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ABSTRACT

Prompt tuning of large-scale vision-language models such as CLIP enables efficient
task adaptation without updating model weights. However, it often leads to poor
confidence calibration and unreliable predictive uncertainty. We address this
problem by proposing a calibration framework that enhances predictive reliability
while preserving the geometry of the pretrained CLIP embedding space, which is
required for robust generalization. Our approach extends the standard cross-entropy
loss with two complementary regularizers: (1) a mean—variance margin penalty that
stabilizes inter-class logit margins by maximizing their average while minimizing
dispersion, mitigating underconfidence and overconfidence spikes; and (2) a text
moment-matching loss that aligns the first and second moments of tuned text
embeddings with their frozen CLIP counterparts, preserving semantic dispersion
crucial for generalization. Through extensive experiments across 7 prompt-tuning
methods and 11 diverse datasets, we demonstrate that our approach significantly
reduces the Expected Calibration Error (ECE) compared to competitive calibration
techniques on both base and novel classes. Our code will be made publicly
available.

1 INTRODUCTION

Vision language models (VLM), such as CLIP (Radford et al., 2021), have significantly advanced
open-vocabulary image recognition by effectively using large-scale natural language supervision.
To efficiently adapt these pre-trained models to downstream tasks, parameter—efficient techniques,
particularly prompt tuning, have become popular (Liu et al., 2023b). Prompt tuning modifies only
a small subset of parameters, substantially enhancing performance on seen (base) classes while
preserving the model’s inherent generalization ability to unseen (novel) classes (Khattak et al., 2023a;
Zhou et al., 2022c). This balance between specialization and generalization has driven the widespread
adoption of prompt-tuned VLMs in healthcare, autonomous systems, and industrial applications
where recognizing expected and unexpected visual concepts is essential for safe operation (Zhao
et al., 2025; Elhenawy et al., 2025).

Despite these advances, existing prompt tuning techniques predominantly prioritize accuracy, often
neglecting the critical issue of confidence calibration. Miscalibration occurs when a model’s predicted
confidence poorly aligns with its actual likelihood of correctness, resulting in unreliable uncertainty
estimates (Wang, 2023; Guo et al., 2017). This reliability gap poses substantial challenges for the
deployment of prompt-tuned VLMs in applications where incorrect high-confidence predictions can
have serious consequences, such as autonomous systems that fail to identify obstacles or medical
imaging tools that overlook critical abnormalities (Lambert et al., 2024; Shao et al., 2024). We note
that maintaining well-calibrated confidence estimates across both base and novel categories remains
largely unexplored, despite being crucial for real-world VLM deployment (Gawlikowski et al., 2023).

Only a few recent efforts have explicitly addressed calibration in the context of prompt-tuned CLIP.
DAC (Wang et al., 2024b) implements post-hoc temperature scaling for novel classes based on
semantic distances between class embeddings. However, this method cannot constrain how prompt
tuning alters the original embedding space, allowing problematic transformations like embedding
collapse or clustering that introduce spurious semantic relationships. Consequently, the model makes
overconfident predictions for novel inputs that fall near distorted decision boundaries. Similarly,
(Murugesan et al., 2024) attempt to normalize output logits to match zero-shot CLIP’s distribution
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Figure 1: Expected Calibration Error (ECE) on 11 datasets with CoOp (Zhou et al., 2022b) shown as radar
plots. Left: Base classes—our method (red) consistently yields lower ECE than competing approaches, with
notable gains on DTD, EuroSat, and Food. Right: Novel classes—our method reduces miscalibration relative
to vanilla CoOp (yellow) and outperforms DAC (Wang et al., 2024a) and ZS-Norm (Murugesan et al., 2024),
especially on Aircraft and Cars. The uniformly smaller footprint of our curve indicates superior calibration,
supporting the effectiveness of the proposed dual-regularization approach in addressing both underconfidence on
base classes and overconfidence on novel classes.

characteristics. While this approach adjusts the global statistical properties of model outputs, it often
fails to preserve the inter-class relationships in the embedding space. This limitation prevents the
method from effectively addressing both underconfidence on base classes and overconfidence on
novel classes simultaneously. We address the dual calibration problem in prompt-tuned CLIP with a
training-time regularization framework that preserves pretrained semantics while stabilizing predictive
margins. Our approach has two complementary components that jointly target underconfidence on
base classes and overconfidence on novel classes. Specifically, our contributions are:

* We propose a mean-variance margin regularization that shapes logit distributions by
encouraging sufficiently large margins between correct and incorrect predictions while
constraining margin variability to prevent spurious confidence spikes.

* We introduce a text moment-matching loss that preserves the geometric structure of CLIP’s
pretrained embedding space by aligning the statistical moments of tuned and frozen text
embeddings. This preserves critical semantic relationships without restricting task-specific
adaptations.

* We evaluate our approach across 11 diverse datasets and 7 prompt-tuning frameworks,
demonstrating consistent improvements in calibration without compromising accuracy,
outperforming post-hoc and training-time baselines (see Figure 1).

Importantly, our method is agnostic to the underlying prompt tuning technique, does not require addi-
tional inference time computation and functions as a plug-and-play module for existing frameworks.

2 RELATED WORK

Prompt Tuning for Vision-Language Models. Prompt tuning adapts VLMs like CLIP by learning
a small set of text tokens while freezing the image/text encoders, enabling parameter-efficient
specialization with minimal supervision. Early work explored static prompts shared across all
inputs (Zhou et al., 2022d), while subsequent extensions proposed instance-conditioned prompts
that adapt dynamically to each image (Zhou et al., 2022¢c). Further advances have incorporated
multi-modal prompt learning (Khattak et al., 2023a) and visual context modulation. These methods
are typically trained with few-shot supervision on a set of base classes and evaluated for zero-shot
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generalization on novel classes, aiming to improve open-vocabulary recognition without fine-tuning
the backbone. However, these existing methods have been focusing on improving classification
accuracy, with little attention paid to the calibration of predicted probabilities.

Calibration of Deep Neural Networks. Traditional post-hoc calibration methods, such as Tempera-
ture Scaling (Guo et al., 2017), calibrate confidence scores by applying a scalar temperature to the
model’s logits, typically learned on a held-out validation set. While effective under in-distribution
settings, these methods assume access to labeled data from the target domain and often fail to gen-
eralize to out-of-distribution scenarios, where such supervision is unavailable (Niculescu-Mizil &
Caruana, 2005; Wang et al., 2024b). On the other hand, train-time calibration approaches integrate
auxiliary loss terms during model training that penalize miscalibrated predictions (Kumar et al.,
2018; Ovadia et al., 2019), yielding models with more reliable uncertainty estimates. However, these
methods typically require fully labeled datasets and involve fine-tuning the entire model, rendering
them unsuitable for settings like prompt tuning, which operate in a few-shot regime and update only a
small number of parameters.

Calibrating Prompt Tuning. Recent work has begun to address calibration in prompt-tuned VLMs.
DAC (Wang et al., 2024b) applies post-hoc temperature scaling based on semantic distances between
class embeddings but often degrade the sharp decision boundaries of their pretrained counterparts.
Concurrently, (Murugesan et al., 2024) tackled calibration within the prompt tuning framework
by identifying expanded logit distributions as a key issue and introducing zero-shot normalization
and sample-adaptive logit scaling to restore alignment with zero-shot CLIP. Methods aiming to
improve calibration for test-time prompt tuning (Yoon et al., 2024; Sharifdeen et al., 2025) have
aimed to enhance the dispersion of text features, but require additional computation inference.
These efforts reveal key insights: preserving CLIP’s embedding geometry is essential for novel
class calibration, sufficient class separation helps prevent overconfidence, and post-hoc corrections
cannot fully restore pretrained calibration properties. Our method unifies these insights by directly
constraining embedding transformations during training while simultaneously handling the distinct
miscalibration patterns of base and novel classes, without compromising semantic relationships.

3 METHOD

3.1 PRELIMINARIES

Zero-Shot Inference for CLIP. CLIP enables zero-shot classification by learning a joint embedding
space for images and natural language descriptions through large-scale contrastive pretraining. The
model comprises an image encoder Eing : Z — R? and a text encoder Ey, : 7 — R%, where Z and
T denote the image and text spaces, respectively. During inference, given an input image I € Z,
the image encoder produces a feature embedding v = Ejy,(I). To perform classification, CLIP
compares this visual embedding against textual representations of candidate class labels. Specifically,
each class y; € {y1,...,yx} is converted into text prompts using a fixed prompt template (e.g.,
t(y;) = "A photo of a {class}"),andencoded by the text encoder as u; = E(t(y;)). The
similarity between image and text embeddings is computed by cosine similarity as s; = cos(v, u;),
and the predicted class probabilities are obtained using a temperature-scaled softmax: P(y; | I) =

exp(7s;)/ Z]K:1 exp(7s;), where 7 is softmax temperature parameter. The predicted label § and its
associated confidence p are given by § = argmax; P(y; | I) and p = max; P(y; | I), respectively.

Prompt Learning for CLIP. While zero-shot classification with handcrafted templates is effective,
it may not provide optimal task-specific context. Prompt learning addresses this by optimizing
the prompt tokens directly for downstream performance. Instead of using fixed text templates, a
set of learnable tokens 7 = {p1,...,par} is introduced as a prefix to the class name in each
prompt. For any class y € ), the composed prompt is defined as t(y) = [p1,...,Pwm, €], where
e, is a static embedding of the class name. The text encoder maps this into a class representation
¢y = Ew(t(y)). Given an image x, the logit for class y is computed as s, = 7 - cos(Eimg (%), ¢y),
and class probabilities are obtained via softmax as in the zero-shot case. The prompt tokens T
are optimized using a small labeled training set D = {(x;,v;)}},, typically by minimizing the
cross-entropy loss over predicted class probabilities. We denote the set of classes seen during prompt
tuning as Yyase C V, and the remaining classes encountered at test time as Vyovel = IV \ Voase-
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Figure 2: Dual miscalibration in prompt-tuned CLIP. Left (fop row): Base classes are underconfident
(accuracy exceeds confidence) that improves with our regularization terms. Left (bottom row): Novel classes
exhibit overconfidence (confidence exceeds accuracy) that our method effectively mitigates. (Right) Inter-class
margin variability vs. ECE shows a negative correlation for base classes and a positive correlation for novel
classes, indicating that prompt tuning tightens margins on base classes and inflates them on novel classes,
degrading reliability. These trends motivate our margin-stabilizing and moment-preserving regularizers.

3.2 PROPOSED METHOD

Our goal is to improve the reliability of prompt-tuned CLIP by ensuring well-calibrated confidence
estimates across both base and novel classes. This dual calibration challenge arises because prompt
tuning introduces asymmetric boundary distortions: reduced logit margins for base classes (causing
underconfidence) and inflated margins for novel classes (causing overconfidence). Unlike existing
methods (Murugesan et al., 2024; Wang et al., 2024b) that address either base class underconfidence or
novel class overconfidence in isolation, our approach simultaneously tackles both through: (1) margin-
based regularization that encourages more discriminative decision boundaries, and (2) moment-
matching loss that preserves CLIP’s well-calibrated embedding structure. Next, we first analyze
miscalibration in prompt-tuned CLIP and then present a training-time solution based on margin
regularization and moment matching.

Dual Miscalibration in Fine-tuned CLIP. To investigate calibration issues in prompt-tuned CLIP,
we systematically analyzed calibration behavior across diverse prompt configurations and datasets.
Figure 2 demonstrates that dual calibration problem through reliability diagrams and margin analysis.
For base classes, reliability diagrams show underconfidence: predicted probabilities trail behind
actual accuracy, reflecting reduced margins between the top-1 and runner-up classes. Larger margins
correspond to lower calibration error, confirming the link between boundary tightness and under-
confidence. For novel classes, the opposite pattern emerges: predictions are overconfident, with
inflated margins driving calibration error upward. The scatter plots in Figure 2 (right) quantify these
complementary trends, revealing a negative correlation between margin variability and calibration
error for base classes, and a positive correlation for novel classes.

These findings indicate that prompt tuning disrupts the naturally well-calibrated decision boundaries
of zero-shot CLIP. An ideal calibrated open-vocabulary model should maintain class-appropriate
confidence margins across both base and novel categories while preserving the semantic geometry of
the pretrained text embedding space. This motivates our framework that explicitly stabilizes decision
margins and preserves pretrained semantics.

3.2.1 MEAN-VARIANCE MARGIN REGULARIZATION

To address the dual miscalibration in prompt-tuned CLIP, we introduce a mean-variance margin
regularization that shapes logit distributions during training. Our mean-variance loss maintains suffi-
ciently large margins between correct and incorrect predictions to prevent base class underconfidence
while enforcing margin consistency across samples to avoid novel class overconfidence. Formally,

for a batch of samples {(x;,v;)}Z ,, let z; denote the predicted logits for sample i. We define the
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Figure 3: Errors by confidence on novel classes. Higher error mass in high-confidence bins indicates
overconfidence. Both Cross-Entropy and Cross-Entropy + Margin place more misclassified samples in
high-confidence regions, whereas adding Text Moment-Matching to the Margin term shifts errors away from
these bins, reducing overconfidence.

per-sample logit margin as the difference between the ground-truth class logit and the highest logit
among incorrect classes as m; = 2; ,, — MaX;-,, % j. The mean-variance margin regularization
loss is then defined as:

B
1
LMargin = E Zmz + B . Var(ml, Ce 7mB),

=1

where «, 5 > 0 are hyperparameters that control the trade-off between maximizing the average
margin and minimizing its variance across the batch.

The dual design creates complementary objectives that act synergistically: the mean term (weighted
by «) promotes sufficient separation for confident base class predictions, while the variance term
(weighted by ) prevents margin inconsistency that creates overconfident novel class predictions.
Without variance regularization, models may develop erratic decision boundaries with spurious
confidence spikes on novel classes. Without mean regularization, uniformly small margins cause
systematic underconfidence on base classes, as shown in Figure 5. Unlike prior margin-based
approaches such as MBLS (Liu et al., 2023a) that impose hard per-sample constraints, our batch-level
statistical approach avoids over-regularization while maintaining adaptability across diverse class
distributions, yielding more reliable confidence estimates in open-vocabulary settings.

3.2.2 TEXT MOMENT-MATCHING LOSS

While the margin regularizer shapes confidence near decision boundaries, it operates on logits and
does not directly constrain the geometry of the text embedding space. Empirically (Figure. 2),
using the margin term alone can increase ECE on novel classes: when the top-1 prediction is
incorrect, maximizing the margin widens the gap to the runner-up for the wrong class, amplifying
overconfidence. To maintain calibrated generalization on novel classes, we therefore propose to
preserve the global semantic relationships between class text embeddings. To this end, we introduce
a text moment-matching objective that aligns the statistical properties of the prompt-tuned text
embeddings with those of frozen CLIP. Let {¢, },cp denote the prompt-tuned text embeddings for
a batch of classes B C Vpase, and {cg}ye B the corresponding frozen (zero-shot) embeddings. We
match both the first- and second-order moments of these sets:

1 - 1 0
¢ = Ta1 5 O = 757 3 1
he = g7 2 e = ] 2 M
1 - - 1
Yo = 15 D @y — pa) @y —pe) T e = 1] D (€)= peo)(e) —peo) @)
yeB yeB

The moment-matching loss constrains both distributional center and spread:

£1110m = HN’C - /’LCO||§ + ||E€ - Zc0 H%
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Minimizing £om preserves the semantic center and dispersion of the frozen CLIP space, which
supports generalization and curbs high-confidence errors introduced by prompt-induced drift. Unlike
direct ¢; /¢5 alignment, which forces rigid instance-level correspondence and can hinder adaptation,
moment matching constrains only global distributional statistics, keeping local task-specific prompt
adjustments expressive.

Complementarity with the margin loss. The margin regularizer (logit space) increases inter-class
separation but, when the top-1 class is incorrect, can enlarge the wrong gap and worsen novel-class
overconfidence. Moment loss (embedding space) counterbalances this by preserving CLIP’s semantic
geometry, maintaining relative class structure and angular spread, thus curbing such failure modes.
Together, the two terms act synergistically: the margin term enforces discriminability; the moment
term stabilizes geometry, yielding calibrated decision boundaries for both base and novel classes
without sacrificing downstream performance (see Figure 3).

Finally, we combine the two regularizers with cross-entropy to form the full objective:
»Ctotal = CCE + )\Margin EMa.rgin + )\mom ﬁmoma (3)

where AMargin; Amom = 0 controls the strength of each term. This joint optimization addresses both
aspects of the dual calibration problem: reducing underconfidence in base classes and overconfidence
in novel classes while preserving task-specific adaptation. The terms are complementary: the
margin loss enforces discriminability and the moment loss preserves semantic geometry, allowing
prompt-tuned models to inherit the well-calibrated behavior of zero-shot CLIP.

4 EXPERIMENTS

We follow the standard few-shot protocol (Zhou et al., 2022b), each dataset is split into disjoint base
and novel classes. Prompt tuning is performed only on base classes using a limited number of labeled
samples per class. The calibration performance is reported for both base and novel classes.

Datasets. We evaluate on 11 datasets spanning coarse-grained, fine-grained, and domain-specific
tasks. Object classification is assessed on ImageNet (Deng et al., 2009) and Caltech101 (Fei-
Fei et al., 2004). Fine-grained recognition tasks include DTD (Cimpoi et al., 2014) (textures),
Flowers (FLW) (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), SUN397 (Xiao
et al., 2016), and UCF101 (Soomro et al., 2012). Domain-specific benchmarks comprise Stanford
Cars (Krause et al., 2013), FGVC-Aircraft (Maji et al., 2013), Oxford Pets (Parkhi et al., 2012),
and EuroSAT (Helber et al., 2019). We also provide results on out-of-distribution datasets for the
ImageNet-A (Hendrycks et al., 2021b), ImageNet-V2 (Shankar et al., 2020), ImageNet-R (Hendrycks
etal., 2021a), and ImageNet-S (Wang et al., 2019) datasets in the suppl. material.

Baseline Methods. We benchmark our approach against a diverse and comprehensive set of prompt-
tuning and calibration techniques. Classical baselines include MBLS (Liu et al., 20232a) and Tem-
perature Scaling (Guo et al., 2017). We also compare with recent methods such as DAC (Wang
et al., 2024a), a post-hoc approach for adapting CLIP to novel classes, and a training-time regu-
larization method introduced by (Murugesan et al., 2024). For prompt tuning, we evaluate three
representative approaches in the main paper: CoOp (Zhou et al., 2022b), KgCoOp (Yao et al., 2023a),
and MaPLe (Khattak et al., 2023b). Results for additional methods including CoCoOp (Zhou et al.,
2022a), ProDA (Yao et al., 2023b), ProGrad (Zhu et al., 2023), and PromptSRC (Khattak et al.,
2023c) are provided in the supp. material.

Evaluation Metrics and Implementation details. We evaluate classification performance using
top-1 accuracy (ACC). To measure model calibration, we report the Expected Calibration Error
(ECE), a widely used metric. We also report results with Adaptive Calibration Error (Nixon et al.,
2019) (ACE) and Maximum Calibration Error (Naeini et al., 2015) (MCE) in the supp. material. For
all experiments, we use CLIP (ViT-B/16) (Radford et al., 2021) as the pre-trained vision-language
model. Prompt-tuning is conducted in a few-shot setting with 16 samples per class, using a learning
rate of 0.005 and a batch size of 8. For each baseline method, we adopt its official implementation.
All experiments are performed on an NVIDIA RTX A6000 GPU with 48GB memory. We provide
detailed hyperparameters in the supp. material.

Calibration on Base Classes. Table 1 reports the results on 11 fine-grained classification datasets
using three prompt-tuning methods. Our approach consistently maintains or slightly improves the
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Table 1: Accuracy and calibration performance on base classes across 11 fine-grained classification
benchmarks. Top-1 accuracy (Acc) and Expected Calibration Error (ECE) for multiple prompt-tuning strategies
and diverse calibration baselines. Higher Acc. indicates better classification performance, while lower ECE
reflects better calibration.

3 g ] 2 B 2 5 Z a g 5 g
Method 4 5 2 3 E g z 2 E 3 S z
Acc. || 72.40 97.20 91.30 63.60 71.80 90.10 27.70 69.40 53.00 57.00 71.00 69.50
Zero Shot 1

51 649 225 374 311 1.57 3.03 159 453 835 324 358
CoOp (Zhou et al., 2022b)

Acc. || 75.60 97.98 94.77 76.22 90.00 90.20 35.23 81.14 76.27 90.24 83.32 81.00

ECE| 1.65 066 1.00 373 493 3.66 2570 811 1217 175 644 6.35

Acc. || 75.12 97.89 91.11 76.21 89.34 89.78 34.32 81.32 76.34 90.12 82.78 80.39

ECE| 298 9.6 7.70 1220 5.69 1234 1048 1680 425 8.02 939 9.04

CoOp (Zhou et al., 2022b)

MBLS (Liu et al., 2023a)

Temp. Scal. (Guo et al., 2017)

Acc. [ 75.60 98.19 94.15 78.65 97.72 90.10 42.00 81.32 80.67 90.70 84.56 83.06
ECE || 1.50 120 254 6.63 460 0.50 343 201 3.86 476 157 296

7778 95.76 89.52° 39.74 81.37 81.02 90.45 84.01 82.54
11.30 11.29 3.14 13.05 4.22 49.53 37.04 347 1348
76.44 97.72 95.11 77.05 9630 87.92 38.07 81.04 77.32 47.09 80.47 77.68
10.01 938 598 859 459 21.84 2047 742 9.27
Acc. || 76.53 98.06 94.95 77.32 97.21 90.38 38.62 81.68 80.44 88.56 84.68 82.58
ECE || 247 101 194 7.10 480 030 496 122 242 490 111 293
MaPLe (Khattak et al., 2023b)
7671 97.97 9553 72.93 96.00 90.80 36.33 80.55 79.63 91.13 83.20 82.4I
227 154 268 725 428 078 3.86 127 4.18 342 268 3.19
75.59 98.23 9523 72.77 9593 90.80 36.20 80.73 80.03 90.93 84.13 82.50
29.06 5.03 6.64 19.06 12.74 6.55 5.60 11.01 479 373 846 8.36

76.66 97.97 94.93 7270 95.93 90.63 36.37 80.73 78.60 93.60 84.00 82.55
237 126 228 496 344 071 304 284 598 131 3.07 289

76.63 97.57 95770 73.07 95.63 90.57 36.00 80.97 80.43 91.30 83.87 82.51
1.64 2330 591 866 1149 1.13 787 233 7.02 1938 386 9.10
76.72°98.07 95.30 7243 9577 90.73 34.33 80.93 64.60 36.77 83.03 7520
387 541 637 1353 1267 3.87 842 7.28 1997 1343 850 9.95
76.72°°97.97 9493 72.80 96.20 90.43 36.80 81.10 80.73 92.00 84.50 82.75
239 1.19 154 792 345 065 450 155 356 133 212 278

KGCoOp (Yao et al., 2023a)

75775 9770 94.68 72770 95.16 90.57 36.77 80.59 79.40 86.14 83.51 8I1.18
252 292 327 10.16 12.12 1.68 327 492 839 1190 503 6.02
76.23°97.81 95.00 7534 96.24 90.49 38.28 80.86 79.94 87.96 83.45 81.96
6.19 430 526 1343 1248 4.08 8.01 8.16 9.03 1197 586 8.07

75777 97.66 94.67 70.08 94.65 90.50 35.81 80.51 78.74 86.44 83.32 80.74
647 416 513 1170 1535 3.64 741 850 11.12 1579 739 8.79

71.65 95.22 90.52 36.03
214 188 296 810 1121 1.12 481 412 7.01 12.64 4.14 547

classification accuracy while significantly reducing the calibration error. When applied to MaPLe, it
improves the average accuracy from 82.41% to 82.75% and reduces ECE from 3.19% to 2.78%. For
CoOp, we observe a larger drop in ECE from 6. 35% to 2. 93%, surpassing both post hoc techniques
like temperature scaling (2.96%) and prior regularization methods. Gains are especially pronounced
on highly miscalibrated datasets; for example, CoOp on Aircraft shows a reduction from 25.70% to
4.96% in ECE. These improvements demonstrate that preserving margin distributions and embedding
geometry effectively mitigates underconfidence in base-class predictions.

Calibration on Novel Classes. Table 2 reports accuracy and ECE on novel classes under the open-
vocabulary setting. While prompt-tuned models such as CoOp and MaPLe offer improved accuracy
over zero-shot CLIP, they often exhibit severe overconfidence (e.g., CoOp ECE = 12.45, MaPLe
ECE = 5.76). Post-hoc methods like Temperature Scaling and DAC yield marginal improvements but
struggle to correct the underlying semantic drift. Our method consistently reduces calibration error
while preserving or improving accuracy. For example, with MaPLe, our method reduces average
ECE from 5.76 to 4.23 while maintaining comparable accuracy (75.14%). Notably, our method
consistently outperforms recent post-hoc techniques like DAC and avoids the accuracy-calibration
tradeoffs seen with methods like ZS-Norm. These results confirm that our approach effectively
mitigates overconfidence on novel classes while preserving generalization capabilities.
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Table 2: Accuracy and calibration performance on novel classes across 11 fine-grained classification
benchmarks. We report top-1 accuracy (Acc) and Expected Calibration Error (ECE) for multiple prompt-tuning
strategies and diverse calibration baselines.

3 = 2 4 E B = & B g B ¥
Method z 5§ & & g £ < 2 & & 85 =

Acc. || 72.40 94.10 97.10 75.00 77.50 91.10 35.90 75.50 60.60 63.80 78.60 74.30

ECE || 2.09 155 342 331 491 1.83 655 348 6.86 9.12 552 443

CoOp (Zhou et al., 2022b)

Acc. || 59.07 94.18 9649 6529 69.90 90.57 24.79 70.77 52.98 64.68 62.83 68.32

ECE || 10.69 2.16 1.67 11.73 12.13 3.03 30.44 13.70 20.82 11.88 18.74 12.45

59.1195.1 9623 65.28 69.89 90.23 24.80 70.12 53.12 64.65 62.97 6831
97 189 138 102 97 89 121 1321 9.66

66.70 65.86 96.60 27.37 70.67 48.19 54.70 57.51 66.92
501 8.06 1.06 1880 693 20.21 15.13 14.55 945

Zero Shot

CoOp (Zhou et al., 2022b)

66.62 67.21 8891 2576 70.51 44.08 50.42 62.52 66.32
287 441 332 10.18 247 2180 1593 428 7.14
66.71 92.87 96.14 68.11 68.65 7834 29.29 71.65 40.78 41.44 67.53 65.59
273 493 470 781 279 420 13.11 4.66 520
Acc. ][ 67.03 93.56 97.36 69.49 71.63 90.84 30.83 70.03 48.07 56.70 66.49 69.28
ECE || 2.02 221 3.03 210 351 0.87 10.64 308 931 11.15 475 4.79
MaPLe (Khattak et al., 2023b)

Acc. || 70.50 95.10 97.85 73.57 72.80 92.10 34.53 78.20 58.47 7590 77.85 75.17
263 3.09 11.67 1.19 11.24 221 12.16 11.68 398 576
96.97 71.93 68.93 91.40 33.77 78.10 54.70 7597 7823 73.88
741 1141 484 706 6.06 1041 1031 11.25 6.63 9.30
7046 94.83 97.30 7347 72.77 91.77 34.07 78.13 57.97 7377 7533 7453
213 4.08 1276 0.72 19.11 5.09 1647 805 7.13 728

97.23 7330 70.03 91.83 34.07 7847 60.70 68.13 77.80 73.86
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171 421 305 512 299 812 413 587 656 393 475
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Ours ECE| 1.84 122 350 360 478 161 7.67 191 337 415 301 333
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Ablation Study on Loss Components. Table 3 presents an ablation study analyzing the contribution
of each component of our approach on novel class calibration with the MaPLe backbone. All
variants build on a cross-entropy baseline, where fine-tuning with only CE yields 5.76% ECE.
Adding margin regularization (Lyargin) reduces ECE to 5.09% while maintaining accuracy at 75.74%.
When combining margin regularization with direct ¢; alignment (£,), we observe improvements
on some datasets but slightly lower overall accuracy (74.65%). Our full method, combining margin
regularization with moment matching (Lom), achieves the best calibration (4.48% ECE) while
preserving clean accuracy (75.63%). This demonstrates that moment matching provides superior
regularization compared to direct embedding alignment, effectively preserving the global structure of
CLIP’s embedding space while allowing task-specific adaptations.
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Figure 4: Performance analyses on different numbers of shots and hard prompt styles
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Figure 5: Margin based Label Smoothing(MBLS) vs Mean-Variance Margin(Margin) Regularization. As
shown in the base class reliability diagram (Observation 1), MBLS with Cross-Entropy (CE) shows underconfi-
dence, while adding a Margin term alleviates this. For Observations 3 and 4, we train CE, CE + MBLS, and CE
+ Margin with MaPLe, compute the top-1 margin m = z, — max;-, z;, and plot the Empirical Cumulative
Distribution Function (ECDF). The ECDF shows Margin yields fewer low-margin samples(Underconfident
samples), MBLS trims large but leaves small ones, and CE lies in between. Box plots confirm this: Margin has
the highest median (~ 5) with a right-shifted IQR, MBLS caps extremes with a tight IQR, while CE retains a
broad spread.

Calibration Across Varying Shots: Figure 4a shows classification and calibration metrics under
different shot counts (4, 8, 16, 32) for both base and novel classes. Our method maintains low ECE
across different prompt tuning settings, demonstrating robust calibration even in extreme few-shot
scenarios

Robustness to Prompt Initialization: Figure 4b evaluates the robustness of our method to dif-
ferent prompt initialization strategies, averaged over 10 datasets, comparing in between vanilla
Maple Khattak et al. (2023b) and Maple+Ours. Maple+Ours demonstrates consistent performance
across different initialization choices (see suppl.) for both base and novel classes. This robustness
across initialization schemes suggests that our regularization framework addresses the fundamental
geometric factors underlying miscalibration rather than optimizing for specific conditions.

Margin vs MBLS: Compared to MBLS, Margin regularization reduces underconfidence by lifting
low-margin samples (Figure 5, Observations 1-3), whereas MBLS primarily caps extreme margins.

5 CONCLUSION

We proposed a method to calibrate prompt-tuned VLMs by addressing a key challenge: preserving
predictive reliability without distorting CLIP’s semantic structure. Our approach introduces two
complementary regularizers, a mean-variance logit margin loss and a moment-matching constraint
on text embeddings, to jointly enforce geometric fidelity and calibration. Our framework requires
no architectural changes and integrates seamlessly with existing prompt tuning setups, making it
broadly applicable across domains. Evaluated on 11 datasets and multiple prompt-tuning strategies,
our method consistently improves calibration, particularly on novel classes, without compromising
classification accuracy. By decoupling predictive uncertainty from semantic drift, it enables more
trustworthy and robust deployment of VLMs in real-world, open-vocabulary scenarios. We hope this
work encourages further research into calibration-aware adaptations of foundation models.
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A APPENDIX

In the Appendix material, we provide the following:

¢ Calibration analysis for base and novel classes across prompt learning methods
(Sec. A.1)

¢ Robustness evaluation under natural distribution shifts (Sec. A.2)

¢ Additional results for ACE and MCE performance metrics (Sec. A.3)
¢ Hyperparameters details (Sec. A.4)

* Prompt templates and variations (Sec. A.5)

* Variance analysis (Sec. A.6)

¢ Results on Different Backbones(Sec. A.7)

* Decision Boundary Visualization(Sec. A.8)

¢ Reproducibulity statement(Sec. A.9)

* The Use of Large Language Models (LLMs)(Sec. A.10)

¢ Limitations(Sec. A.11)

A.1 CALIBRATION ANALYSIS FOR BASE AND NOVEL CLASSES ACROSS PROMPT LEARNING
METHODS

In the main paper, we provide the calibration results for three representative prompt learning methods:
CoOp Zhou et al. (2022b), KgCoOp Yao et al. (2023a), and MaPLe Khattak et al. (2023b). Here we
provide the results for additional prompt learning methods including CoCoOp Zhou et al. (2022a),
ProDA Yao et al. (2023b), ProGrad Zhu et al. (2023), and PromptSRC Khattak et al. (2023c) for both
base and novel classes to demonstrate the broader applicability and effectiveness of our calibration
approach.

Calibration Performance on Base Classes. Table 4 presents the accuracy and calibration perfor-
mance on base classes across 10 fine-grained classification benchmarks. The results consistently
demonstrate that our calibration approach achieves superior calibration performance (lower ECE)
while maintaining competitive accuracy across all evaluated prompt learning methods. Notably, our
method shows the most significant improvements with PromptSRC Khattak et al. (2023c), reducing
the average ECE from 4.26 to 3.04 without compromising clean accuracy. The consistent improve-
ments across diverse prompt learning architectures validate the generalizability of our approach.

Calibration Performance on Novel Classess. We further evaluate the calibration performance
on novel classes to assess the generalization capability of our approach when dealing with unseen
categories during training. Table 5 presents the accuracy and calibration performance on novel classes
across the same 10 benchmarks. Our method demonstrates consistent calibration improvements
across all prompt learning methods when evaluated on novel classes. The results show that our
approach effectively generalizes to unseen categories, with particularly notable improvements in
ECE reduction. For instance, with ProDA Yao et al. (2023b), our method reduces the average
ECE from 9.03 to 3.42 while maintaining comparable clean accuracy (70.22 vs 71.38). Similarly,
with CoCoOp Zhou et al. (2022a), we achieve an ECE reduction from 5.55 to 3.86. These results
highlight the robustness of our calibration approach in handling the challenging scenario of novel
class prediction, where models are more prone to overconfidence due to limited training exposure.

A.2 RESULTS ON NATURAL DISTRIBUTION SHIFTS

Here, we provide results on out-of-distribution datasets for the ImageNet-A Hendrycks et al. (2021b),
ImageNet-V2 Shankar et al. (2020), ImageNet-R Hendrycks et al. (202 1a), and ImageNet-S Wang et al.
(2019) datasets demonstrating the robustness of our calibration approach under natural distribution
shifts.

Base Classes. Table 6 presents the accuracy and calibration performance on base classes across
these 4 natural distribution shift datasets. Our method consistently outperforms baseline calibration
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Table 4: Accuracy and calibration performance on base classes across 10 fine-grained classification
benchmarks. We report top-1 accuracy (Acc) and Expected Calibration Error (ECE) for multiple prompt-tuning
strategies and diverse calibration baselines. Higher Acc. indicates better classification performance, while lower
ECE reflects better calibration.

Method = £ & & % =5 & &2 £ & ¥
S & S = 2 < * a D =) <
Acc. || 97.20 91.30 63.60 71.80 90.10 27.70 69.40 53.00 57.00 71.00 69.50
Zero Shot

ECE| 649 225 374 311 157 3.03 159 453 835 324 358
CoCoOpZhou et al. (2022a)
Acc. || 97.77 95.02 70.72 94.62 90.43 3533 79.19 75.54 85.40 81.71 80.57

CoCoOp Zhou et al. (2022a)

ZS-Norm Murugesan et al. (2024)

113 231 701 798 049 581 263 370 647 323 408
ProDA Yao et al. (2023b)
97.61 9475 69.76 89.96 8933 33.01 76.17 7002 81.83 79.99 784

97.20 9431 69.50 87.88 90.02 32.99 7696 7291 82.70 80.63 78.51

175 229 691 821 1.18 338 1.18 227 537 250 3.50
ProGrad Zhu et al. (2023)

97.72 94.67 69.29 81.26 90.33 31.35 76.88 67.13 79.27 78.20 76.61

318 346 701 690 136 306 3.10 641 1120 3.12 488
PromptSRC Khattak et al. (2023¢)
98.08 9536 78.15 97.95 90.60 40.74 82.63 8341 93.17 87.00 84.72

98.30 95.57 79.11 98.39 90.67 42.50 82.77 83.83 95.05 86.87 85.31
1.03 089 896 097 09 6.04 134 459 433 139 3.04

approaches across all datasets. Notably, our approach achieves superior calibration with an average
ECE of 2.82 compared to the vanilla MaPLe baseline (3.19), ZS-Norm (5.41), and Penalty (5.76). The
improvements are particularly pronounced on challenging datasets like ImageNet-A and ImageNet-
R, where our method reduces ECE from 2.52 to 2.21 and from 3.14 to 2.05, respectively, while
maintaining competitive accuracy.

Novel Classes. Table 7 shows the corresponding results on novel classes under distribution shift. The
consistent performance across both base and novel classes demonstrates the generalization capability
of our calibration approach. Our method achieves an average ECE of 2.75 on novel classes, signifi-
cantly outperforming ZS-Norm (5.31) and Penalty (5.64) baselines. The robustness across different
types of distribution shifts, including adversarial examples (ImageNet-A), renditions (ImageNet-R),
and sketch-like images (ImageNet-S), validates that our approach addresses fundamental calibration
issues rather than dataset-specific artifacts.

These results are particularly important for real-world deployment scenarios where models encounter
data that differs from the training distribution. The consistent calibration improvements across diverse
distribution shifts demonstrate that our method provides reliable confidence estimates even under
challenging out-of-distribution conditions.
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Table 5: Accuracy and calibration performance on novel classes across 10 fine-grained classification
benchmarks. We report top-1 accuracy (Acc) and Expected Calibration Error (ECE) for multiple prompt-tuning
strategies and diverse calibration baselines. Higher Acc. indicates better classification performance, while lower
ECE reflects better calibration.

Method = £ & & % = & 8 &£ & @
S & S ) 2 < * a i =) <
Acc. || 94.10 97.10 75.00 77.50 91.10 3590 75.50 60.60 63.80 78.60 74.30
Zero Shot

ECE| 1.60 342 331 491 183 655 348 686 9.12 552 443
CoCoOpZhou et al. (2022a)

Acc. || 94.51 97.69 7326 7227 91.02 33.47 7654 57.65 63.14 74.89 73.44
ECE || 1.84 264 1.88 9.17 1.64 1093 221 11.26 9.06 490 5.5

CoCoOp Zhou et al. (2022a)

9429 95.62 75.07 70.52 91.46 33.59 76.85 56.76 54.50 74.08 72.27
222 511 569 580 422 530 393 11.13 1144 3.66 5.85

9443 9745 7471 7191 91.62 3397 7641 56.40 61.67 76.40 73.50
1.51 258 322 636 096 885 087 477 668 276 3.86
ProDA Yao et al. (2023b)
93.99 9690 73.16 72.51 90.64 31.35 65.02 53.99 51.86 72.76 70.22
322 196 3.18 851 0.84 1503 14.08 1690 21.85 4.74 9.03

93.92 97.20 73.39 73.57 90.70 32.45 67.73 50.48 60.05 72.49 71.20
1.53 6.4 376 436 347 782 251 496 1447 3.86 529

93.56 97.56 73.81 72774 91.14 30.57 66.18 53.82 58.58 75.79 71.38

148 325 277 512 101 678 190 4.60 491 235 342
ProGrad Zhu et al. (2023)

9476 97.32 74.85 7529 91.06 3443 7542 5644 6198 78.74 74.03

1.67 352 268 746 176 921 205 448 883 3.57 452

94.87 96.98 75.81 74.54 91.05 34.55 75.03 53.74 66.97 76.80 74.03
1.90 554 507 480 308 531 308 496 1486 5.05 537

9429 97.48 75.09 74.66 91.21 32.87 74.81 55.60 67.91 78.53 74.25
1.03 326 198 514 147 934 232 330 6.06 3.06 3.70
PromptSRC Khattak et al. (2023c¢)

9421 9731 75.58 77.28 91.51 29.73 78.79 61.03 74.72 77.86 75.80

A.3 ADDITIONAL RESULTS: ACE AND MCE PERFORMANCE METRICS

In the main paper, we evaluate classification performance using top-1 accuracy and model calibration
using Expected Calibration Error (ECE). Here we provide comprehensive results for additional
calibration metrics including Adaptive Calibration Error (ACE) Nixon et al. (2019) and Maximum
Calibration Error (MCE) Naeini et al. (2015) to further validate the effectiveness of our approach.

Table 8 presents the MCE and ACE results on base classes across 10 fine-grained classification
benchmarks. Our method demonstrates consistent improvements across both metrics for all evaluated
prompt learning methods. For CoOp, our approach reduces the average MCE from 2.40 to 0.90 and
ACE from 6.72 to 2.78, representing substantial calibration improvements. Similarly, with KGCoOp,
we achieve reductions in MCE from 1.62 to 1.39 and ACE from 6.19 to 5.85. These results are
particularly noteworthy as MCE captures the worst-case calibration error, indicating that our method
not only improves average calibration but also reduces extreme miscalibration cases.
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Table 6: Accuracy and calibration performance on base classes across 4 natural distribution shift datasets.
We report top-1 accuracy (Acc) and Expected Calibration Error (ECE) for MaPLe Khattak et al. (2023b). Higher
Acc. indicates better classification performance, while lower ECE reflects better calibration.

Method

INet-A
INet-R
Avg

INet-S

INet-V2

MaPLe Khattak et al. (2023b)
MaPLe Khattak et al. (2023b)  2CC. [ 67.35 53.35 68.31 8522 68.56

Table 7: Accuracy and calibration performance on novel classes across 4 natural distribution shift
datasets. We report top-1 accuracy (Acc) and Expected Calibration Error (ECE) for MaPLe Khattak et al.
(2023b). Acc. indicates better classification performance, while lower ECE reflects better calibration.

Method

INet-V2
INet-S
INet-A
INet-R

Avg

MaPLe Khattak et al. (2023b)
MaPLe Khattak et al. (2023b) Acc.167.36 5336 68.31 8522 68.56

Table 9 shows the results on novel classes. The improvements are consistent with the base class
results, demonstrating the generalization capability of our calibration approach. For KGCoOp on
novel classes, our method maintains similar MCE performance (1.18 vs 1.17) while slightly improving
ACE from 3.93 to 3.65. The robustness across different calibration metrics validates that our approach
addresses fundamental calibration issues rather than optimizing for specific metrics.

The consistent improvements across ECE, MCE, and ACE metrics provide strong evidence that our
calibration method effectively reduces both average and worst-case calibration errors, making it
suitable for deployment in safety-critical applications.

A.4 HYPERPARAMETERS DETAILS

For all experiments, we use CLIP (ViT-B/16) Radford et al. (2021) as the pre-trained vision-language
model. Prompt-tuning is conducted in a few-shot setting with 16 samples per class, using a learning
rate of 0.005 and a batch size of 8. For each baseline method, we adopt its official implementation
and follow the recommended hyperparameter settings from the original papers. All experiments are
performed on an NVIDIA RTX A6000 GPU with 48GB memory.

For our proposed calibration method, we use the following hyperparameters across all experiments:
AMargin = 1.0 controls the strength of the margin-based regularization, v = 0.1 balances the average
marin, S = 0.01 is the weight for the variance loss, and Ay, = 5.0 controls the local moment
matching regularization. Table10 and 11 show how we choose these values. These hyperparameters
were fixed across all datasets and prompt learning methods to ensure fair comparison. We conduct 3
random seeds for each experiment and report the average results.
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Table 8: Calibration performance on base classes across 10 fine-grained classification benchmarks. We
report Maximum Calibration Error (MCE) and Adaptive Calibration Error (ACE) for multiple prompt-tuning
strategies and diverse calibration baselines. Lower MCE and ACE reflects better calibration.

Calt
Pets
Cars
Flow
Food
Air
SUN
DTD
Euro
UCF
Avg

Method

CoOpZhou et al. (2022b)
MCE || 0.24 031 091 246 172 477 399 568 0.60 3.34 240

CoOp Zhou et al. (2022b)

MCE 033 1.01 187 1.68 0.12 121 031 056 1.67 0.22 0.90
ACE [|098 2.10 7.55 494 021 240 130 201 5.12 1.15 278
MaPLe Khattak et al. (2023b)

0.51 060 1.68 129 034 091 0.19 1.04 0.74 056 0.79

062 034 120 087 147 062 1.11 1.50 0.60 0.94 0.93

1.62 0.80 398 2.18 3.66 094 438 755 154 134 2.80
KGCoOp Yao et al. (2023a)

.14 1.17 223 275 062 1.17 097 1.61 331 125 162

A.5 PROMPT TEMPLATES AND VARIATIONS

In the main paper, Figure 4b presents our method’s robustness to different prompt initialization.
The following prompt templates were evaluated to assess initialization robustness: “a nice
image of a {}”,“an example of a {}”,%“a picture of a {}”,and “a photo
of the cool {}”. These templates represent different stylistic and semantic variations com-
monly used in prompt learning literature. This robustness is particularly valuable in practical
deployment scenarios where optimal prompt initialization may not be known in advance.

A.6  VARIANCE ANALYSIS

To assess the statistical robustness of our approach, we evaluate the variance in performance across 3
random seeds for both accuracy and calibration metrics. Table 12 presents the variance results across
9 novel classes of fine-grained classification benchmarks for CoCoOp and KGCoOp methods. Our
approach demonstrates superior stability with consistently lower variance in both accuracy and ECE
compared to baseline calibration methods. For CoCoOp, our method achieves significantly lower
average variance in accuracy (1.25 vs 1.55) and ECE (0.55 vs 2.53) compared to the vanilla baseline.
Similarly, with KGCoOp, we maintain competitive variance performance with average accuracy
variance of 0.44 compared to the baseline’s 0.57, while substantially reducing ECE variance from
0.58 to 0.21. The reduced variance in calibration error is particularly noteworthy as it indicates that
our method provides more consistent and reliable confidence estimates across different experimental
runs, which is crucial for deployment in safety-critical applications.

A.7 RESULTS ON DIFFERENT BACKBONES
To evaluate the adaptability of our method, we conduct experiments on CoOp Zhou et al. (2022b)

with different backbones, namely RN-50 and ViT-B/32. The Tables13 and 14results show that our
approach consistently outperforms existing methods across both backbones, while also maintaining
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Table 9: Calibration performance on novel classes across 10 fine-grained classification benchmarks. We
report Maximum Calibration Error (MCE) and Adaptive Calibration Error (ACE) for multiple prompt-tuning
strategies and diverse calibration baselines. Lower MCE and ACE reflects better calibration.

= =z oz 503 - z A o w
= b 5 5 = = = E O >
Method S & 8§ g £ < 2 a a4 5 =

CoOpZhou et al. (2022b)
MCE || 2.61 0.64 238 548 144 501 435 7.06 441 6.11 395

CoOp Zhou et al. (2022b)

Ours MCE || 1.05 126 0.55 098 025 29 0.64 197 39 149 142
ACE || 23 292 2.02 3.67 091 1047 299 96 11.24 5.04 4.83

MaPLe Khattak et al. (2023b)

MCE || 0.55 1.04 056 5.02 0.37 148 0.65 350 1.66 0.66 1.55

MCE ||0.53 1.16 09 1.06 0.74 178 039 122 337 069 1.18

Ours ACE | 1.1 343 368 491 192 785 201 411 432 315 365

Table 10: Hyperparameter search for « (0.1-0.3) and 8 (0.01 and 0.05), with results averaged across
Caltech Fei-Fei et al. (2004), Food101 Bossard et al. (2014), and DTD Cimpoi et al. (2014), reported
on both base and novel classes.

ACC ECE
(o, B) Base Novel Avg Base Novel Avg

( ) 89.65 8238 86.02 199 566 3.83
( ) 89.72 79.66 84.69 346 853 599
(0. ) 89.28 80.72 85.00 446 950 698
(0.1,0.05) 89.12 79.99 8456 395 626 5.10
( )
( )

83.39 8149 8244 410 820 6.15
89.75 80.52 85.14 2.01 8.01 5.01

improvements in accuracy. In base classes, for RN-50, our method achieves an average ECE of 3.46
compared to 4.04 for the vanilla baseline. Similarly, for ViT-B/32, our method attains an ECE of 2.87,
outperforming the vanilla baseline at 3.15. For novel classes, our method achieves the second-lowest
average ECE of 5.46 on RN-50, with ZS-Norm Murugesan et al. (2024) performing slightly better
at 5.23. In contrast, on ViT-B/32, our method achieves the lowest ECE of 5.82, surpassing all other
approaches.
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Table 11: Hyperparameter search for Apom over values 1-10, with results averaged across Caltech Fei-
Fei et al. (2004), Food101 Bossard et al. (2014), and DTD Cimpoi et al. (2014), reported on both
base and novel classes.

ACC ECE
A Base Novel Avg Base Novel Avg
1 8944 8151 8548 347 454 401
3 8917 82.14 85.65 211 394 3.03
5 8971 8264 86.18 180 322 251
8 8993 8244 86.19 299 524 412
10 89.15 82.00 8558 364 521 443

Table 12: Variance across 3 random seeds for 9 novel classes of fine-grained classification benchmarks.

Calt
Pets
Cars
Flow
Food
Air
SUN
DTD
Euro
Avg

Method

CoCoOpZhou et al. (2022b)
Var. Acc || 0.81 0.08 2.65 1.53 4.41 0.01 3.61 0.19 0.69 1.55

CoCoOp Zhou et al. (2022b)

KGCoOp Yao et al. (2023a)
Var. Acc || 0.03 0.00 2.19 1.21 0.58 0.01 0.85 0.15 0.08 0.57

A.8 DECISION BOUNDARY VISUALIZATION

Combined T-SNE of Text Features

@ Frozen CLIP
@ O-TPT (ECE=17.4%)
@ L1 Alignment (ECE=11.71%)
® @ Text Moment-Matching (ECE=10.07%)

Figure 6: T-SNE visualization of Text Features
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Table 13: Accuracy and calibration performance on base classes across 10 fine-grained classification
benchmarks using RN-50 and ViT-B/32. We report top-1 accuracy (Acc) and Expected Calibration Error
(ECE) for CoOpZhou et al. (2022b), a prompt-tuning strategy, evaluated with different backbones.

= B’ » 5 2 = z a e & o
= a Z 2 Y a 5 o >
Method S L S o) £ < a ) 3 =) <

CoOp-RN50Zhou et al. (2022b)
Acc. 19522 90.5 70.22 9525 82.54 29.95 76.37 74.85 81.32 80.4 76.99

CoOp-RN50 Zhou et al. (2022b)

CoOp-ViT-B/32 Zhou et al. (2022b)
Acc. ||97.05 92.71 73.13 95.28 84.93 31.87 79.16 77.55 91.10 82.83 79.88

Acc. || 97.46 93.14 73.78 95.09 85.12 31.83 79.58 79.01 91.09 82.87 80.09
ECE || 092 1.68 6.77 453 079 291 095 477 352 187 287

Table 14: Accuracy and calibration performance on novel classes across 10 fine-grained classification
benchmarks using RN-50 and ViT-B/32. We report top-1 accuracy (Acc) and Expected Calibration Error
(ECE) for CoOpZhou et al. (2022b), a prompt-tuning strategy, evaluated with different backbones.

Method

Calt
Pets
Cars
Flow
Food
Air
SUN
DTD
Euro
UCF
Avg

CoOp-RN50Zhou et al. (2022b)
Acc. || 87.27 92.11 57.84 61.87 82.55 18.72 64.46 41.67 34.15 55.07 11.38
ECE || 3.57 2.10 8.08 10.24 0.86 1875 9.07 2547 22.18 13.47 11.38

CoOp-RN50 Zhou et al. (2022b)

Acc. || 87.52 93.08 59.88 61.47 82.50 21.66 64.94 39.05 42.75 53.94 60.68
ECE | 2.82 268 343 413 172 536 453 883 1093 10.16 5.46
CoOp-ViT-B/32 Zhou et al. (2022b)

Acc. | 92.25 94.00 60.04 60.31 85.16 22.12 68.98 4795 56.47 63.57 64.63
E

Acc. || 91.41 93.48 61.10 61.65 84.22 23.08 70.59 50.23 56.55 64.02 65.63
ECE | 223 215 433 592 074 990 372 1430 9.14 580 5.82

Figure 6 shows that the Text Momentum-Matching loss better preserves the geometric structure of
CLIP’s pretrained embedding space by aligning the statistical moments of tuned and frozen text
embeddings, compared to ¢; alignment or Orthogonality-based class-wise dispersion Sharifdeen et al.
(2025) on novel classes.

A.9 REPRODUCIBULITY STATEMENT

We make every effort to enable full reproduction of our results. The model and training procedrure are
specified in Method section 3, including the two losses mean—variance margin regularization and text
moment-matching with exact formulas and the full objective. Datasets, splits, and evaluation protocol
(few-shot with base/novel classes) are described in (Experiments4: Datasets and Evaluation Metrics),
and the exact hyperparameters, hardware, seeds, and implementation choices are consolidated in the
Appendix A.4. We report averages over 3 random seeds and provide additional robustness, variance,
and distribution-shift results in AppendixA.6, A.2. Prompt templates and initialization variants used
in all runs appear in Supplementary A.5; backbone ablations are in A.7.
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A.10 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We made limited use of large language models to enhance the clarity and readability of the text. They
were not involved in the conception of ideas, experiment design, analysis, or the production of results.

A.11 LIMITATIONS

Despite these advances, our work has several limitations. First, our moment-matching approach relies
on batch statistics, which may become unstable with very small batch sizes or highly imbalanced
class distributions. Second, our method introduces additional hyperparameters that require tuning,
potentially increasing computational overhead during development.
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