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Benchmark and Neural Architecture for Conversational Entity
Retrieval from a Knowledge Graph

Anonymous Author(s)

ABSTRACT
This paper introduces a novel information retrieval (IR) task of Con-
versational Entity Retrieval from a Knowledge Graph (CER-KG).
CER-KG extends non-conversational entity retrieval from a knowl-
edge graph (KG) to the conversational scenario. The user queries
in CER-KG dialog turns may rely on the results of the preceding
turns, which are KG entities. Similar to the conversational docu-
ment IR, CER-KG can be viewed as a sequence of interrelated
ranking tasks. To enable future research on CER-KG, we created
QBLink-KG, a publicly available benchmark that was adapted from
QBLink, a benchmark for text-based conversational reading com-
prehension of Wikipedia. In our initial approach to CER-KG, we
experimented with Transformer- and LSTM-based dialog context
encoders in combination with the Neural Architecture for Conversa-
tional Entity Retrieval (NACER), our proposed feature-based neural
architecture for entity ranking in CER-KG. NACER computes the
ranking score of a candidate KG entity by taking into account a large
number of lexical and semantic matching signals between various
KG components in its neighborhood, such as entities, categories,
and literals, as well as entities in the results of the preceding turns in
dialog history. The experimental results for our initial approach to
CER-KG reveal the key challenges of the proposed task along with
the possible future directions for developing new approaches to it.
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1 INTRODUCTION
The recent advances in deep learning have catapulted human-machine
dialog from the narrow confines of scripted task completion into
everyone’s daily life. With the growing popularity of mobile devices
and digital personal assistants, the human-machine dialog is also
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well-poised to soon become the primary modality for information
seeking. In conversational information seeking [11], users engage
in a dialog with a search system to address their information needs.
The user utterances in such dialog can take several forms, includ-
ing queries and questions. Generating a search system’s response
for each form of user utterance in information seeking dialogues
requires leveraging a wide variety of sources (text collections, knowl-
edge graphs, tables, and databases) and an even wider variety of
approaches that can utilize these sources along with the dialog con-
text in the form of the preceding dialog turns.

Two major themes can be identified in prior research on conversa-
tional information seeking: conversational question answering (QA)
and conversational information retrieval (IR). Conversational QA
has been well-studied in the scenarios that utilize a textual collection
[26, 42–45, 52], knowledge graph (KG) [8, 18, 24, 25, 35, 46, 48],
table [23] and their combinations, such as KG and text [49, 50]
or KG, text and tables [9]. Conversational IR research, however,
has so far only focused on text collections [19, 31, 53], whereas
entity retrieval from a KG has not yet been studied in a con-
versational setting. To address this oversight, we introduce a novel
task of Conversational Entity Retrieval from a Knowledge Graph
(CER-KG) summarized in Figure 1 and defined as follows:

DEFINITION 1. Conversational Entity Retrieval from a Knowl-
edge Graph is an IR task that focuses on retrieving an entity or a
set of entities in response to a free-form query that may explicitly or
implicitly rely on the dialog context.

This definition leads to several important differences between
CER-KG and Conversational QA over a KG (CQA-KG). From a
conceptual perspective, CER-KG extends entity retrieval from a
KG to a dialog setting. Similar to conversational document IR [12],
CER-KG can thus be viewed as a sequence of interrelated rounds
of candidate KG entity retrieval and ranking. Correspondingly, the
key challenges of CER-KG are the identification of comprehensive
candidate entities in a KG and the discovery of effective relevance
signals and methods to translate those signals into the accurate
ranking of candidate entities. On the other hand, CQA-KG and
QA from a KG, which it extends, can be viewed as a sequence of
interrelated inference and reasoning procedures over a KG subset.
The key challenges of those procedures are the discovery of methods
that can simultaneously perform logical, comparative, quantitative
and verification reasoning, and infer the answers that may not be
explicitly present in a KG.

There are also practical differences arising from the benchmarks
proposed for these tasks. First, unlike short artificially constructed
questions with a single entity mention typical of the datasets for
CQA-KG, such as CSQA [46] or ConvQuestions [8], the bench-
mark we propose for CER-KG makes no strict assumptions about
the structure of the queries (as follows from Figure 1, the manually
written queries in CER-KG can be arbitrarily long and include mul-
tiple entity mentions) or the nature of the resulting entities (unlike

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Dialog Context

Current Utterance
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named Starbuck, and a native of Kokovoko named Queequeg.

A1: Moby-Dick

Q2: This author wrote about Ishmael and Captain Ahab in
Moby-Dick. He is also known for a work in which Billy Budd

accidentally kills John Claggart.

A2: Herman Melville

Q3: Melville wrote this collection of short stories, one of
which is about Amasa Delano, Benito Cereno, and another is
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would prefer not to,” Bartleby the Scrivener.
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Figure 1: Overview of the proposed task of Conversational Entity Retrieval from a KG (CER-KG).

entity answers to questions in CSQA, which are restricted only to
the object position of KG triples, resulting entity(ies) in CER-KG
can be in the subject or object position of KG triplet(s)). Questions
in CSQA, on the other hand, can have other answer types besides
KG entities (e.g. numbers, true/false).

Overall, CER-KG complements CQA-KG in the landscape of
methods that need to be developed for different types of conversa-
tional information-seeking interactions to enable its practical use.

As the first approach to CER-KG, we propose a Neural Architecture
for Conversational Entity Retrieval (NACER), a feature-based neu-
ral architecture to rank the candidate KG entities for each CER-KG
dialog turn. Rather than taking distributed representations of the
current dialog turn, dialog context, and a candidate KG entity to
compute relevance signals internally, NACER directly utilizes di-
verse relevance signals as input features that capture the semantic
and lexical similarities between a current dialog turn, preceding an-
swer(s) and candidate entity’s neighboring KG components, such as
entities, categories, and literals. The candidate KG entities are then
ranked according to their relevance scores computed by NACER.
Since NACER makes no restrictive assumptions about the dialog
context and can be easily adapted to be used along with CQA-KG
methods to generate responses at different turns of the same real-life
information seeking dialog.

To evaluate NACER and enable future research on CER-KG, we
adapted QBLink [16], an existing benchmark for conversational
reading comprehension of Wikipedia, to construct QBLink-KG, a
CER-KG benchmark for DBpedia [29].1

2 RELATED WORK
2.1 Non-conversational entity retrieval from a KG
Benchmarks for non-conversational entity retrieval from a KG, such
as DBPedia-Entity v2 [20], aim at finding an entity, an attribute of

1QBLink-KG and the source code of NACER and the baselines are publicly available at
http://anonymized

an entity, or a list of entities in response to a keyword query or a
question. Traditional IR methods proposed for this task [7, 39, 58]
construct structured documents for each KG entity and aim to cor-
rectly weigh and aggregate lexical matches of the key query concepts
in different fields of structured entity documents towards overall en-
tity ranking score. The neural architectures proposed for this task
range from feed-forward neural networks with attention [2] to trans-
formers [6, 13, 17, 56] and aim to match dense representations of
textual queries and KG entities.

2.2 QA and CQA over a KG
Prior research on QA over a KG independently studied simple and
complex questions. Simple questions, such as those in the Sim-
pleQuestions benchmark [3], correspond to a single KG triplet, in
which the entity in the subject position is mentioned in a ques-
tion and the entity in the object position is the answer. Existing
approaches for simple QA over a KG can be grouped into two
categories: end-to-end neural networks [21, 34] and pipelined ap-
proaches [33, 37, 40, 51, 57].

Property SQA QA CQA ER CER
Involves a multi-turn dialog ✗ ✗ ✓ ✗ ✓

Answer is present in a KG ✓ ✗ ✗ ✓ ✓

Answer is a KG entity ✓ ✗ ✗ ✓ ✓

Multiple types of answers or no
answer

✗ ✓ ✓ ✗ ✗

Answer requires reasoning
and/or inference

✗ ✓ ✓ ✗ ✗

Anaphora, co-references and el-
lipses

✗ ✗ ✓ ✗ ✗

Table 1: Summary of the key properties of Simple Question
Answering (SQA), Complex Question Answering (QA), Conver-
sational Question Answering (CQA), Entity Retrieval (ER) and
Conversational Entity Retrieval (CER) over a KG.

2
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Complex QA over a KG has been well-studied in both non-
conversational [5, 22, 32, 41, 47] and conversational [8, 18, 24,
25, 35, 48] settings. The major challenges of complex questions
are that, besides entities, the answers to them can be yes/no, dates,
numbers, or even no answer at all, and that answering them requires
a multi-hop traversal of a KG, performing reasoning or comparison,
aggregation, counting or set operations over a subset of a KG to
discover the facts that may not be explicitly present in a KG. These
challenges have been addressed with heuristic approaches [8], multi-
hop inference [32, 47], reinforcement learning [25] and semantic
parsing into an executable logical form [18, 22, 24, 35, 41, 48] or
specialized language to represent the reasoning process [5].

The key properties of CER-KG, QA-KG and CQA-KG are sum-
marized in Table 1, from which it follows that CER-KG methods
cannot be evaluated on CQA-KG benchmarks, since the questions
in them are not fully-formed due to the presence of anaphora, co-
references and ellipsis. CQA-KG cannot be addressed using only IR
methods due to their inability to perform advanced reasoning.

3 QBLINK-KG
QBLink-KG, our proposed benchmark for CER-KG, is adapted
from QBLink [16], a high-quality, manually compiled benchmark
for conversational reading comprehension over Wikipedia. QBLink
consists of a short lead and a series of up to three queries, the
answers to which are single named entities corresponding to the
titles of Wikipedia articles. Formally, the task of CER-KG is to find
out the correct answer (a KG entity) 𝑎𝑘 to a query 𝑞𝑘 in the 𝑘th
dialog turn given the dialogue context, which includes all preceding
queries 𝑞1, . . . , 𝑞𝑘−1 and their answers 𝑎1, . . . , 𝑎𝑘−1.

We used the English subset of the September 2021 DBpedia
snapshot2 as the target KG for QBLink-KG. Since DBpedia is con-
structed through information extraction from Wikipedia infoboxes
[29], QBLink answers provided as the titles of Wikipedia articles can
be easily converted into DBpedia entity URIs, if the corresponding
entities exist in DBpedia.

Filtering step Train Valid Test
No filtering 68,454 5,451 9,597
wiki_page ≠ ∅ 59,796 4,772 8,436
Target entity ∈ Y 14,586 1,100 1,682

Table 2: Total number of queries in each split of the original
QBLink and after each filtering step.

Due to practical considerations, such as the limit on the model
capacity imposed by the benchmark size, we only use the answer
to the previous turn 𝑎𝑘−1 and query in the current turn 𝑞𝑘 in both
the baselines and NACER. Nevertheless, the set of features used by
NACER in Eq. 1 can in principle be expanded with the features that
are based on 𝑎1, . . . , 𝑎𝑘−2 and 𝑞1, . . . , 𝑞𝑘−1.

QBLink cannot be utilized for CER-KG in its original form since
knowledge graphs (even those derived from Wikipedia) contain sig-
nificantly less information than Wikipedia. Specifically, a named
entity that is an answer to a QBLink question may not exist as an
entity in a given knowledge graph. To adapt QBLink to CER over

2https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-09

Statistic Train Valid Test
Total words 388,900 30,397 53,025
Distinct words 37,722 8,261 11,897
Avg. words per query 26.66 27.36 26.25

Table 3: Statistics of QBLink-KG.

DBpedia we performed two filtering steps illustrated in Table 2.
First, we filtered out all QBLink queries that are unusable for the
benchmark regardless of entity linking and candidate selection meth-
ods (i.e. all queries with an empty wiki_page field or those queries
for which the answer does not correspond to a Wikipedia page or
DBpedia entity). For the evaluation of NACER and the baselines
with specific entity linking and candidate selection methods used
in this work, we then filtered out the queries with the answers that
do not belong to the set of candidate entities Y obtained with these
methods.3 The final statistics of QBLink-KG are shown in Table 3.

3.1 Entity linking and selection of candidate
entities

Both NACER and the baselines utilize the same set of candidate
entities Y generated based on the entities 𝑒1

𝑙
, . . . , 𝑒𝑟

𝑙
linked from

𝑞𝑘 , as shown in Figure 3. The entities linked to 𝑞𝑘 were obtained
using the method proposed in [34]4, which proved to be effective for
non-conversational simple QA over a KG. A set of candidate answer
entities Y was obtained by including all other entities in the same
triplets with the entities linked from 𝑞𝑘 . To prevent an explosion of
the set of candidate entities, we do not consider linked entities in 𝑞𝑘
with a degree greater than 100.

4 NACER
In order to identify the most effective types of relevance signals for
CER-KG, we proposed NACER, a transparent, feature-based neural
architecture for KG entity ranking. As shown in Figure 2, NACER
has a modular architecture consisting of three major components:
the encoding layer, the matching feature aggregation layers and the
entity score computation layer.

4.1 Encoding Layer
Features. NACER computes the score of each candidate KG entity
𝑦𝑖 ∈ Y based on the feature vector 𝑦𝑖 constructed based on 𝑞𝑘 , 𝑎𝑘−1
and T𝑖 , a set of all KG triplets that include 𝑦𝑖 , as detailed in Table 4.
The feature vector 𝑦𝑖 for 𝑦𝑖 consists of the features derived using
either semantic similarity function 𝑓𝑒 (a, b) or lexical similarity func-
tion 𝑓𝑤 (𝑎, 𝑏) based on: (1) lexical and distributed representations
of KG structural components (entities, predicates, literals and cat-
egories) in T𝑖 ; (2) lexical and distributed representations of 𝑞𝑘 ; (3)
lexical and distributed representations of 𝑎𝑘−1:

𝑦𝑖 = [ent𝑒 , pred𝑒 ,lit𝑒 , cat𝑒 , ans𝑒 ,
ent𝑤 , pred𝑤 ,lit𝑤 , cat𝑤 , ans𝑤] .

(1)

The first five features are calculated using 𝑓𝑒 , while the last five
features are calculated using 𝑓𝑤 , as detailed in Table 4.

3to enable experiments with other entity linking and candidate entity selection methods,
we will release both filtered and unfiltered versions of QBLink-KG.
4with the only difference is that the linked entities can be in the subject or object position

3

https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-09
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Figure 2: Neural Architecture for Conversational Entity Retrieval from a Knowledge Graph.

We experiment with three parametric and non-parametric variants
of 𝑓𝑒 (a, b) to determine the degree of similarity between the dis-
tributed representations of a and b: (1) dot product 𝑓𝑒-dot (a, b) = a⊤b;
(2) multiplicative interaction function 𝑓𝑒-mult (a, b) = a⊤Wb with
trainable parameter matrix W; (3) additive interaction function
𝑓𝑒-add (a, b) = v⊤ tanh(W𝑎a+W𝑏b) with trainable parameter vector
v and matrices W𝑎 and W𝑏 .

In addition, parameters W for the multiplicative interaction func-
tion, and v, W𝑎 , W𝑏 for the additive interaction function can be ei-
ther shared between ent𝑒 , pred𝑒 , lit𝑒 , cat𝑒 , ans𝑒 features or trained
for each feature individually.
𝑓𝑤 (𝑎, 𝑏) utilizes the bag-of-words representation of 𝑎 = {𝑎1, . . . , 𝑎𝑛}

and 𝑏 = {𝑏1, . . . , 𝑏𝑚} to quantify lexical similarity as a sum of
smooth inverse frequencies [1] of their overlapping terms:

𝑓𝑤 (𝑎, 𝑏) =
∑︁

𝑤∈𝑎∩𝑏

𝜆

𝜆 + 𝑛(𝑤) , (2)

where 𝜆 is a hyper-parameter and 𝑛(𝑤) is the frequency of term𝑤

in a KG.
Embeddings. We used the publicly available embeddings of

words and KG structural components (entities, predicates, categories,
and literals)5 obtained using the KEWER method [38] in the encod-
ing layer of NACER and for feature computation.

Turn encoding methods. The encoding layer first creates a𝑘−1,
a distributed representation of the preceding answer in the dialog,
using KEWER. After that, it creates q𝑘 , a distributed representa-
tion of the 𝑘th turn in a CER-KG information-seeking dialog. We
consider four options for dialog turn encoding: (1) KEWER: cal-
culating the weighted mean of KEWER embeddings of the words
and entities in 𝑞𝑘 ; (2) BiLSTM: embedding 𝑞𝑘 using a pre-trained
BiLSTM with max-pooling [10]; (3) BERT: embedding 𝑞𝑘 with a
pre-trained BERT [15]; (4) BERT+KEWER: embedding 𝑞𝑘 with
the K-Adapter [54], a framework that allows integrating KG embed-
dings into a pre-trained BERT. Specifically, our K-Adapter injects
the KG-specific information encoded in the KEWER embeddings
into the representations created with pre-trained BERT.

5https://academictorrents.com/details/4778f904ca10f059eaaf27bdd61f7f7fc93abc6e

4.2 Feature aggregation and score computation
layers

Each candidate answer entity 𝑦𝑖 for the 𝑘th turn is then ranked based
on its logit score:

𝑝logit (𝑦𝑖 |𝑞𝑘 , 𝑎𝑘−1,T𝑖 ) =
w⊤
𝑠 𝜎 (W⊤

𝑎2𝜎 (W
⊤
𝑎1𝑦𝑖 + b𝑎1 ) + b𝑎2 ) + 𝑏𝑠 , (3)

where W{𝑎1,𝑎2 } and b{𝑎1,𝑎2 } are the weights and biases in the match-
ing feature aggregation layers (we use two in Eq. 3, but the number
can vary); w𝑠 is a weight vector of the size determined by the num-
ber of neurons in the final matching feature aggregation layer; 𝑏𝑠
is a scalar bias of the entity score computation layer, and 𝑝logit de-
notes a non-normalized logit probability, which is passed through
the softmax function during the calculation of the loss.

4.3 Loss
Cross-entropy between one-hot distribution for the target entity 𝑦𝑡
and the entity logit score from Eq. (3) was used as the loss function.

5 EXPERIMENTAL SETUP
5.1 Baselines
GENRE. As the first baseline, we adapt GENRE [14], a method that
fine-tunes BART [30] to retrieve entities by generating their surface
forms token-by-token in an auto-regressive manner, to CER-KG.
GENRE was shown to be superior to the entity retrieval methods
using maximum-inner-product search over dense representations of
queries and entities. In our adaptation, we consider the entire dialog
context as a query, generate surface forms of answer entities and
map them to entity URIs.
KV-MemNN. Memory networks (MemNNs) [55] are a class of dif-
ferentiable models, which can perform simple inference over struc-
tured and unstructured knowledge. Key-value MemNNs [36], in
which the memories are indexed by the keys, were shown to be effec-
tive at retrieving answers in text-based QA [36], non-conversational
simple QA over a KG [3] and conversational QA over a KG [46]. As
the baselines, we use the following two adaptations of the Key-Value

4
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Feature Feature value Feature description

ent𝑒 𝑓𝑒

(
q𝑘 ,

∑
(𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖 e𝑜+

∑
(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 e𝑠

| (𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |

) semantic similarity between q𝑘 and the mean of KEWER embed-
dings of KG entities that are either subject (e𝑠 ) or object (e𝑜 ) in the
same triplet as 𝑦𝑖

pred𝑒 𝑓𝑒

(
q𝑘 ,

∑
(𝑠𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 p𝑗
| (𝑠 𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |

) semantic similarity between q𝑘 and the mean of KEWER embed-
dings of predicates p𝑗 from the triplets in T𝑖

lit𝑒 𝑓𝑒

(
q𝑘 ,

∑
(𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖 l𝑗
| (𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖 |

) semantic similarity between q𝑘 and the mean of embeddings l𝑗 of
literals from T𝑖 . l𝑗 is calculated as the mean of KEWER embed-
dings of tokens in 𝑙 𝑗

cat𝑒 𝑓𝑒

(
q𝑘 ,

∑
(𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖 c𝑗
| (𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖 |

) semantic similarity between q𝑘 and the mean of KEWER embed-
dings of categories c𝑗 that 𝑦𝑖 belongs to

ans𝑒 𝑓𝑒

(
a𝑘−1,

∑
(𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 o𝑗 +

∑
(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 e𝑠

| (𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |

) semantic similarity between a𝑘−1 and the mean of KEWER em-
beddings of objects (o𝑗 ) or subjects (e𝑠 ) in the same triplets as 𝑦𝑖
(𝑜 𝑗 can be an entity, literal, or category)

ent𝑤
∑
(𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖 𝑓𝑤 (𝑞𝑘 ,𝑒𝑜 )+

∑
(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 𝑓𝑤 (𝑞𝑘 ,𝑒𝑠 )

| (𝑦𝑖 ,𝑝𝑜 ,𝑒𝑜 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |
average lexical similarity between 𝑞𝑘 and labels of KG entities that
are either a subject (𝑒𝑠 ) or an object (𝑒𝑜 ) in the same triplet with 𝑦𝑖

pred𝑤

∑
(𝑠𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 𝑓𝑤 (𝑞𝑘 ,𝑝 𝑗 )

| (𝑠 𝑗 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |
average lexical similarity between 𝑞𝑘 and labels of predicates 𝑝 𝑗

from the triplets in T𝑖
lit𝑤

∑
(𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖 𝑓𝑤 (𝑞𝑘 ,𝑙 𝑗 )

| (𝑦𝑖 ,𝑝 𝑗 ,𝑙 𝑗 ) ∈T𝑖 |
average lexical similarity between 𝑞𝑘 and literals 𝑙 𝑗 from T𝑖

cat𝑤
∑
(𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖 𝑓𝑤 (𝑞𝑘 ,𝑐 𝑗 )

| (𝑦𝑖 ,𝑐 𝑗 ) ∈T𝑖 |
average lexical similarity between 𝑞𝑘 and labels of all categories
𝑐 𝑗 that 𝑦𝑖 belongs to

ans𝑤
∑
(𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 𝑓𝑤 (𝑎𝑘−1,𝑜 𝑗 )+

∑
(𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 𝑓𝑤 (𝑎𝑘−1,𝑒𝑠 )

| (𝑦𝑖 ,𝑝 𝑗 ,𝑜 𝑗 ) ∈T𝑖 |+| (𝑒𝑠 ,𝑝𝑠 ,𝑦𝑖 ) ∈T𝑖 |
average lexical similarity between 𝑎𝑘−1 and objects (𝑜 𝑗 ) or subjects
(𝑒𝑠 ) in the same triplets as 𝑦𝑖 (𝑜 𝑗 can be entity, literal, or category)

Table 4: Semantic and lexical similarity features utilized by NACER for scoring candidate answer entities.

Memory Network (KV-MemNN) [36] to CER-KG. These adapta-
tions differ in the approaches used to fill 𝑀 key-value memory slots
(𝑘1, 𝑣1), . . . , (𝑘𝑀 , 𝑣𝑀 ).

        Values                  In-keys         

  Utterance       
She was the

wife of Moby-
Dick and Typee

author.

   

KEWER 

Moby-Dick

       : Herman Melville

Typee

        Out-keys        
Typee

wife

writencharacter
written

born in

Elizabeth Shaw

Herman Melville

Ishmael

Herman Melvile

Candidate entities Y

Elizabeth Shaw

Herman Melville

Ishmael

Figure 3: Extraction of key-value memory slot pairs and candi-
date entities for the KV-MemNN baselines.

The first approach (named KV-MemNNin) uses the previous
answer 𝑎𝑘−1 and 𝑒1

𝑙
, . . . , 𝑒𝑟

𝑙
, the entities linked from 𝑞𝑘 , as keys

𝑘1, . . . , 𝑘𝑀 and entities in the same KG triplets as values 𝑣1, . . . , 𝑣𝑀 .
In this way, each key-value memory slot pair (𝑘𝑖 , 𝑣𝑖 ) can be con-
structed from a single KG triplet, in which the subject or object 𝑘𝑖 is
from the in-key set {𝑎𝑘−1, 𝑒

1
𝑙
, . . . , 𝑒𝑟

𝑙
} and its opposing object or sub-

ject is used as a value 𝑣𝑖 . Key-value memories are represented using
the KEWER entity embeddings as (k1, v1), . . . , (k𝑀 , v𝑀 ). The set
of entities used as values {𝑣1, . . . , 𝑣𝑀 } is considered as the candidate
entities𝑦1, . . . , 𝑦𝐶 . Each candidate entity 𝑦𝑖 is scored using q𝐻+1, the
distributed representation of 𝑞 after𝐻 hops over key-value memories
and y𝑖 , the KEWER embedding of 𝑦𝑖 , as 𝑝logit (𝑦𝑖 ) = q⊤

𝐻+1y𝑖 .
The second approach (named KV-MemNNout) is identical in all

aspects to KV-MemNNin, except that the set of key-value mem-
ory slots (𝑘1, 𝑣1), . . . , (𝑘𝑀 , 𝑣𝑀 ) is supplemented by the pairs (𝑘𝑖 , 𝑣𝑖 ),
where the value 𝑣𝑖 belongs to the set of candidate entities Y =

{𝑦1, . . . , 𝑦𝐶 } as before, but the out-key 𝑘𝑖 is not necessarily from the
set {𝑎𝑘−1, 𝑒

1
𝑙
, . . . , 𝑒𝑟

𝑙
} and can be any neighbor of the candidate entity

𝑦𝑖 (i.e. either a subject or an object in the triplet 𝜏 that contains 𝑦𝑖 as
an object or a subject). Thus, the filling of memory slots is augmented
in the following way. First, we consider an undirected knowledge
graph 𝐺 , where each subject-predicate-object triplet (𝑠, 𝑝, 𝑜) corre-
sponds to the graph’s 𝐺 undirected edge between the subject 𝑠 and
object 𝑜 . Second, an additional hop in 𝐺 is performed starting from
the previously obtained value entities 𝑣𝑖 to obtain the out-keys.

Figure 3 illustrates the KV-MemNNin and KV-MemNNout ap-
proaches to filling the memory slots. Note that the set of candidate
entities Y in both KV-MemNNin and KV-MemNNout is identical to
the set of candidate entities used for our proposed NACER method,
which allows for a fair comparison of the accuracy of NACER with
KV-MemNN{in,out} .

5.2 Hyperparameter settings and model design
choices

Various hyperparameters are set to the values that have been demon-
strated as effective in the existing literature [4, 28]. In Eq. (3), ReLU
is used as a non-linearity function 𝜎 , and the numbers of neurons in
the first and second matching feature aggregation layers of NACER
are set to 20 and 10, respectively. The dimensionality of v in the
additive interaction function is set to 512. We consider 𝑛-grams up
to size 3 and set the number of candidate entities to 400 following
[34]. Following [38], the term weighting parameter 𝜆 in Eq. 2 is
set to 3 × 10−4. As the implementation of BiLSTM encoder with
max pooling, we used V1 configuration of InferSent6 encoder. We
use the pre-trained bert-base-uncased model from the Hugging Face
7 as our BERT model. We fine-tune GENRE for 10 epochs using
the training split of QBLink-KG and set the beam size to 10. We

6https://github.com/facebookresearch/InferSent
7https://huggingface.co/
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Method 𝑞𝑘 encoding 𝑓𝑒 (a, b) par. sharing Hits@1 R@1 Hits@10 R@10 MRR
GENRE - - - 582 0.3460 856 0.5089 0.4002
KV-MemNNin KEWER - - 991∗ 0.5892∗ 1496∗ 0.8894∗ 0.6905∗
KV-MemNNin BiLSTM - - 854 0.5077 1449 0.8615 0.6269
KV-MemNNin BERT - - 779 0.4631 1148 0.6825 0.5613
KV-MemNNin BERT+KEWER - - 811 0.4822 1154 0.6861 0.6125
KV-MemNNout KEWER - - 983 0.5844 1431 0.8507 0.6758
KV-MemNNout BiLSTM - - 847 0.5035 1389 0.8258 0.6007
KV-MemNNout BERT - - 765 0.4548 1131 0.6724 0.5512
KV-MemNNout BERT+KEWER - - 802 0.4768 1143 0.6795 0.5587
NACER KEWER dot - 648 0.3853 1314 0.7812 0.5172
NACER KEWER mult Y 782 0.4649 1399 0.8317 0.5824
NACER KEWER mult N 1016∗‡ 0.6040∗‡ 1567∗‡ 0.9316∗‡ 0.7164∗‡
NACER KEWER add Y 865 0.5143 1480 0.8799 0.6361
NACER KEWER add N 977 0.5809 1533‡ 0.9114‡ 0.6967‡

NACER BiLSTM mult Y 931 0.5535 1531‡ 0.9102‡ 0.6765
NACER BiLSTM mult N 979 0.5820 1555‡ 0.9245‡ 0.7029‡

NACER BiLSTM add Y 919 0.5464 1497‡ 0.8900‡ 0.6613
NACER BiLSTM add N 1053∗‡ 0.6260∗‡ 1592∗‡ 0.9465∗‡ 0.7389∗‡
NACER BERT mult Y 807 0.4798 1439 0.8555 0.6067
NACER BERT mult N 1016‡ 0.6064‡ 1573‡ 0.9352‡ 0.7178‡

NACER BERT add Y 938 0.5577 1522‡ 0.9049‡ 0.6758
NACER BERT add N 1095∗‡ 0.6510∗‡ 1600∗‡ 0.9512∗‡ 0.7658∗‡

NACER BERT+KEWER mult Y 979 0.5820 1553‡ 0.9233‡ 0.6993‡

NACER BERT+KEWER mult N 1030‡ 0.6124‡ 1559‡ 0.9269‡ 0.7239‡

NACER BERT+KEWER add Y 1048‡ 0.6231‡ 1569‡ 0.9328‡ 0.7297‡

NACER BERT+KEWER add N 1121∗‡ 0.6665∗‡ 1602∗‡ 0.9524∗‡ 0.7575∗‡

Table 5: Accuracy of GENRE, and different variants of NACER and KV-MemNN on the test set of QBLink-KG. The largest value for
each metric is highlighted in boldface. Each variant’s best performance is indicated by ∗. Statistical significance of the difference with
KV-MemNNin and KEWER for 𝑞𝑘 encoding using the two-tailed paired Student’s 𝑡-test with 𝑝 = 0.05 is indicated by ‡.

compare the performance of KV-MemNNin and KV-MemNNout
baselines using 𝐻 = 1, 2, 3, 4 hops on the validation set and find out
that both methods demonstrate the best performance when 𝐻 = 3,
which is the setting we used to report their results.

5.3 Training procedure
All variants of NACER and KV-MemNN were trained on the train-
ing split of QBLink-KG. To address overfitting, we utilized early
stopping and save the model parameters resulting in the smallest
loss on the validation set. Adam optimizer [27] with the learning
rate of 10−3 was used to train all models, except NACER with 𝑓𝑒-dot,
which was trained with the learning rate 10−5. KV-MemNN models
were trained for 1000 epochs, and NACER models were trained for a
maximum of 100 epochs, except NACER with 𝑓𝑒-dot (1500 epochs)
and NACER with 𝑓𝑒-add and the KEWER embeddings-based turn
encoder (500 epochs), since we found out that these configurations
require a larger number of epochs to converge.

6 RESULTS
6.1 Retrieval accuracy
To examine different aspects of CER-KG and identify the types
of methods that can be employed by effective solutions to it, we
experimented with multiple dialog context encoders in combination
with the key-value memory networks and NACER. We compare
our proposed method with GENRE adapted to CER-KG. Results
of different variants of NACER and KV-MemNN-based baselines

along with GENRE on the test set of QBLink-KG are included in
Table 5. Several conclusions can be drawn from these results.

First, the retrieval accuracy of NACER and KV-MemNN-based
baselines surpasses GENRE adapted to CER-KG. While GENRE
demonstrates proficiency in non-conversational entity retrieval, when
straightforwardly extended to CER-KG, it falls short of the expecta-
tions, likely due to its failure to properly account for conversational
context.

Second, NACER also consistently outperforms KV-MemNN-
based baselines across all metrics in combination with any turn
encoder type. The margin of the difference between the best config-
urations of NACER and KV-MemNNin ranges from 7% to 13 % for
different metrics. Among all compared models, the NACER with
the turn encoder using BERT and the KEWER-based K-Adapter,
additive interaction function and no parameter sharing demonstrates
the highest accuracy. We believe there are two major reasons behind
this result. First, as a pre-trained language model, BERT already
possesses rich knowledge acquired in an unsupervised manner from
Wikipedia. This knowledge allows it to perform slightly better than
BiLSTM as a turn encoder when most interaction functions are
used to calculate the features capturing semantic similarity between
distributed representations of the current turn and components of
the KG surrounding the candidate entities. Second, our K-Adapter
efficiently injects the KG-specific information captured by KEWER
into BERT allowing it to better capture KG structure in the dis-
tributed representation of the current turn and the resulting features
measuring its semantic similarity with the candidate entities, which
in 17 out of 20 different configurations translates into additional
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improvements in the range 0.1-21% over pre-trained BERT across
different metrics. Finally, the superior performance of NACER over
GENRE and KV-MemNN-based baselines can also be attributed to
the need to take into account both semantic and lexical relevance
signals, possibly due to the length of many queries in QBLink-KG.

Third, the dot product interaction function consistently resulted
in the lowest accuracy among different semantic similarity functions
utilized by NACER to compute the matching features. On the other
hand, parametric multiplicative and additive interaction functions
increase the capacity of NACER, which positively translates into
its accuracy. Furthermore, parameter sharing of multiplicative and
additive interaction functions has a consistently negative effect on
the accuracy across all metrics. NACER paired with different types
of turn encoders generally demonstrates better performance without
parameter sharing.

Lastly, since KV-MemNNout consistently underperforms KV-
Mem-NNin across all metrics, KV-MemNN does not benefit from
the inclusion of the neighbors of candidate entities into its memory.

Overall, the above results indicate that the relevance signals point-
ing to the correct answer entity are mainly localized within a small
neighborhood around that entity in a KG. As a result, finding the
correct answer entity does not require the multi-hop inference proce-
dure of the key-value memory networks. Instead, effective methods
for CER-KG should focus on localizing, amplifying or attenuating
with the right importance weights and combining diverse lexical and
semantic matching signals in the answer entity’s KG neighborhood.

6.2 Feature ablation

Figure 4: Hits@1 of the best NACER configuration, when in-
dividual, all semantic and all lexical similarity features are re-
moved. The red dotted line corresponds to Hits@1 when all
features are used.

To assess the relative importance of NACER features on its per-
formance, we performed a feature ablation study. In this study, we
removed one feature at a time by zero-masking the correspond-
ing entry in 𝑦𝑖 and retrained the best performing configuration of
NACER (that uses BERT with KEWER-based K-Adapter as the turn
encoder, additive interaction, and no parameter sharing). We also
experimented with two additional configurations, in which all se-
mantic similarity features (∗𝑒 ) and all lexical similarity features (∗𝑤 )

were removed. The resulting Hits@1 values are shown in Figure 4.
As follows from Figure 4, the performance drops significantly when
either all semantic or all similarity features are removed, which indi-
cates that both feature types are essential contributors to NACER’s
performance, with the semantic similarity features playing more
important role than the lexical ones. Removal of most individual
features (with a notable exception of cat𝑒 and ent𝑤) has a rela-
tively smaller impact on Hits@1 of NACER. These results indicate
that NACER effectively aggregates lexical and semantic matching
features of candidate entities into their entity score.

6.3 Succes and failure analysis
The top 3 entities ranked by NACER and key-value memory network-
based baselines in combination with different dialog context en-
coders are shown in Table 6. Examination of the results in this table
also reveals qualitatively superior accuracy of NACER over the
MemNet-based ranker. Specifically, regardless of the dialog context
encoder, NACER was able to rank the correct entity as the top result
for 2 out of 3 queries in the example information seeking dialog.
Memory network-based ranker, on the other hand, was able to rank
the correct entity in the top position only for 1 query and only with
1 dialog context encoder. Regardless of the dialog context encoder,
NACER preserved the typical coherence of the top-ranked entities.
Specifically, all entities top-ranked by NACER regardless of the con-
text encoder for the first query in the dialog (Angela Carter, Sabine
Huynh, Janez Menart and Peter Russell) are poets. All entities top
ranked by both NACER in combination with BERT for the second
query (The Waves, Orlando: A Biography and Mrs. Dalloway) and
by the MemNet-based ranker in combination with BERT+KEWER
adapter (Mrs. Dalloway, The Waves and Jacob’s Room) are Virginia
Wolf’s novels, however, NACER was more precise at top ranking
the correct answer entity. Similar observations can be made about
the entities top-ranked by NACER and the MemNet-based ranker
in combination with BERT. Jane Eyre, Villette, The Professor and
Shirley are all Bronte’s novels, however only NACER was able to
correctly rank Jane Ayre as the top answer. Surprisingly, but consis-
tent with the results in Table 5, using a weighted mean of KEWER
embeddings as the dialog context encoder produces the most accu-
rate results for the MemNet-based ranker. The top results for this
configuration are typically consistent, unlike the combination of
the MemNet-based ranker with BiLSTM encoder, but the MemNet-
based ranker lacks precision. Overall ineffectiveness of the dialog
context encoder based on the aggregation of KEWER embeddings
can be attributed to the fact KEWER embeddings capture topical
rather than typical similarity (e.g. Vanessa Bell is a sister of Virginia
Woolf and Wise Children is a novel by Angela Carter).

7 CONCLUSION
In this paper, we introduced a novel task of CER-KG; QBLink-
KG, the first benchmark for this task; and NACER, a feature-based
neural architecture for CER-KG. Experimental results of NACER
in combination with different types of dialog context encoder on
the proposed benchmark indicate that localization and aggregation
of lexical and semantic matching signals from the neighborhood
of candidate answer entities in a KG is a more effective strategy
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Method Turn
Top-3 answers and position of the correct answer

KEWER BiLSTM BERT BERT+
KEWER

NACER

Q1: Name this English author of novels like
“The Passion of New Eve” and “Nights at the
Circus”, known especially for feminist
reinterpretations of other works

1. Angela
Carter

1. Angela
Carter

1. Angela
Carter

1. Angela
Carter

2. Sabine
Huynh

2. Sabine
Huynh

2. Sabine
Huynh

2. Sabine
Huynh

3. Janez
Menart

3. Janez
Menart

3. Janez
Menart

3. Peter
Russell

1 1 1 1

Q2: Carter wrote a libretto based on this
Virginia Woolf novel, whose protagonist has
affairs with Queen Elizabeth I and the princess
Sasha and is mentored by Nicholas Greene
while writing a long poem called “The Oak
Tree”

1. Freshwater
(play)

1. The Waves 1. The Waves 1. The Waves

2. The Waves 2. Nights at the
Circus

2. Orlando: A
Biography

2. Orlando: A
Biography

3. Vanessa Bell 3. Wise
Children

3. Mrs.
Dalloway

3. The Magic
Toyshop

8 4 2 2

Q3: At her death, Carter left incomplete a
sequel to this Charlotte Bronte novel. Carter’s
sequel would’ve been about Adele Varens, the
adopted daughter of Mr. Rochester and this
novel’s title character

1. Jane Eyre 1. Jane Eyre 1. Jane Eyre 1. Jane Eyre
2. Villette

(novel)
2. Jane Eyre
(character)

2. Villette
(novel)

2. Villette
(novel)

3. Wise
Children

3. Edward
Rochester

3. The
Professor
(novel)

3. The
Professor
(novel)

1 1 1

KV-MemNN𝑖𝑛

Q1: Name this English author of novels like
“The Passion of New Eve” and “Nights at the
Circus”, known especially for feminist
reinterpretations of other works

1. Alamgir
Hashmi

1. Illusion and
Reality

1. Post-
feminism

1. Magic
realism

2. Angela
Carter

2. Sabine
Huynh

2. Janez
Menart

2. Sabine
Huynh

3. Peter
Russell

3. Janez
Menart

3. Peter
Russell

3. Janez
Menart

1 6 9 9

Q2: Carter wrote a libretto based on this
Virginia Woolf novel, whose protagonist has
affairs with Queen Elizabeth I and the princess
Sasha and is mentored by Nicholas Greene
while writing a long poem called “The Oak
Tree”

1. Mrs.
Dalloway

1. Hamza 1. Mrs.
Dalloway

1. Mrs.
Dalloway

2. Night and
Day (novel)

2. Alt code 2. Nights at the
Circus

2. The Waves

3. Jacob’s
Room

3. The Passion
of New Eve

3. Between the
Acts

3. Jacob’s
Room

5 10+ 10+ 5

Q3: At her death, Carter left incomplete a
sequel to this Charlotte Bronte novel. Carter’s
sequel would’ve been about Adele Varens, the
adopted daughter of Mr. Rochester and this
novel’s title character

1. Jane Eyre 1. Alt code 1. Shirley
(novel)

1. Shirley
(novel)

2. The
Professor
(novel)

2. The Passion
of New Eve

2. The
Professor
(novel)

2. The
Professor
(novel)

3. Villette
(novel)

3. Hamza 3. Villette
(novel)

3. Villette
(novel)

1 10+ 10+ 10+
Table 6: Top-3 entities returned by NACER and KV-MemNN𝑖𝑛 baselines in combination with KEWER, BiLSTM, BERT and BERT
with KEWER 𝐾-Adapter context encoders along with the rank of the correct entity for queries in the same QBLink-KG information
seeking dialog. The correct answer entity is highlighted in boldface, if present in the top 3 results.

to address this task, than multi-hop inference and auto-regeressive
answer generation.

In conclusion, we would like to outline possible avenues for future
work. First, the performance of NACER and the key-value network-
based baselines is equally significantly affected by the methods
utilized for entity linking to the current query and candidate entity
selection steps, even though these steps are external to NACER and
the baselines. Alternative approaches to those used in this work for

these steps may improve or decrease the reported results and warrant
further investigation in future work.

Similarly, the performance of NACER and the baselines may
depend on several factors related to the target KG, such as its fresh-
ness and completeness. No aspects of NACER and the employed
methods for entity linking and candidate entity selection are specific
to DBpedia, however, adapting QBLink-KG to other knowledge
graphs (e.g. Wikidata) and evaluating the performance NACER on
this adaptation is another possible avenue for future work.
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