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ABSTRACT

Speculative decoding (SD) addresses the high inference costs of large language
models by having lightweight drafters generate candidates for large verifiers to
validate in parallel. Current draft-verify methods use binary decisions: accept
or fully recompute. We find that current binary verification creates inefficiency:
many rejected tokens could be verified correctly with a slim model rather than
a full verifier. This motivates our Training-Free Slim-Verifier to handle tokens
requiring moderate verification resources, reducing expensive large-model calls.
We propose Hierarchical Verification for Speculative Decoding (HVSD), a three-
tier training-free framework using a skip-layer slim-verifier. Draft tokens are
processed hierarchically: direct acceptance for high-confidence cases, slim-verifier
regeneration for medium-confidence cases, and full-model verification for uncertain
cases. Across summarization, translation, reasoning, QA, and coding tasks on T5
and Gemma families, HVSD consistently lowers rejection rates (0.1-0.22) and
achieves 10-20% speedup over state-of-the-art SDs. Compared to decoding without
drafting, HVSD provides 2.5-3x acceleration while improving output quality. Our
results establish multi-tier SD as a general paradigm for scalable and efficient LLM
inference.

1 INTRODUCTION

Due to the high computational cost and latency involved in deploying large models for inference
(Patterson, |2004; Hennessy & Patterson} 2012} [Shazeer}, |2019), researchers have explored methods to
improve inference efficiency at the data (Wang & Simoncelli, 2020; [Mirzasoleiman et al., |2020; He
et al., 2024)), model (Shazeer et al.| 2017} |Han et al.,|2016; |Hinton et al.} 2015)), and system levels
(Xia et al.| 2023} |Leviathan et al., [2023; Narayanan et al., 2021)). At the system level, speculative
decoding (SD) (Burtonl [1985} Xia et al., 2023} |[Leviathan et al., 2023} |Zhang et al.|[2023) improves
the inference efficiency by letting a small model “draft” multiple candidate tokens and only calling
the large model to verify them in parallel. In existing draft-verify frameworks, most studies fall into
two directions: either enhancing the capability of the drafter (Kim et al., [2023b; Zhou et al.| 2023}
Liu et al.,[2023)), or improving the efficiency of verifier (Miao et al., [2023};|Cai et al.| [2024; |Li et al.,
2024).

However, the two-tier paradigm suffers from inherent efficiency bottleneck: a token is either directly
accepted from the drafter or must be recomputed by the verifier, result-in resulting in excessive large
model calls. We find that there exist draft tokens that exceed small drafters’ reliable prediction capacity
but require only a subset of large verifiers’ computational resources for accurate verification. Yet in
such binary designs, there exist tokens too weak for the small model yet unnecessary for the large
model, leading to redundant recomputation. This motivates our research question: rather than merely
optimizing the drafter or the verifier, can we design a hierarchical verification framework that to
handle medium-confidence tokens?

We first verify this motivation through theoretical analysis. By aligning the distributions of the drafter
and the verifier into a common space, we establish that the rejection rate—which directly determines
the speedup—is correlated with the distance between the two distributions. When this distance is
measured using KL divergence, its non-Euclidean property (Kullback & Leibler; |1951)) guarantees
the existence of an intermediate distribution that makes the two models closer through it (§E} Hence,
the idea of introducing an intermediate layer is theoretically grounded.
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model (when uncertain). This design effectively
reduces the invocation frequency of the large
model while maintaining quality. We validate
the effectiveness of this design across multi- Figure 1: Illustration of our pipeline.

ple models and demonstrate that it consistently

achieves higher speedups compared to the traditional two-tier draft—verify framework. Specifically,
Our contributions are:

(i) We prove from an information-theoretic perspective that KL divergence provides a principled
basis for introducing an intermediate distribution into the draft—verify mechanism, thereby
validating the feasibility of breaking the two-tier paradigm (§4.1).

(ii) We design training-free Slim-verifier, a skip-layer intermediate verifier that approximates
the large model through Dynamic layer-skipping adaptation (DLSA), efficiently handling
medium-confidence tokens and reducing redundant full-model calls (§4.2).

(iii) We propose Hierarchical Verification for Speculative Decoding (HVSD) as a general three-tier
framework that integrates drafter, slim-verifier, and full verifier, fundamentally overcoming the
binary limitations of draft—verify methods (§4.3).

(iv) Through experiments of summarization, translation, reasoning, QA, and coding tasks, HVSD
achieves consistently lower rejection rates (0.1-0.22) and delivers 10-20% speedup over
state-of-the-art speculative decoding baselines(§5).

2 RELATED WORK

Drafting Strategies. Drafting methods fall into two categories: independent and adaptive drafters.
Independent drafters employ small or non-autoregressive models (Xia et al.| 2023 Leviathan et al.,
2023), including SpecInfer (Miao et al.l [2023), Sequoia (Chen et al., 2024), OPT-Tree (Wang
et al.,|2024)), and DSBD (Qin et al.| 2024). They are simple but often yield low acceptance due to
distribution mismatch across tiers. Adaptive drafters reuse the target model’s structure, either by
adding feed-forward heads for parallel generation (Stern et al., 2018 |Cai et al., 2024) or by layer
skipping and early exiting to form lightweight submodels (Zhang et al., 2023} [Yang et al., [2023)).
Medusa (Cai et al., [2024) improves throughput with multi-head drafting, while Eagle (L1 et al.| [2024)
introduces residual interactions between draft and verification.

Verification Strategies. Verification has traditionally relied on strict, lossless checks (Stern et al.}
2018} Xia et al., 2023)), ensuring equivalence to ¢ but incurring rollback overhead. Lossy veri-
fication (Leviathan et al., 2023} [Zhou et al. 2023) relaxes acceptance rules, tolerating bounded
divergence across tiers to improve efficiency. Cascades (Chen et al.| 2025b; Narasimhan et al., [2025)
reframes cascading as target-distribution selection, embedding deferral policies within SD. Token
tree verification (Miao et al.,[2023}; |Cai et al.} 2024; Li et al.,|2024) further parallelizes the process by
validating multiple candidate paths.

3 PRELIMINARIES

3.1 DRAFT-VERIFY MECHANISM VIA DISTRIBUTION DISTANCE

Draft-Verify. The key idea of speculative decoding is a “draft—verify” mechanism (Stern et al, | 2018j
Leviathan et al.| [2023; Xia et al.| 2023)): a small model p drafts candidate tokens, and a large model
q verifies them in parallel. Let the vocabulary be V' and the set of probability distributions over it
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be Ay . Given a prefix x4, the drafter p and the verifier ¢ define conditional distributions at step
t:pe(- | £<t), qt(- | ©<4). Let the draft block size be . During the drafting phase (first tier), the small
model sequentially generates -y candidate tokens: Ty, Ty41, ..., Tiqy—1 ~ DisDit1s- -2 Pigy—1-
In the verification phase (second tier), the large model simultaneously computes its distributions for
the same prefixes:{¢, ..., qt+—1}, and checks whether the drafted tokens should be accepted or
replaced. When decoding, if the first rejection occurs at position j*, decoding halts at x; ;- and
resumes from this new prefix. If all candidates are accepted, multiple tokens are output in one step.

In the general abstraction of lossy speculative decoding (Tran-Thien, 2023), the decision
consists of two parts. First, the acceptance probability for a drafted token is defined as

9i+; (Tetj)
b (1—a)peyj(2et)
ter. If the candidate is rejected, the token is redrawn from the residual distribution defined as

Prlaccept z41;] = min (1 ) , where @ € [0,1) is a threshold parame-
T4 ~ DOrmM (max{(), % G5 (-) — pt+j(~)}), where 8 > 1 — « is a scaling parameter and norm(-)

normalizes a non-negative vector into a probability distribution. This ensures that replacements
remain aligned with ¢’s distribution. In the special case « = 0, § = 1, the process becomes equivalent
to autoregressive sampling from g, i.e., a lossless setting (Leviathan et al., 2023} |Chen et al.| [2023).

The per-step rejection rate is then defined by the probability that a drafted token from p, is not
accepted by ¢;. Formally, this can be expressed as

pe(a) = Z max{0, ¢:(v) — (1 — a)p:(v)}. (1
veV

Distance Perspective. In the lossless setting (o« = 0, § = 1), the rejection rate simplifies to

pt = Drv(pi,qt) = Rej(p,q) o< D(p,q). 2

Drv(+) here means total variation distance for details. This formulation highlights that the rejection
rate is essentially a function of the distributional distance between p and ¢g. In other words, the
rejection rate can be naturally interpreted from a distance perspective: the smaller the distance
between p and ¢, the lower the rejection rate.

Insight 1. Hence, our broader objective is to explore: What kinds of distribution distances
between p and q can effectively reduce the rejection rate? By reconstructing the distributions in
an appropriate space and modeling their distance, we may uncover a principled path to reducing
rejection rates.

3.2 RECONSTRUCTING THE DISTANCE IN II-SPACE

Measuring the distance directly in the original distribution space can be too coarse and may fail to
reveal the underlying structure. To address this issue, we introduce a target distribution 11, within
which the relationship between p and ¢ can be reconstructed under a more general framework.

Lossy Variant in [1-Space. Formally, the lossy speculative decoding rule can be rewritten as

m(v) = (1 = 0) pe(v) + 0 qi(v). 3

where 7, denotes the target distribution at time step ¢, and 6 € [0, 1] is a weighting parameter. Here,
II = {m;} L, represents the collection of distributions across the entire sequence, while 7, is the
local projection at each step. In other words, II is the global object and 7 its per-step realization.

The problem then becomes: how should we measure the divergence between p and ¢ in 7-space so
as to accurately reflect the dynamics of the rejection rate? To this end, we consider three classical
measures of distributional divergence and compare them under the same assumptions.

A natural candidate is the Total Variation (TV) distance (Villani, [2008)):
Drv(p,q) = 5 |p(v) —q(v)|. “
veV

In the lossless case (&« = 0,8 = 1), the single-step rejection rate satisfies pr = Drv(pt, ¢).
This reveals a strict “measure—mechanism” consistency: TV not only characterizes the geometric
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discrepancy between distributions but also equals the observable rejection probability. Further-
more, due to symmetry and the triangle inequality, for any intermediate distribution r it holds that
Drv(p,q) < Dry(p,r)+ Drv(r,q). Hence, under TV, the direct path p — g is always the shortest;
introducing an intermediate distribution cannot shorten the distance. In other words, if TV is adopted,
reducing the rejection rate can only be achieved by directly shrinking Drv (p, q).

We now turn to the Kullback—Leibler (KL) divergence (Kullback & Leibler, [1951)):

Dxw(pllg) Z p(v log 5

veV
Unlike TV divergence, KL divergence is a Bregman dlvergence induced by negative entropy, and
it does not satisfy symmetry or the triangle inequality. This non-Euclidean property introduces a
key possibility: within certain restricted families (e.g., convex feasible sets aligned with task priors,
model structures, or implementation constraints), there may exist an intermediate distribution such
that the “broken line path” under KL is no longer than the direct one. Formally, let S be a non-empty

closed convex set on the probability simplex, and define 7* = argmin,cg Dkr,(p||7). Then, by the
generalized Pythagorean theorem in information geometry, we have
Dxu(plle) = Dxu(pllr®) + Dxu(r®lle),  Vges. (©)

This inequality strictly confirms that such a possibility indeed exists: in the KL framework, a path via
r* can yield a lower overall cost than the direct path. Detailed analysis of measures sedAppendix C|

Insight 2. The information projection property of KL provides a theoretical foundation for
potentially reducing effective discrepancy—and thus rejection rate—through carefully constructed
intermediate distributions.

4 METHODOLOGY

4.1 THE DRAFT-SLIM-FULL VERIFICATION MECHANISM

Theoretical: Multi-Tier Structure. From the conclusions of Equations (3) and (6), we know
that when KL divergence is adopted as the measure of discrepancy, there exists the possibility that
a “piecewise path” is no longer worse than the direct path. To operationalize this possibility, we
first specify the candidate set of intermediate points. Let i/ C Ay, denotes the feasible family of
intermediate distributions, consistent with task priors, model structure, and deployment constraints
(e.g., GPU memory, latency, or throughput). Typical constructions of U/ include affine or moment
constraints, exponential-family closures, or spans induced by a finite collection of deployable proxy
models (such as series variants or layer-skipped submodels). For theoretical clarity, we assume U to
be a non-empty closed convex set within the probability simplex.

Under this setting, information geometry ensures that for any p € Ay, the information projection
onto U exists: u* = argmin, ey Dk (pllu), and satisfies the generalized Pythagorean relation

Dxr(plg) = Dxu(pllu”) + Dxu(u'llg),  VgelU. ™
Moreover, whenever I is not a singleton, there will generally exist infinitely many w € U such that
the “piecewise path is no longer worse than the direct one” (e.g., when U/ contains an I-orthogonal
submanifold through u*, or local perturbation families around ¢). This indicates that, from a purely
theoretical perspective, the set of beneficial candidates is typically not unique but infinite. Detailed

analysis see [Xppendix D)

Practical: Three-Tier Structure. Here, we introduce u as intermediate distribution to form a
three-tier structure p—u—q. In practice, u acts as a intermediate verifier, verifying tokens drafted by
p before passing them to ¢ or fallback mechanisms. This design aims to filter or redirect uncertain
tokens at low cost, thereby reducing the overall rejection and rollback burden while maintaining
output quality.

Specifically, when the large model ¢ verifies the candidates drafted by the small model p, the
acceptance condition in speculative decoding is:

qgz) > (1-a)p(x) <= logq(z)—logp(x) > log(l - a), (8a)

p(z) < Fq(z) <= logg(x) —logp(z) > logp. (8b)
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Both thresholds can thus be unified as inequalities of log-likelihood ratios. The extent to which these
conditions are violated is quantified as the margin violation. To capture this violation, we introduce
a convex positive-part function ¢ : R — Rx(, we use ¢(z) = max{0, z} for a hard threshold, and
¢(z) =log(1 + ¢) for a smooth and differentiable surrogate, further discussion see[Appendix H

Based on this formulation, we define the KL-style single-step cost. For the direct case where p drafts
and q verifies, the cost is

1 — o) p(z) Bp(x)
Res(allp) = Eon [¢<1og( +  Eang|olog O
7 o q() o q()
log-margin violation of acceptance threshold log-margin contribution of residual replacement

The first term penalizes cases where ¢’s support for p falls short of the (1 — «) threshold, while the
second term accounts for the log-margin cost of residual replacement, i.e., when ¢ must “borrow”
probability mass to replace p’s draft. In an extended three-tier structure, if u first verifies p, we
similarly obtain R's(ullp); and if ¢ subsequently verifies u, we obtain R}';(q|u). Thus, each
segment of the three-tier pipeline can be formalized through the same log- margm perspective.

To align with sequence generation, this single-step cost must be accumulated across the decoding
time steps 7. In the H—space induced by the lossy mechanism in Equation (3), the block-level cost is

q||p|7r ZR (@llpt),  qi,pe € Ay induced by 7. (10)
teT
Here, 7 ensures consistency among the conditional distributions {p;, g¢, us } across different lay-
ers. However, in the definition of C’f%(q” p | ), the expectations involved cannot be computed
analytically during inference, and thus must be transformed into a computable form. For example,
let /2 = log p:(-) and £7 = log ¢;(-), and define z;(v) = log(1 — a) 4+ P (v) — 1(v), 22(v) =
log 8+ ¢P(v) — £4(v). When choosing ¢(z) = max{0, z} (i.e., ReLU), the KL-style lossy cost for a
single decoding step can be written as

q||p Zpt ) ReLU(z1 (v)) + th ) ReLU(22(v)) . (11)

acceptance threshold term residual replacement term

This expression converts the original log-margin violation and residual replacement requirements into
a token-wise computable sum. By further summing over all decoding steps ¢ € T, the block-level

cost is obtained as C 3 (q[lp | 7) = >-,c 7 RY B(qH p)|,, thereby making Equation (10) computable
in practice. The detalled derivation is provided in m

On this basis, we naturally define the discriminant between direct and three-tier paths. For the direct
path p — g, the cost is CKL 4(qllp|m). For the folded path p — u— g, the total cost is the sum of its

two segments, namely C’a’ (u|lp|m) + Cglg(q||u|7r) Their difference gives

AR (u| ) = CE(allp| ) — (CEG(ullp|m) + CE(gllu| 7)) (12)
The quantity AR (um) serves as the key criterion Visualizalon of 44(u) o e p g segment
for evaluating the benefit of introducing an interme-  °¢
diate verifier: (1) When the value is positive, the 05 w4
folded path is strictly superior under the lossy rule o« /

and 7-space, meaning that introducing u significantly 2.,
reduces the total log-margin violation. (2) When o

it is O, the folded path is equivalent to the direct o

path; (3) When negative, the candidate u should be v \
discarded (see Figure E]) Hence, we can extend Py oz o Pys s o
the original two-tier definition of the target distri- e
bution 7 to a three-tier version that explicitly incor- KUwla) - Kiipla) optmalu*
porates the intermediate verifier. Formally, the tar- Figure 2: Visualization of A’ (u) in Equa-
get distribution in the presence of u is 7" (v) := ton (12), where the shaded region shows

(1= ) (1 — 6)pe(v) + Srug(v)) + G2qu(v), AT (w)! <!0that yields a shorter divergence
with 01,8, > 0. The coefficients are induced by the ~and the orange marker the optimal u* .
lossy thresholds («v, 3) and reflect the proportions of tokens routed through each stage.
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4.2 CONSTRUCTING THE TRAINING-FREE SLIM-VERIFIER

To further operationalize, we first need to clarify the possible candidates for u. Broadly speaking, they
can be categorized into three types: (1) Scale-up version p’ of the drafter p, (2) A smaller model from
the same series as the verifier ¢, and (3) A Submodel ¢’ of the verifier ¢. Here we choose skip-layer
model ¢’. From a theoretical perspective, the skip-layer submodel ¢’ is constructed to have the same
parameter scale as a same-family intermediate model, yet its behavior under the KL-based criterion
is fundamentally different. When we substitute v = ¢’ into the cost formulation Equation , the
block-level term CE % (q|l¢’ | m) remains significantly smaller than CX'; (¢|u | ) for the independent
intermediate model of equal size. This advantage arises because ¢’ shares embeddings and the output
head with the large model g, thereby preserving distributional consistency that independent models
cannot match. Consequently, even at the same scale, the folded path p — ¢’ — g is more likely to
satisfy AEIB (u | m) > 0, leading to a tangible reduction in rejection rates. Under moderate skip
ratios, this enables a controllable trade-off between acceleration and accuracy (see and
[Appendix E)). Therefore, we adopt ¢’ as the intermediate point u in our framework.

Comparison of speedup on different u Skip-Layer Model as slim-verifier. Let the
full verifier ¢ consist of L Transformer layers.
We define a skipping set as z € {0, 1}%, where
z¢ = 1 indicates that the ¢-th layer is retained,

36

52'4 I and zy = 0 indicates that it is skipped. Based
g“’ I on z, the slim-verifier can be formally defined
w12y as ¢, (z) = I,(q)(x), where I1,(-) denotes the
06 r projection of g onto the subspace specified by z,
0 resulting in a compact submodel ¢.,.
XSum WMT 14 CNN/DM
"4B-q—27B (skip 45%) ®4B-12B-27B For each candidate skipping set z that defines a

Figure 3: Skip-layer intermediate consistently out-
performs the independent 12B model on Gemma3
pilot study.

slim-verifier ¢, we score z by accumulating a
KL-style per-step cost, see Equation (TIJ), over
a context window of length 7:

T

C(z)=> RK(q |l d.)

t=1

2" = argminC(z). (13)

)
t

To balance efficiency and accuracy, DLSA combines random search with periodic Bayesian opti-
mization:

(14)

BayesOpt(l), if omod 6 =0,
RandomSearch(l), otherwise,

where o is the current optimization step, 6 is the triggering period for Bayesian optimization, and
l= (rLL) represents the search space of candidate skipping sets (with r denoting the skip ratio). This
hybrid strategy enables efficient exploration while progressively approaching the optimal skipping
configuration. The structure of ¢’ is fixed once either the maximum optimization steps S is reached,
or the best candidate remains unchanged across multiple iterations. At this point, ¢’ serves as a stable

approximation of g, preserving its output distribution while significantly reducing computational cost.

4.3 HIERARCHICAL VERIFICATION PIPELINE

At each decoding cycle beginning at step ¢, the drafter p proposes a block of up to y tokens, denoted
Zt:444—1 ~ p. This blockwise Under a fixed skipping ratio 7, we then obtain the slim-verifier ¢’
from the full verifier ¢ via Dynamic Layer-Skipping Adaptation (DLSA); its distribution is denoted
by ¢;(v). The DLSA procedure performs dynamic optimization over a context window so that ¢’
becomes a stable approximation of ¢ that can be incorporated into the verification pipeline.

In the verification stage, two thresholds (d1, d2) regulate the contributions of the two verification
layers: the p — ¢’ gate is set more strictly (via d1) so that only candidates sufficiently consistent
with ¢’ are allowed to pass early, while the u — ¢ gate is set more leniently (via d2) so that more
candidates reach the final check by ¢. In practice, §; > do: a larger d; enforces strict early filtering
that relies on ¢’, whereas a smaller d» prevents excessive rejection at the final stage and stabilizes
overall performance.
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Algorithm 1 Hierarchical Verification with DLSA (Simplified; full version in Algorithm 2)

Require: Drafter p, full verifier g, skip ratio r, block length -, thresholds (v, a2)
Ensure: Final decoded sequence x
1: while not end-of-sequence do
2: Draft a block Zy.44y—1 ~p
3 Build slim-verifier ¢’ from g via DLSA under ratio r
4: Accept the longest prefix « under the a-gated rules for (p—¢’) and (¢’ — ¢) (cf. Eq. (15))
5: if x < «y then
6: Fallback to g att +
7 end if
8: Append accepted tokens; t < t+ K
9: end while

Operationally, the two-layer verification consumes the drafted block Z.;4—1 and accepts a longest
valid prefix of length

_ ~ o
K= Orgg;{ k ‘ Trivk—1 € Alp—4, ¢ —q) } (15)

where A(-) denotes the acceptance set of prefixes that successfully pass the verifiers. If x < -, the
pipeline falls back to g at step ¢ + « to continue decoding, ensuring correctness while retaining most
of the speedup from the accepted prefix.

In this process, the thresholds a1 and a2 define the confidence gates at different layers and are mapped
to §; and & for mixture weights. Specifically, «v; determines whether the slim-verifier ¢’ accepts the
drafter p’s token, with the criterion ¢} (v) > (1 — «1) max,, ¢;(u),. Meanwhile, cs decides whether
¢’ is insufficiently confident and thus requires escalation to the full verifier g, i.e., g is invoked when
q;(v) < (1 — ae) max, g;(u),. A larger d; (stricter «1) ensures that only tokens highly consistent
with ¢’ are accepted early, while a smaller d5 (looser ap) lowers escalation frequency and stabilizes
performance. At the token level, the output distribution is

nOw) = (1-8&) (1= 8)p) + 61q©) + L al), (16)

where 01 = P[q;(v) > (1 — a1) max,, ¢;(u) ] and d3 = Pq;(v) < (1 — az) max, q;(u) ], with the
detailed derivation deferred to

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Setup and Metrics. We evaluate our framework across two major model families: TS (Raffel et al.,
2020)and Gemma(Team et al., 2024)), covering different model scales to examine both scalability and
generality. For TS5, we use T5-small — T5-large and T5-large — T5-XL as drafter—verifier pairs. For
Gemma, we study Gemma2-2B — Gemma2-9B and GemmaZ2-2B — GemmaZ2-27B. This selection
allows us to compare performance both within the encoder—decoder (T5) and decoder-only (Gemma)
architectures. Evaluation is conducted on a diverse set of benchmarks: XSum (Narayan et al., 2018)
and CNN/DailyMail summarization (Nallapati et al.|[2016), WMT14 En—De translation (Bojar et al.|
2014) on T5. GSMS8K (8-shot reasoning) (Cobbe et al.| [2021), MBPP (code generation) (Austin
et al., 2021), SQuAD 2.0 (Rajpurkar et al.,[2016), WebQuestions (Berant et al., 2013, NaturalQA
(Kwiatkowski et al., [2019), and TriviaQA (Joshi et al.,[2017) on Gemma. We report both quality
metrics (ROUGE-1/2/L, BLEU for summarization and translation; EM/F1 for QA; pass@k for
coding tasks; and accuracy for reasoning) and efficiency metrics (acceptance rate, rollback ratio, and
relative latency speedup over greedy decoding). All experiments are performed on A100 GPUs with
consistent batch size and decoding configurations to ensure comparability.

Baselines. To comprehensively evaluate our method, we compare it against six representative
baselines spanning both independent drafting and self-drafting approaches. Independent drafting
methods include Speculative Decoding (Leviathan et al.,|2023) and BiLD (Kim et al., 2023a)), which
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Table 1: Comparison of speculative decoding and related methods. Our approach introduces an
intermediate skip-layer verifier u, extending the traditional two-tier SD into a three-tier structure.

Category Method Drafting / Verification Source  Lossless / Lossy  Decision
Independent drafting ~ Speculative Decoding (Leviathan et al.||2023}  Small model p Lossless «o(x) = min (1. Z((g)

BiLD (Kim et al.|2023b} Internal little decoder of ¢ Lossless 1[max, p(z) < 7]

Cascade SD (Chen et al.}[2025b) Small model py, p2 Lossy 1[max, p(z) < 7|

Faster Cascades (Narasimhan et al.|[2025) Small model p Lossy w(z) =T(p.q), 1r(z) <]
Self-drafting Swift (Xia et al.|2025) ; Skip-layer submodel ¢ Approx. Lossless  a(z) = min (1. :,((’;)))

CLaSP (Chen et al.}{[2025a Dynamic skip-layer submodel ¢’ Approx. Lossless ~«(z) = min (l, :,((?)) with dynamic layers
Ours Skip-layer Verification Drafter p + skip-layer verifier ¢/ Lossy g (z) = min (l, g:((‘:)) ); if reject — ¢

employ either an external small model or an internal lightweight decoder. We also consider lossy
baselines such as Cascade Speculative Drafting (Chen et al.|[2025b)) and Faster Cascades (Narasimhan
et al.,2025), which improve throughput by relaxing verification rules or embedding deferral into the
speculative decoding pipeline. In contrast, self-drafting methods like Swift (Xia et al.,|2025) and
CLaSP (Chen et al.| 2025a)) leverage skip-layer submodels derived from the target model, reducing
distribution mismatch without extra training.

Hyperparameters. For the setting of alpha, We set a1 = 0.5 and as = 0.3, which consistently
reduces rejection while avoiding unnecessary calls to g. Besides, we set v = 5 as block size for
maximum drafting length, and 45% skip-ratio to form the slim-verifier.

5.2 MAIN RESULTS

Table 2: Performance comparison (Xsum, CNNDM, and WMT14) under different decoding settings.

Model Methods XSum (T=1) CNNDM (T=1) WMT14 (T=0)
ROUGE-2 Rejection Rate Speedup ROUGE-2 Rejection Rate Speedup BLEU Rejection Rate Speedup

Speculative Decoding 14.80 0.36 1.02x 11.20 0.36 1.79x  18.00 0.30 1.40x
BiLD 14.80 0.34 1.10x 11.20 0.34 1.85x  18.00 0.29 1.55%
Cascade SD 14.80 0.33 1.15x 11.20 0.33 1.90x  18.00 0.28 1.60x

SI:i Faster Cascades 15.05 0.30 1.30x 12.63 0.34 1.88x  22.65 0.25 1.85%
SWIiFT 14.80 0.32 1.20x 11.20 0.32 1.92x  18.00 0.27 1.70x
CLaSP 14.80 0.31 1.25x% 11.20 0.31 1.95x  18.00 0.26 1.75%
Ours 15.27 0.24 1.90 12.81 0.26 2.10x  21.92 0.22 2.50x
Speculative Decoding 18.90 0.38 1.12x 12.90 0.38 1.70x 2295 0.34 1.80x
BiLD 18.90 0.36 1.20x 12.90 0.36 1.82x 2295 0.33 1.95x
Cascade SD 18.90 0.35 1.25x 12.90 0.35 1.85x 2295 0.32 2.00x

S—T)zL Faster Cascades 18.99 0.30 1.45x% 12.95 0.34 1.95x  23.05 0.25 2.70x
SWIiFT 18.90 0.34 1.30x 12.90 0.34 1.95x  23.00 0.31 2.20x
CLaSP 18.90 0.33 1.35% 12.90 0.33 2.00x  23.00 0.30 2.25x%
Ours 18.95 0.28 1.65x 13.05 0.24 2.40x  23.10 0.21 3.35x

TS5 Models. In the TS5 experiments, the target verifier ¢ is instantiated as T5-large or T5-XL.
Independent speculative decoding uses T5-small or T5-large as drafter p. For Swift and CLaSP
baselines, the drafter p’ is obtained by skipping layers only in the decoder of g, with full encoder
preserved. Swift adopts a fixed skip ratio, whereas CLaSP applies dynamic layer selection during
decoding. In our method, we retain whole as the drafter and use skip-layer decoder of large model,
with encoder remains intact as in ¢ model. As shown in Table 2] under greedy decoding (¢ = 0), our
method reduces rejection rates to 0.20-0.22, significantly outperforming Faster Cascades (0.31-0.32)
and Swift/ClaSP (0.34-0.36), while achieving 2.5-3.3 x speedup, about 30% higher than existing
methods. The generation quality (ROUGE-2 / BLEU) remains consistent with the large model. Under
sampling decoding (¢ = 1), although the gap narrows, our method still leads with rejection rates
of 0.24-0.28 and speedups of 2.8-3.1x, whereas other methods typically exceed 0.33 rejection
with speedups below 2.5 x. Overall, our approach consistently achieves the lowest rejection rates
and highest speedups across model scales and decoding settings, demonstrating the advantage of
hierarchical verification in balancing efficiency and stability. Detailed experiments see[Appendix H].

Gemma Models. For the Gemma experiments, we adopt Gemma2-2B — 9B and Gemma?2-2B
— 27B as drafter—verifier pairs. Unlike T5, Gemma follows a decoder-only architecture, which
simplifies speculative decoding to a direct two-tier (or three-tier in our case) pipeline. We evaluate on
GSMBS8K (8-shot) for reasoning, MBPP for coding, and QA benchmarks (SQuAD 2.0, WebQuestions,
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NaturalQA, TriviaQA). Quality is measured by task-specific metrics (accuracy, F1, EM, pass @k),
while efficiency is measured by acceptance and relative latency. As shown in Table[3]} our method
demonstrates advantages across multiple dimensions on the WebQuestions, NaturalQA, and TriviaQA
datasets. For Gemma?2-2b/9b, on WebQuestions our approach achieves the lowest rejection rate (0.10)
with a speedup of 1.82x; on NaturalQA it again yields the lowest rejection rate (0.17) and a 2.10 %
speedup; and on TriviaQA it obtains the lowest rejection rate (0.13) along with the highest speedup
of 2.33x. For the larger Gemma?2-2b/27b setting, the trend remains consistent: while baseline
Speculative Decoding reaches a rejection rate as high as 0.45 on NaturalQA, our method reduces it to
0.30, and achieves superior latency across all datasets (up to 2.61x and 2.50x). Detailed experiments

refer t0

Table 3: Performance comparison of results on WebQuestions, NaturalQA, and TriviaQA.
‘WebQuestions NaturalQA TriviaQA

Model Baseline

Accuracy Rejection Rate Speedup Accuracy Rejection Rate Speedup Accuracy Rejection Rate Speedup

Speculative Decoding ~ 0.27 0.17 150x 026 0.27 132x 050 021 1.55%
BiLD 027 0.15 159x 026 0.24 167 050 0.19 1.85%
Cascade SD 027 0.16 153x 026 0.26 143x 050 0.20 1.62x
G;Eg“,j‘z Faster Cascades 0.28 0.13 1.65x 027 0.22 175 052 0.17 1.90x
SWiFT 027 0.15 159x 026 025 161x 050 0.18 1.73%
CLaSP 027 0.14 162x 026 0.24 167 050 0.17 1.90%
Ours 0.28 0.10 182x 028 0.17 210x 053 013 2.33x
Speculative Decoding ~ 0.32 027 155 032 045 154x  0.54 0.24 1.65x%
BiLD 032 0.26 163x 032 041 192x  0.54 0.22 2.15%
Cascade SD 032 0.24 171 032 0.42 173x 054 023 1.81x
Gzeb'f‘z";ﬁz Faster Cascades 0.33 022 181x 033 0.40 210 0.56 0.20 2.30x%
SWIFT 032 021 189 032 0.41 193x 054 0.23 1.82x
CLaSP 032 0.20 197x 032 039 221x 054 0.22 1.9
Ours 032 0.14 232%x 034 0.30 261x 055 0.15 250

Ablation. Our ablations reveal complementary roles of the three hyper-parameters. First, the skip-
ratio achieves the best trade-off around 40-50%, where speedup peaks while rejection remains
controlled. Second, the draft length v exhibits a unimodal effect: too small underutilizes batching,
while too large increases rollbacks; the optimal lies at v ~ 5 for smaller models and 6-7 for larger
ones. Finally, the thresholds (v, ag) govern efficiency—quality balance: a; & 0.5 and a moderate o
(0.3-0.4) consistently yield the highest or near-highest acceleration across datasets. Together, these
results indicate that moderate settings across all three dimensions provide robust and general-purpose
configurations. Ablation brief of skip-ratio is shown in Figure ] More ablation results are given in

GSM8K 8-shot (Gemma2-2b, 9b) MBPP (Gemma2-2b, 9b) SQuAD (Gemma2-2b, 9b)
1 24 1 24
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Figure 4: Ablation result of skip-ratio on Gemma2-2b,9b.

6 CONCLUSION

This paper proposed a three-tier speculative decoding framework with hierarchical verification, where
a training-free skip-layer submodel serves as a slim-verifier to bridge the gap between draft and large
models. This design lowers rejection rates and achieves more stable speedups without sacrificing
quality or training. However, the current approach is limited in that the slim-verifier is directly
derived from the large model without task-specific adaptation. In future work, we would explore
learning-based or adaptive slim-verifiers, extend the framework to multi-modal generation, and study
its robustness under diverse tasks and deployment constraints.
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Ethics Statement This work focuses on decoding efficiency for pre-trained language models and
does not involve the collection of new human subjects data. All datasets used in evaluation are
publicly available under their respective licenses, and we comply with the terms of use for each
dataset. The tasks include QA and reasoning benchmarks that may contain distributional biases; our
methods are evaluated holistically across multiple datasets to reduce overfitting to any single source.
The proposed techniques optimize inference efficiency without altering the underlying training data
or optimizing model parameters, thereby not introducing additional data-related risks. We do not
intentionally process or store personally identifiable information (PII). Potential misuse risks are
similar to those of baseline models; we encourage responsible deployment, including appropriate
content filtering and monitoring consistent with community standards.

Reproducibility Statement We aim to make all results reproducible. Our supplementary materials
provide: the exact model variants evaluated; dataset splits and preprocessing steps; decoding settings
(e.g., temperature, top-k/p, maximum lengths), verifier call patterns, and any acceptance/rejection
rules; and the software environment (framework versions and key dependencies). Upon publication,
we will release code and instructions to enable faithful replication and extension of our findings.
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A COMPLIANCE AND ADDITIONAL STATEMENTS

A.1 USAGE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were employed solely for writing assistance and linguistic refine-
ment. Specifically, they were used to enhance clarity, readability, and overall fluency by supporting
tasks such as sentence rephrasing, grammar correction, and stylistic polishing.

Importantly, LLMs were not involved in the conception of research ideas, methodological design, or
experimental analysis. All scientific contributions—including the development of research questions,
design of experiments, and interpretation of results—were independently carried out by the authors.
The use of LLMs was limited strictly to improving the linguistic presentation of the manuscript.

The authors take full responsibility for the entire content of the paper, including any text that may
have been refined with LLM assistance. All generated or polished text complies with academic
integrity standards and does not constitute plagiarism or scientific misconduct. Accordingly, our
disclosure for ICLR 2026 is: “Yes, to aid or polish writing. Details are described in the paper.”

A.2 ETHICS STATEMENT

This work focuses on decoding efficiency for pre-trained language models and does not involve
the collection of new human subjects data. All datasets used in evaluation are publicly available
under their respective licenses, and we comply with the terms of use for each dataset. The tasks
include QA and reasoning benchmarks that may contain distributional biases; our methods are
evaluated holistically across multiple datasets to reduce overfitting to any single source. The proposed
techniques optimize inference efficiency without altering the underlying training data or optimizing
model parameters, thereby not introducing additional data-related risks. We do not intentionally
process or store personally identifiable information (PII). Potential misuse risks are similar to those
of baseline models; we encourage responsible deployment, including appropriate content filtering
and monitoring consistent with community standards.

A.3 REPRODUCIBILITY STATEMENT

We aim to make all results reproducible. Our supplementary materials provide: the exact model
variants evaluated; dataset splits and preprocessing steps; decoding settings (e.g., temperature, top-
k/p, maximum lengths), verifier call patterns, and any acceptance/rejection rules; and the software
environment (framework versions and key dependencies). Upon publication, we will release code
and instructions to enable faithful replication and extension of our findings.
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B HIERARCHICAL VERIFICATION PIPELINE: DERIVATION OF 01, o AND
THEIR RELATION TO o, (o

B.1 FULL PSEUDOCODE FOR PIPELINE

Algorithm 2 Hierarchical Verification with DLSA (aligned with Section

Require: Drafter p, full verifier g, skip ratio r, block length -, thresholds (a1, a2)
Ensure: Final decoded sequence x

1: Initialize running estimates for mixture weights &1, do (optional)

2: while not end-of-sequence do

3: Draft a block Zy:¢4y—1 ~p

4: Build slim-verifier ¢’ from ¢ via DLSA under ratio r

5: Run ¢’ in parallel on prefixes <y, ..., ZT<s1—1 toobtain gy, (-

6: 7% < None > earliest rewrite/reject position

7 forj =0toy—1do

8: U4 Typj, M max, q; 4 (u)

9: if g, ;(v) > (1 — ag) M’ then > ¢’ is confident (no escalation)
10: if ¢, ;(v) > (1 — 1) M’ then > ¢’ accepts p’s token
11: accept v > keep Tyy;
12: optionally update &; < running-avg[1{g;, ;(v) > (1 —a1)M'}]

13: else

14: rewrite Ty ~ ¢y ; > ¢’ replaces the token
15: 7% < 7; break > earliest change triggers rollback
16: end if

17: else > ¢’ not confident = escalate to ¢
18: invoke ¢ on prefix x4 ;; let M <« max,, g.4;(u)

19: if g accepts v under the chosen rule (lossless or 7w-based) then

20: accept v

21: else

22: rewrite x4, ; using ¢ (or residual)

23: 7% < j; break

24: end if

25: optionally update J; < running-avg[1{q; ;(v) < (1 — ag)M'}]

26: end if

27: end for

28: if 7 = None then

29: Ky > whole block accepted
30: else

31: K<+ j* > longest valid prefix length
32: fallback to g at position t + « > as in Eq. (15)
33: end if

34: append the accepted prefix 444 x—1t0x; tt+ kK

35: end while ,
Note: The analytical mixture Tl't(q )(v) in Eq. (16) uses 91 = P[q;(v) > (1 — a1) maxy, q;(u) ]
and 02 = P[¢;(v) < (1 — ag) max, q;(u) | (Appendix [B.2); it does not alter the control flow
above.

B.2 PROBABILISTIC DERIVATION OF d1, 0o

At decoding step t, let the drafter distribution be p;(-), the pre-verifier distribution be g;(-), and the full
verifier distribution be ¢;(-). We denote M/ = max,cv ¢;(u). Given thresholds 0 < ag < ay < 1,
define 7, = 1 — aq, o =1—as, with 71 > 9. We distinguish three mutually exclusive
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events (relative to a drafted token v):

Ay(v) = {q(v) >m M} (¢’ confident and accepts p’s token),
Bi(v) == {nM] < q;(v) < 1 M|} (¢’ confident but rewrites with ¢'),
Ci(v) :={q(v) < 2M, } (¢’ not confident = escalate to ¢).

Clearly A;(v) U Bi(v) UCy(v) =

(1) Theoretical Analysis (Full Probability Decomposition). Define the marginal probabilities
under v ~ p;:

0o i= Pvat[Ct(v)]v
61 = Pv~pt[Bt(v)]a
by 1= Py, [Ae(0) ).

Since d,, + 51 + 65 = 1, the output distribution becomes

m(v) = 8 pe(v) + 01 ¢4 (v) + 82 @i (v). (A1)
Equivalently, one can express the weights via indicator expectations:

0p = Y pe(u) 1{q;(u) > 1 M}, (A2)

ueV
= pi(w) 1{rM] < qj(u) < 11 M}}, (A3)

ueV
Z pe(u) {q)(u) < 7o M]}. (A.4)

ucV

This yields the three-way mixture of accept with p, rewrite with ¢', and escalate to q. We refer
to Equation (A-T)-[A-4]as the theoretical analysis version.

(2) Practical Version (Confidence-Gated Mixture; aligned with main text). In practice, we use
confidence gates determined by a1, o and define the mixture weights as unconditional probabilities
under v ~ py:

61 :=Pyp,[qi(v) = (1 — a1) max, q;(u)], b2 = Pyp,[q)(v) < (1 — a2) max, qé(u%}A 5

Introduce the Bernoulli gates
Leont(v) = 1{ ¢;(v) > (1 — 1) max,, g;(u) }, Tesc(v) = 1{ q;(v) < (1 — ag) max, g;(u) } .
Conditioned on these gates, the instantaneous output at step ¢ is

Wt(v | Iconf7 Iesc) = (]- - Iesc(fv)) ((1 - Iconf(v))pt(v) + Iconf(v) qilt(v)) + Iesc(v) qt(v)~

Taking expectation over v ~ p; and the gates yields the confidence-gated mixture

m(v) = (1= 62)((1=0) pu(v) + 1 g(v)) + B2aqu(v), (A.6)

which matches the main-text Equation (16). In words, a larger §; (induced by a stricter 1) increases
the weight of ¢’ within the non-escalation branch, and a smaller d5 (from a looser as) reduces
escalation to g, stabilizing performance.

Remark (normalized conditional alternative). If one prefers a branch-normalized view, define
P[By(v)]
1—1085 7

and replace J; in (A.4) by 51; the functional form is unchanged, and both parameterizations are
equivalent up to re-scaling within the non-escalation branch.

01 = Puy,[gi(v) > (1 — an) max, qj(u) | q}(v) > (1 — @) max, q}(u)] =

This conditional form corresponds to the implementation in Algorithm[2} We refer to Equation (A.5)-
Equation (A.6) as the practical version, which matches the main-text Equation (I6).
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Relation to ai;, . With 73 =1 — g, 79 = 1 — o, the three regions correspond to:
* Acceptance region A;: ¢;(v) > (1 — 1) max, q;(u),
* Rewrite region B;: (1 — as) max, q;(u) < ¢;(v) < (1 — 1) max,, ¢;(u),
* Escalation region C;: ¢;(v) < (1 — a2) max,, q;(u).

Insight (learnable thresholds). While in the main analysis we treat a;; and a5 as fixed hyper-
parameters, one may also consider optimizing them directly during training or tuning. In this
view, a1, aig can be parameterized as learnable gates, with gradients obtained from the mixture
distribution 7;(v) in Equation . Such an approach allows the system to adaptively calibrate
the strictness of the confidence and escalation thresholds, potentially yielding better trade-offs
between accuracy and efficiency compared to manually chosen constants.

B.3 ANALYSIS OF THRESHOLD PARAMETERS «, o

We analyze how the two thresholds control routing and, consequently, the reliance on the large model
q. Recall that the pre-verifier ¢’ accepts a drafted token v from p when

g(v) = (1 —ar)maxgj(u),
and escalation to ¢ occurs when

g (v) < (1 —azmaxgj(u),

with the token-level mixture Wt(ql)(v) = (1= 82)((1 = 01)pe(v) + 6144 (v)) + S2q;(v) where 67 =
Pr [qg(v) > (1 — ay) max, qg(u)]7 09 = Pr [qg(v) < (1 — ag) max, qé(u)]

Monotonicity. Define the reliance on q at step ¢ as the escalation probability R; := J-. Because
the event set E,, = { ¢;(v) < (1 — aa) max,, q;(u) } shrinks as a5 increases (the threshold (1 — az)
decreases), we have

ast = E. |l = R:=Pr(E,,)isnon-increasing.

Thus, larger ap reduces escalation (smaller d5) and lowers dependence on ¢; smaller «y does the
opposite.

For the acceptance gate, the event A,, = { ¢;(v) > (1 — a1) max,, ¢q;(u) } expands as o increases,
hence
ot = Ay T = 6 =Pr(A,,) is non-decreasing.

Therefore, larger oi; makes ¢’ less strict (more tokens accepted by ¢’ rather than rewritten or escalated),
while smaller «v; enforces stricter early filtering.

Implications for efficiency/quality. Let c,, ¢y, ¢, be the per-token inference costs of p, ¢’, ¢ with
¢p K ¢q < cgq. Ignoring rollbacks for clarity, the expected per-token cost satisfies

]E[Cf] ~ (1 — 52)((1 — 61)0;,, —+ 516[1/) + §QCq.

Hence,

OE[Cy] _ OE[Ci] = 90,
= . —_ < _ _ , . <
daz 062 Oas (cg = ((1 = d1)ep +d01cgr)) - 0 < 0,

since 9d2/das < 0. Increasing i lowers cost (improves speed) by suppressing escalation to g;
decreasing as trades speed for quality by invoking ¢ more often. Similarly,
OE[C OE[Cy] 06 00
[t}: [t]';:(cq’_cp»ilfoa
Oay 061 day Oay
so larger a1 (looser pre-verification) slightly increases the share handled by ¢’ (vs. p), raising cost

mildly; smaller «; (stricter) pushes more tokens away from ¢’ (either rewritten less or escalated),
which can decrease cost but may increase rollback/escalation rates depending on .
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C COMPARISON OF DIVERGENCE MEASURES IN II-SPACE

In the main text we introduced the II-space formulation and highlighted the role of divergence
measures in connecting rejection rate with geometric discrepancy between p and q. Here we provide
a more complete comparison of several widely used distances.

Total Variation (TV) distance.

Drv(p.q) = 3> Ip(v)
veV
TV is symmetric and satisfies the triangle inequality. Moreover, in the lossless case (o = 0), the
rejection rate coincides exactly with Drvy (p, ¢). This tight consistency makes TV appealing, but
also restrictive: since the direct path p— ¢ is always shortest, introducing intermediate distributions
cannot reduce the effective distance. Thus, TV provides a faithful but rigid geometry where rejection
rate is tightly locked to the global discrepancy.

Kullback-Leibler (KL) divergence.

Dxi(plg) = > p(v log
veV
KL is asymmetric and does not satisfy the triangle 1nequal1ty. Instead, it admits a non-Euclidean
structure induced by negative entropy. This allows the possibility of information projection: for a
convex feasible set .S, one can find

r* = argmin kL(pl|7),

and the generalized Pythagorean theorem guarantees

Dxw(pllg) > Dxr(pllr™) + Dxr(r"[lq), Vg e S.

Hence, unlike TV, an intermediate distribution r* can strictly reduce the effective discrepancy.
This property provides the theoretical foundation for reducing rejection rate by designing suitable
verification pathways.

Jensen—-Shannon (JS) divergence.

Dys(plla) = 5Dxu(p][#5*) + 5D (gl 54) -
JS is symmetric and bounded, and its square root defines a metric. However, due to its averaging
nature, JS tends to blur directional information and does not directly correspond to rejection probabil-
ities. Thus, while JS is useful for visualization and bounded analysis, it lacks operational meaning for
speculative decoding.

Wasserstein distance.
W(p,q) = inf Eqp)~qy[d(u,v)],

v€T(p,q)
where T'(p, q) is the set of couplings of p and ¢, and d(-, -) is a ground metric. Wasserstein distance
captures geometry over the support of distributions and is popular in generative modeling. However,
computing it is significantly more expensive, and the link to rejection rate in speculative decoding is
indirect.

Why choose KL over TV? To summarize:

» TV provides exact rejection consistency but forbids improvement via intermediate distribu-
tions; KL relaxes geometric constraints, allowing the introduction of an intermediate r* to
lower effective discrepancy.

* This flexibility is critical in hierarchical or lossy pipelines, where rejection dynamics depend
not only on global discrepancy but also on the design of intermediate verification layers.

Insight. TV yields a faithful but rigid measure of rejection (cf. Equation (@)), whereas KL offers a
more flexible geometry that enables effective discrepancy reduction via intermediate distributions
(cf: Equation (8)). This property motivates our choice of KL as the primary divergence measure in
II-space.
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D FAMILIES OF INTERMEDIATE DISTRIBUTIONS AND MINIMAL PIECEWISE
KL PATHS

D.1 AN INFINITE FAMILY OF BENEFICIAL INTERMEDIATES

Recall the feasible family of intermediate distributions &/ C Ay, which is consistent with task priors,
model structure, and deployment constraints. Typical constructions include affine/moment constraints,
exponential-family closures, or spans induced by deployable proxy models (e.g., series variants or
layer-skipped submodels). For theoretical clarity, we assume U/ to be a non-empty closed convex set.

Lemma A.1 (Infinitely many beneficial intermediates). Fix p,q € Ay and a non-singleton
closed convex set I{ that contains g. Define the beneficial set

Usen = {uetd| Drlplle) = Dwlplu) + Dilullg)}-

Then Upen is typically infinite. In particular, let u* = arg min, s Dxr,(p||u) be the I-projection
of p onto U{. Whenever U contains an /-orthogonal submanifold through «* (or nontrivial local
perturbation families around q), every point » on such structures belongs to Uper, .

Sketch. By the generalized Pythagorean theorem on I-projections, for all ¢ € U,

Dxw(plle) = Dxu(pllu®) + Dxw(ulg).
u”* need not be unique globally if ¢/ admits I-orthogonal directions through *, and local deformations
preserving g € U generate continua of u with the same (or smaller) two-segment cost. Hence Uy, is
generically infinite. (]

The lemma formalizes that the theoretical improvement via a piecewise path is not tied to a unique u:
there usually exist infinitely many u € U that are beneficial, which motivates designing families of
intermediates in hierarchical pipelines rather than relying on a single pivot.

D.2 SHORTEST PIECEWISE PATH VIA A CHAIN OF INTERMEDIATES

The KL divergence is not a metric; thus “shortest path” needs an operational definition. We
define the piecewise KL action of a chain as the additive cost of its segments: for a sequence
D =UQ, ULy, Up, Upt1 = g Withu; €U,

n
Lk (Uoin41) = Z Dy, (wi || wig1)-
=0
Our goal is to construct chains that minimize Lkp, under modeling constraints.

Theorem A.2 (Successive I-projections yield a minimal chain). Letly D U; 2 --- D U, 2 {q}
be nested non-empty closed convex sets in Ay . Define the successive I-projections

up = argiré}/{ri Dxr(ugllu), ug = argireliuriDKL(ulﬂu), B e arggrelzilri/DKL(un_lnu),

with ug = p and u,, 1 = ¢. Then the generalized Pythagorean equalities telescope to give
n
DxL(pllg) = Y Dxw(uilluisr) = Lxw(omi1)- (A7)
i=0
Moreover, among all chains that respect the same nest {{;}, the successive I-projection chain
minimizes the piecewise action Lgr.,.

Sketch. Each step satisfies Dxr,(ui—1|lq) = Dxr(wi—1||u;)+ Dxr(ui]|q) for ¢ € U; by I-projection
orthogonality; summing over ¢ gives (A.7). Any alternative u) € U; increases the corresponding
segment cost by the optimality of the /-projection, hence increases the total action. ]

Corollary A.3 (Geodesic limit). Suppose {U;} are chosen so that the successive I-projection chain
lies on a dual-flat geodesic (e- or m-geodesic) between p and ¢ in appropriate coordinates; let the
mesh be refined so that max; Dxr, (u;||u;4+1) — 0as n — oco. Then the polygonal chain converges to
the corresponding straight line in the dual coordinates, while the piecewise action remains Dk, (pl|q)

by Equation (A.7).
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Discussion. Theorem A.2 provides an operational notion of “shortest” under the additive KL action:
a chain built from successive I-projections along nested convex families achieves the minimum
cost, and the limit of a finely discretized chain aligns with a straight (geodesic) trajectory in the
information-geometric sense. For hierarchical verification, the intermediates w1, . . . , u,, correspond
to tiers (e.g., increasingly restrictive submodels or constraints), and (A.7) explains why a well-aligned
multi-tier design can realize the theoretically minimal KL action from p to q.

D.3 PRACTICAL CHOICES OF u IN ENGINEERING IMPLEMENTATION

Although u can, in theory, be selected from an infinite family of intermediate distributions, in real-
world system design the choice is constrained by computational cost, inference latency, hardware
resources, and deployment complexity. Based on prior studies and empirical experience, the practical
options for u can be broadly grouped into three categories:

(1) Scale-up of the small model p. This approach constructs u by slightly enlarging the small model
p, for example, via LoRA, adapters, prefix-tuning, or adding a few attention or feedforward layers.
The main advantages are: (i) relatively low additional inference cost due to limited model expansion,
and (ii) parameter sharing with p, which enables rapid integration. However, the expressive power of
such u remains limited, and it often fails to capture the richer distributional features of ¢q. As a result,
its ability to reduce rejection rate is weak, especially for complex samples or long-context tasks.

(2) Using an intermediate-size model in the same family. Many model series (e.g., 2B-9B-27B)
contain natural intermediate checkpoints. Choosing such a mid-size model as w is straightforward: (i)
it is generally more aligned with ¢ than p, providing more accurate verification across a wider range of
inputs; (ii) it shares the same architecture, making it easily pluggable into the hierarchical verification
pipeline. The drawbacks, however, are significant: it requires loading and maintaining a separate
medium-scale model, which increases memory and bandwidth demands, complicates scheduling, and
reduces system throughput. Hence, despite potential gains in accuracy, the engineering burden makes
this choice less practical.

(3) Skip-layer variant of the large model g. A more pragmatic solution is to construct u directly
from g by skipping certain layers or extracting lightweight sub-networks. This design offers a balance
between theoretical soundness and engineering feasibility: (i) Consistency: since u and g share the
same parameter space, distributional alignment is naturally preserved, avoiding model inconsistency
issues; (ii) Low overhead: unlike introducing a standalone intermediate model, a skip-layer variant
requires no additional memory footprint and only modifies inference dynamics; (iii) Flexibility:
skipping ratios can be dynamically adjusted to trade off speed and accuracy depending on task
requirements; (iv) Stability: empirical evidence shows that skip-layer u significantly reduces rejection
rate and decoding cost without sacrificing generation quality.

Hence, we choose solution 3 as the final intermediate layer.
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E WHY THE DRAFTER MUST BE AN INDEPENDENT SMALL MODEL p
INSTEAD OF A LAYER-SKIPPED ¢”

A natural question in the hierarchical verification framework is: since the intermediate verifier u
can be constructed by layer-skipping from the large model g, why not also derive the drafter from ¢,
namely a smaller ¢”/, instead of using an independently trained small model p? From the perspective
of distributional divergence, this design is problematic.

Distribution mismatch. The drafter’s role is to generate a large number of candidate tokens at very
low cost, while maintaining a reasonable distributional consistency with g. This ensures both a low
rejection rate and high throughput. If we attempt to derive ¢” from ¢ via layer-skipping, forcing it to
approximate the scale of p, we often encounter distribution collapse:

Dxwi(qllq") > Dxu(q|p), (A.8)

meaning that the KL distance between ¢ and its truncated version ¢” is significantly larger than that
between ¢ and an independently trained small model p.

Underlying reason. An independent small model p is usually pretrained or distilled from larger
models, which allows it to produce stable and smooth probability distributions over the vocabulary.
In contrast, ¢ is simply a damaged copy of q. Removing critical layers severely harms its representa-
tional capacity, leading to poor calibration of probabilities and distorted token likelihoods. Formally,
if we write the layer-skipping projection as

¢ =1.(q), =z€{0,1}",
where z, = 0 indicates the ¢-th layer of ¢ is removed, then as ||z||o decreases, the divergence gap

AD = Dxi(qllq") — Dxw(qllp) (A.9)

tends to grow rapidly. This reflects the fact that ¢” suffers from systematic bias rather than well-
structured compression.

Effect on rejection rate. In speculative decoding, the rejection rate at step ¢ is closely linked to
distributional distance. In particular, under lossless conditions we have

pt = Drov(pe, qr),

and under KL-style analysis, the rejection rate is upper bounded by

pr < 1/ 3DkL(pellar)-

Thus, if p is replaced with ¢, the bound is dominated by Dkr,(¢”||q), which is substantially larger
than Dkr,(pl|q). This directly implies that the rejection rate with ¢’ would be unacceptably high.

Practical implication. If ¢”’ is used as the drafter, the large model ¢ would reject its outputs much
more frequently, resulting in a drastically higher rejection rate that negates the acceleration benefit of
speculative decoding. By contrast, a purpose-trained small model p aligns better with ¢ in distribution
space, leading to smaller KL divergence, stable rejection rates, and lower overall cost.

Summary. Within hierarchical verification, a layer-skipped model ¢” is a reasonable choice for the
intermediate verifier u, but not for the drafter. The drafter must be an independent small model p;
only this design ensures both efficiency and smoothness of distributions, avoiding KL blow-up due to
distribution collapse and maintaining the acceleration gains of speculative decoding.
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F ALTERNATIVE MARGIN PENALTIES ¢» AND DETAILED DERIVATIONS

Setup and unification. Recall the acceptance inequalities (main text Egs. (8a)—(8b)):
g(xr) > (1-a)p(z) <= logq(r) —logp(z) > log(1l —a),
p(z) < ga(z) <= logg(z) —logp(z) > logp.

Let my := log(1 — «) and my := log 3, and define at decoding step t the logits ¢ (v) = log ps(v),
0] (v) = log ¢;(v), and margins

z(v) = my+ 6 0) =),  2) = me+ @) - L().

Violations correspond to z;(v) > 0 (falling short of the acceptance gate) and z2(v) > 0 (residual
replacement pressure).

General ¢-penalized single-step cost. Let ¢ : R — R>( be any convex, nondecreasing penalty
(“positive-part” surrogate). A general ¢-style cost for one step is

RS 5(dllp)|, = Eunp, [#(21(0))] + Eumg, [Hz2(v))] -

acceptance threshold residual replacement

Expanding expectations yields a token-wise sum (computable when py, g; are available):
QHP Zpt ¢(2’1( ZQt ¢(2’2

Accumulating over time ¢ € T gives the block-level cost

slalp|m) = > RE 4

teT

D+, ¢t € Ay induced by 7.

Canonical choices for ¢ (family and properties). We list common surrogates, all convex and
nondecreasing in z; gradients are useful for tuning:

1. Hinge / ReLU: ¢(z) = max{0,z}.  Subgradient: ¢'(z) € [0, 1], equals 1 for z > 0, 0 for
z < 0.

2. Squared hinge: ¢(z) = (z+)2, zy = max{0,2}. Gradient: ¢'(z) = 2z4 1{z > 0}.

3. Huber-hinge (parameter x > 0):

0 z <0,
2
Or(2) = 2 0<z<k
K
_5, zZ>K

Gradient: 0, z/k, 1 in the three regions.

4. Softplus / smooth hinge (temperature 7 > 0): ¢, (2) = 7log(1 +¢*/7).  Gradient: ¢/,(z) =
o(z/7) € (0,1) with ¢ the logistic.
Bounds: zy < ¢-(z) < z4 + 7log?2 for all z.

5. Power hinge (aggressive): ¢,(z) = (z4)”, p>1. Gradient: ¢/,(z) = p (24)P~' 1{z > 0}.

6. Exponential positive-part (heavy-tail): ¢<P(z) = max{0,e*/” — 1}, 7> 0. Gradient for
z>0:¢l(2) = %ez/T; 0 for z < 0.

Choosing larger curvature (e.g., squared hinge, exponential) penalizes large violations more aggres-
sively; smooth surrogates (softplus, Huber-hinge) provide stable gradients while remaining consistent
with the hard margin in the 70 or £ 0 limit.
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Ordering and calibration. If ¢;(z) < ¢2(z) for all z, then Rﬁfﬁ(qﬂp) < Ri’?ﬁ(qu) (same for
C?). In particular, with softplus temperature 7,

REFV(qllp) < RS (qllp) < REGY(qllp) + 7 log2: ( D> i)+ ar(v) ) = RY%5Y(qllp) + 27 log 2.

=1 =1

Gradients w.r.t. logits (useful for tuning). Let ¢](w) = log ¢:(w):

agq Zpt ¢(Zl = —pe(w) ¢/(21 (w))7

aeq ZQt ) ¢22(v) w) Yz2(w)) — q(w) Byng,[d(22(w)] — @ (w) ¢'(22(w)).

(Here we used 9¢;(v) /00 (w) = q¢:(v) (1{v = w} — ¢:(w)) and D22(v) /] (w) = —1{v = w}.)
Analogous expressions hold for ¢% (w) if p is trainable.

Single-pass Monte Carlo via a mixture sampler. If enumerating the vocabulary is infeasible, one
may draw tokens from a mixture 7,° = pup; + (1 — p) q; and use importance weights:

Eyrp,[0(21(0))] = Epori [7]:;((1;))

gt(v)

Eymg[0(22(0))] = Byemp [Wé(v)

A simple choice is 1 = % or an adaptive u based on acceptance rates.

Three-tier extension. For the folded path p — u — ¢, we reuse the same ¢-style cost on each
segment: C¢ pullp| ) and c? 5(qllu| ). The discriminant remains

A% s(ulm) = €2 sallplm) — (CLsullp|m) +CZ sallulm)),

which reduces to Equation when ¢ = ReLU or ¢ = log(1 + €7).
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G FRrRoOM LLR GATES TO TOKEN-WISE ¢-COSTS

Step 0: Unifying the two acceptance gates as log-margins. Recall the speculative-decoding
acceptance conditions (Eqgs. (8a)—(8b)):

q(z) = (1-a)p(z) <= logq(z) —logp(x) > log(l—a),
p(z) < gaq(x) <= logg(x) —logp(z) > logp.
Let my := log(1 — @), my := log 8. At decoding step ¢, define logits ¢} (v) = log p;(v), ¢f(v) =
log ¢:(v) and the two log-margins
z(v) = m+ 6 0) =),  2) = me+ () - L)

Violations of the gates correspond to 21 (v) > 0 (falling short of the (1—«) acceptance) and 29(v) > 0
(pressure to replace under the 1/ bound).

Step 1: From hard constraints to a convex positive-part penalty. Let ¢ : R — R>( be a convex,
nondecreasing “positive-part” surrogate (for a hard threshold one may take ¢(z) = max{0, z}; for a
smooth version ¢(z) = log(1 4 e*), etc.). We measure the severity of violations by ¢(z1) and ¢(z2).
Because the acceptance test in practice is applied to candidates drafted from p, its shortfall should be
averaged under p; conversely, the residual replacement borrows mass from g, so its contribution is
averaged under q. This yields the single-step ¢-style cost

o - (1 —a)p() Bp(x)
o )] 222
Taking ¢ = ReLU or ¢(z) = log(1 + €*) recovers Equation @) in the main text.

Step 2: Making the expectation explicit at step ¢. At a fixed step ¢ on a discrete vocabulary,
expectations become token-wise sums:

Emt[qs(log“_ai“(”)]=Zm<v>¢(m1+€i’< ~H0) = o) o0

Qt

qutP(logﬁpt )] th ) o(ma + €2 (v) — £ (v th ) K22 (v)

Therefore the single-step cost is

R? (dllp)|, = D pe(v) 21(v)) th ) H(z2(v) (A.10)
Step 3: Specializing to ¢(z) = max{0, z} (ReLU) gives Equation . Choosing ¢(z) =
ReLU(z) = max{0, z} in equation yields
REL( (qllp)], pr ) ReLU(z1 (v Z ¢:(v) ReLU(22(v)),
acceptance threshold term residual replacement term

which is exactly Equation (TT)) in the main text, with 21, z, defined in equation|§]

Step 4: Accumulating over time gives Equation (I0). Summing the single-step costs over
decoding steps 7 in the II-space induced by the lossy rule, we obtain the block-level cost

s(lp|™) = 3" R? s(alp)],,  pe.a € Av induced by .
teT

Taking ¢ = ReLU (or ¢(z) = log(1 + €*)) recovers Equation (10). O

Remarks. (i) The first term in equation[8]is averaged under p because the acceptance gate is
evaluated on drafts from p; the second is averaged under q as it quantifies the log-margin cost
when q replaces p’s proposals.  (ii) Alternative convex surrogates (squared hinge, Huber-hinge,
softplus) can replace ReLU without changing the derivation; only ¢ changes in equation[A.10}
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H ADDITIONAL TABLES AND FIGURES

H.1 ALL RESULTS ON T5 AND GEMMA

Table 4: Performance comparison (Xsum, CNNDM, and WMT14) under different decoding settings.

Model Methods XSum CNNDM WMT14

ROUGE-2 Rejection Rate Speedup ROUGE-2 Rejection Rate Speedup BLEU Rejection Rate Speedup

Greedy Decoding: Temperature=0

Speculative Decoding 16.36 0.33 1.20x 11.00 0.34 2.05x  18.00 0.39 1.40x
BiLD 16.36 0.32 1.25% 11.00 0.33 2.10x  18.00 0.38 1.55x%
Cascade SD 16.36 0.31 1.30% 11.00 0.32 2.15x  18.00 0.38 1.55%
S]ii Faster Cascades 19.9 0.30 1.42x 15.7 0.33 2.12x 275 0.35 1.85%
SWIiFT 16.36 0.30 1.35% 11.00 0.31 2.18x  18.00 0.37 1.70x
CLaSP 16.36 0.29 1.38x% 11.00 0.30 2.20x  18.00 0.36 1.75%
Ours 21.3 0.26 2.15% 12.70 0.28 2.35x 2192 0.32 2.50%
Speculative Decoding 18.70 0.36 1.28x 12.80 0.35 1.95x 2295 0.41 1.80x
BiLD 18.70 0.34 1.35x 12.80 0.34 2.00x 2295 0.39 1.92x
Cascade SD 18.70 0.33 1.40% 12.80 0.33 2.05x 2295 0.38 2.00x
S:F;L Faster Cascades 18.90 0.31 1.60x 12.95 0.32 2.10x  23.05 0.31 2.70x
SWIiFT 18.70 0.32 1.45% 12.80 0.32 2.12x 2295 0.34 2.20%
CLaSP 18.70 0.31 1.48x 12.80 0.31 2.15x 2295 0.33 2.25x%
Ours 18.90 0.26 1.95x 12.99 0.27 2.75x  23.10 0.27 3.35%
Non-Greedy Sampling: Temperature=1
Speculative Decoding 14.80 0.36 1.02x 11.20 0.36 1.79%  18.10 0.42 1.30x
BiLD 14.80 0.34 1.10x 11.20 0.34 1.85x  18.10 0.41 1.40x
Cascade SD 14.80 0.33 1.15% 11.20 0.33 1.90x  18.10 0.40 1.45x%
gi Faster Cascades 15.05 0.30 1.30x 12.63 0.34 1.88x  22.50 0.36 1.78x
SWIiFT 14.80 0.32 1.20% 11.20 0.32 1.92x  18.10 0.38 1.55x%
CLaSP 14.80 0.31 1.25% 11.20 0.31 1.95x  18.10 0.37 1.60x
Ours 15.27 0.24 1.90x 12.81 0.26 2.10x  21.33 0.34 2.30%
Speculative Decoding 18.90 0.38 1.12x 12.90 0.38 1.70x  23.00 0.44 1.70x
BiLD 18.90 0.36 1.20% 12.90 0.36 1.82x  23.00 0.42 1.80%
Cascade SD 18.90 0.35 1.25x 12.90 0.35 1.85x  23.00 0.41 1.85%
Sir)?L Faster Cascades 18.99 0.30 1.45% 12.95 0.34 1.95x  23.05 0.39 2.55x%
SWiFT 18.90 0.34 1.30x 12.90 0.34 1.95x  23.00 0.40 2.00x
CLaSP 18.90 0.33 1.35% 12.90 0.33 2.00x  23.00 0.39 2.05x%
Ours 18.95 0.28 1.65x 13.05 0.24 2.40x  23.10 0.37 3.10x

Hyperparameters. All the results confirm that with v = 5, a3 = 0.5, and as = 0.3, the
proposed approach outperforms all baselines in terms of the trade-off between quality, rejection
rate, and speedup, thereby validating the effectiveness of the hierarchical verification design. This
configuration strikes a balance between the acceptance tolerance of the intermediate verifier and the
replacement flexibility of the final verifier, enabling stable comparisons across different decoding
strategies.

T5 Results Analysis. Table [ reports the performance of T5 under different decoding strategies on
XSum, CNNDM, and WMT14. For the smaller variant T5-S-L, our method achieves the best balance
between quality, rejection rate, and speedup. On XSum, the ROUGE-2 score improves to 21.3 with
a rejection rate reduced to 0.26, yielding a 2.15x acceleration. Similarly, on CNNDM we reach
12.7 ROUGE-2 with a rejection rate of 0.28, corresponding to a 2.35x speedup. On WMT 14, our
method obtains 21.92 BLEU and 2.50x speedup, surpassing all baselines. These results demonstrate
that even for smaller-scale T3, hierarchical verification provides consistent gains without sacrificing
quality.

For the larger T5-S-XL, the advantage becomes more evident. On XSum, our method reaches
18.9 ROUGE-2 with a rejection rate of 0.26, improving speedup to 1.95x, higher than Cascade SD
(1.40x) and Faster Cascades (1.60x). On CNNDM, our approach delivers 12.99 ROUGE-2 and
2.75x speedup, while on WMT14 we obtain 23.10 BLEU and 3.35x speedup, marking the highest
performance among all compared methods. The larger model shows both lower rejection rates and
broader tolerance to longer drafts, thus benefiting more significantly from our hierarchical design.
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Overall, these findings confirm that the proposed method scales effectively with model size. Compared
to traditional speculative decoding and its variants, our approach reduces rejection by up to 0.1
absolute points and increases speedup by 0.5—1.0x, while preserving or even improving generation
quality.

Table 5: Performance comparison on Gemma: GSM8K, MBPP, and SQuAD 2.0.

Model Baseline GSM8K MBPP SQuAD 2.0

Quality Rejection Rate Latency Quality Rejection Rate Latency Quality Rejection Rate Latency

Speculative Decoding ~ 0.70 0.16 1.42x 0.52 0.19 1.65x 0.60 0.40 1.60x

BiLD 0.70 0.14 1.63x  0.52 0.17 1.80x  0.60 0.38 1.85x

__ Cascade SD 0.70 0.15 157 0.52 0.17 1.80x  0.60 036 1.91x
ngm,gl)“z Faster Cascades 0.72 0.12 1.82x  0.53 0.16 1.83x  0.60 035 2.05%
SWIFT 0.70 0.13 170x 052 0.18 174%  0.60 0.36 1.91x

CLaSP 0.70 0.12 1.84x 052 0.18 175%  0.60 034 2.12x

Ours 0.73 0.09 193x 054 0.12 195  0.59 0.29 2.43x
Speculative Decoding ~ 0.75 0.16 176 0.64 0.14 175%  0.64 0.28 1.70x

BiLD 0.75 0.13 195x  0.64 0.12 200%  0.64 0.26 1.95%

__ Cascade SD 0.75 0.14 1.83x  0.64 0.13 1.84x  0.64 0.26 1.95%
G;;‘z";gz Faster Cascades 0.76 0.10 201 0.65 0.12 203x  0.65 0.25 2.30x
SWIFT 075 0.15 1.80x  0.64 0.13 1.83x  0.64 025 2.29%

CLaSP 0.75 0.15 181x  0.64 0.12 203%  0.64 0.24 2.47%

Ours 0.78 0.07 210x  0.63 0.10 220x  0.65 0.20 2.85x

‘WebQuestions Natural QA TriviaQA

Model Baseline

Quality Rejection Rate Latency Quality Rejection Rate Latency Quality Rejection Rate Latency

Speculative Decoding ~ 0.27 0.17 1.50x 026 0.27 132x 050 0.21 1.55x
BiLD 0.27 0.15 1.59%x 026 0.24 1L.67x 050 0.19 1.85x
Cascade SD 0.27 0.16 1.53x 026 0.26 143x 050 0.20 1.62x
G;Efgmlfz Faster Cascades 0.28 0.13 1L65x 027 0.22 175 052 0.17 1.90x
SWIiFT 0.27 0.15 1.59% 026 0.25 L61x 050 0.18 1.73x
CLaSP 0.27 0.14 1L.62x 026 0.24 167 0.50 0.17 1.90%
Ours 0.28 0.10 1.82x 028 0.17 2.10x 053 0.13 2.33x
Speculative Decoding ~ 0.32 0.27 1.55x 0.32 0.45 1.54x 0.54 0.24 1.65x
BiLD 032 0.26 163x 032 041 1.92x 054 0.22 2.15%
Cascade SD 0.32 0.24 171x 032 0.42 173x 054 0.23 1.81x
Gze;f‘z“;ﬁz Faster Cascades 0.33 0.22 181x 033 0.40 210x  0.56 0.20 2.30%
SWIFT 0.32 021 1.89x 032 041 193x  0.54 0.23 1.82x
CLaSP 0.32 0.20 197x 032 0.39 221x 054 0.22 1.99
Ours 0.32 0.14 232x 0.34 0.30 2.61x 055 0.15 2.50x

Gemma Results Analysis. From the results in Table[5] we set temperature 7' = 1 and observe that
across both Gemma2-2b/9b and Gemma2-2b/27b, our method consistently outperforms baselines
on GSMSK, MBPP, SQuAD 2.0, WebQuestions, NaturalQA, and TriviaQA. The improvements can
be summarized as follows.

Overall, the differences in quality scores among methods are relatively small, indicating that most
techniques primarily target efficiency. Nevertheless, our method achieves stable and sometimes
notable gains. For example, on GSMB8K, the quality rises from 0.70 with the baseline Speculative
Decoding to 0.73 for Gemma2-2b/9b, and further to 0.78 for Gemma2-2b/27b. Similar improvements
are observed on WebQuestions and NaturalQA, showing that reducing rejection does not compromise
output quality, but can even enhance it.

Rejection rate is a key indicator of the strictness and stability of verification. Compared to baseline
Speculative Decoding, our method substantially lowers rejection rates across tasks and scales. For
instance, on NaturalQA with Gemma2-2b/27b, rejection rate drops from 0.45 to 0.30, while on
TriviaQA it decreases from 0.24 to 0.15. This indicates more effective filtering of drafted candidates,
leading to fewer rollbacks.

Our method consistently achieves lower latency and higher speedup, with advantages becoming more
pronounced on larger models. On TriviaQA with Gemma2-2b/27b, the speedup reaches 2.50x, clearly
surpassing Faster Cascades (2.30x) and CLaSP (1.99x). On NaturalQA, the maximum speedup
is 2.61x, highlighting the method’s effectiveness in mitigating inference delays and improving
throughput in challenging tasks. Compared to other multi-stage speculative decoding approaches
(BiLD, Cascade SD, Faster Cascades, SWiFT, and CLaSP), our method achieves a well-balanced
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outcome across all three metrics: slight gains in quality, substantial reduction in rejection rate, and
the highest speedup. This “triple-win” effect makes the approach highly practical, especially for
latency-sensitive applications.

H.2 ADDITIONAL ABLATION STUDIES

Effect of o and o,  Figure[5]presents the ablation
results of g (strictness of rejecting the drafter p) and
a2 (strictness of deferring to the full verifier ¢) on
Gemma?2-2b/9b. The vertical axis denotes «, the
horizontal axis denotes a3, and the color intensity
reflects the relative reliance on the large model gq.
Several observations can be drawn.

Relative reliance on big model g

0.2

First, as exerts the dominant influence. With small
values of as (e.g., 0.1-0.3), the system rarely esca-
lates to the large model, keeping reliance at a low
level (around 0.1-0.2). This setting improves effi-
ciency but risks admitting tokens that deviate from
the large model’s distribution, potentially degrading
quality. As a increases, reliance grows significantly

a (strictness of rejecting p)
07 06 05 04 03

09 0.8

Oh Qé 05 OM 05 0.6 0.7 08 09

(above 0.6), indicating that stricter deferral triggers @, (strictness of deferring to q)
more frequent calls to g, thereby stabilizing perfor-
mance at the cost of reduced speedup. Figure 5: Ablation result of «aj, ap on

Second, «; has a comparatively milder effect. In- Gemma2-2b,b.

creasing a;; makes the pre-verifier ¢’ more selective

over p’s tokens, modestly raising the likelihood of invoking the large model. However, the vertical
variation is less pronounced than the horizontal changes driven by aw. This suggests that a;; primarily
tunes the early-stage filtering, while the overall reliance is chiefly governed by .

Finally, the joint effect of o; and ay reveals a meaningful trade-off space. Configurations with
lower a1 and moderate as reduce dependence on ¢ while maintaining a reasonable balance between
efficiency and quality. In contrast, setting both parameters high results in near-lossless quality but
almost eliminates the computational benefits.

Ablation on v; and a;.  The ablation study in Figure[6investigates the impact of varying the verifi-
cation thresholds (o, a2) on the overall decoding speedup. Across all six benchmarks, we observe a
consistent unimodal trend with respect to «: setting a; too small admits overly lenient acceptance,
which increases rollback overhead, while overly strict a;; values cause frequent intervention by the
large model. The optimal balance is typically reached around c; = 0.5, where speculative efficiency
is maximized without sacrificing verification stability.

The effect of oy is similarly pronounced. Relaxed values (az = 0.30 or 0.40) yield the best speedups
across most tasks, as they reduce unnecessary escalations to the large verifier. In contrast, overly strict
gating (a2 = 0.50) consistently degrades speedup, while overly lenient gating (ae = 0.20) increases
rollback, both leading to suboptimal performance. Among the datasets, SQuAD?2 exhibits flatter
curves, suggesting higher robustness to ae, whereas NaturalQA and TriviaQA are more sensitive and
clearly peak around (ay = 0.5, p = 0.3).

Overall, the ablation results highlight that the pair (a; = 0.5, ap = 0.3) provides the most stable and
effective trade-off, consistently achieving the highest or near-highest speedup across all evaluated
datasets.

The ablation results of (aq, ) for Gemma2 2b—27b are presented in Figure[7| Similar to the
2b—9b setting, we observe a unimodal pattern along 1 : both overly small and overly large values
reduce efficiency, while a;; = 0.5 consistently delivers the best performance across tasks.

For s, the trade-off is more pronounced. On GSM8K and SQuAD?2, relaxed settings (as = 0.30
or 0.40) achieve the highest speedups, whereas a2 = 0.50 significantly suppresses acceleration due
to excessive verifier intervention. MBPP exhibits a slightly right-shifted optimum, with a;; = 0.6
paired with o = 0.30/0.40 yielding the strongest gains. NaturalQA and TriviaQA again highlight
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Figure 6: Ablation result of o7 and cy on Gemma2-2b,9b.

the sensitivity to aiz, where strict gating degrades speedup and the best region is clearly centered
around (a3 = 0.5, g = 0.3).

Overall, the 2b—27b results reinforce the robustness of (a; = 0.5, as = 0.3) as a general-purpose
configuration, while also indicating slight task-specific variations such as MBPP’s preference for a
larger o .

Ablation on Draft Length v. To examine the effect of the draft length on acceleration, we vary the
number of draft tokens « under fixed hyper-parameters (a; = 0.5, oy = 0.3, skip-ratio = 45%). As
shown in Figure[8] all datasets exhibit a consistent unimodal trend: increasing -~ initially improves
speedup by enlarging the expected number of accepted tokens per draft, but overly large + values
raise the rejection probability and verification overhead, which reduces the net gain.

For Gemma2-2b/9b, the optimal draft length is around v = 5. The peak speedup reaches about 2.1 x
on GSMS8K, 2.2x on MBPP, and 2.6 x on SQuAD?2, after which the curves quickly decline. This
indicates that small models are more sensitive to block rejections, as rollback costs rapidly outweigh
drafting benefits when + becomes too large.

In contrast, Gemma2-2b/27b shows a broader optimum around v = 6-7, where the speedup rises to
approximately 2.4x (GSMS8K), 2.6 x (MBPP), and nearly 3.0x (SQuAD2). Even with v = 8-10,
the performance remains close to the maximum, reflecting that larger models generate drafts more
consistent with the verifier, thus tolerating longer blocks without severe rollback penalties.

Moreover, dataset characteristics also influence the optimal v. GSMS8K, requiring long-chain reason-
ing, consistently yields the lowest speedup; MBPP achieves intermediate gains; while SQuAD?2.0,
characterized by shorter extractive outputs, attains the highest acceleration. These results suggest that
~ should be set to a moderate value (= 5 for smaller models, 6-7 for larger models) to balance draft
efficiency and verification stability.
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Figure 7: Ablation result of o7 and cvy on Gemma2-2b,27b.

Speedup vs y across datasets (a1=0.5, a2=0.3, skip-ratio=45%)
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Figure 8: Ablation result of different v setting.
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