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ABSTRACT

One explanation for the strong generalization ability of neural networks is implicit
bias. Yet, the definition and mechanism of implicit bias in non-linear contexts
remains little understood. In this work, we propose to characterize implicit bias
by the count of connected regions in the input space with the same predicted label.
Compared with parameter-dependent metrics (e.g., norm or normalized margin),
region count can be better adapted to nonlinear, overparameterized models, because
it is determined by the function mapping and is invariant to reparametrization.
Empirically, we found that small region counts align with geometrically simple
decision boundaries and correlate well with good generalization performance.
We also observe that good hyper-parameter choices such as larger learning rates
and smaller batch sizes can induce small region counts. We further establish the
theoretical connections and explain how larger learning rate can induce small
region counts in neural networks.

1 INTRODUCTION

One mystery in deep neural networks lies in their ability to generalize, despite having significantly
more learnable parameters than the number of training examples (Zhang et al., 2017a). The choice of
network architectures, including factors such as nonlinearity, depth, and width, along with training
procedures like initialization, optimization algorithms, and loss functions, can result in vastly diverse
generalization performances (Sutskever et al., 2013; Smith et al., 2017; Wilson et al., 2017; Li et al.,
2019). The varied generalization abilities exhibited by neural networks are often explained by many
researchers through the theory of implicit bias (Brutzkus et al., 2017; Soudry et al., 2018). Implicit
bias refers to inherent tendencies of how the network learns and generalizes from the training data,
even without explicit regularizations or constraints.

The implicit bias of linear neural networks has been extensively studied. One of the classical setting is
linear classification with logistic loss. Brutzkus et al. (2017); Soudry et al. (2018); Arora et al. (2019)
show that the parameter converges to the direction that maximizes the L2 margin. For regression
problems, it is proved that gradient descent or stochastic gradient descent converges to a parameter
that is closest to the initialization in terms of L2 norm (Gunasekar et al., 2018a). The results from the
linear regression model can be extended to deep linear neural networks by generalizing the definition
of min-norm and max-margin solutions (Ji & Telgarsky, 2018a; Vaskevicius et al., 2019; Woodworth
et al., 2020).

Compared to linear models, defining implicit biases in non-linear networks poses significant chal-
lenges. One line of work studies homogeneous networks and demonstrates that gradient flow solutions
converge to a KKT point of the max-margin problem (Lyu & Li, 2019; Ji & Telgarsky, 2020; Wang
et al., 2021; Jacot et al., 2022). Further research extends this analysis, showing that gradient flow
converges to a max-margin solution under various norms (Ongie et al., 2019; Chizat & Bach, 2020).
Other studies focus on describing the implicit bias of neural networks using sharpness, such as (Foret
et al., 2020; Montúfar et al., 2022; Andriushchenko et al., 2023).

We note that previous definitions of implicit bias in neural networks mostly focus on certain metrics
of network parameters. Such approaches enable explicit analyses of training trajectories, but face
new challenges when applied to nonlinear networks: reparametrization of the network may preserve
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Figure 1: A schematic illustration of main results in this paper. Left: The region counts in 2-dimension input
space. Each distinct region represents an area where the neural network makes the same prediction for all points
within that region. Middle: A strong correlation between region counts and the generalization gap. Right: Larger
learning rate or smaller batch size induces smaller region counts.

the function mapping but gives completely different parameters, and consequently, different implicit
biases. We will discuss this point in detail in Section 3.

Motivated by the above studies, we instead focus on leveraging the decision boundaries in the input
space to characterize implicit bias. Our research identifies a metric called region count, which is
defined by the average number of regions in the predictor’s decision boundary (See Figure 1). We
select a low-dimensional space, use the neural network to predict the labels of all points within this
space, and define the number of connected components with the same label as the region count in
that subspace. This definition differs from previous studies on the number of linear regions (Hanin
& Rolnick, 2019a;b; Safran et al., 2022) which is defined as the set of inputs that correspond to the
same activation pattern in the network. We find that this region count has a strong correlation with
the generalization gap, defined as the difference in percentage between the training and test errors.
The experiments in Figure 1 suggests that models with fewer region counts tend to generalize better.

Furthermore, we show that neural networks trained with large learning rate or small batch size, which
are typically deemed as beneficial for generalization, are biased towards solutions that have small
region counts. Therefore, region count empirically serves as an accurate generalization metric as well
as an implicit bias indicator. We also provide theoretical analyses to explain this phenomenon. We
prove that for two-layer ReLU neural networks, gradient descent with large learning rate induces a
small region count, which accords well with our empirical findings.

The main contributions of this paper are listed as follows:

1. We introduce a novel measure of implicit bias via the region count in the input space.
Through extensive experiments, we verify a strong correlation between region count and
the generalization gap. This correlation remains robust across different learning methods,
datasets, training parameters, and counting methods.

2. We assess the factors that induce small region count, discovering that training with larger
learning rates and smaller batch sizes typically results in fewer regions. This provides a
possible cause for the implicit bias in neural networks.

3. We conduct theoretical analyses on region counts, and show that for two-layer ReLU neural
networks, gradient descent with large learning rate induces a small region count.

2 RELATED WORKS

Implicit Bias of Linear Neural Network The implicit bias in linear neural networks are thoroughly
investigated in recent works. For linear logistic regression on linearly separable data, full-batch
gradient descent converges in the direction of the maximum margin solution (Soudry et al., 2018).
This foundational work has various follow-ups, including extensions to non-linearly-separable data (Ji
& Telgarsky, 2018b; 2019), stochastic gradient descent (Nacson et al., 2019), and other loss functions
and optimizers (Gunasekar et al., 2018a).
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These findings in linear logistic regression are generalized to deep linear networks. For fully-
connected neural networks with linear separable data, Ji & Telgarsky (2018a) show that the direction
of weight also converges to L2 max-margin solution. For linear diagonal networks, the gradient
flow maximizes the margin with respect to a specific quasi-norm that is related to the depth of
network (Gunasekar et al., 2018b; Woodworth et al., 2020; Pesme et al., 2021), leading to a bias
towards sparse linear predictors as the depth goes to infinity. This sparsity bias also exists in linear
convolutional networks (Gunasekar et al., 2018b; Yun et al., 2020).

Implicit Bias of Non-linear Neural Network The non-linearity of modern non-linear neural
networks pose challenges to studying its implicit bias. Initial works in this area (Lyu & Li, 2019; Ji &
Telgarsky, 2020) focus on homogeneous networks. These studies show that with exponentially-tailed
classification losses, both gradient flow and gradient descent converge directionally to a KKT point
in a maximum-margin problem. Further studies, for instance in (Wang et al., 2021), consider a more
general setup that includes different optimizers and prove that both Adam and RMSProp are capable
of maximizing the margin in neural networks while Adagrad is not. Ongie et al. (2019); Chizat
& Bach (2020) showcased a bias towards maximizing the margin in a variation norm for infinite-
width two-layer homogeneous networks. Lyu et al. (2021); Jacot et al. (2022) identified margin
maximization in two-layer Leaky-ReLU networks trained with linearly separable and symmetric
data. More recent investigations into non-linear neural networks, such as (Jacot, 2022), focus on
the homogeneity of the non-linear layer, demonstrating an implicit bias characterized by a novel
non-linear rank.

Region Counts of Neural Network Many previous works focus on calculating the linear regions
of neural networks (Hanin & Rolnick, 2019a;b). A linear region is a set of inputs that share the same
activation pattern in the network. Safran et al. (2022) proves that for a two-layer ReLU network
with width r, gradient flow will converge directionally to a network characterized by no more than
O(r) linear regions. Serra et al. (2018) and Cai et al. (2023) explain that maximizing the number
of linear regions can lead to better-performing networks, and they explore how network structures
can be designed to achieve more linear regions. The number of linear regions is independent of
the network’s label output, focusing more on its representational capacity rather than generalization
ability. In contrast, we define decision regions as connected areas in the input space that correspond
to the same label, and our work explores the relationship between the number of regions and the
generalization gap.

The paper (Nguyen et al., 2018) is the most relevant to our work, as it similarly defines decision
regions corresponding to label predictions of neural networks. They define decision regions in
the entire input space, whereas our definition and counting method focus on a subspace. Their
conclusion states that, under certain conditions, each label has only one connected decision region in
the entire space. However, two points being connected in the entire space does not imply they are
connected in a subspace. For instance, two points may be connected in a three-dimensional space,
but a two-dimensional cross-section may not provide a connecting path. Thus, we observe multiple
regions in 1D or 2D subspaces and find a strong correlation with generalization ability.

3 MOTIVATION

Norm-based and margin-based characterizations belong to the most popular measures of implicit
bias. Various definitions for norm and margin exist. For simplicity, we consider the following two
definitions.

Example 1 (Norm and Margin). Let W = {W1, · · · ,Wl} denote the post-training weight parameters
of an l-layer neural network fW (x) = Wlσ(Wl−1 · · ·W2σ(W1x)), with σ(·) as the ReLU activation
function. Denote the weight initialization as W 0 = {W 0

1 , · · · ,W 0
l }. Consider the Frobenious norm

between network weights and initialization:

d(W ) =

√√√√ l∑
i=1

∥Wi −W 0
i ∥2F ,

3
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Figure 2: Norm-based and margin-based measures may not be predictive of generalization gaps. We
train ResNet18 on the CIFAR-10 dataset using various hyperparameters. These implicit bias measures can be
ineffective for general non-linear neural networks.

and the output-space margin

γ(W ) = E(x,y)∈Dtrain

[
f(x)y −max

i ̸=y
f(x)i

]
.

d(·) and γ(·) are commonly used indicator for implicit bias of linear models (Soudry et al., 2018;
Ji & Telgarsky, 2018b). However, both of them are not invariant to network reparameteriza-
tion. We can construct a different set of network weight parameters by scaling the parameters
as Ŵ = {2W1,

1
2W2, · · · ,Wl}, such that fW = fŴ but d(W ) ̸= d(Ŵ ) in general. Similarly,

we can scale the last layer weights and get W̃ = {W1, · · · , 2Wl}, such that γ(W̃ ) ̸= γ(W ), but
argmaxifW (x) = argmaxifW̃ (x). This reparameterization trick also works for more complicated
norm-based and margin-based generalization metric in (Jiang et al., 2019), or the sharpness-based
metrics (Andriushchenko et al., 2023).

We numerically investigate whether they are effective measures, by training a ResNet18 on Cifar10
dataset, using different hyperparameters as in Table 1. The results are presented in Figure 2, which
indicates that these measures have a low correlation with the generalization gap in the deep learning
regime. One could choose other definitions of norms to achieve stronger correlations, but such
choices are often problem-specific and require domain expertise, as discussed in (Jiang et al., 2019).

The definition of margin may also be improved to the input-space margin, i.e., the ℓ2 distance of
input data x to decision boundary defined by the classifier, which is able to characterize the quality
and robustness of the classifier. This metric is invariant to reparameterization and therefore more
intrinsic to the underlying classifier. However, due to the highly nonconvex loss landscape, the
input-space margin is NP-complete to compute and even hard to approximate (Katz et al., 2017;
Weng et al., 2018). Therefore, quantitatively analyzing the decision boundary of a neural network
and characterizing its implicit bias remains a challenge.

Our motivation can be summarized by a simple idea: although the margin in the input space is hard
to compute, we can quantify the regions split by the decision boundary. This measure is invariant
to model reparametrization and can also capture the complexity of the decision boundary. This
motivates us to consider the region counts as an implicit bias metric.

4 PRELIMINARY

Although region count is a natural measure for the complexity of a predictor, and it depends only on
the decision function rather than the model parameterization, its formal definition and computability
remains unclear. In this section, we first provide the definition and low-dimensional approximation of
region counts. We then empirically verify that region counts correlate with generalization gap.

4.1 DEFINITION OF REGION COUNTS

Let d denote the training data dimension and f : Rd → {1, 2, . . . , N} denote a neural network for
a classification task with N classes. For a subset U ⊂ Rd, we can define the connectedness of its
element as follows:

4
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Definition 1 (Connectedness). We say the data points x1, x2 ∈ U are (path) connected with respect
to a neural network f if they satisfy:

• f(x1) = f(x2) = c,

• There exist a continuous mapping γ : [0, 1] → U , γ(0) = x1, γ(1) = x2, and for any
t ∈ [0, 1], f(γ(t)) = c.

Then we define the connected region in this subset:

Definition 2 (Maximally Connected Region). We say V ⊂ U is a maximally connected region in
U ∈ Rd with respect to a neural network f if it satisfies the following property:

• For any x, y ∈ V , they are connected.

• For any x ∈ V , y ∈ U \ V , they are not connected.

Finally, we formally define the region count as follows:

Definition 3 (Region Count). For a subset U ⊆ Rd, we define its region count RU as the number of
maximally connected regions in U with respect to a neural network f :

RU = card{V ⊂ U |V is a maximally connected region} ,

where card is the cardinality of a set.

4.2 ESTIMATING REGION COUNTS

Calculating the region count in the original high-dimensional input space can be computationally
intractable. Therefore, we propose a computationally efficient surrogate by calculating the region
counts on low dimensional subspace spanned by training data points.

Definition 4 (Region Count in d-Dimensional Subspace). We randomly sample d+ 1 datapoints in
the training set Dtrain to generate a convex region in Rd subspace. The d-dimensional region count
Rd is defined as the expectation of number of maximally connected regions:

Rd = Ex1,x2,...,xd+1∼Dtrain
[RConv{x1,x2,...,xd+1}] ,

where x1, x2, . . . , xd+1 are sampled from the training dataset, and Conv{x1, x2, . . . , xd+1} is the
convex hull formed by these d+ 1 points.

Figure 3: Illustrations of region counts in 1D and
2D subspace. We use different colors to represent
different outputs of the neural network.

This paper primarily focuses on low dimension
spaces, which is illustrated as below. In practice,
we randomly sample training data points for mul-
tiple times and take the average region counts. In
Section 7, we show that the choice of subspace
dimension d does not significantly affect the re-
sults. The details on how to count the regions and
generate the polytopes are provided in Appendix B.

Example 2 (Region counts in 1D and 2D subspace).
For region count in 1-dimensional subspace, we
randomly sample two data points, denoted as x1

and x2, from the training set, and calculate the
region count on the line segment connecting them:

{αx1 + (1− α)x2 , 0 ≤ α ≤ 1}.

For the 2-dimensional case, we randomly sample
three data points, x1, x2, and x3, from the training
set, and calculate the region count in the convex hull spanned by them:

{αx1 + βx2 + (1− α− β)x3 , α ≥ 0, β ≥ 0, α+ β ≤ 1} .

We provide an illustration in Figure 3.
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5 REGION COUNTS CORRELATE WITH GENERALIZATION GAPS

In this section, we present our major empirical findings, which reveal a strong correlation between
region counts and the generalization error of neural networks.

We conduct image classification experiments on the CIFAR-10 dataset, using different architectures,
including ResNet18 (He et al., 2016), EfficientNetB0 (Tan & Le, 2019), and SeNet18 (Hu et al., 2018).
Results on other architectures are deferred to ablation studies. We vary the hyperparameters for
training, such as learning rate, batch size and weight decay coefficient, whose numbers are reported
in Table 1. The region count is calculated using randomly generated 1D hyperplanes, as described in
Example 2. We run each experiment 100 times and report the average number.

We plot the region count and generalization gap of different setups in Figure 4, and calculate the
correlation between them. For each network architecture, we observe a strong correlation as high as
0.98. The overall correlation for all the three networks still reaches 0.93. This reveals a remarkably
high correlation between region counts and generalization gap.

We also explore whether such a strong correlation exists for traditional machine learning algorithms.
We conduct experiments with decision trees and random forests on the same classification tasks, with
hyperparameters specified in Table 1. We observe a similar linear trend between region count and
generalization gap, with a correlation of 0.96 in decision trees and 0.98 in random forests. The overall
correlation coefficient is 0.90. Therefore, region count serves as a good indicator for generalization
performance across various setups.

Table 1: The hyperparameters for experiments. Left: We vary the learning rate, batch size, and weight decay
for training a neural network, to modulate the model’s generalization ability. Right: We adjust the training
parameters for traditional machine learning models, such as decision tree and random forest.

Hyperparameters Value

Learning rate 0.1, 0.01, 0.001

Batch size 256, 512, 1024

Weight decay 10−5, 10−6, 10−7

Hyperparameters Value

Depth 3, 4 · · · , 17
Criterions gini, entropy

Splitter best, random

Figure 4: Strong correlation between region counts and generalization gap. Left: We conduct experiments
using three neural networks on the CIFAR-10 dataset, with various hyperparameters. There is a strong correlation
between region counts and the generalization gap, with a correlation coefficient of 0.98 for each network and
0.93 across all networks. Right: We conduct experiments using Decision Tree and Random Forest on the
CIFAR-10 dataset. The result also reveals a strong correlation between region counts and the generalization gap.

6 REGION COUNTS QUANTIFY IMPLICIT BIAS

In this section, we further investigate the implicit bias of neural networks via region counts. We show
both empirically and theoretically that neural networks trained with appropriate hyperparameters tend
to have smaller region counts, thus achieving better generalization performance.

6
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Figure 5: Large learning rate and small batch size reduce region counts. We train three networks on the
CIFAR-10 dataset, varying the batch sizes and learning rates. Our findings reveal that a smaller batch size or a
higher learning rate results in smaller region counts, allowing the network to learn a simpler decision boundary
and generalize better.

6.1 THE BIAS FROM TRAINING HYPERPARAMETERS

Training neural networks requires careful selection of many hyperparameters, such as learning rates,
batch sizes, optimizers, epochs and so on. Here, we primarily focus on learning rate and batch size,
and study their impact on the region count.

Learning Rates. We provide the relationship between the learning rate and the region count in
Figure 5. Our findings indicate that a larger learning rate tends to simplify the decision boundary and
results in a smaller region count in the hyperplane. This accords well with real practices, where large
learning rates of 0.1 or 0.01 are often favored for better generalization.

Batch Sizes. Similarly, the training batch size can impact the number of regions. As shown in
Figure 5, smaller batch sizes lead to a model with fewer regions. This result reveals the advantage of
small-batch training, which leads to better generalization accuracy.

Previous studies (Keskar et al., 2016; Jastrzkebski et al., 2017; Hoffer et al., 2017; Novak et al., 2018)
find that certain hyperparameters, such as a large learning rate and a small batch size, can improve
the generalization of the neural network. Our observations provide a possible explanation: these
good hyperparameter choices lead to a reduced region count. Such simplicity bias can decrease the
generalization gap of neural networks.

6.2 THEORETICAL EXPLANATIONS

Next, we present a theoretical analysis to explain why some hyperparameter choices, such as large
learning rate, can lead to small region counts.

Consider a two layer ReLU neural network fW (x) =
∑p

i=1 aiσ(w
⊤
i x). The second layer weights

ai are initialized uniformly from {1,−1} and fixed throughout training. Let D = {(xi, yi)}1≤i≤N

denote the training set. Consider training fW on D using gradient descent (GD) with learning rate η.
We choose the quadratic loss l(W,x, y) = 1

2 (y−fW (x))2 and denote L(W ) = 1
N

∑N
i=1 l(W,xi, yi).

Denote the GD trajectory as {Wi}i≥0. For two input data xa, xb, Let R(xa, xb,W ) denote the region
count on the line segment connecting them, and N(xa,W ) denote the number of activated neurons
with input xa, i.e., the number of i such that w⊤

i xa > 0.

We make the following assumption on the data distribution.

Assumption 1. The training dataset D = {(xi, yi)}1≤i≤N satisfies the following two properties:

1. ∥xi∥ ≥ r for all 1 ≤ i ≤ N ,

2. With probability one, any W ∈ {Wi}i≥0 satisfies w⊤
i xj ̸= 0 for all 1 ≤ i ≤ q, 1 ≤ j ≤ N ,

where the randomness comes from weight initialization.

7
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The validity of Assumption 1 comes from the fact that the bifurcation zone (Bertoin et al., 2021)
of ReLU neural networks, which contains its non-differentiable points, has Lebesgue measure
zero (Bolte & Pauwels, 2020; 2021; Bianchi et al., 2022). Therefore, if the distribution of weights are
absolutely continuous with respect to the Lebesgue measure, the bifurcation zone can be avoided
with probability one. We conjecture that it can be proved rigorously, but leave it as an assumption
since the proof diverges from the main content in this paper.

The next assumption characterizes the sharpness along the training trajectory. This is actually from
the well-known edge of stability phenomenon (Cohen et al., 2020; Damian et al., 2022; Arora et al.,
2022; Ahn et al., 2024), which states that the sharpness of neural networks, characterized by the ℓ2
norm of the Hessian matrix, hovers around 2

η .

Assumption 2 (Edge of Stability). There exist a T ∈ N, such that for t ≥ T , with we have

λmax(∇2
WL(Wt)) = Θ

(
1

η

)
,

where λmax denotes the maximum eigenvalue of a matrix.

We are now ready to present the main theorem, which establishes a relationship between region count
and learning rate.
Theorem 1. Under Assumption 1 and 2, we have that for neural net weights Wt at training step
t ≥ T with probability one, the average region count R(X,X ′,Wt) for random training data point
X,X ′ can be bounded as:

EX,X′ [R(X,X ′,Wt)] =
1

N2

N∑
i=1

N∑
j=1

R(xi, xj ,Wt) ≤ O

(
N

r2η

)
.

The theorem demonstrates that with a larger learning rate, gradient descent has the implicit bias to
yield solutions with smaller region counts. This aligns well with the previous observations.

We defer the proof of this theorem to Appendix D, and sketch the proof as follows. The proof
begins with bounding the region count using the activation pattern of ReLU neurons, as stated in the
following lemma.
Lemma 2. The region counts between a pair of data points is upper-bounded by the number of active
neurons. For two inputs xa, xb, we have R(xa, xb,W ) ≤ N(xa,W ) +N(xb,W ) + 2.

Then we prove that the activation pattern gives a bound on the smoothness of the training loss.
Lemma 3. The sharpness of a neural network is lower-bounded by the number of active neurons:
λmax

(
∇2

WL(W )
)
≥ r2

N2

∑N
i=1 N(xi,W ).

Note that this lemma brings in an additional N in the denominator, which leads to a N -dependent
bound in Theorem 1. We conjecture that the N -dependency can be optimized under further structural
assumptions on the data distribution, and leave it for further investigations. Equipped with these two
lemmas, Theorem 1 is a consequence of the sharpness condition in Assumption 2.

7 ABLATION STUDIES

This section presents an ablation study to validate the robustness and consistency of our findings. We
systematically vary key aspects of our experimental setup, including the network architecture, dataset,
optimizer, and the method of computing the plane, and evaluate their impact on our main results of
the correlation between region count and the generalization gap.

More Architectures, Datasets and Hyperplane Dimensions. We first examine the influence of
neural network architectures and datasets on our results. We provide additional results on various
neural network architectures such as ResNet34 (He et al., 2016), VGG19 (Simonyan & Zisserman,
2014), MobileNetV2 (Sandler et al., 2018), ShuffleNetV2 (Ma et al., 2018), RegNet200MF (Ra-
dosavovic et al., 2020), and SimpleDLA (Yu et al., 2018). We also use various datasets such as

8
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CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). Region counts and general-
ization gaps are evaluated across various learning rates, batch sizes, and weight decay parameters as
listed in Table 1.

We also explore the effects of different methods for generating the hyperplane in the input space.
In our previous experiments, we generate the 1-dimensional plane using random pairs of samples
from the training set and calculate the region count on them. Here we explore region counts in higher
dimensional planes, that are spanned by 2 to 5 data randomly-selected points from the training set,
using the CIFAR-10 dataset.

The experiment results of the correlation are presented in Table 2. We also provide correlation plots
for each network in Appendix A.2. We observe that the strong correlation between region count
and the generalization gap remains consistent in various setups. The consistency indicates that our
findings reveal a fundamental characteristic of non-linear neural networks.

We also provide evaluations by varying the optimizer and hyperplane generation algorithms. The
results are deferred to Appendix C.

Table 2: Experimental consistency across networks, datasets, and counting methods. We conduct experi-
ments on various types of networks across multiple datasets. We also alter the method of calculating the region
counts. The results of the correlation indicate that our findings are consistent across different setups.

Network
Dataset Counting Dimension

CIFAR-10 CIFAR-100 ImageNet 2 3 4 5

ResNet18 0.98 0.96 0.91 0.96 0.97 0.97 0.96
ResNet34 0.98 0.98 0.82 0.98 0.98 0.98 0.99
VGG19 0.94 0.85 0.78 0.88 0.86 0.84 0.86

MobileNet 0.95 0.95 0.92 0.99 0.99 0.99 0.99
SENet18 0.98 0.85 0.80 0.97 0.97 0.97 0.93

ShuffleNetV2 0.95 0.92 0.92 0.94 0.95 0.95 0.93
EfficientNetB0 0.98 0.84 0.93 0.99 0.99 0.99 0.98

RegNetX 200MF 0.98 0.87 0.97 0.98 0.99 0.99 0.98
SimpleDLA 0.98 0.94 0.84 0.99 0.99 0.98 0.99

Data Augmentations. Mixup (Zhang et al., 2017b) is a data augmentation technique that creates
training samples by linearly interpolating pairs of input data and their corresponding labels. We
train a ResNet-18 model using mixup, with other hyperparameters in Table 1. The plot in Figure
6 illustrates that Mixup induces smoother decision boundaries with smaller region count and has a
better generalization performance.

Random crop and random horizontal flip is another way to enhance the diversity of the training
dataset. We apply random crop of size 32×32 with padding 4 and random horizontal flip with a
probability of 0.5 as data augmentations. As depicted in Figure 7, we observe that compared with
mixup, random crop and random flip result in a more evident vertical shift in the performance curve.

Both Figure 6 and Figure 7 show that employing these techniques does not alter the correlation
between region counts and generalization gaps.

Evolution of Region Counts during Training. Next we study how the region count, generalization
gap and their correlation evolve during training. Following the setup in Section 5, we train a ResNet18
model on CIFAR-10 dataset, and report the region count and generalization gap during the training
process. The statistics are averaged over different hyperparameter choices as in Table 1.

The results are provided in Table 3. We recorded the average values of region count and generalization
gap for these data points in the second and third columns to show their changes during the training
process. We observe that the correlation is very low at initialization, but steadily increases during
training. This suggests that the metric of region count is not a property of the neural network
initialization, but rather inherently involved with the neural network training algorithm.
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Figure 6: The impact of mixup. This figure shows that mixup improves the model’s generalization ability and
reduces the number of regions in the hyperplane.

Figure 7: The impact of random crop and random flip. Unlike mixup, data augmentation results in a vertical
shift in the performance curve, accompanied by a decrease in the number of regions and a more significant
enhancement in test accuracy.

Table 3: The evolution of region count, generalization gap and their correlation. The correlation is very low
at initialization, but steadily increases during training.

Training Epoch Region Counts Generalization Gap Correlation

0 1.13 N/A N/A
20 3.14 11.2 -0.53
40 3.02 7.3 -0.29
60 3.10 18.2 0.35
80 3.22 26.7 0.77

100 3.25 30.4 0.98
130 3.28 31.2 0.97
160 3.27 31.7 0.98
200 3.26 31.6 0.98

8 CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduces a novel approach to characterizing the implicit bias of neural networks. We study
the region counts in the input space and identify its strong correlation with generalization gap in non-
linear neural networks. These findings are consistent across various network architectures, datasets,
optimizers. Our analysis offers a new perspective to quantify and understand the generalization
property and implicit bias of neural networks.

Our paper suggests several promising directions for future research. Firstly, our analyses of why large
learning rate induces small region counts mainly focus on a simplified setup. The analyses for more
general settings remain open. Secondly, extending the definition of region count to non-classification
tasks, such as natural language generation, would be a worthwhile direction. Lastly, region count
can be leveraged to design new architectures or regularization, that can potentially improve the
generalization performance of neural networks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES
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Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, 188:19–51, 2021.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

Junyang Cai, Khai-Nguyen Nguyen, Nishant Shrestha, Aidan Good, Ruisen Tu, Xin Yu, Shandian
Zhe, and Thiago Serra. Getting away with more network pruning: From sparsity to geometry and
linear regions. In International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pp. 200–218. Springer, 2023.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on Learning Theory, pp. 1305–1338. PMLR, 2020.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2020.

Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient
descent at the edge of stability. arXiv preprint arXiv:2209.15594, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–1841.
PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pp. 2596–2604. PMLR, 2019a.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. Advances in neural information processing
systems, 30, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions. arXiv
preprint arXiv:2209.15055, 2022.

Arthur Jacot, Eugene Golikov, Clément Hongler, and Franck Gabriel. Feature learning in l 2-
regularized dnns: Attraction/repulsion and sparsity. Advances in Neural Information Processing
Systems, 35:6763–6774, 2022.

Stanislaw Jastrzkebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in SGD. arXiv preprint arXiv:1711.04623,
2017.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv
preprint arXiv:1810.02032, 2018a.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018b.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, pp. 1772–1798. PMLR, 2019.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Advances in
Neural Information Processing Systems, 33:17176–17186, 2020.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I
30, pp. 97–117. Springer, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. Advances in Neural Information Processing Systems,
34:12978–12991, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.
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A EXPERIMENT DETAILS

In this section, we provide the detailed experiment settings.

A.1 DETAILS ON ARCHITECTURES AND DATASETS

We conduct experiments on different neural network architectures, including ResNet18 and
ResNet34 (He et al., 2016), EfficientNetB0 (Tan & Le, 2019), SENet18 (Hu et al., 2018), VGG19 (Si-
monyan & Zisserman, 2014), MobileNetV2 (Sandler et al., 2018), ShuffleNetV2 (Ma et al., 2018),
RegNet200MF (Radosavovic et al., 2020), SimpleDLA (Yu et al., 2018). We conduct all experiments
using NVIDIA RTX 6000 graphics card.

We use CIFAR-10/100 (Krizhevsky et al., 2009) and Imagenet-1k (Deng et al., 2009) as datasets. For
CIFAR-10 and CIFAR-100 dataset, each network was trained for 200 epochs using the Stochastic
Gradient Descent (SGD) algorithm with cosine learning rate schedule. We choose 27 combinations
of hyperparameters in Table 1, and for each hyperparameter we use 3 random seeds and report the
average metrics. For the Imagenet-1k dataset, each network was trained for 50 epochs with random
data crop and random flip. We use the same optimizer and 27 combinations of hyperparameters as
in CIFAR-10 and CIFAR-100 experiments. It is worth noting that we make minor adjustments on
hyperparameters for certain networks to ensure stable training. For example, in the case of VGG19,
the training is unable to converge when the learning rate is set to 0.1; therefore, we adjust it to 0.05.

A.2 CORRELATION PLOTS

We show the correlation plot of average regions and test accuracy in Figure 8. The figure consists of
results from training different networks on CIFAR-10 dataset with SGD for 200 epochs, using the
hyperparameters specified in Table 1. The results show that different networks have different number
of regions, ranging from 2 to 20. However, the correlation of test accuracy and average number of
regions are consistently high in all the networks.

B HOW TO CALCULATE THE NUMBER OF REGIONS

In this section, we study different methods to calculate the region count, and discuss their impact on
the results. Since it is impossible in practice to calculate the predictions of an infinite number of data
points on the hyperplane, we select grid points from the hyperplane to calculate the region count.

Assume we have divided a region of the hyperplane into several equidistant small squares. We can
use an algorithm similar to breadth-first search to calculate the number of connected components
within these small squares, thereby determining the number of regions. Here, we use a 2-dimensional
hyperplane as an example (the 1-dimensional case can be considered a degenerate version of this
algorithm). The algorithm for calculating the number of regions in this setup is given in Algorithm 1.

Therefore, it is necessary to determine the granularity of splits for the plane. We experimented
with different setups of splitting parameters, and the results averaged by 100 independent trials are
presented in Table 4. From the results, using 200 grid points in the 1D case and 30x30 grid points
in the 2D case is an optimal choice. Splitting the plane into fewer points results in an inadequate
approximation of regions, while increasing the number of points does not significantly enhance
accuracy but incurs greater computational costs. Therefore, in our experiments, we split the plane
into 200 grid points for the 1D case and 30x30 grid points for the 2D case.

Subsequently, we study the number of random samples in calculating the average number of regions.
We experiment with different numbers of hyperplanes, and the results are presented in Table 5. From
the results, we know that using 100 samples to calculate the average provides a reliable answer with
relatively low computational costs. Therefore, in the experiments we randomly generate 100 lines or
planes and calculate the average number of regions.

In our paper we use the convex hull of two points {αx1 + (1− αx2)} to calculate the region counts
in 1D case with α ∈ [0, 1]. We also conduct ablation studies with varied coordinate ranges α. We
train ResNet18 on CIFAR10 using hyperparameter in Table 1 in our manuscript, where we vary the
range of α and analyze the correlation. The results are shown in Table 6. These studies confirm
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Figure 8: The correlation plot of all networks between average regions and test accuracy for CIFAR-10 dataset
with optimizer SGD. From the graph we know that the correlations are all very high for different non-linear
networks. Different structures of neural networks incur different scope of the average regions.

Algorithm 1 Calculate the Number of Region

Input: Prediction Matrix P with dimension(w, h).
Output: Number of connected regions N .

1: Initialize a mark matrix M to a zero matrix, with the same dimensions as P
2: Initialize count of connected regions N ← 0
3: for i← 0 to w − 1 do
4: for j ← 0 to h− 1 do
5: if M [i][j] is already marked then
6: continue
7: end if
8: Mark position (i, j) in M as visited
9: Perform Breadth-First Search (BFS) starting from position (i, j)

10: In BFS, enqueue all neighboring points that have the same value as (i, j) in P and mark
them as visited in M

11: Continue BFS until the queue is empty
12: Increment count of connected regions N ← N + 1
13: end for
14: end for
15: return N

that expanding the range does not influence the strong correlation between region counts and test
accuracy.
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Table 4: The mean value of region counts with different splitting numbers in 1d (left) and 2d (right) planes.

Splitting Numbers Region Counts

50 2.74

100 2.76

200 2.78

300 2.78

500 2.78

Splitting Numbers Region Counts

10×10 2.76

20×20 2.76

30×30 2.78

40×40 2.78

50×50 2.78

Table 5: The mean value of region counts with different number of random samples.

Number of Samples Region Counts

10 2.24

50 2.56

100 2.78

300 2.80

500 2.79

Table 6: The impact of interpolation range on region counts.

The range of α Region Counts Correlation

[0, 1] 3.56 0.98

[−1, 2] 4.47 0.96

[−2, 3] 5.86 0.92

[−3, 4] 6.39 0.93
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C MORE ABLATION STUDIES

Gradient Optimizers. We calculate the region count of models trained by different optimizers,
including SGD, Adam, and Adagrad. The correlation between region count and the generalization
gap is consistent for them, as detailed in Table 7.

Table 7: The impact of optimizers on the correlation between region counts and generalization gap.

Network

Optimizer
SGD Adam Adagrad

ResNet18 0.98 0.92 0.96

ResNet34 0.98 0.92 0.91

VGG19 0.94 0.92 0.87

MobileNet 0.95 0.95 0.99

SENet18 0.98 0.78 0.91

ShuffleNetV2 0.95 0.83 0.99

EfficientNetB0 0.98 0.97 0.99

RegNetX 200MF 0.98 0.95 0.99

SimpleDLA 0.98 0.95 0.88

Hyperplane Generation Methods. We explore the effects of different methods for generating the
hyperplane in the input space. In the main experiments, we generate a 1-dimensional plane using
random pairs of samples from the training set and calculated the number of distinct regions between
them. In this section, we apply various techniques for plane generation: selecting two data points
from the test set, choosing one data point from the training set and extending it in a random direction
by a fixed length. We calculate the number of regions for each of these setups. The results in Table 8
are consistent across different hyperplane computational approaches.

Table 8: The impact of calculation methods on the correlation between region counts and generalization gap.

Network

Counting
Test Train Random

ResNet18 0.98 0.98 0.98

ResNet34 0.98 0.96 0.94

VGG19 0.94 0.89 0.78

MobileNet 0.95 0.94 0.88

SENet18 0.98 0.96 0.99

ShuffleNetV2 0.95 0.95 0.92

EfficientNetB0 0.98 0.98 0.92

RegNetX 200MF 0.98 0.97 0.92

SimpleDLA 0.98 0.97 0.96
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D PROOF

This section contains the proof of the theorem in this paper.

We first prove two lemmas.
Lemma 2. The region counts between a pair of data points is upper-bounded by the number of active
neurons. For two inputs xa, xb, we have R(xa, xb,W ) ≤ N(xa,W ) +N(xb,W ) + 2.

Proof. If R(xa, xb,W ) ≤ 2, then the equation naturally holds. Next we consider R(xa, xb,W ) > 2.
From the definition of region count, one can find R := R(xa, xb,W ) points on the line segment
between xa and xb, such that the neural network gives different predictions. Denote these points as
x̃1, · · · , x̃R. We have

fW (x̃i)fW (x̃i+1) < 0, 0 ≤ i ≤ R− 1.

Consider x̃i, x̃i+1, x̃i+2. Since the neural network gives alternating predictions on these three points,
it is nonlinear and has activation sign changes on the line segment connecting them. Therefore, we
can find a 1 ≤ n(i) ≤ p, such that (w⊤

n(i)x̃i)(w
⊤
n(i)x̃i+2) < 0.

We prove it by contradiction. IF for all 1 ≤ n(i) ≤ p, such that (w⊤
n(i)x̃i)(w

⊤
n(i)x̃i+2) ≥ 0. Suppose

x̃i+1 = λx̃i + (1− λ)x̃i+2, then we have

fW (x̃i+1) =

p∑
i=1

aiσ(w
⊤
i xi+1) =

p∑
i=1

aiσ(w
⊤
i xi+1)

=

p∑
i=1

ai[λσ(w
⊤
i xi) + (1− λ)σ(w⊤

i xi+2)]

= λfW (x̃i) + (1− λ)fW (x̃i+2) .

Therefore fW (x̃i+1) has the same sign of fW (x̃i) and fW (x̃i+2), contradict with the condition that
they have alternative signs. So we can find a 1 ≤ n(i) ≤ p, such that (w⊤

n(i)x̃i)(w
⊤
n(i)x̃i+2) < 0.

Since w⊤
n(i)x is linear in x, this implies that

(w⊤
n(i)xa)(w

⊤
n(i)xb) < 0.

We also prove it by contradiction. If they have the same sign then the convex combination of them
have the same sign so (w⊤

n(i)x̃i)(w
⊤
n(i)x̃i+2) ≥ 0.

We have the following two observations about n(i). Firstly, we can choose an n(i) such that
an(i)w

⊤
n(i)x̃i+2 and fW (x̃i+2) have the same sign, since there exists at least one such neuron that

contributes to the sign change of fW . This implies that n(i) ̸= n(i+1), since fW (x̃i) have alternating
signs. Secondly, since w⊤

n(i)x is a linear function in x, it can only changes sign for at most one time.
This implies that n(i) ̸= n(j) if j − i ≥ 2. Putting them together, we know that n(i) ̸= n(j) for
i ̸= j.

Recall that for each 1 ≤ i ≤ R− 2, we have (w⊤
n(i)xa)(w

⊤
n(i)xb) < 0. Therefore, there exists R− 2

neurons that are activated for either xa or xb. This gives N(xa,W ) +N(xb,W ) ≥ R − 2, which
completes the proof.

Lemma 4. The sharpness of a neural network is lower-bounded by the number of active neurons:
λmax

(
∇2

WL(W )
)
≥ r2

N2

∑N
i=1 N(xi,W ).

Proof. The Hessian of l(W,x, y) can be expressed as

∇2
W l(W,x, y) =


v1v

⊤
1 · · · v1v

⊤
p

...
...

vpv
⊤
1 · · · vpv

⊤
p

 ,
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where vi = aiσ
′(w⊤

i x)x. Suppose V = [v⊤1 , · · · , v⊤p ]. As the nonzero eigenvalue of V ⊤V and
V V ⊤ is the same, this implies that

λmax(∇2
W l(W,x, y)) = λmax(V V ⊤) =

p∑
i=1

∥vi∥22 =

p∑
i=1

σ′(w⊤
i x)∥x∥2 ≥

p∑
i=1

σ′(w⊤
i x)r

2.

From the definition of∇2
WL(W ) and the positive definiteness of Hessian matrices, we know that

λmax

(
∇2

WL(W )
)
=

1

N
λmax

(
N∑
i=1

∇2
W l(W,xi, yi)

)
≥ 1

N2

N∑
i=1

λmax

(
∇2

W l(W,xi, yi)
)
.

Plug in the previous calculation and use the definition of N(x), we have

λmax

(
∇2

WL(W )
)
≥ r2

N2

N∑
i=1

p∑
j=1

σ′(w⊤
i xj) =

r2

N2

N∑
i=1

N(xi,W ).

Proof of Theorem 1. Theorem 1 is a direct consequence of Assumption 2 and the following two
lemmas.

EX,X′ [R(X,X ′,Wt)] =
1

N2

N∑
i=1

N∑
j=1

R(x1, x2,Wt)

≤ 1

N2

N∑
i=1

N∑
j=1

(N(xi,Wt) +N(xj ,Wt) + 2)

=
2

N

N∑
i=1

(N(xi,Wt) + 1)

≤ 2N

r2
λmax(∇2

WL(Wt)) + 2

= O

(
N

r2η

)

20


	Introduction
	Related Works
	Motivation
	Preliminary
	Definition of Region Counts
	Estimating Region Counts

	Region Counts Correlate with Generalization Gaps
	Region Counts Quantify Implicit Bias
	The Bias from Training Hyperparameters
	Theoretical Explanations

	Ablation Studies
	Conclusions and Future Directions
	Experiment details
	Details on Architectures and Datasets
	Correlation Plots

	How to Calculate the Number of Regions
	More ablation studies
	Proof

