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Abstract
This study considers multi-objective Bayesian
optimization (MOBO) through the information
gain of the Pareto-frontier. To calculate the infor-
mation gain, a predictive distribution conditioned
on the Pareto-frontier plays a key role, which is
defined as a distribution truncated by the Pareto-
frontier. However, it is usually impossible to ob-
tain the entire Pareto-frontier in a continuous do-
main, and therefore, the complete truncation can-
not be known. We consider an approximation
of the truncated distribution by using a mixture
distribution consisting of two possible approxi-
mate truncations obtainable from a subset of the
Pareto-frontier, which we call over- and under-
truncation. Since the optimal balance of the mix-
ture is unknown beforehand, we propose opti-
mizing the balancing coefficient through the vari-
ational lower bound maximization framework,
by which the approximation error of the infor-
mation gain can be minimized. Our empirical
evaluation demonstrates the effectiveness of the
proposed method particularly when the number
of objective functions is large.

1. Introduction
Multi-objective optimization (MOO) of black-box func-
tions is ubiquitous in a variety of fields such as materials
science, engineering, drug design, and AutoML. Evolu-
tionary algorithms have been classically studied for MOO,
but they require a large number of function evaluations,
which is often difficult for practical problems. On the
other hand, Bayesian optimization (BO) based approaches
to MOO, which use a probabilistic surrogate model (typi-
cally, Gaussian process), have been widely studied recently
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(e.g., Knowles, 2006; Emmerich, 2005; Ponweiser et al.,
2008; Belakaria et al., 2019; Suzuki et al., 2020; Qing et al.,
2022; Tu et al., 2022).

This study focuses on multi-objective BO (MOBO) based
on the information gain of the Pareto-frontier. Since the op-
timal solution of an MOO problem is not unique in general,
the optimal values are represented as a set of output vec-
tors, called the Pareto-frontier F∗. Pareto-frontier entropy
search (PFES) (Suzuki et al., 2020) considers the mutual in-
formation between the Pareto-frontier and a candidate point
as an acquisition function of MOBO. The effectiveness of
the basic idea of PFES has been repeatedly shown (Qing
et al., 2022; Tu et al., 2022).

In the information-theoretic approaches considering the in-
formation of the Pareto-frontier (Suzuki et al., 2020; Qing
et al., 2022; Tu et al., 2022), the predictive distribution
given the Pareto-frontier p(f(x) | F∗) plays a key role
in the information evaluation, where f(x) is a vector of
objective function values at the input x. In this distribu-
tion, f(x) cannot be better than F∗ because F∗ should be
the Pareto-frontier. Therefore, p(f(x) | F∗) becomes a
truncated distribution (see Fig. 1(a) for which details will
be discussed in Section 3.2). However, it is practically im-
possible to obtain the entire F∗ in a continuous space, and
we only obtain a finite size subset F∗

S ⊆ F∗ (red stars
in Fig. 1(a)). This means that the exact truncation by F∗

shown in Fig. 1(a) cannot be calculated. To avoid this is-
sue, all the existing studies use approximations based on an
overly truncated distribution created by F∗

S (Fig. 1(d)). A
drawback of this approach is that the effect of truncation
by F∗ on f(x) is always estimated stronger than the true
truncation, because of which we call it over-truncation.

In this study, we introduce the variational lower bound
maximization approach into the mutual information (MI)
estimation of information-theoretic MOBO, which is called
Pareto-frontier Entropy search with Variational lower
bound maximization (PFEV). In addition to the conven-
tional over-truncation, we also consider a conservative ap-
proach, called under-truncation (shown as Fig. 1(c)). The
under-truncation estimates the effect of truncation by F∗

weaker than the true truncation. Therefore, to balance two
opposite approaches, we combine the over and the under-
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truncation in such a way that a mixture of them (Fig. 1(e))
defines a variational distribution of the MI approximation.
We show that the mixture weight can be optimized through
the variational lower bound maximization. This means that
the optimal balance of the over and the under-truncation
can be determined so that the MI approximation error is
minimized.

Our contributions are summarized as follows:

• PFEV is the first approach to continuous space MOBO
that is based on a general lower bound of MI (exist-
ing work only shows a lower bound under a restric-
tive condition of two objective problems, for which
we discuss in Section 4).

• We newly introduce an under-truncation approxima-
tion for p(f(x) | F∗). Further, we define variational
distribution as a mixture of distributions with the over
and the under-truncation, and show how to optimize
the mixture weight.

• We also discuss properties and extensions of PFEV.
For example, we show that our MI lower bound can be
further lower bounded by PI (probability of improve-
ment). We also discuss a Monte-Carlo approximation
tailored to our lower bound. We further discuss sev-
eral extended settings such as parallel querying.

• Through empirical evaluation on Gaussian process
generated functions, benchmark functions, and an ap-
plication to machine learning hyper-parameter opti-
mization, we demonstrate effectiveness of PFEV. We
empirically observed that PFEV shows a particular
difference from existing over-truncation based meth-
ods when output dimension ≥ 3, in which the differ-
ence of two truncation becomes more apparent.

2. Multi-Objective Optimization and
Gaussian Process Model

We consider Bayesian optimization (BO) for a multi-
objective optimization (MOO) problem of maximizing
L ≥ 2 objective functions f l : X → R (l =
1, . . . , L), where X ⊆ Rd is an input space. Let fx :=
(f1

x, . . . , f
L
x )

⊤, where f l
x := f l(x). The optimal solutions

of MOO are characterized by the Pareto optimality. For
given fx and fx′ , if f l

x ≥ f l
x′ for ∀l ∈ {1, . . . , L} and

there exists l that satisfies f l
x > f l

x′ , then “fx dominates
fx′”, written as fx ≻ fx′ . When fx is not dominated
by any other fx′ , then fx is Pareto optimal. The Pareto-
frontierF∗ is a set of Pareto optimal fx that can be defined
as F∗ := {fx ∈ FX | fx′ ̸≻ fx, ∀fx′ ∈ FX }, where
FX := {fx ∈ RL | ∀x ∈ X}.

Each objective function is represented by the Gaussian pro-
cess (GP) regression. The observation of the l-th objective

function is yli = f l
xi

+ ε, where ε ∼ N (0, σ2
noise). The

training dataset with n observations is written as D :=
{(xi,yi)}ni=1, where yi = (y1i , . . . , y

L
i )

⊤. We use in-
dependent L GPs with a kernel function k(x,x′). Let
k(x) := (k(x,x1), . . . , k(x,xn))

⊤, yl := (yl1, . . . , y
l
n)

⊤,
and K be the matrix whose (i, j)-element is k(xi,xj).
The posterior p(f l

x | D) of the l-th GP (with 0 prior
mean) is written as N (µl(x), σ

2
l (x)), where µl(x) =

k(x)⊤
(
K + σ2

noiseI
)−1

yl and σ2
l (x) = k(x,x) −

k(x)⊤
(
K + σ2

noiseI
)−1

k(x). From independence, we
have p(fx | D) =

∏
l∈[L] p(f

l
x | D). For notational

brevity, conditioning on D is omitted (e.g., p(fx | D) is
written as p(fx)).

3. Pareto-frontier Entropy Search with
Variational Lower Bound Maximization

We consider multi-objective Bayesian optimization
(MOBO) based on mutual information MI(fx;F∗)
between an objective function value fx and the Pareto-
frontier F∗ (Note that, throughout the paper, F∗ is a
random variable determined via the predictive distribution
of fx). An intuition behind this criterion is to select
x that provides the maximum information gain of the
Pareto-frontier F∗. The effectiveness of this approach is
shown by (Suzuki et al., 2020), but it is known that accu-
rate evaluation of MI(fx;F∗) is difficult. Our proposed
method is the first method introducing the variational
lower bound maximization to evaluate MI(fx;F∗). We
call our proposed method Pareto-frontier Entropy search
with Variational lower bound maximization (PFEV).

3.1. Lower Bound of Mutual Information

A lower bound LB(x) of MI(fx;F∗) can be derived as

MI(fx;F∗)

=

∫
p(F∗)

∫
p(fx | F∗) log

p(fx | F∗)

p(fx)
dfxdF∗

=

∫
p(F∗)

[∫
p(fx | F∗) log

q(fx | F∗)

p(fx)
dfx

+DKL (p(fx | F∗) ∥ q(fx | F∗))] dF∗

≥ EF∗

[∫
p(fx | F∗) log

q(fx | F∗)

p(fx)
dfx

]
= EF∗,fx

[
log

q(fx | F∗)

p(fx)

]
=: LB(x), (1)

where DKL is Kullback-Leibler (KL) divergence, and
q(fx | F∗) is a density function called a variational dis-
tribution. A similar lower bound was first derived in the
context of constrained BO (Takeno et al., 2022). This lower
bound holds for any distribution q(fx | F∗) that satisfies
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the following support condition:

supp(q(fx | F∗)) ⊇ supp(p(fx | F∗)), (2)

where supp is a set of non-zero points of a given density,
defined as supp(p(f | F∗)) = {f ∈ RL | p(f | F∗) ̸=
0}. In addition to this condition, the lower bound LB(x)
is derived by using the convention 0 log 0 = 0 (Cover &
Thomas, 2006). We call the condition (2) variational distri-
bution condition (VDC). Note that if VDC is not satisfied,
LB(x) is not defined, because then, the probability mea-
sure induced by p(fx | F∗) is not absolutely continuous
with respect to those of q(fx | F∗).

3.2. Variational Lower Bound Maximization by
Combining Over- and Under-Truncation

If q(fx | F∗) = p(fx | F∗) for F∗ almost every-
where, the lower bound LB(x) is equal to MI(fx;F∗).
However, the analytical representation of p(fx | F∗) is
not known. This stems from a common well-known dif-
ficulty of information-theoretic BO, and effectiveness of
the truncated distribution based approximation has been
repeatedly shown (e.g., Wang & Jegelka, 2017; Takeno
et al., 2020; Perrone et al., 2019; Suzuki et al., 2020) not
only for MOBO, but also for a variety contexts of BO
problems (such as standard single objective problems, con-
straint problems, and multi-fidelity problems).

Define f ⪯ F∗ as that f is dominated by or equal to at least
one element in F∗. The truncation-based approximation
replaces the conditioning in p(fx | F∗) with fx ⪯ F∗, by
which we obtain q(fx | F∗) = p(fx | fx ⪯ F∗):

q(fx | F∗) =

{
p(fx)/Z

F∗
(x) if fx ∈ AF∗

,

0 otherwise,

where AF∗
:= {f ∈ RL | f ⪯ f ′, ∃f ′ ∈ F∗} and

ZF∗
(x) := p(fx ∈ AF∗

) is the normalization constant.
As shown in Fig. 1(a), q(fx | F∗) is a truncated nor-
mal distribution in which only the region dominated by F∗

remains. Suzuki et al. (2020) call this distribution PFTN
(Pareto-Frontier Truncated Normal distribution). PFTN is
derived by the fact that if F∗ is given, any fx dominat-
ing F∗ cannot exist. However, F∗ cannot be obtained in
practice in the continuous domain, and we only obtain lim-
ited discrete points, such as those indicated by the red star
points in Fig. 1(a). A subset ofF∗ defined by these discrete
points is written as F∗

S ⊆ F∗ (we discuss how to calculate
F∗

S in Section 3.3). In this study, we consider combining
two truncated distributions derived from F∗

S , instead of us-
ing F∗ that is not obtainable.

In Fig. 1(b), the orange dashed lines are examples of possi-
ble truncation behindF∗

S and the red dot line is the trueF∗,
which is unknown. The first truncated distribution is based

(a) (b)

(c) (d) (e)

Figure 1. (a) Predictive distribution truncated by F∗. (b) Ex-
amples of possible truncation given F∗

S . (c) Under-truncation
based on F̃∗

S . (d) Over-truncation based on F̃∗
S . (e) Mixture of

qU (fx | F̃∗
S) and qO(fx | F̃∗

S).

on the most conservative truncation shown in Fig. 1(c).
This truncation is defined by removing “the region that
dominates F∗

S” (any point that dominates F∗
S cannot ex-

ist). The remaining region is written asAF∗
S

U := RL \ {f ∈
RL | f ′ ⪯ f , ∃f ′ ∈ F∗

S}. The resulting truncated normal
distribution is

qU (fx | F∗
S) :=

{
p(fx)/Z

F∗
S

U (x) if fx ∈ A
F∗

S

U ,

0 otherwise,

where Z
F∗

S

U (x) := p(fx ∈ A
F∗

S

U ). We call this distribution
PFTN-U (PFTN with under-truncation). PFTN-U has a
larger support supp(qU (fx | F∗

S)) ⊇ supp(p(fx | F∗)),
and thus, VDC is satisfied. This truncation is conserva-
tive in the sense that the region where the density function
becomes zero is smaller than q(fx | F∗), by which it un-
derestimates the effect of the condition fx ⪯ F∗ on fx.

The second truncated distribution is based on the over-
truncation shown in Fig 1(d). This is “the region dominated
by F∗

S”, defined as AF∗
S

O := {f ∈ RL | f ⪯ f ′, ∃f ′ ∈
F∗

S}. The resulting truncated normal distribution is

qO(fx | F∗
S) :=

{
p(fx)/Z

F∗
S

O (x) if fx ∈ A
F∗

S

O ,

0 otherwise,

where Z
F∗

S

O (x) := p(fx ∈ A
F∗

S

O ). In contrast to qU , qO
overly truncates the distribution in the sense that the region
where the density function value becomes zero is larger
than q(fx | F∗), by which it overestimates the effect of
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Figure 2. An example of truncation in three dimensional output
space. The resulting truncate regions have a large difference.

the condition fx ⪯ F∗ on fx. We call this distribu-
tion PFTN-O (PFTN with over-truncation). It is impor-
tant to note that PFTN-O may not satisfy VDC (2) because
supp(qO(fx | F∗

S)) ⊆ supp(p(fx | F∗)).

As we already discussed, qO and qU over and under es-
timates the truncation by the true F∗. Therefore, instead
of using one of them, we consider the mixture defined as
follows:

qλ(fx | F∗
S) = λqU (fx | F∗

S) + (1− λ)qO(fx | F∗
S),

=


(

λ

Z
F∗
S

U (x)
+ 1−λ

Z
F∗
S

O (x)

)
p(fx) if fx ∈ A

F∗
S

O ,

λp(fx)/Z
F∗

S

U (x) if fx ∈ A
F∗

S

U\O,

0 otherwise,

(3)

where AF∗
S

U\O := AF∗
S

U \ AF∗
S

O , and λ ∈ (0, 1] is a weight
of the mixture. Because of λ ̸= 0, we have supp(qλ(fx |
F∗

S)) ⊇ supp(p(fx | F∗)), meaning that the mixture sat-
isfies VDC. Figure 1(e) shows an example of the mixture.
The effect of PFTN-U and PFTN-O can be controlled by λ.
In the 2D illustration in Fig. 1, the difference between the
two truncations might appear small. However, as shown
in Fig. 2, in three or more dimensions, the two truncations
are significantly different, obviously (further discussion is
in Appendix L). Therefore, we conjecture that the balance
of them can have a strong effect, particularly for problems
with L ≥ 3.

By substituting qλ(fx | F∗
S) into LB(x), we define

LB(x, λ) as

LB(x, λ)

= EF∗,fx

[
log

(
λqU (fx | F∗

S) + (1− λ)qO(fx | F∗
S)

p(fx)

)]
= EF∗,fx

[
log

{
ζ
F∗

S

λ (x)I(fx ∈ A
F∗

S

O )

+ η
F∗

S

λ (x)I(fx ∈ A
F∗

S

U\O)
}]
, (4)

where ζ
F∗

S

λ (x) = λ

Z
F∗
S

U (x)
+ 1−λ

Z
F∗
S

O (x)
, ηF

∗
S

λ (x) = λ

Z
F∗
S

U (x)
,

and I is the indicator function. Importantly, the weight
parameter λ can be estimated by maximizing the lower

bound:

max
λ∈(0,1]

LB(x, λ) (5)

This maximization implies the following property, which
is a well-known advantage of the variational lower bound
maximization (Bishop & Bishop, 2023):

Remark 3.1. From (1),

MI(fx;F∗) =LB(x, λ)

+ EF∗ [DKL (p(fx | F∗) ∥ qλ(fx | F∗))] .

Therefore, (5) is equivalent to

min
λ∈(0,1]

EF∗ [DKL (p(fx | F∗) ∥ qλ(fx | F∗))] .

As a result, (5) can be seen as the minimization of difference
between true p(fx | F∗) and qλ.

Further, we have the following property:

Remark 3.2. (5) can be bounded from below (the proof is
in Appendix A):

max
λ∈(0,1]

LB(x, λ) ≥ EF∗

[
p(fx /∈ AF∗

S

U )
]
> 0.

p(fx /∈ AF∗
S

U ) can be seen as the probability of improve-
ment (PI) from the regionAF∗

S

U , from which positivity of (5)
is also directly derived.

While MI has a trivial lower bound 0 in general, this remark
guarantees that (5) is a larger lower bound than this trivial
bound. Further, we can also see that if the candidate x is
promising in a sense of PI, (5) should have substantially
larger value than 0.

As a result, the selection of x is formulated as

max
x,λ∈(0,1]

LB(x, λ),

in which x and λ can be simultaneously optimized ((d+1)-
dimensional maximization).

3.3. Computations

We employ the Monte-Carlo (MC) estimation to calculate
the expectation in LB(x, λ):

LB(x, λ) ≈ 1

K

∑
(F̃∗

S ,f̃)∈F

log
{
ζ
F̃∗

S

λ (x)I(f̃x ∈ A
F̃∗

S

O )

+ η
F̃∗

S

λ (x)I(f̃x ∈ A
F̃∗

S

U\O)
}
,

(6)

where F is a set of sampled pairs of (F∗
S ,f), for which

a sample pair is denoted as (F̃∗
S , f̃), and K = |F | is the
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number of samples. Henceforth, variables with ‘ ˜ ’ in-
dicate sampled values. For F∗

S , the same sampling strat-
egy can be used as existing information-theoretic MOBO
methods (Suzuki et al., 2020; Hernandez-Lobato et al.,
2016), in which a sample path f̃ l is approximately gen-
erated by using random feature map (RFM) (Rahimi &
Recht, 2008). We obtain F∗

S by solving the MOO maxi-
mizing sampled f̃ l(x) for l = 1, . . . , L. This maximiza-
tion can be performed by general MOO solvers such as the
well-known NSGA-II (Deb et al., 2002). In the case of
NSGA-II, |F∗

S | can be specified, typically less than 100.

Computations of ZF̃∗
S

O and Z
F̃∗

S

U can be easily performed by
the cell (hyper-rectangle) decomposition-based approach
as shown by (Suzuki et al., 2020) for which details are in
Appendix B. This decomposition is only required once for
each iteration of BO because it is common for all candidate
x.

We also consider another way to numerically approximate
LB(x, λ) based on the following transformation:

LB(x, λ)

=EF∗,fx

[
I(fx ∈ AF∗

S
O ) log ζ

F̃∗
S

λ (x)+I(fx ∈ AF∗
S

U\O) log η
F̃∗

S
λ (x)

]
= EF∗

[
p(fx ∈ AF∗

S
O | F∗) log ζ

F̃∗
S

λ (x)

+p(fx ∈ AF∗
S

U\O | F∗) log η
F̃∗

S
λ (x)

]
≈ 1

K

∑
(F̃∗

S
,f̃)∈F

p(fx ∈ AF̃∗
S

O | F̃∗) log ζ
F̃∗

S
λ (x)

+ p(fx ∈ AF̃∗
S

U\O | F̃∗) log η
F̃∗

S
λ (x). (7)

Note that the second line is from I(fx ∈ A
F∗

S

O ) = 1 −
I(fx ∈ A

F∗
S

U\O), and the third line is obtained by replac-
ing EF∗,fx

with EF∗Efx|F∗ . Since (6) can be rewrit-

ten as 1
K

∑
(F̃∗

S ,f̃)∈F I(f̃x ∈ A
F̃∗

S

O ) log ζ
F̃∗

S

λ (x) + I(f̃x ∈

AF̃∗
S

U\O) log η
F̃∗

S

λ (x), by comparing this re-written expres-
sion with (7), we can interpret that (6) performs one-sample

approximations p(fx ∈ A
F̃∗

S

O | F̃∗) ≈ I(f̃x ∈ A
F̃∗

S

O ) and

p(fx ∈ A
F̃∗

S

U\O | F̃
∗) ≈ I(f̃x ∈ A

F̃∗
S

U\O). We consider
improving this approximations by introducing prior knowl-

edge about p(fx ∈ A
F̃∗

S

O | F̃∗) and p(fx ∈ A
F̃∗

S

U\O | F̃
∗).

Let θ := p(fx ∈ A
F̃∗

S

O | F̃∗). We use an approximation

θ ≈ p(fx ∈ A
F̃∗

S

O | fx ∈ A
F̃∗

S

U ) = Z
F̃∗

S

O (x)/Z
F̃∗

S

U (x) =: p̂
as our prior knowledge. The approximation is replacement
of the conditioning by F̃∗ with the under-truncation fx ∈
AF̃∗

S

U . Note that ZF̃∗
S

O (x) and Z
F̃∗

S

U (x) are required even
in the naı̈ve MC (6), p̂ can be obtained without additional
computations. A prior distribution having the mode at p̂ is
introduced to estimate θ. We use the beta distribution by

which MAP (maximum a posteriori) becomes

θMAP(fx) =
p̂+ I(fx ∈ A

F̃∗
S

O )

2
.

The detailed derivation is in Appendix D.1. θMAP can be

seen as an average of p̂ and I(fx ∈ A
F̃∗

S

O ).

As a result, we obtain

LB(x, λ) ≈ 1

K

∑
(F̃∗

S ,f̃)∈F

θMAP(f̃x) log ζ
F̃∗

S

λ (x)

+ (1− θMAP(f̃x)) log η
F̃∗

S

λ (x) =: L̂B(x, λ). (8)

We empirically observe that the estimation variance can be
improved by the prior. Instead, the bias to p̂ can occur, but
because the number of samples is usually small (our de-
fault setting is K = 10 in the experiments, which is same
as existing information-theoretic BO studies such as (Wang
& Jegelka, 2017)), variance reduction has a stronger ben-
efit in practice. Further discussion on the accuracy of this
estimator is in Appendices D.2 and D.3.

The procedure of PFEV is shown in Algorithm 1. Assume
that we already have the posterior mean and variance of
the GPs. Then, computations of (8) is O(KCL), where
C is the number of hyper-rectangle cells in the decompo-
sition. For the cell decomposition, we employ the quick
hyper-volume (QHV) algorithm (Russo & Francisco, 2014)
as indicated by (Suzuki et al., 2020). Sampling of F re-
quires O(D3) for RFM with D basis functions and the cost
of NSGA-II is also required. We empirically see that, for
small L, the computational cost of NSGA-II is dominant,
and for large L, QHV becomes dominant, both of which
are commonly required for several information-theoretic
MOBO (Suzuki et al., 2020; Qing et al., 2022; Tu et al.,
2022). Compared with them, the practical cost of the lower
bound calculation in CalcPFEV of Algorithm 1 is often rel-
atively small (see Appendix K.3 for details). As discussed
in the end of Section 3.2, the acquisition function maxi-
mization is formulated as (d + 1)-dimensional optimiza-
tion (line 10 of Algorithm 1). On the other hand, it is also
possible to optimize λ for each given x as an inner one-
dimensional optimization. In the latter case, efficient com-
putations can be performed by considering (8) (or (6)) is
concave with respect to λ. Further, we can show that the
maximizer of λ exists though the candidate λ is defined as
a left open interval (0, 1]. Details of these discussions about
the maximization problem of λ are shown in Appendix C.

4. Related Work
For MOBO, a variety of approaches have been proposed,
typically by extending single-objective acquisition function
such as expected improvement and upper confidence bound
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Algorithm 1 Pseudo-code of PFEV
1: Function PFEV( Initial dataset D0 ):
2: for t = 0, . . . , T do
3: F ← {}
4: for k = 1, . . . ,K do
5: Generate a sample path f̃ from the current poste-

rior of f
6: Obtain F̃∗

S by applying NSGA-II to f̃x

7: Create cell-decomposition by QHV
8: F ← F ∪ (F̃∗

S , f̃)
9: end for

10: (xt+1, λt+1)← argmaxx,λ CALCPFEV(x, λ;F )
11: Evaluate fxt+1

and observe yt+1

12: Dt+1 ← Dt ∪ (xt+1,yt+1)
13: end for
14: Function CALCPFEV( x, λ;F ):
15: Calculate Z

F̃∗
S

O (x), Z
F̃∗

S

U (x), and I(f̃x ∈ A
F̃∗

S

O ) for
(F̃∗

S , f̃) ∈ F
16: return Approximate lower bound (8)

(e.g., Emmerich, 2005; Shah & Ghahramani, 2016; Zulu-
aga et al., 2016; Daulton et al., 2020; Ament et al., 2023).
Information-theoretic approaches (e.g., Hernandez-Lobato
et al., 2016; Belakaria et al., 2019) also have been extended
from its counterpart of the single-objective BO (Hennig
& Schuler, 2012; Hernández-Lobato et al., 2014; Wang
& Jegelka, 2017). Among these, the most closely related
method to the proposed method is PFES (Suzuki et al.,
2020). PFES can be seen as a multi-objective extension
of the max value based information-theoretic BO, called
max-value entropy search (MES) (Wang & Jegelka, 2017).
Information-theoretic MOBO before PFES and other ap-
proaches are reviewed in (Suzuki et al., 2020). Here, we
mainly focus on information-theoretic MOBO methods af-
ter PFES. A more comprehensive related work including
other information-theoretic methods and other criteria are
discussed in Appendix I.

The MI approximation with PFTN was first introduced
by PFES. On the other hand, the MI approximation is
based on a decomposition into difference of the entropy,
which is a classical approach in information-theoretic BO
(Hernández-Lobato et al., 2014). In the context of con-
strained BO, Takeno et al. (2022) revealed that the entropy
difference based decomposition can cause a critical issue
originated from a negative value of the MI approximation.
The positivity of PFES has not been clarified. Further,
PFES only uses over-truncation (PFTN-O). Therefore, ef-
fect of the truncation by F∗ on fx is overly estimated.

After PFES, Joint Entropy Search (JES) (Tu et al., 2022)
was proposed in which the joint entropy of the optimal
x and F∗ is considered. This approach is also only uses
over-truncation. Another approach considering the lower

bound of MI is Parallel Feasible Pareto Frontier Entropy
Search ({PF}2ES) (Qing et al., 2022), which also pointed
out the problem of over-truncation. However, {PF}2ES is
still based only on over-truncation. A shifting parameter
ε ∈ RL of the Pareto-frontier is heuristically introduced to
mitigate over-truncation, for which theoretical justification
is not clarified. Further, their criterion is not guaranteed
as a lower bound in general (only when L = 2 with the
assumption |F∗

S | → ∞).

5. Discussion on Extensions
PFEV is a general framework so that we can drive exten-
sions for the following four scenarios:

Parallel querying: In parallel querying, we consider
querying multiple points at one iteration, which is an im-
portant practical setting. Suppose that we consider Q > 1
points selection. Let Xq := {x(1), . . . ,x(q)} and Hq =
{fx(1) , . . . , fx(q)} for q ≤ Q. The MI for all Q points
MI(HQ;F∗) represents the benefit of selecting Xq , but
this results in a Q × d dimensional optimization problem,
which can be unstable. Instead, we follow the approach in
(Takeno et al., 2022), which is a greedy selection based on
conditional mutual information (CMI). When we select the
(q + 1)-th x after determining x(1), . . . ,x(q), the MI can
be decomposed into

MI(Hq ∪ fx;F∗)=MI(Hq;F∗)+CMI(fx;F∗ | Hq),

where CMI(fx;F∗ | Hq) = EHq [MI(fx;F∗ | Hq)] is
the MI conditioned on Hq . Since the first term does not
depend on x, we only need to optimize CMI to select x.
The calculation of CMI can be performed by adding sam-
pled Hq into the training dataset of the GPs, after which
evaluation of the lower bound is almost same as the single
querying. See Appendix E for details.

Decoupled setting: In the decoupled setting, we can ob-
serve only one selected objective function instead of query-
ing all L objective functions simultaneously (Hernandez-
Lobato et al., 2016). In PFEV, the criterion for the decou-
pled setting can be defined as MI(f l

x;F∗), which is the
information gain from only one objective function f l

x. The
lower bound of MI(f l

x;F∗) can be derived by the same
approach shown in Section 3. In this case, we need to ap-
proximate p(f l

x | F∗) instead of p(fx | F∗), for which
we can use the marginal distribution of qλ(fx | F∗). See
Appendix F for detail.

Joint entropy search: For PFEV, not only the informa-
tion gain of the Pareto-frontier F∗ but also the correspond-
ing input x can be considered as MI(fx;X ∗,F∗), where
X ∗ = {x | fx ∈ F∗}. This can be seen as a JES
extension of PFEV. When we derive the lower bound for
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(b) (d, L) = (2, 3)
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(c) (d, L) = (2, 4)
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(d) (d, L) = (2, 5)
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(e) (d, L) = (2, 6)
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(f) (d, L) = (3, 2)
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(g) (d, L) = (3, 3)
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(h) (d, L) = (3, 4)
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(i) (d, L) = (3, 5)
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Figure 3. Performance comparison in GP-derived synthetic functions (average and standard deviation of 10 runs).

MI(fx;X ∗,F∗) by the same approach as Section 3, a vari-
ational approximation for p(f | X ∗,F∗) is required. A ba-
sic idea of JES (Tu et al., 2022) is to simply add (X ∗,F∗)
into the training data of the GPs. In the case of PFEV, we
can define the variational distribution q(f | X ∗,F∗) by
using the same mixture as (3). The only difference is that
(X ∗,F∗) is added to the training data of the GPs. Since
we have not observed particular performance improvement
by this additional conditioning, we employ MI(fx;F∗) as
the default setting of PFEV. See Appendix G for detail.

Noisy observations: It is also possible to derive
the information gain obtained from noisy observation
MI(yx;F∗), where yx = fx+ε with ε ∼ N (0, σ2

noiseI),
though we mainly consider MI(fx;F∗) for brevity. In
this case, instead of p(fx | F∗), we need to consider
p(yx | F∗). Through the relation p(yx | F∗) =

∫
p(yx |

fx)p(fx | F∗)dfx, we can derive the lower bound based
on the same approximation of p(fx | F∗) by using qλ. See
Appendix H for detail.

6. Experiments
We empirically verify the performance of PFEV by
comparing mainly with EHVI (Emmerich, 2005), PFES
(Suzuki et al., 2020), {PF}2ES (Qing et al., 2022), JES
(Tu et al., 2022), and random search. In Appendix K, we
added other methods such as ParEGO (Knowles, 2006),

MOBO-RS (Paria et al., 2020), and MESMO (Belakaria
et al., 2019), which are mostly omitted in the main text for
brevity of plots. We show results on GP-based synthetic
functions, benchmark functions, and hyper-parameter opti-
mization problems.

Each evaluation run 10 times. As a performance metric,
RHV (relative hyper-volume) was used. RHV is defined as
the hyper-volume of the observed Pareto-frontier divided
by the volume of the reference Pareto-frontier. The ref-
erence Pareto-frontier was obtained by 10, 000 iterations
of NSGA-II. All methods used GPs for f l

x with a kernel
function k(x,x′) = exp(−∥x − x′∥22/(2ℓ2RBF)), where
ℓRBF ∈ R is a hyper-parameter. The marginal likelihood
maximization was performed at every iteration to optimize
ℓRBF. The number of samples of the optimal value or the
Pareto-frontier in MESMO, PFES, {PF}2ES, and PFEV
was 10, each of which was performed by NSGA-II (1, 000
generations and population size 50). We used the DIRECT
algorithm (Jones et al., 1993) for the acquisition function
maximization. We selected 5 random x as the initial obser-
vations inD. Depending on problems, EHVI and JES were
performed up to L = 4 due to computational issues. Other
settings are described in Appendix J.

6.1. Synthetic Functions Generated by GPs

Here, we consider synthetic functions from GPs as true ob-
jective functions, i.e., f l ∼ GP(0, k), in which ℓRBF = 0.1
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Figure 4. Boxplots of RHV at 100-th iteration. Note that, here,
methods omitted in Fig. 3 (ParEGO, MOBO-RS, and MESMO)
are also included, which are shown Appendix K.1.

was used in the kernel k. Since we require objective func-
tions in a continuous domain, we used the RFM-based ap-
proximation (the number of RFM basis is D = 1000).
The input dimensions are d ∈ {2, 3}, and the domain X
is [0, 1]d. The output dimensions are L ∈ {2, 3, 4, 5, 6}.

Figure 3 shows the results. In all (a)-(j), PFEV shows su-
perior or comparable performance to existing methods. In
these experiments, we empirically see that the performance
of PFEV is often similar to PFES and {PF}2ES for L = 2,
and differences become clearer for L ≥ 3. This can also be
confirmed by Fig. 4, which shows boxplots of RHV at the
100-th iteration in all trials of Fig. 3. This result is consis-
tent with our conjecture about the difference of two types
of PFTN described in Section 3.2. In Appendix K.1, addi-
tional results on different ℓRBF and d = 4 are shown, in
which similar tendency was confirmed.

6.2. Benchmark Functions

We used benchmark problems called Fonseca-Fleming
(d, L) = (2, 2), Kursawe (d, L) = (3, 2), Viennet (d, L) =
(2, 3) and FES3 (d, L) = (3, 4) problems (for details,
see Appendix J). Further, we combine multiple prob-
lems having the same input dimensions, i.e., we created
Fonseca+Viennet (d, L) = (2, 5) and FES3+Kursawe
(d, L) = (3, 6). Since the input domain is shared (which
is scaled to [0, 1]d beforehand), only the output dimension
increases compared with the original problems. The results
are shown in Fig. 5. Overall, the performance of proposed
PFEV is high among the compared methods. Here again,
we see that in problems with the output dimension ≥ 3,
PFEV tends to show its advantage. Additional results on
benchmark functions are also shown in Appendix K.2.

6.3. Hyper-parameter Optimization of LightGBM

As an application example of hyper-parameter optimization
problems, we consider optimizing class weights in multi-
class classification problems using LightGBM (Ke et al.,
2017) as the base model (this setting is from (Ozaki et al.,
2024)). We focused solely on optimizing the class weight
parameters, making the input dimension of BO equal to
the number of classes. The objective functions are the test

0 25 50 75 100
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e 

Hy
pe

r-v
ol

um
e

EHVI
JES
PFES
PF2ES
Random
Proposed

(a) Fonseca-Fleming

0 25 50 75 100
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

Re
la

tiv
e 

Hy
pe

r-v
ol

um
e

EHVI
JES
PFES
PF2ES
Random
Proposed

(b) Kursawe
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(e) Fonseca+Viennet
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(f) FES3+Kursawe

Figure 5. Performance comparison in benchmark functions (av-
erage and standard deviation of 10 runs).

classification accuracies for each class, which means the
output dimension also equals to the number of classes. Ex-
periments were conducted on four datasets: Abalone and
Waveform (both with 3 classes), and Pageblocks and Ges-
turephase (both with 5 classes). For each dataset, we split
the original data into training and test sets with an 8:2 ra-
tio. Figure 6 shows the results, where the vertical axis
represents the hyper-volume of test accuracies across all
classes, calculated using the reference point at 0. Note that
each objective function is in [0, 1] (classification accuracy
of each class), and therefore, the volume is also in [0, 1]
(if all classes achieve accuracy 1, the volume becomes 1).
As observed in the figure, overall, PFEV shows sufficiently
high performance among the compared methods.
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Figure 6. Results on hyper-parameter (class-weights) optimiza-
tion.

(a) (d, L) = (2, 6) (b) (d, L) = (3, 6)

Figure 7. Comparison between two MC estimators (6) and (8) of
PFEV using GP-derived synthetic functions.

6.4. Comparison of PFEV with Different MC
Estimators

By using GP-derived synthetic functions, two estimators
of PFEV (6) and (8) are compared. The same settings as
in Section 6.1 were used. The results of (d, L) = (2, 6)
and (d, L) = (3, 6) are shown in Fig. 7. We see that the
MAP-based approximation (8) improves the performance
compared with (6). We confirmed similar results on other
GP-derived functions, which is summarized in Fig. 21 in
Appendix K.1.

7. Discussion on Gradient-based
Optimization of Acquisition Function

We employed DIRECT as an optimizer of the acquisition
function because it does not require ‘initial points’ unlike
the gradient descent that requires the appropriate setting
of the initial points (the number of initial points and loca-
tions). Our purpose is to focus more on differences of the
acquisition functions and to reduce the other factors affect-
ing the performance. On the other hand, evaluation using
gradient-based approaches is also important future work
because it is widely used in BO and should have high per-
formance in general. We partially show comparison with
a baseline using the gradient optimization (qLogNEHVI in
BoTorch) in Appendix M.

Note that the proposed acquisition function (8) is mostly

differentiable, except for the indicator I(f̃x ∈ A
F̃∗

S

O ) in
θMAP(f̃x). We consider that possible approaches are sim-
ply ignoring this term in the gradient (regarding the gra-
dient of the indicator as 0) or using a continuous approx-
imation of the gradient. In the continuous approxima-

tion, we replace I(f̃x ∈ A
F̃∗

S

O ) ≈ p(f ∈ AF̃∗
S

O ), where
f ∼ N (f̃x, ρI) in which ρ > 0 is a fixed smoothing pa-
rameter. The right hand side of the approximation is dif-
ferentiable with respect to x through the similar decom-
position to (9) in Appendix B (note that f̃x is differential
because it is generated from RFM). This can be interpreted
as a counter-part of the standard CDF-based smoothing ap-
proximation of an indicator function, extended to the indi-
cator of the Pareto dominated region. For the calculation,

although the cell-based decomposition is required forAF̃∗
S

O ,
we can reuse the cells created in line 7 of Algorithm 1.

8. Conclusions
We proposed a multi-objective Bayesian optimization ac-
quisition function that is based on variational lower bound
maximization. By combining two normal distributions, de-
fined by under- and over-truncation of Pareto-frontier, we
introduced a variational distribution as mixture of these two
distributions based on which a lower bound of mutual in-
formation can be constructed. Performance superiority was
shown by GP-generated functions and benchmark func-
tions. A current limitation includes theoretical guarantee
of the MI approximation and convergence, which is impor-
tant open problems for information-theoretic BO. Another
possible future direction is to use a more complicated vari-
ational distribution. We employ the simple one parameter
(λ) distribution because q should be estimated based on the
K samples, which is usually quite small (10 in the exper-
iments). However, to make the lower bound tight, a more
flexible distribution may be required.
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A. Proof of Remark 3.2
The lower bound of (5) is derived by using the case of λ =
1:

max
λ∈(0,1]

LB(x, λ)

≥ LB(x, 1)

= EF∗,fx

[
log

(
qU (fx | F∗

S)

p(fx)

)]
= −EF∗

[∫
A

F∗
S

U

p(fx | F∗) logZ
F∗

S

U (x)dfx

]
= −EF∗

[
logZ

F∗
S

U (x)
]

= −EF∗

[
log(1− p(fx /∈ AF∗

S

U ))
]

≥ EF∗

[
p(fx /∈ AF∗

S

U )
]
> 0

B. Computations of ZF̃∗
S

O and Z
F̃∗

S
U

First, we consider the normalization constant of PFTN-O
Z

F̃∗
S

O = p(fx ∈ A
F∗

S

O ). We decompose AF̃∗
S

O into disjoint

hyper-rectangles, denoted as AF̃∗
S

O = C1 ∪ C2 ∪ . . . ∪ CC ,
where Ci is a hyper-rectangle and C is the number of
hyper-rectangles. Algorithms decomposing a dominated
region have been studied in the context of the Pareto hyper-
volume computation. We use Quick Hyper-volume (QHV)
(Russo & Francisco, 2014), used also in PFES. Each hyper-
rectangle Ci is written as

Ci =
(
ℓ1i , u

1
i

]
×

(
ℓ2i , u

2
i

]
× . . .×

(
ℓLi , u

L
i

]
,

where ℓli and ul
i are the smallest and largest values in the

l-th dimension of the i-th hyper-rectangle. From the in-

dependence of the objective functions, ZF̃∗
S

O can be easily
computed by

Z
F̃∗

S

O =

C∑
i=1

∫
Ci

p(fx)dfx

=

C∑
i=1

L∏
l=1

∫ ul
i

ℓli

p(f l
x)df

l
x

=

C∑
i=1

L∏
l=1

(
Φ(ᾱi,l)− Φ(αi,l)

)
, (9)

where αi,l = (ℓli − µl(x))/σl(x) and ᾱi,l = (ul
i −

µl(x))/σl(x), and Φ is the cumulative distribution func-
tion of the standard normal distribution.

Next, we consider ZF̃∗
S

U that can be re-written as

Z
F̃∗

S

U = p
(
fx ∈ A

F̃∗
S

U

)
= 1− p

(
fx /∈ AF̃∗

S

U

)
= 1− p

(
−fx ⪯ {−f | f ∈ F̃∗

S}
)
.

In the last equation, the region fx /∈ AF̃∗
S

U is re-written
by flipping the sign of F̃∗

S in such a way that the region
is written as a “dominated region”. This enable us to use
QHV, which decomposes a “dominated region” into hyper-
rectangles, for the computation of p(−fx ⪯ {−f | f ∈
F̃∗

S}) based on almost the same way as (9).

C. Properties about Maximization of λ
We first show the concavity. To simplify the notation, we
unify (8) and (6) as

L̂B(x,λ) =
1

K

∑
(F̃∗

S ,f̃)∈F

log

(
λ

ZU
+

1− λ

ZO

)
ξ(f̃x)

+ log

(
λ

ZU

)
(1− ξ(f̃x)),

where ZU = Z
F̃∗

S

U (x), ZO = Z
F̃∗

S

O (x), and ξ(f̃x) =

θMAP(f̃x) when (8), and ξ(f̃x) = I(f̃x ∈ A
F̃∗

S

O ) when
(6). The second derivative is

∂2L̂B(x, λ)

∂λ2
=

1

K

∑
(F̃∗

S ,f̃)∈F

−
(

ZO − ZU

λ(ZO − ZU ) + ZU

)2

ξ(f̃x)

− 1

λ2
(1− ξ(f̃x)) ≤ 0.

Thus, we see concavity.

Further, in the case of (8), we can show that the optimal
λ should exist for maxλ∈(0,1] L̂B(x, λ) though λ has a left
open interval as a domain. First, we can derive p̂ ∈ (0, 1)

from its definition p̂ = Z
F̃∗

S

O (x)/Z
F̃∗

S

U . Since fx is the

Gaussian distribution, ZF̃∗
S

O (x) = p(fx ∈ A
F̃∗

S

O ) ∈ (0, 1)

and Z
F̃∗

S

O (x) < Z
F̃∗

S

U (x) = p(fx ∈ A
F̃∗

S

U ) ∈ (0, 1). Here,

we used ∅ ̸= AF̃∗
S

O ⊂ AF̃∗
S

U ⊂ RL (neither AF̃∗
S

O nor AF̃∗
S

U

is the empty set or the entire output space, and AF̃∗
S

O ⊂
AF̃∗

S

U holds as far as the sampled Pareto frontier set F̃∗
S is

finite while the true Pareto frontier is continuous which is
our problem setting). Therefore, we see θMAP ∈ (0, 1).
When λ → 0, the second term of (8) goes to log 0 (from

the definition of ηF̃
∗
S

λ ). On the other hand, the first term is
finite even when λ → 0. As a result, if λ → 0, we see (8)
goes to −∞.
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Figure 8. Transition of selected λ for GP-derived synthetic func-
tion (d = 3, L = 4).
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0.8. For all r, the mode is 0.8.

Figure 8 shows the transition of λ during BO iterations (the
average and standard deviation of 10 runs) for a GP-derived
synthetic function (d = 3, L = 4). We see that λ takes in-
termediate values in (0, 1], indicating that under- and over-
truncated distributions are indeed mixed during BO itera-
tions. As far as we have examined, no consistent increasing
or decreasing tendency has been observed during iterations.

D. Combining Prior Knowledge in MC
Estimator

D.1. Derivation of MAP

We use the beta distribution for the prior θ ∼ beta(a, b).
The density function is

p(θ) =
θa−1(1− θ)b−1

B(a, b)
.

Using the approximation θ ≈ p̂, we set a − 1 = rp̂ and
b − 1 = r(1 − p̂), where r ≥ 0 is a parameter. This sets
the mode of p(θ) as p̂. As shown in Fig. 9, a larger r has a
stronger peak at p̂. When r = 0, p(θ) becomes uniform in
[0, 1].

The posterior of the beta distribution with the Bernoulli
distribution likelihood is beta(a + m, a + ℓ), where m is

the number of ‘success’ and ℓ is the number of ‘fail’ in
Bernoulli trials. We can interpret that I(fx ∈ A

F∗
S

O ) is a
sample from the Bernoulli distribution with the probability

p(fx ∈ A
F̃∗

S

O | F∗). Therefore, we set m = I(fx ∈ A
F∗

S

O )

and ℓ = 1 − I(fx ∈ A
F∗

S

O ), from which the mode of the
posterior beta(a+m, a+ ℓ) can be derived as

θMAP =
a− 1 +m

a− 1 +m+ b− 1 + ℓ

=
rp̂+ I(fx ∈ AF∗

S
O )

rp̂+ I(fx ∈ AF∗
S

O ) + r(1− p̂) + (1− I(fx ∈ AF∗
S

O ))

=
rp̂+ I(fx ∈ AF∗

S
O )

r + 1
.

In the main text, we employ r = 1.

The lower bound estimation by MAP (8) can have an es-
timation bias caused by the approximation p̂, though it
is almost negligible when K is a typical setting (such as
K = 10). This bias occurs because, we only have one f̃x

for each corresponding F̃∗
S . Therefore, in each θMAP, the

effect of the prior remains even when K is large. We can
easily avoid this bias by setting r so that it decreases r → 0
when K increases, by which the estimator (8) converges
to the usual MC estimator (6). In Appendix D.3, we show
that, in practice, the MAP based approach has an advantage
for small K setting.

D.2. Analyzing Variance

We re-write the estimator of the lower bound (8) as

1

K

∑
(F̃∗

S ,f̃)∈F

a(F̃∗
S)ξ(f̃x) + b(F̃∗

S).

where a(F̃∗
S) = log

(
λ

Z
F̃∗
S

U (x)
+ 1−λ

Z
F̃∗
S

O (x)

)
−

log

(
λ

Z
F̃∗
S

U (x)

)
, b(F̃∗

S) = log

(
λ

Z
F̃∗
S

U (x)

)
, and

ξ(f̃x) ∈ [0, 1] is θMAP(f̃x) when (8) and is I(f̃x ∈ A
F̃∗

S

O )
when (6). By using independence of the MC samples
and law of total variance, the variance of this estimator is
decomposed as follows:

VF̃∗,f̃

 1

K

∑
(F̃∗

S
,f̃)∈F

a(F̃∗
S)ξ(f̃x) + b(F̃∗

S)


=

1

K
EF̃∗Vf̃ |F̃∗

[
a(F̃∗

S)ξ(f̃x) + b(F̃∗
S)
]

+
1

K
VF̃∗Ef̃ |F̃∗

[
a(F̃∗

S)ξ(f̃x) + b(F̃∗
S)
]

=
1

K

{
EF̃∗

[
a(F̃∗

S)
2Vf̃ |F̃∗

[
ξ(f̃x)

]]
+ EF̃∗

[
b(F̃∗

S)
]

+ VF̃∗

[
a(F̃∗

S)Ef̃ |F̃∗

[
ξ(f̃x)

]
+ b(F̃∗

S)
]}

(10)
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In the first term of (10), only Vf̃ |F̃∗

[
ξ(f̃x)

]
changes de-

pending on ξ. From

Vf̃ |F̃∗

[
θMAP(f̃x)

]
= Vf̃ |F̃∗

[
I(f̃x ∈ A

F̃∗
S

O )
]
/4,

we see that MAP makes the variance of the first term 1/4.
The second term in (10) does not change depending on ξ.
In the case of the MAP estimate, the third term in (10) is

VF̃∗

[
a(F̃∗

S)Ef̃ |F̃∗

[
ξ(f̃x)

]
+ b(F̃∗

S)
]

= VF̃∗

[
a(F̃∗

S)Ef̃ |F̃∗

[
p̂+ I(f̃x ∈ A

F̃∗
S

O )

2

]
+ b(F̃∗

S)

]

= VF̃∗

[
a(F̃∗

S)
p̂+ p(f̃x ∈ A

F̃∗
S

O | F̃∗)

2
+ b(F̃∗

S)

]
.

If p̂ ≈ p(f̃x ∈ A
F̃∗

S

O | F̃∗), this should be similar

to VF̃∗

[
a(F̃∗

S)p(f̃x ∈ A
F̃∗

S

O | F̃∗) + b(F̃∗
S)
]
, which is the

variance in the case of ξ(f̃x) = I(f̃x ∈ A
F̃∗

S

O ). There-

fore, under the assumption of p̂ ≈ p(f̃x ∈ A
F̃∗

S

O | F̃∗)
the variance reduction is expected because of the variance
reduction in the first term of (10).

D.3. Empirical Verification of MC Estimator of Lower
Bound

Using a two objective problem generated by GPs (d = 1),
we examine the accuracy of the MC estimator compared
with the true lower bound. Hereafter, Naı̈ve MC indicates
the calculation by (6), and MC with Bayes MAP indicates
the calculation by (8). We calculate the lower bound at 100
grid points in x ∈ [0, 1] with random 5 training points. Re-
garding the result by Naı̈ve MC with K = 105 samples as
a pseudo ground-truth, compared with which we evaluate
the estimation error. In addition to the fixed r setting, we
here examine the setting r =

√
10/K, by which r reduces

with O(1/
√
K) (same as the general convergence rate of

the MC estimator) and r = 1 when K = 10 in this setting.

Figure 10 shows the results by mean squared error (MSE).
MC with Bayes MAP shows r = 1 and r =

√
10/K, for

which they have the same result when K = 10. When the
sample size K is small, MC with Bayes MAP has smaller
errors for both the r settings compared with Naı̈ve MC.
With the increase of K, all methods decrease MSE, but in
the right log scale plot, the decrease of MC with Bayes
MAP (r = 1) stagnates at around K = 102–103. On the
other hand, MC with Bayes MAP (r =

√
10/K) continues

to decrease MSE because it can diminish the effect of the
approximation in the prior.
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Figure 10. MSE compared with the pseudo ground truth, created
by Naı̈ve MC with K = 105. The plot is the original scale, and
the right plot is the log10 scale.

E. Parallel Querying
We here consider parallel querying in which Q queries
should be selected every iteration. Let Xq :=
{x(1), . . . ,x(q)} and Hq = {fx(1) , . . . , fx(q)} for q ≤ Q.
Then, MI(HQ;F∗) can be a selection criterion for deter-
mining Q points simultaneously. However, this leads to
Q × d dimensional optimization. Instead, we employ a
greedy strategy shown by (Takeno et al., 2022), in which
the MI approximation can be reduced to a similar compu-
tation to the case of single querying.

Assume that we already select q < Q points Xq , for which
observations are not obtained yet, and consider determining
the q+1-th point x. In this case, MI(Hq ∪fx;F∗) should
be maximized with respect to the additional x. We see

MI(Hq ∪ fx;F∗) = MI(Hq;F∗) + CMI(fx;F∗ | Hq),

where CMI(fx;F∗ | Hq) = EHq [MI(fx;F∗ | Hq)] is
the MI conditioned on Hq . Since the first term does not
depend on x, we only need to consider the second term
CMI(fx;F∗ | Hq).

The lower bound of MI(fx;F∗ | Hq) is derived by the
same way as the lower bound of MI(fx;F∗), i.e., (4).
The only difference is that the GPs have additional train-
ing data consisting of Xq andHq . Let ζF

∗
S

λ,q (x) and η
F∗

S

λ,q(x)

be ζ
F∗

S

λ (x) and η
F∗

S

λ (x) in which the GPs with additional q
observations are used to calculate Z

F∗
S

U (x) and Z
F∗

S

O (x) as
follows:

ζ
F∗

S

λ,q (x) =
λ

Z
F∗

S

U (x | Hq)
+

1− λ

Z
F∗

S

O (x | Hq)
,

η
F∗

S

λ,q(x) =
λ

Z
F∗

S

U (x | Hq)
,

where Z
F∗

S

U (x | Hq) := p(fx ∈ A
F∗

S

U | Hq) and Z
F∗

S

O (x |
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Hq) := p(fx ∈ A
F∗

S

O | Hq). Then, we can write

EHq [MI(fx;F∗ | Hq)]

≥ EHq
EF∗,fx|Hq

[
log

{
ζ
F∗

S

λ,q (x)I(fx ∈ A
F∗

S

O )

+ η
F∗

S

λ,q(x)I(fx ∈ A
F∗

S

U\O)
}]

= EF∗,fx,Hq

[
log

{
ζ
F∗

S

λ,q (x)I(fx ∈ A
F∗

S

O )

+ η
F∗

S

λ,q(x)I(fx ∈ A
F∗

S

U\O)
}]

(11)

Since the expectation EHq
EF∗,fx|Hq

can be seen as the
joint expectation EF∗,fx,Hq

, the MC approximation can be
performed by using sample from the joint distribution of
F∗,fx and Hq . Let Fq be a set of samples (F̃∗

S , f̃x, H̃q)
from the joint distribution. Then, the MC approximation of
the lower bound (11) is

1

K

∑
(F̃∗

S ,f̃x,H̃q)∈Fq

log
{
ζ
F̃∗

S

λ,q (x)I(f̃x ∈ A
F̃∗

S

O )

+ η
F̃∗

S

λ,q(x)I(f̃x ∈ A
F̃∗

S

U\O)
}

The sampling of Fq can be performed by almost the same
procedure as the single querying. First, we generate the
“entire function f̃” by using RFM. F̃∗

S is obtained by ap-
plying NSGA-II to f̃ . f̃x and H̃q can be immediately ob-
tained from RFM. Note that even when we perform next
q+2-th point selection, we can reuse F̃∗

S and f̃ , from which
H̃q+1 can also be immediately obtained.

The MAP based approximation can also be applied to the
parallel setting. The lower bound (11) can be re-written as

EF∗,Hq
Efx|F∗,Hq

[
I(fx ∈ A

F∗
S

O ) log ζ
F∗

S

λ,q (x)

+ I(fx ∈ A
F∗

S

U\O) log η
F∗

S

λ,q(x)

]
= EF∗,Hq

[
p(fx ∈ A

F∗
S

O | F∗,Hq) log ζ
F∗

S

λ,q (x)

+ p(fx ∈ A
F∗

S

U\O | F
∗,Hq) log η

F∗
S

λ,q(x)
}]

.

The prior approximation for p(fx ∈ A
F∗

S

O | F∗,Hq) be-
comes p(fx ∈ A

F∗
S

O | F∗,Hq) ≈ Z
F∗

S

O (x | Hq)/Z
F∗

S

U (x |
Hq). Then, θMAP can be obtained by the same procedure
show in Section 3.3. As a result, we have an approximation
of the lower bound (11)

1

K

∑
(F̃∗

S ,f̃x,H̃q)∈Fq

θMAP log ζ
F̃∗

S

λ,q (x)

+ (1− θMAP) log η
F̃∗

S

λ,q(x).
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Figure 11. Results on parallel querying.

Figure 11 shows the empirical evaluation for which the set-
ting is same as in Section 6.1. Here, we set Q = 2 and
3, and we used the (d, L) = (3, 3) GP derived functions.
For comparison, ParEGO, EHVI, MOBO-RS and JES were
used. ParEGO and EHVI consider the expected improve-
ment when Q points are simultaneously selected, which is
a well known general strategy (Shahriari et al., 2016). Un-
like the single querying, the expectation is approximated
by the MC estimation for which the number of samples
was 100 and 10 for ParEGO and EHVI, respectively. For
MOBO-RS, Q points are selected by repeating Thompson
sampling with different sample paths Q times (Kandasamy
et al., 2018), in which the weights in the Tchebyshev scalar-
ization were also re-sampled. JES approximates the simul-
taneous information gain by Q points as indicated by (Tu
et al., 2022). From the results, we can see that the proposed
method shows sufficiently high performance in the parallel
querying.

F. Decoupled Setting
For the decoupled setting, MI and its lower bound is

MI(f l
x;F∗)

= EF∗,fl
x

[
log

q(f l
x | F∗)

p(f l
x)

]
+DKL

(
p(f l

x | F∗) ∥ q(f l
x | F∗)

)
≥ EF∗,fl

x

[
log

q(f l
x | F∗)

p(f l
x)

]
=: LDec(x, l, λ).
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We define q(f l
x | F∗) as the marginal distribution of

qλ(fx | F∗):

q(f l
x | F∗)

=

∫
qλ(fx | F∗)df−l

x

=

∫
λqU (fx | F∗

S) + (1− λ)qO(fx | F∗
S)df

−l
x

=

∫
p(fx)ζ

F∗
S

λ (x)I(fx ∈ A
F∗

S

O )df−l
x

+

∫
p(fx)η

F∗
S

λ (x)I(fx ∈ A
F∗

S

U\O)df
−l
x

= p(f l
x)
{
ζ
F∗

S

λ (x)

∫
p(f−l

x | f l
x)I(fx ∈ A

F∗
S

O )df−l
x

+ η
F∗

S

λ (x)

∫
p(f−l

x | f l
x)I(fx ∈ A

F∗
S

U\O)df
−l
x

}
= p(f l

x)
{
ζ
F∗

S

λ (x)p(fx ∈ A
F∗

S

O | f l
x)

+ η
F∗

S

λ (x)p(fx ∈ A
F∗

S

U\O | f
l
x)
}
, (12)

where f−l
x is the L − 1 dimensional subvector of fx in

which f l
x is removed. Then, the lower bound and its MC

approximation is obtained as

LDec(x, l, λ)

= EF∗,f l
x

[
log

{
ζ
F∗

S

λ (x)p(fx ∈ A
F∗

S

O | f l
x)

+ η
F∗

S

λ (x)p(fx ∈ A
F∗

S

U\O | f
l
x)
}]

≈ 1

K

∑
(F̃∗

S ,f̃)∈F

log
{
ζ
F̃∗

S

λ (x)p(fx ∈ A
F̃∗

S

O | f̃ l
x)

+ η
F̃∗

S

λ (x)p(fx ∈ A
F̃∗

S

U\O | f̃
l
x)
}
.

The probabilities p(fx ∈ A
F̃∗

S

O | f̃ l
x) and p(fx ∈ A

F̃∗
S

U\O |
f̃ l
x) can be analytically calculated. Let Ci = (ℓ1i , u

1
i ] ×

(ℓ2i , u
2
i ] × · · · × (ℓLi , u

L
i ] be the cell partitions of the over-

truncated regionAF∗
S

O . Then, from the independence of fx,
we see

p(fx ∈ A
F̃∗

S

O | f̃ l
x)

=

∫
p(f−l

x )I(fx ∈ A
F̃∗

S

O )df−l
x

=

C∑
c=1

I(f l
x ∈ (ℓlc, u

l
c])

∫
C−l
c

p(f−l
x )df−l

x

=

C∑
c=1

I(f l
x ∈ (ℓlc, u

l
c])

∏
l′ ̸=l

(
Φ(ᾱc,l′)− Φ(αc,l′)

)
=

C∑
c=1

I(f l
x ∈ (ℓlc, u

l
c])

∏
l′ ̸=l

Zcl′ , (13)

where Zcl′ = Φ(ᾱc,l′) − Φ(αc,l′) and C−l
c is the L − 1

dimensional hyper-rectangle created by removing the l-th

dimension of Cc. For p(fx ∈ A
F̃∗

S

U\O | f̃
l
x), we use the

following relation:

p(fx ∈ A
F̃∗

S

U\O | f̃
l
x)

= 1− p(fx ∈ A
F̃∗

S

O | f̃ l
x)− p(fx /∈ AF̃∗

S

U | f̃ l
x).

Since fx /∈ AF̃∗
S

U in the last term can be written as “dom-
inated region”, shown in the end of Appendix B. We can

calculate p(fx /∈ AF̃∗
S

U | f̃ l
x) by the same dominated region

decomposition as (13).

Figure 12 shows the empirical evaluation for which the set-
ting is same as in Section 6.1. Here, we used the (d, L) =
(3, 3) GP derived functions for three length scales. As a
baseline, the hypervolume-based KG is used. Since KG
is defined as the hyper-volume defined by the ‘one-step
ahead’ posterior mean, it is easy to extend to the decou-
pled setting as shown by (Daulton et al., 2023). We used
BoTorch’s qHypervolumeKnowledgeGradient implemen-
tation for the HVKG baseline, which is based on the ‘one
shot’ optimization of KG in the decoupled setting. Due to
the long computational time, we set the number of Pareto
optimal points in the one-step ahead posterior mean as 10 in
HVKG. For fair comparison, our proposed method also set
the size of the Pareto optimal points in the sampled func-
tion (i.e., the NSGA-II population size) as 10. The number
of samples (so called fantasy points) in HVKG is also set
as 10. For the final evaluation of the performance, since
the decouple setting observes only one objective function
f l(xt) in each iteration, the hyper-volume consisting of
observed points is difficult to define. Instead, we employ
an approach similar to so-called inference regret. At each
iteration t, we apply NSGA-II to the posterior mean µ(x),
and obtain a set of the Pareto optional points X ∗ for µ(x).
We evaluate the hyper-volume defined by the ground-truth
objective function values on X ∗, and the plots are the max-
imum values of the volumes identified until each iteration.
From results, we see that the decoupled extension of PFEV
has reasonable performance (Note that we only have about
1/3 observations compared with the same number of iter-
ations of the coupled setting because only one of objective
functions are observed). Due to the package differences
(PFEV is based on GPy, while HVKG is BoTorch), this
comparison is not a completely fair comparison. However,
it demonstrates that the proposed method can achieve com-
parable or superior performance to a standard package. A
more fair and thorough comparison is our future work.
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Figure 12. Results on decoupled setting.

G. Joint Entropy Extension
Let X ∗ = {x | fx ∈ F∗}. The lower bound is

MI(fx;X ∗,F∗) ≥ EX∗,F∗,fx

[
log

q(fx | X ∗,F∗)

p(fx)

]
.

In practice, we only obtain a subset X ∗
S ⊆ X ∗, by which

F∗
S = {fx}x∈X∗

S
and HS = {(x,fx)}x∈X∗ are defined.

In the variational distribution q(fx | X ∗,F∗), HS can be
seen as an additional training data of the GPs fx. Then, a
natural extension of the variational distribution (3) is

qλ(fx | X ∗
S ,F∗

S)

=



(
λ

Z
F∗
S

U
(x|HS)

+ 1−λ

Z
F∗
S

O
(x|H)

)
p(fx | HS) if fx ∈ AF∗

S
O ,

λ

Z
F∗
S

U
(x|HS)

p(fx | HS) if fx ∈ AF∗
S

U\O,

0 otherwise,

where Z
F∗

S

U (x | HS) := p(fx ∈ A
F∗

S

U | HS) and
Z

F∗
S

O (x | HS) := p(fx ∈ A
F∗

S

O | HS). Note that here
the conditioning on HS is interpreted as a simple addition
of the training data, and does not impose the conditions that
“HS is the optimal solutions”, which is represented by the
truncation (Because of this reason, we do not give ‘∗’ to
HS). The resulting lower bound is

EX∗,F∗,fx

[
log

{
ζ
F∗

S

λ (x | HS)I(fx ∈ A
F∗

S

O )

+ η
F∗

S

λ (x | HS)I(fx ∈ A
F∗

S

U\O)
}]

, (14)

where ζ
F∗

S

λ (x | HS) = λ

Z
F∗
S

U (x|HS)
+ 1−λ

Z
F∗
S

O (x|HS)
and

η
F∗

S

λ (x | HS) = λ

Z
F∗
S

U (x|HS)
. The same MC approxima-

tion as (6) can be used to evaluate (14).

The MAP based approximation is also possible based on
transformation of (14):

EX∗,F∗

[
p(fx ∈ A

F∗
S

O | X ∗,F∗) log ζ
F∗

S

λ (x | HS)

+ p(fx ∈ A
F∗

S

U\O | X
∗,F∗) log η

F∗
S

λ (x | HS)

]
.

Based on the same idea shown in Section 3.3, we approx-
imate p(fx ∈ A

F∗
S

O | X ∗,F∗) ≈ Z
F∗

S

O (x | HS)/Z
F∗

S

U (x |
HS), from which the MAP estimator can be defined.

Figure 13 shows the empirical evaluation for which the set-
ting is same as in Section 6.1. Here, we used the (d, L) =
(3, 4) GP derived functions for three length scales. We see
that the original proposed method shows slightly better per-
formance than the JES extension, though behavior is simi-
lar each other.

H. Noisy Observation
Let ylx = f l

x + ε and yx = (y1x, . . . , y
L
x )

⊤, where ε ∼
N (0, σ2

noise). The mutual information for noisy observa-
tion is MI(yx;F∗), for which the lower bound can be de-
rived as

MI(yx;F∗)

= EF∗,yx

[
log

q(yx | F∗)

p(yx)

]
+DKL (p(yx | F∗) ∥ q(yx | F∗))

≥ EF∗,yx

[
log

q(yx | F∗)

p(yx)

]
.
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Figure 13. Comparison with JES extension of proposed method.

Since F∗ and yx are independent if fx is given, we define
q(yx | F∗) by using qλ(fx | F∗) as follows.

q(yx | F∗)

=

∫
p(yx | fx)qλ(fx | F∗)dfx

=

∫
p(yx | fx)(λqU (fx | F∗

S)

+ (1− λ)qO(fx | F∗
S))dfx

=

∫
p(yx | fx)p(fx)

{
ζ
F∗

S

λ (x)I(fx ∈ A
F∗

S

O )

+ η
F∗

S

λ (x)I(fx ∈ A
F∗

S

U\O)
}
dfx

=

∫
fx∈A

F∗
S

O

p(yx,fx)ζ
F∗

S

λ (x)dfx

+

∫
fx∈A

F∗
S

U\O

p(yx,fx)η
F∗

S

λ (x)dfx

= p(yx)

{
ζ
F∗

S

λ (x)

∫
fx∈A

F∗
S

O

p(fx | yx)dfx

+ η
F∗

S

λ (x)

∫
fx∈A

F∗
S

U\O

p(fx | yx)dfx

}
= p(yx)

{
ζ
F∗

S

λ (x)p(fx ∈ A
F∗

S

O | yx)

+η
F∗

S

λ (x)p(fx ∈ A
F∗

S

U\O | yx)
}
.

Then, the MC approximation becomes

EF∗,yx

[
log

{
ζ
F∗

S

λ (x)p(fx ∈ A
F∗

S

O | yx)

+η
F∗

S

λ (x)p(fx ∈ A
F∗

S

U\O | yx)
}]

≈ 1

KKε

∑
(F̃∗

S ,f̃)∈F

∑
ε̃∈E

log
{
ζ
F̃∗

S

λ (x)p(fx ∈ A
F̃∗

S

O | ỹx)

+η
F̃∗

S

λ (x)p(fx ∈ A
F̃∗

S

U\O | ỹx)
}
.

where E is a set of L-dimension noise samples ε̃ from
N (0, σ2

noiseI), ỹx = f̃x + ε̃ is a sample of yx, and
Kε = |E|. Note that, in this approximation, we transform
EF∗,yx

to EF∗,fx
Eε, which is possible because of the in-

dependence of the noise term. To evaluate this MC approx-
imation, we need the conditional distribution p(fx | ỹx),
written as

fx | ỹx ∼ N (ν(x), diag(s(x))),

where

νl(x) = µl(x) +
σ2
l (x)

σ2
l (x) + σ2

noise

(ỹlx − µl(x)),

sl(x) = σ2
l (x)−

σ4
l (x)

σ2
l (x) + σ2

noise

.

Therefore, p(fx ∈ A
F̃∗

S

O | ỹx) can be calculated by using

the same procedure as ZF̃∗
S

O = p(fx ∈ A
F̃∗

S

O ) shown in (9):

p(fx ∈ A
F̃∗

S

O | ỹx) =

C∑
i=1

∫
Ci

p(fx | ỹx)dfx

=

C∑
i=1

L∏
l=1

∫ ul
i

ℓli

p(f l
x | ỹlx)df l

x

=

C∑
i=1

L∏
l=1

(
Φ(β̄i,l)− Φ(β

i,l
)
)

where β
i,l

= (ℓli − νl(x))/sl(x) and β̄i,l = (ul
i −

νl(x))/sl(x). For p(fx ∈ A
F̃∗

S

U\O | ỹx), we can use a rela-

tion p(fx ∈ A
F̃∗

S

U\O | ỹx) = p(fx ∈ A
F̃∗

S

U | ỹx)− p(fx ∈

AF̃∗
S

O | ỹx). The last term p(fx ∈ A
F̃∗

S

O | ỹx) can be cal-

culated by the same approach as Z
F̃∗

S

U = p(fx ∈ A
F̃∗

S

U ),
described in the end of Appendix B.
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Figure 14 shows the empirical evaluation for which the
setting is same as in Section 6.1. Here, we used the
(d, L) = (3, 3) GP derived functions for three length
scales. We added the independent noise N (0, σ2

noise) with
σnoise = 0.1 to all the observations. The GPs have the same
value of the noise parameter σnoise = 0.1. We compared
with EHVI, MOBO-RS, and JES. EHVI and MOBO-RS
can handle the noise just by incorporating it into the surro-
gate GPs. JES (Tu et al., 2022) considers the information
gain from noisy observations. PFEV shows similar results
to its noisy observation counterpart. We empirically see
that MI(f(x);F∗) sufficiently works even when the ob-
servation contains moderate level of the noise. The investi-
gation under stronger noise is our future work.

I. Additional Discussion on Related Work
Although our main focus is on information-theoretic ap-
proaches, here, other criteria are also reviewed. A clas-
sical approach is the scalarization that transforms multi-
ple objective functions into a scalar value, among which
ParEGO (Knowles, 2006) is a well-known method based
on a random scalarization. However, the information of
the Pareto-frontier may be lost by the scalarization. The
standard expected improvement (EI) has been extended
based on measuring the improvement of the hyper-volume
called EHVI (expected hyper-volume improvement) (Em-
merich, 2005; Shah & Ghahramani, 2016). The GP up-
per confidence bound (UCB) is another well-known gen-
eral approach to BO (Srinivas et al., 2010). UCB based
MOBO methods have been studied (Ponweiser et al., 2008;
Zuluaga et al., 2013; 2016), but the setting of the con-
fidence interval sometimes becomes practically difficult.
SUR (Picheny, 2015) is based on the reduction of PI af-
ter the querying, which is computationally quite expen-
sive. A hypervolume-based multi-objective extension of
knowledge gradient (KG) is considered by (Daulton et al.,
2023). Naı̈ve computations of the hypervolume KG is com-
putationally intractable, and several approximation and ac-
celeration strategies have been studied. For example, so-
called one-shot strategy transforms the nested optimization
into simultaneous optimization which makes computation
much faster, but the dimension of the acquisition function
optimization becomes high.

We focus on the information-theoretic approach, which
was first proposed for single objective BO (Hennig &
Schuler, 2012; Hernández-Lobato et al., 2014; Wang &
Jegelka, 2017). Recently, (Cheng & Becker, 2024) pro-
posed a different variational lower bound approach to
single objective BO, which is only for single objective
problems. A seminal work in the information-theoretic
approach to MOBO is the Predictive Entropy Search
for Multi-Objective Optimization (PESMO) (Hernandez-

Lobato et al., 2016). PESMO defines an acquisition func-
tion through the entropy of the set of Pareto-optimal so-
lutions x, which is based on complicated approximation
by expectation propagation (EP) (Minka, 2001). On the
other hand, Belakaria et al. (2019) proposed using the
individual max-value entropy of each objective function,
called max-value entropy search for multi-objective opti-
mization (MESMO). This largely simplifies the computa-
tions, but obviously, information of the Pareto-frontier is
lost. Another JES based approach has been recently pro-
posed (Fernández-Sánchez & Hernández-Lobato, 2024),
which is in a more general formulation including multi-
fidelity and constrained problems. Their computations are
based on the Gaussian based entropy approximation, whose
validity remains unclear.

J. Detail of Experimental Settings
Bayesian optimization was implemented by a Python pack-
age called GPy (GPy, since 2012). PFEV, PFES, and
{PF}2ES requires Ci that are hyper-rectangles decompos-
ing the dominated region. To obtain Ci, we used Quick
Hyper-volume (QHV) (Russo & Francisco, 2014), which
is an efficient recursive algorithm originally proposed for
the Pareto hyper-volume calculation. In PFEV, we maxi-
mize λ for each given x by calculating L̂B(x, λ) for 11 grid
points of λ (10−3, 0.1, 0.2, . . . , 1.0). In RFM used for sam-
pling F∗ (required in PFEV, PFES, MESMO, {PF}2ES,
and JES), the number of basis D was 500. The GP hyper-
parameter σ2

noise is fixed as 10−4. In ParEGO, the coef-
ficient parameter in the augmented Tchebycheff function
was set 0.05 as shown in (Knowles, 2006). In EHVI, the
two reference points are required, shown as vref and wref

in (Shah & Ghahramani, 2016). The worst point vector vref

is defined by subtracting 10−4 from the vector consisting of
the minimum value of each dimension of yi in the training
data. On the other hand, the ideal point vector wref is de-
fined by adding 1 to the vector consisting of the maximum
value of each dimension of yi.

The definition of each benchmark function is as follows.

• Fonseca-Fleming (Fonseca & Fleming, 1995)

f1(x) = 1− exp

[
−

d∑
i=1

(
xi −

1√
d

)2
]

f2(x) = 1− exp

[
−

d∑
i=1

(
xi +

1√
d

)2
]

subject to − 4 ≤ xi ≤ 4, i ∈ [d].
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Figure 14. Results with noisy observations in GP-derived synthetic functions (average and standard error of 10 runs)

• Kursawe (Kursawe, 1990)

f1(x) =

2∑
i=1

[
−10 exp

(
−0.2

√
x2
i + x2

i+1

)]

f2(x) =

3∑
i=1

[
|xi|0.8 + 5 sin(x3

i )
]

subject to − 5 ≤ xi ≤ 5, 1 ≤ i ≤ 3.

• Viennet (Vlennet et al., 1996)

f1(x, y) = 0.5
(
x2 + y2

)
+ sin

(
x2 + y2

)
f2(x, y) =

(3x− 2y + 4)2

8
+

(x− y + 1)2

27
+ 15

f3(x, y) =
1

x2 + y2 + 1
− 1.1 exp

(
−(x2 + y2)

)
subject to − 3 ≤ x, y ≤ 3.

• FES1 (Fieldsend et al., 2003)

f1(x) =
d∑

i=1

∣∣∣∣xi − exp

(
(i/d)2

3

)∣∣∣∣0.5

f2(x) =

d∑
i=1

(
xi − 0.5 cos

(
10πi

d

)
− 0.5

)2

subject to 0 ≤ xi ≤ 1, i ∈ [d].

• FES2 (Fieldsend et al., 2003)

f1(x) =

d∑
i=1

(
xi − 0.5 cos

(
10πi

d

)
− 0.5

)2

f2(x) =

d∑
i=1

∣∣xi − sin2(i− 1) cos2(i− 1)
∣∣0.5

f3(x) =

d∑
i=1

|xi − 0.25 cos(i− 1) cos(2i− 2)− 0.5|0.5

subject to 0 ≤ xi ≤ 1, i ∈ [d].

• FES3 (Fieldsend et al., 2003)

f1(x) = −
d∑

i=1

∣∣∣∣∣∣xi −
exp

((
i
d

)2)
3

∣∣∣∣∣∣
0.5

,

f2(x) = −
d∑

i=1

∣∣xi − sin(i− 1)2 cos(i− 1)2
∣∣0.5 ,

f3(x) = −
d∑

i=1

|xi − (0.25 cos(i− 1) cos(2i− 1)

− 0.5)|0.5,

f4(x) = −
d∑

i=1

(
xi −

1

2
sin

(
1000π

i

d

)
− 1

2

)2

subject to 0 ≤ xi ≤ 1, i ∈ [d].

K. Additional Results of Empirical
Evaluation

K.1. Additional Results on GP-derived Synthetic
Functions

Additional results on GP-derived synthetic functions are
shown in Fig. 15-17. The results are all combinations of
ℓRBF ∈ {0.05, 0.1, 0.25}, L ∈ {2, 3, 4, 5, 6}, and d ∈
{2, 3, 4} (Note that the results in the main text Fig. 3 is also
included). We here also show results of ParEGO, MOBO-
RS, and MESMO, which are omitted in the main text. The
same format of boxplots as Fig 4 created from all the results
is shown in Fig. 18. We also examined an input dimen-
sion wise boxplot in Fig. 19 in which differences of all the
methods gradually decrease with the increase of the input
dimension. We further plot separately for each length scale
setting of the true objective function in Fig 20. We see that,
particularly for small length scale problems (which tends to
be multi-modal functions), differences become small. We
speculate that the differences were less apparent for chal-
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lenging problems with high-dimension and highly multi-
modal functions.

Further, Fig. 21 is performance difference between Bayes
MAP (8) and naı̈ve MC (6).
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Figure 15. Results on GP-derived synthetic function (d = 2)
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Figure 16. Results on GP-derived synthetic function (d = 3)
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Figure 17. Results on GP-derived synthetic function (d = 4)
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Figure 18. Boxplots of RHV at 100-th iteration.
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Figure 19. Boxplot of RHV at 100-th iteration for each input di-
mension.
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Figure 20. Boxplot of RHV at 100-th iteration for each input di-
mension and length scale.
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Figure 21. Boxplot of difference of average RHV between Bayes
MAP and naı̈ve MC (Bayes MAP minus naı̈ve MC). The differ-
ences of the 10 runs average RHV are shown for BO iterations
50, 75, and 100. The GP-derived functions of d ∈ {2, 3, 4},
L ∈ {2, 3, 4}, and ℓRBF ∈ {0.05, 0.1, 0.25} were used (i.e.,
27 = 3 × 3 × 3 points for each iteration). Since positive values
indicate Bayes MAP is better than naı̈ve MC, we see that Bayes
MAP shows slightly better performance across iterations.
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(e) Fonseca+Viennet
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(f) FES3+Kursawe

Figure 22. Performance comparison in benchmark functions (av-
erage and standard deviation of 10 runs).

K.2. Additional Results on Benchmark Functions

Figure 22 presents an extended version of Fig. 5 from the
main text, including additional baseline methods (ParEGO,
MOBO-RS, and MESMO). Figure 23 shows additional
results on benchmark functions. FES1 and FES2 are
(d, L) = (3, 2) and (d, L) = (3, 3), respectively. There-
fore, FES1+Kursawe and FES2+Kursawe are (d, L) =
(3, 4) and (d, L) = (3, 5), respectively. The experimen-
tal setup is identical to that in Section 6.1. These additional
results further demonstrate our method’s superior perfor-
mance across various problem configurations.

To assess the scalability of the proposed method, we ex-
tend our experiments to higher input dimensions. Fig-
ures 24, 25, and 26 display the results for FES1, FES2, and
FES3 benchmark functions with input dimensions ranging
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Figure 23. Performance comparison in additional benchmark
functions (average and standard deviation of 10 runs).

from d = 5 to d = 10. All experimental settings except
for the input dimension are identical to those in the main
text. The results show that our method demonstrates sta-
ble optimization performance as the input dimension in-
creases, similar to the cases presented in the main text. Ad-
ditionally, we evaluated our method on the DTLZ bench-
mark suite with (d, L) = (3, 3), as shown in Figure 27.
On DTLZ2, DTLZ5, DTLZ6, and DTLZ7, our proposed
method achieves higher RHV compared to other methods.
For DTLZ1 and DTLZ3, all methods show similarly high
RHV values (close to 1) with small differences between
them. In the case of DTLZ4, EHVI and MESMO demon-
strate better performance, while our method performs com-
parably to the remaining baselines.
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(c) d = 7
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Figure 24. Results on FES1.
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Figure 25. Results on FES2.
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Figure 26. Results on FES3.
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(a) DTLZ1
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(c) DTLZ3
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(f) DTLZ6
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Figure 27. Results on DTLZ (d = 3, L = 3).

K.3. Computational Time

We here examine the computational time of PFEV. We
used the GP-derived synthetic function (d = 3) from Sec-
tion 6.1. The training dataset was randomly selected 50
points, and we evaluated the computational time (CPU
time) required to calculate the acquisition function values
for 100 points generated by the Latin hyper cube sampling.
In PFEV, we evaluate time of calculating 11 grid points of
λ (10−3, 0.1, 0.2, . . . , 1.0) for a given x. The results are
shown in Table 1, in which we evaluate ParEGO, PFES,
EHVI, and PFEV (Proposed).

Obviously, ParEGO was quite fast because it applies the
usual single objective BO to the scalarized value. For
L = 3 and 4, EHVI was also fast, but it becomes slow
at L = 5 and we stopped it at L = 6 because of the
long computational time. The slow computation of EHVI
at large L is widely known. PFEV and PFES were similar
up to L = 4, but for L = 5 and L = 6, PFEV was slower
than PFES. This is because of the computation of QHV. For
L = 3 and L = 4, the computational time of NSGAII was
dominant in PFEV (Note that the same procedure is also
performed in PFES). However, for L = 5, QHV requires
the similar cost as NSGAII, and for L = 6, the compu-
tational cost of QHV became much larger than NSGAII.
PFEV requires QHV two times for each sampled Pareto-
frontier (see Appendix B) while PFES requires QHV only
once for each sampled Pareto-frontier. This was major rea-
son of the difference of PFEV and PFES in L = 6.

L. Difference of Over- and Under-Truncation
Here, we discuss approximation error caused by replac-
ing the dominated region by the entire Pareto-frontier AF∗

with its counter-part created by F∗
S , i.e., AF∗

S

O or AF∗
S

U . The
difference actually can be small if S is sufficiently large,
but practically intractable size of S is required even for rea-
sonable size of L. To demonstrate this claim, we evaluate
differences of hyper-volumes of AF∗

S

O and AF∗
S

U . If the dif-
ference ofAF∗

S

O andAF∗
S

U are small, it suggests that the true
Pareto-frontier F∗ can be accurately approximated by F∗

S .

In Fig. 28, we empirically investigate the ratio of the vol-
ume of under- and over- truncations compared with the true
volume. We assume that the Pareto-frontier is the simplex
(
∑

i∈[L] f
i = 1 and f i ≥ 0), and approximation points F∗

S

are sampled uniformly in the simplex as shown in Fig. 28
(a). The examples of the volume ratio is shown in Fig. 28
(b). In Fig. 28 (c), we see that, when L = 2, the difference
between the truncations rapidly decreases, but for L ≥ 3
shown in Fig. 28 (d) and (e), large differences remain even
when the population size is 1,000 (Note that in this exam-
ple, over-truncation is closer to the true value than under-
truncation, but in general, it depends on the shape of the
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Table 1. CPU time evaluation (sec).
L = 3 L = 4 L = 5 L = 6

ParEGO 0.95 ± 0.08 1.15 ± 0.06 1.38 ± 0.07 1.62 ± 0.11
PFES 21.43 ± 0.20 29.18 ± 0.39 45.23 ± 1.41 127.64 ± 24.44
EHVI 0.86 ± 0.06 3.51 ± 2.24 500.09 ± 336.18 -
Proposed Total 21.93 ± 0.42 31.74 ± 0.64 61.04 ± 3.26 274.49 ± 28.99

CALCPFEV 0.59 ± 0.05 1.56 ± 0.13 5.04 ± 0.49 24.76 ± 3.71
NSGAII 19.59 ± 0.37 25.66 ± 0.37 31.36 ± 0.27 37.26 ± 0.22
RFM 0.59 ± 0.00 0.80 ± 0.01 1.00 ± 0.00 1.19 ± 0.00
QHV 0.42 ± 0.03 2.72 ± 0.26 22.41 ± 2.65 209.81 ± 25.68

true Pareto frontier which is unknown). The continuous
Pareto-frontier is the (L − 1)-dimensional space, and we
conjecture that the required number of points to keep the
sufficient density of approximation points F∗

S increase ex-
ponentially when L increases.

About the difference between F∗ and F∗
S , increasing the

number of MC samples cannot mitigate the essential prob-
lem in principle. In our formulation, the over-truncation
corresponds to λ = 0. Therefore, the over-truncation based
lower bound is biased toward a smaller value, because the
bound is defined as the maximizer with respect to λ. This
discussion holds even in the population LB(x, λ) (i.e., be-
fore introducing the sample approximation), and therefore,
increasing the number of samples from the GPs does not
solve this intrinsic bias.

M. Consideration on Gradient-based
Optimizer

Figure 29 shows results with qLogNEHVI (Daulton et al.,
2020; 2021; Ament et al., 2023) for GP-derived func-
tions (d = 3, L = 3, 4, 5) and four benchmark func-
tions. For qLogNEHVI, we used qLogNoisyExpected-
HypervolumeImprovement of BoTorch. The reference
point is defined by ymin − 0.1(ymax − ymin), where ymin

and ymax are vectors consisting of the minimum and
the maximum of each dimension in training yi, respec-
tively. For qLogNEHVI, we used both the gradient descent
(optimize acqf function of BoTorch) and DIRECT for
the GP-derived functions. We see that the gradient opti-
mizer slightly improves the results, but DIRECT also has
the similar performance. Overall, qLogNEHVI shows good
performance, while PFEV also show comparable perfor-
mance. Although implementations are not exactly consis-
tent (PFEV is GPy base and qLogNEHVI is BoTorch), we
can see that performance in our results are not largely dif-
ferent from the well-known package.
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(a) Illustration of L = 3.
The true Pareto-frontier is
assumed to be the simplex.
The discretized points (red
points) are sampled from the
uniform distribution on the
simplex (Dirichlet distribu-
tion).
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(b) The difference between two truncations is evaluated
by the volume of the colored region defined in the L-
dimensional unit cube [0, 1]L. When L = 2, the true
volume is 1/2. In the plot (c), the areas of the orange
and the blue regions are compared (each of which are
divided by 1/2 in (c), respectively).

0 200 400 600 800 1000
Num. of Pareto optimal points

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Ra
tio

 v
s t

ru
e 

vo
lu

m
e

L = 2
Over truncation
Under truncation

(c) L = 2

0 200 400 600 800 1000
Num. of Pareto optimal points

0.5

1.0

1.5

2.0

Ra
tio

 v
s t

ru
e 

vo
lu

m
e

L = 3
Over truncation
Under truncation

(d) L = 3

0 200 400 600 800 1000
Num. of Pareto optimal points

0

2

4

6

8

Ra
tio

 v
s t

ru
e 

vo
lu

m
e

L = 4
Over truncation
Under truncation

(e) L = 4

Figure 28. Hyper-volume relative differences between over- and under- truncations. The volume is defined in the unit cube [0, 1]L. The
vertical axis is the ratio compared with the true volume.
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(a) L = 3
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(b) L = 4
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(c) L = 5

Figure 29. Comparison with qLogNEHVI.
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