 ±16.395

DSP (by log-like) 1 Gaussian large -8.520 ±11.330 6 ≈ 34.963 ±9.933
DSP (by log-like) 1 Gaussian medium -6.152 ±5.144 6 ≈ 33.322 ±5.761
DSP (by log-like) 1 Gaussian small -3.861 ±0.480 6 ≈ 58.209 ±15.949

Table 19: Results for the p(Y|X)-case of the Stanford-Drone dataset for scenario 1. All Spline models have equal number
of knots in y1 and y2. The average percent of probability mass covering invalid space (Pr(¬ϕ)) over our test-set is given
in percent. It is approximated by sampling 106 times per datapoint x in the test-set, computing constraint satisfaction, and
then taking the average. After choosing the hyper-parameters, all runs were repeated 10-times and we report mean and
standard deviation.



Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Spline 10/small

Spline 14/small

Spline 14/large

Spline 14/medium

GMM 50/medium

GMM 80/medium

GMM 50/small

GMM 100/small

DSP by loss, large

DSP by log-like, large

Table 20: Densities for the predictive positions for the P (Y | X) case on the stanford drone dataset for scenario 1. We
compare the best 4 spline-models against the best 4 GMM models and the best DSP models both by log-likelihood and
loss from 19. The colormap is normalized per sample.



Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

by log-like, large network

by loss, large network

Table 21: Samples from the Problog-Query representing the Constraints on the Stanford-Drone Dataset. We display the
samples and the associated labels that we obtain from DeepSeaProbLog. We show the same samples as displayed in 20.



E.5.3 Scenario 2

We provide further provide results on Image 2 from the Stanford Drone Dataset [Robicquet et al., 2016]. This is a small
scenario, with 119 trajectories to start. For the conditional trajectory-prediction problem, we use the same setup is detailed
in section E.5 and arrive at 21273 train, 72710 validation, and 62080 test-datapoints.

Model Details

We narrow down our search-space and pick the best-performing configurations from E.5.2 to apply our grid-search on, but
discard the large net-size as the dataset is smaller.

PAL For the PAL models, we do a grid-search over the following parameters:

• number of mixtures: 8 and 10

• number of knots: 10 and 14 (equal over y1 and y2)

• optimizer AdamW schedulefree [Defazio et al., 2024] with learning rate: 0.001, 0.0001
and batch-sizes 16, 32 and 128

• net-sizes: medium/small

GMM For the conditional GMM-models, we do a grid-search over the following parameters:

• number of components K: 4, 32, 50, 100 with full covariances

• net-sizes: medium/small

• optimizer Adam [Kingma and Ba, 2015b] with learning rates: 0.001, 0.0001 and batch-sizes 16, 32, 128

DSP For the DSP models, we do a grid-search over the following parameters:

• optimizer AdaMax [Kingma and Ba, 2015b] with learning rates 0.001, 0.0001 and batch-sizes 16, 32, 128

• annealing starting-multiplier: 0.1, 1.0

• end-multiplier: 5

• net-sizes: medium/small

We use a tanh-scaling of the annealing multiplier with an alpha of 1e− 4 and train with the loss DSP-Loss.

Results

Image Trajectories Constraints

Figure 14: Our dataset combines challenging constraints with real-world data on trajectories (middle) and aerial maps
(left) taken from Robicquet et al. [2016]. We manually label the data, indicating invalid areas to move to. This is image 2
from the Stanford drone dataset.



type size dist. net size log-like num. params dist. Pr(¬ϕ)
NN + PAL 14 knots, 10 mixtures medium -2.237 ±0.268 570 0.000
NN + PAL 10 knots, 8 mixtures medium -2.302 ±0.175 328 0.000
NN + PAL 14 knots, 8 mixtures small -2.232 ±0.275 456 0.000
NN + PAL 10 knots, 10 mixtures small -2.091 ±0.086 410 0.000

NN + GMM K=100 medium -2.816 ±0.205 700 ≈ 15.435 ±4.099
NN + GMM K=50 medium -3.129 ±0.572 350 ≈ 14.905 ±3.603
NN + GMM K=32 medium -2.714 ±0.228 224 ≈ 16.399 ±3.852
NN + GMM K=4 medium -2.780 ±0.316 28 ≈ 17.271 ±4.785
NN + GMM K=100 small -2.423 ±0.193 700 ≈ 14.684 ±2.973
NN + GMM K=50 small -2.396 ±0.231 350 ≈ 15.610 ±3.715
NN + GMM K=32 small -2.674 ±0.310 224 ≈ 15.390 ±4.273
NN + GMM K=4 small -2.650 ±0.281 28 ≈ 19.093 ±6.341

DSP by loss 1 Gaussian medium -3.611 ±0.287 6 ≈ 35.986 ±6.946
DSP by loss 1 Gaussian small -30.006 ±76.260 6 ≈ 52.929 ±17.107
DSP by log-like 1 Gaussian medium -3.611 ±0.287 6 ≈ 36.148 ±1.641
DSP by log-like 1 Gaussian small -29.967 ±76.274 6 ≈ 36.433 ±2.976

Table 22: Results for the P (Y |X)-case of the Stanford-Drone dataset for scenario 2. All Spline models have equal number
of knots in y1 and y2. The average percent of probability mass covering invalid space (Pr(¬ϕ)) over our test-set is given
in percent. It is approximated by sampling 106 times per datapoint x in the test-set, computing constraint satisfaction, and
then taking the average. After choosing the hyper-parameters, all runs were repeated 10-times and we report mean and
standard deviation.



Model Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

PAL 14/medium

PAL 10/small

PAL 14/small

PAL 10/medium

GMM 32/small

GMM 4/small

GMM 50/small

GMM 100/small

DSP medium

DSP small

DSP by LL med.

DSP by LL small

Table 23: Densities for the predictive positions for the P (Y | X) case on the Stanford drone dataset on scenario 2. We
compare the best 4 spline models against the best 4 GMM models and the best DSP models both by log-likelihood and loss
from 22. Colormap is normalized per sample.



F SAMPLING

We implement sampling through autoregressive inverse-transform sampling using bisection search. In our sampling proce-
dure we assume Y to be continuous, although it is straightforward to extend this approach to the hybrid case. Autoregres-
sive inverse-transform sampling works through repeatedly applying the inverse-transform technique, conditioning on all
the already sampled dimensions and marginalizing out all the subsequent dimensions.

In order to derive our algorithm, we will first focus on sampling the i-th dimension conditioned on our sampled previous
dimensions, for which we first need to define the conditional CDF F :

F (z) = p(Yi ≤ z | Y1:(i−1) = y1:(i−1))

∝
∫ ∫ z

−∞
q(Yi+1:n = yi+1:n, Yi = y,Y1:(i−1) = y1:(i−1)) · 1{y |= ϕ} dydyi+1:n

=

∫ ∫ z

−∞
q′(Yi+1:n = yi+1:n, Yi = y) · 1{(y,yi+1:n) |= ϕ′} dydyi+1:n

=

∫
q′(Yi:n = yi:n) · 1{yi:n |= (ϕ′ ∧ (Yi ≤ z))} dyi:n

= F̂ (z)

with q′ denoting q[Y1:(i−1) 7→ y1:(i−1)] and ϕ′ denoting ϕ[Y1:(i−1) 7→ y1:(i−1)].

As we can now deduce F (z) = F̂ (z)/F̂ (∞), we have reduced our conditional CDF to our usual weighted model integral,
which we can tackle with GASP!. As we need the inverse of F for the inverse-transform sampling, we numerically invert
the F using bisection search. This leads us to our algorithm:

Algorithm 5 Sample(q, ϕ, ϵ)

Input Polynomial q, Constraint ϕ, Precision ϵ
Output Sample y

1: y′ ← []
2: n← dim(domain(q))
3: for i← 1 to n do
4: q′ ← q[Y1:(i−1) 7→ y′]
5: ϕ′ ← ϕ[Y1:(i−1) 7→ y′]
6: f∞ ← GASP!(q, ϕ′)
7: F (z) = GASP!(q, ϕ′ ∧ (Yi ≤ z))/f∞
8: lower, upper ← GlobalBounds(i)
9: u← sample(U [0, 1])

10: yi ← BisectionSearch(F, u, lower, upper, ϵ)
11: y′ ← append(y′, yi)
12: end for
13: return y′

In case we are dealing with splines, as we do in the Stanford-Drone Dataset, we already have an expression for the partition
function, and therefore the integral over each bin at hand. We can therefore speed up the sampling by deciding on a bin
first:

We visualize our results in figure 15. Here we show the drawing of 100 samples applied to Sample 1 from 23 for the model
PAL 14/medium. It takes around a second to generate a sample, with 15 GASP! evaluations per sample. We generate a
sample up to an epsilon of 0.1 (in pixel space), which is a sensible value considering that we know that the precision of our
ground truth positions is limited by the resolution of our image.



Algorithm 6 BisectionSearch(f, u, lower, upper, ϵ)

Input function f : R→ R, target u, bounds (lower, upper), precision ϵ
Output Point z, ϵ-close to the generalized left-inverse F−1(u)

1: while upper − lower > ϵ do
2: m← upper+lower

2
3: if f(mid) ≤ u then
4: lower ← mid
5: else
6: upper ← mid
7: end if
8: end while
9: return upper+lower

2

Algorithm 7 SamplePiecewise(qmi=1, ϕ, I
m
i=1, b

m
i=1, ϵ)

Input Polynomials q, Constraints ϕ, Integrals per bin Imi=1, Bounds bmi=1, Precision ϵ
Output Sample y

1: j ← sampleCategorical(Imi=1/sum(Imi=1))
2: n← dim(domain(q1))
3: ϕ′ ← ϕ ∧ (

∧n
i=1(Yi ≥ lower(bj)i ∧ Yi ≤ upper(bj)i)

4: y ← Sample(qj , ϕ
′, ϵ)

5: return y

Density Integrals over Bins Samples

Figure 15: The obtained samples from our sampling procedure applied to Sample 1 from 23 for the model PAL 14/medium.
On the left one can see the ground truth density of our spline-based PAL-model, followed by the integral over the bins. On
the right, we show the 100 samples drawn by applying algorithm 7.
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