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ABSTRACT

Designing incentives for an adapting population is a ubiquitous problem in a wide
array of economic applications and beyond. In this work, we study how to design
additional rewards to steer multi-agent systems towards desired policies without
prior knowledge of the agents’ underlying learning dynamics. Motivated by the
limitation of existing works, we consider a new and general category of learning
dynamics called Markovian agents. We introduce a model-based non-episodic
Reinforcement Learning (RL) formulation for our steering problem. Importantly,
we focus on learning a history-dependent steering strategy to handle the inherent
model uncertainty about the agents’ learning dynamics. We introduce a novel ob-
jective function to encode the desiderata of achieving a good steering outcome with
reasonable cost. Theoretically, we identify conditions for the existence of steering
strategies to guide agents to the desired policies. Complementing our theoretical
contributions, we provide empirical algorithms to approximately solve our objec-
tive, which effectively tackles the challenge in learning history-dependent strategies.
We demonstrate the efficacy of our algorithms through empirical evaluations.

1 INTRODUCTION

H G
H (5, 5) (0, 4)
G (4, 0) (2, 2)

(a) Payoff Matrix of the Two-Player “Stag Hunt”
Game. H and G stand for two actions Hunt and
Gather. Both (H,H) and (G,G) are NE and
(H,H) is payoff-dominant.
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(b) Dynamics of Agents Policies without/with
Steering. Agents follow natural policy gradient
(replicator dynamics) for policy update. x and y
axes correspond to the probability to take action H
by the row and column players. Red curves repre-
sent the dynamics of agents’ policies starting from
different intializations (black dots).

Figure 1: Example: The “Stag Hunt” Game

Many real-world applications can be formulated
as Markov Games (Littman, 1994) where the
agents repeatedly interact and update their poli-
cies based on the received feedback. In this
context, different learning dynamics and their
convergence properties have been studied exten-
sively (see, for example, Fudenberg and Levine
(1998)). Because of the mismatch between the
individual short-run and collective long-run in-
centives, or the lack of coordination in decentral-
ized systems, agents following standard learning
dynamics may not converge to outcomes that
are desirable from a system designer perspec-
tive, such as the Nash Equilibria (NE) with the
largest social welfare. An interesting class of
games that exemplify these issues are so-called
“Stag Hunt” games (see Fig. 1-(a)), which are
used to study a broad array of real-world appli-
cations including collective action, public good
provision, social dilemma, team work and in-
novation adoption (Skyrms, 2004)1. Stag Hunt
games have two pure-strategy NE, one of which
is ‘payoff-dominant’, that is, both players obtain
higher payoffs in that equilibrium than in the
other. Typical algorithms may fail to reach the
payoff-dominant equilibrium pH,Hq (LHS Fig. 1-(b)). Indeed, the other equilibrium pG,Gq is typically
selected when it is risk-dominant (Harsanyi and Selten, 1988; Newton, 2021).

1We defer a concrete and practical scenario which can be modeled by the Stag Hunt game to Appx. B.1
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This paper focuses on situations when an external “mediator” exists, who can influence and steer the
agents’ learning dynamics by modifying the original rewards via additional incentives. This kind
of mediator can be conceptualized in various ways. In particular, we can think of a social planner
who provides monetary incentives for joint ventures or for adoption of an innovative technology via
individual financial subsidies. As illustrated on the RHS of Fig. 1-(b), with suitable steering, agents’
dynamics can be directed to the best outcome. Our primary objective is to steer the agents to some
desired policies, that is, to minimize the steering gap vis-a-vis the target outcome. As a secondary
objective, the payments to agents regarding the steering rewards should be reasonable, that is, the
steering cost should be low.

To our knowledge, Zhang et al. (2023) is the first work studying a similar steering problem as ours.
They assume the agents are no-regret learners and may act in arbitrarily adversarial ways. In some
natural settings, such assumption may not be practical, because no-regret criterion typically requires
careful processing of the entire history of learning. In settings with limited cognitive resources
and bounded rationality, it is natural to favor models where the agents only process a subset of
the available information (Camerer, 2011). In particular, humans have been widely shown to rely
overproportionally on recent experiences in decision making, known as ‘recency bias’ (Costabile and
Klein, 2005; Page and Page, 2010; Durand et al., 2021). Besides, there is evidence that behavioral
dynamics that only rely on the most recent experience are able to fit behavioral data well in certain
situations (Mäs and Nax, 2016). Motivated by these insights, we therefore study steering a different
category of learning dynamics called Markovian agents, where the agents’ policy updates only
depend on their current policy and the (modified) reward function. Our model complements the prior
work on no-regret agents, and serves as the first abstraction of behavior based on limited cognitive
abilities with recency bias in steering setting. Theoretically, Markovian agents subsumes a broader
class of popular policy-based methods as concrete examples (Giannou et al., 2022; Ding et al., 2022),
which are not covered by no-regret assumptions. We also note that a concurrent work (Canyakmaz
et al., 2024) considers a similar setting as ours, and we defer to Sec. 1.1 for further discussion.

In practice, learning the right steering strategies encounters two main challenges. First, the agents
may not disclose their learning dynamics model to the mediator. As a result, this creates fundamental
model uncertainty, which we will tackle with appropriate Reinforcement Learning (RL) techniques to
trading-off exploration and exploitation. Second, it may be unrealistic to assume that the mediator
is able to force the agents to “reset” their policies in order to generate multiple steering episodes
with the same initial state. This precludes the possibility of learning steering strategies through
episodic trial-and-error. Therefore, the most commonly-considered, fixed-horizon episodic RL (Dann
and Brunskill, 2015) framework is not applicable here. Instead, we will consider a finite-horizon
non-episodic setup, where the mediator can only generate one finite-horizon episode, in which we
have to conduct both the model learning and steering of the agents simultaneously. Motivated by
these considerations, we would like to address the following question in this paper:

How to learn desired steering strategies for Markovian agents
in the non-episodic setup under model uncertainty?

We consider a model-based setting where the mediator can get access to a model class F containing
the agents’ true learning dynamics f˚. We summarize and highlight our key contributions as follow:

• Conceptual Contributions: In Sec. 3, we formulate steering as a non-episodic RL problem, and
propose a novel optimization objective in Obj. (1), where we explicitly tackle the inherent model
uncertainty by learning history-dependent steering strategies. As we show in Prop. 3.3, under
certain conditions, even without prior knowledge of f˚, the optimal solution to Obj. (1) achieves
not only low steering gap, but also “Pareto Optimality” in terms of both steering costs and gaps.

• Theoretical Contributions: In Sec. 4, we provide sufficient conditions under which there exists
steering strategies achieving low steering gap. These results in turn justify our chosen objective
and problem formulation.

• Algorithmic Contributions: Learning a history-dependent strategy presents challenges due to the
exponential growth in the history space. We propose algorithms to overcome these issues.

– When the model class |F | is small, in Sec. 5.1, we approach our objective from the perspective
of learning in a Partially Observable MDP, and propose to to learn a policy over the model
belief state space instead of over the history space.

2
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– For the case when |F | is large, exactly solving Obj. (1) can be challenging. Instead, we focus
on approximate solutions to trade-off optimality and tractability. In Sec. 5.2, we propose a
First-Explore-Then-Exploit (FETE) framework. Under some conditions, we can still ensure
the directed agents converge to the desired outcome.

• Empirical Validation: In Sec. 6, we evaluate our algorithms in various representative environments,
and demonstrate their effectiveness under model uncertainty.

1.1 CLOSELY RELATED WORKS

We discuss the works most closely related to ours in this section, and defer the others to Appx. B.2.

Steering Learning Dynamics As mentioned in the introduction, Zhang et al. (2023) are the first to
introduce the “steering problem”, but their setting differs quite fundamentally from ours in several key
aspects. Firstly, they assume that agents behave as no-regret and arbitrarily adversarial learners, which
may be unrealistic in settings with limited information and feedback, and owed to agents’ limited
cognitive resources (Camerer, 2011) including recency bias (Costabile and Klein, 2005). Motivated
by this, we instead focus on a broad class of Markovian dynamics. Secondly, the mediator’s objective
in Zhang et al. (2023) is to steer agents such that the average policy converges to the target NE
while maintaining a sublinear accumulative budget, motivated by their infinite-horizon setup. In
contrast, we consider the finite-horizon setting, and therefore, we are concerned with minimizing
the steering gap of the terminal policy and the cumulative steering cost. Thirdly, when the desired
NE is not pure, Zhang et al. (2023) require the mediator to be able to “give advice” to the players to
facilitate coordination, while we do not allow the mediator to do this. Because of these differences,
the methods and results obtained by Zhang et al. (2023) and us are not directly comparable, yet
complement one another depending on application considered.

Perhaps the closest to ours is a concurrent work by Canyakmaz et al. (2024), which contributes
empirical investigation on the use of control methods to direct game dynamics towards desired
outcomes, in particular allowing for model uncertainty. Although not formally specified in Canyakmaz
et al. (2024), they consider a similar finite-horizon non-episodic setup as ours. However, they only
consider history-independent steering strategy, which can result in sub-optimal performance in
this finite-horizon setup, because one-step observations may not provide sufficient information to
tackle model uncertainty. As our main contribution compared with their work, we point out that,
one should, in principle, employ history-dependent steering strategies, since history can serve as
sufficient information set for decision making under uncertainty. This leads to significant differences
in the design principles of our algorithms compared with Canyakmaz et al. (2024). Concretely,
we propose a learning objective for history-dependent strategies in Obj. (1), and two algorithms
for low uncertainty (small F) and high uncertainty (large F) settings, respectively. In the former
case, we contribute a belief-state based algorithm that can exactly solve Obj. (1), offering a stronger
solution than Canyakmaz et al. (2024) due to the theoretical guarantee in Prop. 3.3. For the latter,
although both our FETE and SIAR-MPC (Canyakmaz et al., 2024) share a two-phase (exploration +
exploitation) structure, ours represents a more general framework with a more advanced exploration
strategy (see more explanation in Sec. 5.2). Besides, we develop additional novel theory regarding
the existence of strategies with low steering gap.

2 PRELIMINARY

In the following, we formally define the finite-horizon Markov Game that we will focus on. We
summarize all the frequently used notations in this paper in Appx. A.

Finite Horizon Markov Game A finite-horizon N -player Markov Game is defined by a tuple
G :“ tN , s1, H,S,A :“ tAnuNn“1,P, r :“ trnuNn“1u, where N :“ t1, 2, ..., Nu is the indices of
agents, s1 is the fixed initial state, H is the horizon length, S is the finite shared state space, An is the
finite action space for agent n, and A denotes the joint action space. Besides, P :“ tPhuhPrHs with
Ph : S ˆ A Ñ ∆pSq denotes the transition function of the shared state, and rn :“ trnhuhPrHs with
rnh : S ˆ A Ñ r0, 1s denotes the reward function for agent n. For each agent n, we consider the non-
stationary Markovian policies Πn :“ tπn “ tπn1 , ..., π

n
Hu|@h P rHs, πnh : S Ñ ∆pAnqu. We denote

Π :“ Π1 ˆ ...ˆΠN to be the joint policy space of all agents. Given a policy π :“ tπ1, ..., πNu P Π,
a trajectory is generated by: @h P rHs, @n P rN s, anh „ πnp¨|shq, rnh Ð rnhpsh,ahq, sh`1 „

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Php¨|sh,ahq, where ah :“ tanhunPrNs denotes the collection of all actions. Given a policy π, we
define the value functions by: Qn,πh|r p¨, ¨q :“ Eπr

řH
h1“h r

n
h1 psh1 ,ah1 q|sh “ ¨,ah “ ¨s, V n,πh|r p¨q :“

Eπr
řH
h1“h r

n
h1 psh1 ,ah1 q|sh “ ¨s, where we use |r to specify the reward function associated with the

value functions. In the rest of the paper, we denote An,π
|r “ Qn,π

|r ´ V n,π
|r to be the advantage value

function, and denote Jn
|rpπq :“ V n,π1|r ps1q to be the total return of agent n w.r.t. policy π.

3 THE PROBLEM FORMULATION OF THE STEERING MARKOVIAN AGENTS

We first introduce our definition of Markovian agents. Informally, the policy updates of Markovian
agents are independent of the interaction history conditioning on their current policy and observed
rewards. This encompass a broader class of popular policy-based methods as concrete examples
(Giannou et al., 2022; Ding et al., 2022; Xiao, 2022; Daskalakis et al., 2020).
Definition 3.1 (Markovian Agents). Given a game G, a finite and fixed T , the agents are Markovian
if their policy update rule f only depends on the current policy πt and the reward function r:

@t P rT s, πt`1 „ fp¨|πt, rq.

Here we only highlight the dependence on πt and r, and omit other dependence (e.g. the transition
function of G). It is worth to note that we do not restrict whether the updates of agents’ policies are
independent or correlated with each other, deterministic or stochastic. We assume T is known to us.

In the steering problem, the mediator has the ability to change the reward function r via the steering
reward u, so that the agents’ dynamics are modified to:

@t P rT s, ut „ ψtp¨|π1,u1, ...,πt´1,ut´1,πtq, πt`1 „ fp¨|πt, r ` utq,

Here ψ :“ tψtutPrT s denotes the mediator’s “steering strategy” to generate ut. We consider history-
dependent strategies to handle the model uncertainty, which we will explain later. Besides, ut :“
tunt,huhPrHs,nPrNs, where unt,h : S ˆ A Ñ r0, Umaxs is the steering reward for agent n at game
horizon h and steering step t. Umax ă `8 denotes the upper bound for the steering reward. For
practical concerns, we follow the standard constraints that the steering rewards are non-negative.

The mediator has a terminal reward function ηgoal and a cost function ηcost. First, ηgoal : Π Ñ

r0, ηmaxs assesses whether the final policy πT`1 aligns with desired behaviors—this encapsulates
our primary goal of a low steering gap. Note that we consider the general setting and do not restrict
the maximizer of ηgoal to be a Nash Equilibrium. For instance, to steer the agents to a desired
policy π˚, we could choose ηgoalpπq :“ ´}π ´ π˚}2. Alternatively, in scenarios focusing on
maximizing utility, ηgoalpπq could be defined as the total utility

ř

nPrNs J
n
|rpπq. For ηcost : Π Ñ Rě0,

it is used to quantify the steering cost incurred while steering. In this paper, we fix ηcostpπ,uq :“
ř

nPrNs J
n
|upπnq to be the total return related to π and the steering reward u. Note that we always

have 0 ď ηcostpπ,uq ď UmaxNH .

Steering Dynamics as a Markov Decision Process (MDP) Given a game G, the agents’ dy-
namics f and pηcost, ηgoalq, the steering dynamics can be modeled by a finite-horizon MDP.
M :“ tπ1, T,Π,U , f, pηcost, ηgoalqu with initial state π1, horizon length T , state space Π, action
space U :“ r0, UmaxsHN |S||A|, stationary transition f , running reward ηcost and terminal reward ηgoal.
For completeness, we defer to Appx. B.3 for an introduction of finite-horizon MDP

Steering under Model Uncertainty In practice, the mediator may not have precise knowledge of
agents learning dynamics model, and the uncertainty should be taken into account. We will only focus
on handling the uncertainty in agents’ dynamics f , and assume the mediator has the full knowledge of
G and the reward functions ηgoal and ηcost. We consider the model-based setting where the mediator
only has access to a finite model class F (|F | ă `8) satisfying the following assumption:
Assumption A (Realizability). The true learning dynamics f˚ is realizable, i.e. f˚ P F .

A Finite-Hoziron Non-Episodic Setup and Motivation As motivated previously, we formu-
late steering as a finite-horizon non-episodic RL problem. To our knowledge, in contrast to our
finite-horizon setting, most of the non-episodic RL settings consider the infinite-horizon setup with
stationary or non-stationary transitions, and therefore, they are also not suitable here. We provide
more discussion in Sec. 1.1.
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Definition 3.2 (Finite Horizon Non-Episodic Steering Setting). The mediator can only interact with
the real agents for one episode tπ1,u1, ...,πT ,uT ,πT`1u, where πt`1 „ f˚p¨|πt,utq @t P rT s.
Nonetheless, the mediator can get access to the simulators for all models in F , and it can sample
arbitrary trajectories and do episodic learning with those simulators to decide the best steering actions
u1,u2, ...,uT to deploy.

The Learning Objective Motivated by the model-based non-episodic setup, we propose the
following objective function, where we search over the set of all history-dependent strategies, denoted
by Ψ, to optimize the average performance over all f P F .

ψ˚ Ð argmax
ψPΨ

1

|F |

ÿ

fPF
Eψ,f

”

β ¨ ηgoalpπT`1q ´

T
ÿ

t“1

ηcostpπt,utq
ı

, (1)

Here we use Eψ,f r¨s :“ Er¨|@t P rT s,ut „ ψtp¨|tπt1 ,ut1 u
t´1
t1“1,πtq,πt`1 „ fp¨|πt, r ` utqs to

denote the expectation over trajectories generated by ψ and f P F ; β ą 0 is a regularization factor.
Next, we explain the rationale to consider history-dependent strategies. As introduced in Def. 3.2,
we only intereact with the real agents once. Therefore, the mediator needs to use the interaction
history with f˚ to decide the appropriate steering rewards to deploy, since the history is the sufficient
information set including all the information regarding f˚ availale to the mediator.

We want to clarify that in our steering framework, we will first solve Obj. (1), and then deploy ψ˚

to steer real agents. The learning and optimization of ψ˚ in Obj. (1) only utilizes simulators of F .
Besides, after deploying ψ˚ to real agents, we will not update ψ˚ with the data generated during the
interaction with real agents. This is seemingly different from common online learning algorithms
which conduct the learning and interaction repeatedly(Dann and Brunskill, 2015). But we want to
highlight that, given the fact that ψ˚ is history-dependent, it is already encoded in ψ˚ how to make
decisions (or say, learning) in the face of uncertainty after gathering data from real agents. In other
words, one can interpret that, in Obj. (1), we are trying to optimize an “online algorithm” ψ˚ which
can “smartly” decide the next steering reward to deploy given the past interaction history. As we will
justify in the following, our Obj. (1) can indeed successfully handle the model uncertainty.

Justification for Objective (1) We use Cψ,T pfq :“ Eψ,f r
řT
t“1 η

costpπt,utqs and ∆ψ,T pfq :“
Eψ,f rmaxπ η

goalpπq ´ ηgoalpπT`1qs as short notes of the steering cost and the steering gap (of the
terminal policy πT`1), respectively. Besides, we denote Ψε :“ tψ P Ψ|maxfPF ∆ψ,T pFq ď εu2 to
be the collection of all steering strategies with ε-steering gap. Based on these notations, we introduce
two desiderata, and show how an optimal solution ψ˚ of Obj. (1) can achieve them.
Desideratum 1 (ε-Steering Gap). We say ψ has ε-steering gap, if maxfPF ∆ψ,T pfq ď ε.
Desideratum 2 (Pareto Optimality). We say ψ is Pareto Optimal if there does not exist another
ψ1 P Ψ, such that (1) @f P F , Cψ1,T pfq ď Cψ,T pfq and ∆ψ1,T pfq ď ∆ψ,T pfq; (2) Df 1 P F , s.t.
either Cψ1,T pf 1q ă Cψ,T pf 1q or ∆ψ1,T pf 1q ă ∆ψ,T pf 1q.

Proposition 3.3. [Justification for Obj. (1)] By solving Obj. (1): (1) ψ˚ is Pareto Optimal; (2) Given
any ε, ε1 ą 0, if Ψε{|F | ‰ H and β ě

UmaxNHT |F |

ε1 , we have ψ˚ P Ψε`ε1

;

Next, we give some interpretation. As our primary desideratum, we expect the agents converge to
some desired policy that maximizes the goal function ηgoal after being steered for T steps, regardless
of the true model f˚. Therefore, we restrict the worst case steering gap to be small. As stated in
Prop. 3.3, for any accuracy level ε ą 0, as long as ε{|F |-steering gap is achievable, by choosing β
large enough, we can approximately guarantee ψ˚ has ε-steering gap. For the steering cost, although
it is not our primary objective, Prop. 3.3 states that at least we can guarantee the Pareto Optimality:
competing with ψ˚, there does not exist another ψ1, which can improve either the steering cost or gap
for some f 1 P F without deteriorating any others.

Given the above discussion, one natural question is that: when is Ψε non-empty, or equivalently,
when does a strategy ψ with ε-steering gap exist? In Sec. 4, we provide sufficient conditions and
concrete examples to address this question in theory. Notably, we suggest conditions where Ψε is
non-empty for any ε ą 0, so that the condition Ψε{|F | ‰ H in Prop. 3.3 is realizable, even for large
|F |. After that, in Sec. 5, we introduce algorithms to solve our Obj. (1).

2In fact, besides ε, Ψε also depends on other parameters like T , Umax, F and the initial policy π1. For
simplicity, we only highlight those dependence if necessary.
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4 EXISTENCE OF STEERING STRATEGY WITH ε-STEERING GAP

In this section, we identify sufficient conditions such that Ψε is non-empty. In Sec. 4.1, we start with
the special case when f˚ is known, i.e. F “ tf˚u. The results will serve as basis when we study the
general unknown model setting in Sec. 4.2.

4.1 EXISTENCE WHEN f˚ IS KNOWN: NATURAL POLICY GRADIENT AS AN EXAMPLE

In this section, we focus on a popular choice of learning dynamics called Natural Policy Gradient
(NPG) dynamics (Kakade, 2001; Agarwal et al., 2021) (a.k.a. the replicator dynamics (Schuster and
Sigmund, 1983)) with direct policy parameterization. NPG is a special case of the Policy Mirror
Descent (PMD) (Xiao, 2022). For the readability, we stick to NPG in the main text, and in Appx. D.1,
we formalize PMD and extend the results to the general PMD, which subsumes other learning
dynamics, like the online gradient ascent (Zinkevich, 2003).

Definition 4.1 (Natural Policy Gradient). For any n P rN s, t P rT s, h P rHs, sh P S, the policy
is updated by: πnt`1,hp¨|shq 9 πnt,hp¨|shq exppα pAn,πt

h|rn`un
t

psh, ¨qq. Here pAn,πt

h|rn`un
t

is some random

estimation for the advantage value An,πt

h|rn`un
t

with Eπnr pAn,πt

h|rn`un
t

psh, ¨qs “ 0.

We use pAπ
|r`u (and Aπ

|r`u) to denote the concatenation of the values of all agents, horizon, states

and actions. We only assume pAπt

|r`u is controllable and has positive correlation with Aπt

|r`u but could
be biased, which we call the “general incentive driven” agents.

Assumption B (General Incentive Driven Agents).

@t P rT s, xEr pAπt

|r`ut
s, Aπt

|r`ut
y ě λmin}Aπt

|r`ut
}22, } pAπt

|r`ut
}22 ď λ2max}Aπt

|r`ut
}22,

For NPG, note that the policy is always bounded away from 0. We will use Π` :“ tπ|@n, h, ah, sh :
πnhpah|shq ą 0u to denote such feasible policy set. We state our main result below.

Theorem 4.2 (Informal). Suppose ηgoal is Lipschitz in π, given any initial π1 P Π`, for any ε ą 0,
if the agents follow Def. 4.1 under Assump. B, if T and Umax are large enough, we have Ψε ‰ H.

Our result is strong in indicating the existence of a steering path for any feasible initialization. The
proof is based on construction. The basic idea is to design the ut so that Aπt

|r`ut
9 log π˚

πt
, for some

target policy π˚ P Π` (approximately) maximizing ηgoal, then we can guarantee the convergence of
πt towards π˚ under Assump. B. The main challenge here would be the design of ut. We defer the
details and the formal statements to Appx. D.

4.2 EXISTENCE WHEN f˚ IS UNKNOWN: THE IDENTIFIABLE MODEL CLASS

Intuitively, when f˚ is unknown, if we can first use a few steering steps rT ă T to explore and identify
f˚, and then steer the agents from π

rT to the desired policy within T ´ rT steps given the identified
f˚, we can expect Ψε ‰ H. Motivated by this insight, we introduce the following notion.

Definition 4.3 (pδ, T δF q-Identifiable). Given δ P p0, 1q, we say F is pδ, T δF q-identifiable, if
maxψminfPF Eψ,f rIrf “ fMLEss ě 1 ´ δ, where IrEs “ 1 if E is true and otherwise 0;

fMLE :“ argmaxfPF
řT δ

F
t“1 log fpπt`1|πt,utq.

Intuitively, F is pδ, T δF q-identifiable, if Dψ, s.t. after T δF steering steps, the hidden model f can be
identified by the Maximal Likelihood Estimation (MLE) with high probability. Next, we provide an
example of pδ, T δF q-identifiable function class with T δF upper bounded for any δ P p0, 1q.

Example 4.4. [One-Step Difference] If @π P Π, there exists a steering reward uπ P U , s.t.
minf,f 1PF H2pfp¨|π, r ` uπq, f 1p¨|π, r ` uπqq ě ζ, for some universal ζ ą 0, where H is the
Hellinger distance, then for any δ P p0, 1q, F is pδ, T δF q-identifiable with T δF “ Opζ´1 logp|F |{δqq.

Based on Def. 4.3, we provide a sufficient condition when Ψε is non-empty.
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Theorem 4.5. [A Sufficient Condition for Existence] Given any ε ą 0, ΨεT pF ;π1q3 ‰ H, if D rT ă T ,
s.t., (1) F is p ε

2ηmax
, rT q-identifiable, (2) Ψε{2

T´ rT
pF ;π

rT q ‰ H for any possible π
rT generated at step

rT during the steering.

We conclude this section by noting that, by Thm. 4.2, the above condition (2) is realistic for NPG (or
more general PMD) dynamics. The proofs for all results in this section are deferred to Appx. E.

5 LEARNING (APPROXIMATELY) OPTIMAL STEERING STRATEGY

In this section, we investigate how to solve Obj. (1). Comparing with the episodic RL setting, the
main challenge is to learn a history-dependent policy. Since the history space grows exponentially in
T , directly solving Obj. (1) can be computationally intractable for large T . Therefore, the main focus
of this section is to design tractable algorithms to overcome this challenge.

As a special case, when the model is known, i.e. F “ tf˚u, by the Markovian property, Obj. (1)
reduces to a normal RL objective, and a state-dependent steering strategy ψ : Π Ñ U is already
enough. For completeness, we include the algorithm but defer to Alg. 3 in Appx. B.4. In the rest of
this section, we focus on the general case |F | ą 1. In Sec. 5.1, we investigate the solutions when |F |

is small, and in Sec. 5.2, we study the more challenging case when |F | is large.

5.1 SMALL MODEL CLASS: DYNAMIC PROGRAMMING WITH MODEL BELIEF STATE

A Partially Observable MDP Perspective In fact, we can interpret Obj. (1) as learning the optimal
policy in a POMDP, in which the hidden state is pπt, fq, i.e. a tuple containing the policy and the
hidden model f uniformly sampled from F , and the mediator can only partially observe the policy
πt. It is well-known that any POMDP can be lifted to the belief MDP, where the state is the belief
state of the original POMDP. Then, the optimal policy in the belief MDP is exactly the optimal
history-dependent policy in the original POMDP (Ibe, 2013). In our case, for each step t P rT s, the
belief state is pπt, btq, where bt :“ rPrpf |tπt1 ,ut1 utt1“1,πtqsfPF is the “model belief state” defined
to be the posterior distribution of models given the history of observations and actions. When |F | is
small, the model belief state bt P R|F | is low dimensional and computable. Learning ψ˚ is tractable
by running any RL algorithm on the lifted MDP. In Proc. 1, we show how to steer in this setting. We
defer the detailed algorithm of learning such belief-state dependent strategy to Alg. 4 in Appx. B.5.

Procedure 1: The Steering Procedure when |F | is Small
1 Input: Model Set F ; Total step T ;
2 Solving Obj. (1) by learning a belief state-dependent strategy ψ˚

Belief by Alg. 4 with F and T .
3 Deploy ψ˚

Belief to steer the real agents for T steps.

5.2 LARGE MODEL CLASS: A FIRST-EXPLORE-THEN-EXPLOIT FRAMEWORK

When |F | is large, the method in Sec. 5.1 is inefficient since the belief state bt is high-dimensional. In
fact, the above POMDP interpretation implies the intractability of Obj. (1) for large |F |: the number
of hidden states of the POMDP scales with |F |. Therefore, instead of exactly solving Obj. (1), we
turn to the First-Explore-Then-Exploit (FETE) framework as stated in Procedure 2.

The first rT ă T steps are the exploration phase, where we learn and deploy an exploration policy
ψExplore maximizing the probability of identifying the hidden model with the MLE estimator. The
remaining T ´ rT steps belong to the exploitation stage. We first estimate the true model by the MLE
with the interaction history with real agents. Next, we learn an exploitation strategy to steer real
agents for the rest T ´ rT steps by solving Obj. (1) with F “ tfMLEu, time T ´ rT and the initial
policy π

rT`1, as if fMLE is the true model.

3Here we highlight the dependence on initial policy, model, and time for clarity (see Footnote 2)
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Justification for FETE We cannot guarantee that Desiderata 1& 2 are achievable, because we do
not exactly solve Obj. 1. However, if F is pδ{|F |, T

δ{|F |

F q-identifiable (Def. 4.3) and we choose
rT ě T

δ{|F |

F , we can verify PrpfMLE “ f˚q ě 1 ´ δ in Proc. 2. Therefore, we can still expect the
exploitation policy ψExploit steer the agents to approximately maximize ηgoalpπT`1q with reasonable
steering cost for the rest T ´ rT steps.

Procedure 2: The Steering Procedure when |F | is Large (The FETE Framework)

1 Input: Model Set F ; Total step T ; Exploration horizon rT ;
2 /* —————————————- Exploration Phase —————————————- */
3 Learn an exploration strategy ψExplore Ð argmaxψ

1
|F |

ř

fPF Eπ1
1,u

1
1,...,π

1
ĂT`1

„ψ,f rIrf “

argmaxf 1PF
ř

rT
t“1 log f

1pπ1
t`1|π1

t,u
1
tqss.

4 Deploy ψExplore to steer the real agents and collect tπ1,u1, ...,π rT ,u rT ,π rT`1u

5 /* —————————————- Exploitation Phase —————————————- */

6 Estimate fMLE Ð argmaxfPF
ř

rT
t“1 log fpπt`1|πt,utq

7 Deploy ψExploit Ð argmaxψ Eψ,fMLE rβ ¨ ηgoalpπT´ rT`1q ´
řT´ rT
t“1 ηcostpπt,utq|π1 “ π

rT`1s.

We conclude this section by highlighting the computational tractability of FETE. Note that when
computing ψExploit, we treat fMLE as the true model, so an history-independent ψExploit is enough.
Therefore, the only part where we need to learn a history-dependent strategy is in the exploration
stage, and the maximal history length is at most rT , which can be much smaller than T . Moreover, in
some cases, it is already enough to just learn a history-independent ψExplore to do the exploration (for
example, the model class in Example 4.4).

Comparison with Canyakmaz et al. (2024) Although both SIAR-MPC in Canyakmaz et al. (2024)
and our FETE (Procedure 2) adopt a first-explore-then-exploit structure, FETE is more general
and more effective. Both algorithms have three main components: exploration strategy, model
estimation strategy and exploitation strategy, and we inspect our advantages from these three aspects.
(i) Exploration strategy: SIAR-MPC uses noise-based random exploration, whereas we adopt a
more strategic approach, which uses the identification success rate as a signal to learn the exploration
policy. Empirical results in Sec. 6.2 demonstrate the higher efficiency of our methods. (ii) Model
estimation strategy: SIAR-MPC estimates the hidden model by solving a regression problem with
constraints (Eq. (8) in Canyakmaz et al. (2024)), while we solve a MLE objective. In fact, our MLE
objective is more general and can recover the regression problem in SIAR-MPC, if we consider a
model class F that includes Gaussian noise perturbed dynamics with the side-information constraints
introduced in Canyakmaz et al. (2024). (iii) Exploitation strategy: As a general framework, our
FETE does not restrict how to compute the exploitation strategy ψExploit. As we suggest in paper,
any RL or control method can be used, including the MPC approach in Canyakmaz et al. (2024).

6 EXPERIMENTS

In this section, we discuss our experimental results. For more details of all experiments in this section
(e.g. experiment setup and training details), we defer to Appx. G. The steering horizon is set to be
T “ 500, and all the error bar shows 95% confidence level. We denote rxs` :“ maxt0, xu.

6.1 LEARNING STEERING STRATEGIES WITH KNOWLEDGE OF f˚

Normal-Form Stag Hunt Game In Fig. 1-(b), we compare the agents’ dynamics with/without
steering, where the agents learn to play the Stag Hunt Game in Fig. 1-(a). We report the experiment
setup here. Both agents follow the exact NPG (Def. 4.1 with pAπ “ Aπ) with fixed learning rate
α “ 0.01. For the steering setup, we choose the total utility as ηgoal, and use PPO to train the steering
strategy (one can choose other RL or control algorithms besides PPO). We also conduct experiments
in a representative zero-sum game ‘Matching Pennies’, which we defer the details to Appx. G.2.
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Grid World Stag Hunt Game: Learning Steering Strategy with Observations on Agents’
Behaviors In the previous experiments, we consider the direct parameterization and the state
space X “ Π Ă R4 has low dimension. In real-world scenarios, the policy space Π can be
extremely rich and high-dimensional if the agents consider neural networks as policies. In ad-
dition, the mediator may not get access to the agents’ exact policy π because of privacy issues.

(a)

0 5 10 15
Steering Step t

1.0
2.0
3.0
4.0

To
ta

l U
til

ity

with steering
no steering

(b)

Figure 2: Grid-World Version of Stag Hunt Game.
Left: Illustration of game. Right: The perfor-
mance of agents with/without steering. Without
steering, the agents converge to go for hares, which
has sub-optimal utility. Under our learned steering
strategy, the agents converge to a better equilib-
rium and chase the stag.

This motivates us to investigate the possibility
of steering agents with observations on agents’
behavior only (e.g. trajectories of agents in a
game G), instead of the full observation of π. In
Appx. F, we justify this setup and formalize it as
a partially observable extension of our current
framework. We consider the evaluation in a grid-
world version of the Stag Hunt Game as shown
in Fig. 2-(a). In this setting, the state space in
game G becomes pixel-based images, and both
agents (blue and red) will adopt Convolutional
Neural Networks (CNN) based policies with
thousands of parameters and update with PPO.
We train a steering strategy, which only takes
the agents’ recent trajectories as input to infer
the steering reward. As shown in Fig. 2-(b),
without direct usage of the agents’ policy, we
can still train a steering strategy towards desired
solution.

6.2 LEARNING STEERING STRATEGIES WITHOUT KNOWLEDGE OF f˚

Small Model Set |F |: Belief State Based Steering Strategy In this part, we evaluate Proc. 1
designed for small F . We consider the same normal-form Stag Hunt game and setup as Sec. 6.1,
while the agents update by the NPG with a random learning rate α “ rξs`, where ξ „ N pµ, 0.32q.
Here the mean value µ is unknown to the mediator, and we consider a model class F :“ tf0.7, f1.0u

including two possible values of µ P t0.7, 1.0u. We report our experimental results in Table 1.

Table 1: Evaluation for Proc. 1 (Averaged over 25 different initial π1, see Appx. G.1).

(a) Performance in f0.7

pp∆ψ,T ď εq Cψ,T
ψ˚
0.7 0.99 ˘ 0.01 10.6 ˘ 0.3

ψ˚
1.0 0.13 ˘ 0.02 7.6 ˘ 0.2

ψ˚
Belief 0.87 ˘ 0.05 10.5 ˘ 0.4

(b) Performance in f1.0

pp∆ψ,T ď εq Cψ,T
ψ˚
0.7 1.00 ˘ 0.00 8.2 ˘ 0.2

ψ˚
1.0 1.00 ˘ 0.00 5.6 ˘ 0.2

ψ˚
Belief 0.99 ˘ 0.01 6.1 ˘ 0.3

Firstly, we demonstrate the suboptimal behavior if the mediator ignores the model uncertainty and just
randomly deploys the optimal strategy of f0.7 or f1.0. To do this, we train the (history-independent)
optimal steering strategy by Alg. 3, as if we know f˚ “ f0.7 (or f˚ “ f1.0), which we denote as
ψ˚
0.7 (or ψ˚

1.0). To meet with our Desideratum 1, we first set the accuracy level ε “ 0.01, and search
the minimal β so that the learned steering strategy can achieve ε-steering gap (see Appx. G.3.1).
Because of the difference in µ, we have β “ 70 and β “ 20 in training ψ˚

0.7 and ψ˚
1.0, respectively,

and empirically, we observe that ψ˚
0.7 requires much larger steering reward than ψ˚

1.0. As we marked
in red in Table 1-(a) and (b), because of the difference in the steering signal, ψ˚

0.7 consumes much
higher steering cost to achieve the same accuracy level in f1.0, and ψ˚

1.0 may fail to steer agents with
f0.7 to the desired accuracy. Next, we train another strategy ψ˚

Belief via Alg. 4, which predicts the
steering reward based on both the agents’ policy π and the belief state of the model. As we can see,
ψ˚

Belief can almost always achieve the desired ε-steering gap with reasonable steering cost.

Large Model Set |F |: The FETE Framework In this part, we evaluate the FETE framework
(Proc. 2 in Sec. 5.2). We consider an cooperative setting with N “ 10 players. Each agent has two
actions A and B, and the mediator only receives non-zero utility when all the agents cooperate together
to take action A, i.e. ηgoalpπq :“

śN
n“1 π

npAq. The agents do not have intrinsic rewards (r “ 0), but
the mediator’s can steer them to maximize its own utility by providing additional steering rewards.
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Figure 3: Evaluation for Proc. 2. Left: Accuracy of MLE estimator
(λnMLE) after doing exploration for t steps. Ours can achieve near 100%
accuracy after 30 steering steps, while the random exploration takes
more than 300 steps. Middle and Right: Average steering gap and
steering cost of Oracle, FETE and FETE-RE. Our FETE achieves
competitive performance comparing with Oracle, and significantly
outperforms FETE-RE (adaption of SIAR-MPC (Canyakmaz et al.,
2024) to our setting) in terms of steering gap.

We consider “avaricious
agents” with varying de-
grees of greediness, who
tend to decrease the learn-
ing rates if the payments by
mediator are high. Conse-
quently, they require more
steering steps to converge to
the desired policies, poten-
tially earning more incen-
tive payments from the me-
diators. More concretely,
the learning rate of agent
n is αn :“ rξns` with
ξn „ N p1.5´βn ¨ rV n,π

|u ´

λns`, 0.52q, where βn ą 0
is a scaling factor and λn ą

0 is the threshold to exhibit
avaricious behavior. In our experiments, the model uncertainty comes from multiple possible realiza-
tion of λn P t0.25, 0.75,`8u, which results in an extremely large model class F with |F | “ 310.
Here λn “ `8 corresponds to normal agents whose learning rates are stable. The mediator does
not know the agents’ types tλnunPrNs in advance, and it can only observe one learning rate samples
tαnunPrNs of agents per iteration t P rT s and estimate the true types from those samples. We consider
the fixed initial policy with @n P rN s, πn1 pAq “ 1 ´ πn1 pBq “ 1{3, and set the maximal steering
reward Umax “ 1.0.

To understand the exploration challenge, note that, during the exploration phase, if the steering signal
u is not strong enough, i.e. V n,π

|u ă λn, the mediator may fail to distinguish those avaricious agents
from the normal ones, because they behave exactly the same. Such failure can lead to undesired
outcomes in the exploitation phase: higher steering rewards can accelerate the convergence of normal
agents, but can lead to larger steering gaps for avaricious agents.

We provide the evaluation results in Fig. 3. First, we compare the exploration efficiency. We can see
the clear advantage of our strategic exploration in FETE (Procedure 2) compared with noise-based
random exploration (Canyakmaz et al., 2024). Next, we compare the steering gaps and costs of three
methods: (i) FETE; (ii) FETE-RE; (iii) Oracle – if the mediator knows f˚ in advance and solving
Obj. (1) with F “ tf˚u. Here FETE-RE can be regarded as adaption of SIAR-MPC (Canyakmaz
et al., 2024) to our case by replacing strategic exploration in FETE with random exploration (see
Appx. G.4 for more explanation). We choose exploration horizon rT “ 30 suggested by the previous
exploration experiment, and report results for three realizations of f˚ P tf1, f2, f3u. For f1 and
f2, all the agents share λn “ 0.75 and `8, respectively. f3 is a mixed setup where λn “ 0.75 for
1 ď n ď 5 and λn “ `8 for 5 ă n ď 10. As we can see, comparing with Oracle, both the
steering gap and cost of our FETE are competitive. Moreover, thanks to our strategic exploration
method, FETE exhibits significiant advantage over Canyakmaz et al. (2024) in terms of steering gaps.

7 CONCLUSION

In this paper, we introduce the problem of steering Markovian agents under model uncertainty.
We provide theoretical foundations for this problem by formulating a novel optimization objective
and providing existence results. Moreover, we design several algorithmic approaches suitable for
varying degrees of model uncertainty in this problem class. We test their performances in different
experimental settings and show their effectiveness. Our work opens up avenues for compelling
open problems that merit future investigation. Firstly, future work could aim to identify superior
optimization objectives that guarantee strictly better performances in terms of steering gap and
cost than ours. Secondly, when applying our strategies in real-world applications, constraints on
the steering reward budget could be added. Finally, the framework could be generalized to permit
non-Markovian agents.
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REPRODUCIBILITY STATEMENT

The codes for all the experiments in this paper and the instructions for running can be found in the
supplementary materials.
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A FREQUENTLY USED NOTATIONS

Notation Description
G A finite-horizon general-sum Markov Game
N The number of agents
S,A State space and action space of the game G
H The horizon of the game G
P Transition function of the game G
r Reward function of the game G
π The agents’ policy (collection of policies of all agents)
π1 The initial policy
M A finite-horizon Markov Decision Process (the steering MDP)
X ,U State space and action space of M
T The horizon of M (i.e. the horizon of the steering dynamics)
T (Stationary) Transition function of M
ηcost The steering cost function of M
ψ The history-dependent steering strategy by mediator
u (or ut for a specific horizon t) The steering reward function
Umax The upper bound for steering reward
f Agents learning dynamics (T “ f in the steering MDP)
ηgoal The goal function of M
F The model class of agents dynamics (with finite candidates)
β Regularization coefficient in Obj. (1)
Cψ,T pfq The total expected steering cost Eψ,f r

řT
t“1 η

costpπt,utqs

∆ψ,T pfq The steering gap: Eψ,f rmaxπ η
goalpπq ´ ηgoalpπT`1qs

Ψ The collection of all history dependent policies
Ψε as a short note of ΨεT,Umax

pF ;π1q tψ P Ψ|Eψ,f rmaxπ η
goalpπq ´ ηgoalpπT`1q|π1s ď εu

Qn,πh|r`u, V
n,π
h|r`u, A

n,π
h|r`u

The Q-value, V-value and advantage value functions for agent n
fMLE The Maximal Likelihood Estimator (introduced in Def. 4.3)
bt Model belief state rPrpf |tπt1 , ut1 utt1“1,πtqsfPF P R|F |

ψExplore{ψExploit The exploration/exploitation policy in FETE framework.
Op¨q,Ωp¨q,Θp¨q, rOp¨q, rΩp¨q, rΘp¨q Standard Big-O notations, Ăp¨q omits the log terms.

B MISSING DETAILS IN THE MAIN TEXT

B.1 A REAL-WORLD SCENARIO THAT CAN BE MODELED AS A STAG HUNT GAME

As a real-world example, the innovation adaption can be modeled as a (multi-player) Stag Hunt
game. Consider a situation involving a coordination problem where people can choose between an
inferior/unsustainable communication or transportation technology that is cheap (the Gather action)
and a superior technology that is sustainable but more expensive (the Hunt action). If more and more
people buy products by the superior technology, the increasing profits can lead to the development
of that technology and the decrease of price. Eventually, everyone can afford the price and benefit
from the sustainable technology. In contrast, if people are trapped by the products of the inferior
technology due to its low price, the long-run social welfare can be sub-optimal. The mediator’s goal
is to steer the population to adopt the superior technology.

B.2 ADDITIONAL RELATED WORKS

We first complements the comparison with Zhang et al. (2023) in Sec. 1.1 by noting a minor but
worth to be mentioned difference between our setting and (Zhang et al., 2023) in terms of incentive
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schemes. While they consider that the mediator influences the agents’ learning dynamics through a
scalar payment function, we operate with additional steering rewards in a multi-dimensional reward
vector space. As a result, there may not exist direct ways to translate the steering strategies between
both settings, especially in the bandit feedback setting where only the sampled actions of agents can
be observed (Zhang et al., 2023).

Opponent Shaping In the RL literature a line of work focus on the problem of opponent shaping,
where agents can influence each others learning by handing out rewards (Foerster et al., 2018; Yang
et al., 2020; Willi et al., 2022; Lu et al., 2022; Willis et al., 2023; Zhao et al., 2022). Although
the ways of influencing agents are similar to our setting, we study the problem of a mediator that
acts outside the Markov Game and steers all the agents towards desired policies, while in opponent
shaping the agents themselves learn to influence each other for their own interests.

Learning Dynamics in Multi-Agent Systems In multi-agent setting, it is an important question
to design learning dynamics and understand their convergence properties (Hernandez-Leal et al.,
2017). Previous works has established near-optimal convergence guarantees to equilibra (Daskalakis
et al., 2021; Cai et al., 2024). When the transition model of the multi-agent system is unknown,
many previous works have studied how to conduct efficient exploration and learn equilibria under
uncertainty (Jin et al., 2021; Bai et al., 2020; Zhang et al., 2021; Leonardos et al., 2021; Yardim et al.,
2023; Huang et al., 2024b;a). However, most of these results only have guarantees on solving an
arbitrary equilibrium when multiple equilibria exists, and it is unclear how to build algorithms based
on them to reach some desired policies to maximize some goal functions.

Mathematical Programming with Equilibrium Constraints (MPEC) MPEC generalises bilevel
optimization to problems where the lower level consists of solving an equilibrium problem (Luo
et al., 1996). (Li et al., 2020; Liu et al., 2022; Wang et al., 2022; 2023; Yang et al., 2022). These
works consider variants of an MPEC and present gradient based approaches, most of which rely on
computing hypergradients via the implicit function theorem and thus strong assumptions on the lower
level problem, such as uniqueness of the equilibrium. Most games fail to satisfy such constraints. In
contrast, our work makes no assumptions on the equilibrium structure and instead mild assumptions
on the learning dynamics.

Game Theory and Mechanism Design In Game Theory, a setup such as ours can be modelled
as a Stackelberg game. Several works have considered finding Stackelberg equilibria using RL
(Gerstgrasser and Parkes, 2023; Zhong et al., 2024) or gradient-based approaches (Fiez et al., 2020).
Deng et al. (2019) showed how agents can manipulate learning algorithms to achieve more reward, as
if they were playing a Stackelberg game. Related problems are implementation theory (Monderer
and Tennenholtz, 2004) and equilibrium selection (Harsanyi and Selten, 1992). Moreover, the field
of mechanism design has been concerned with creating economic games that implement certain
outcomes as their equilibria. Several recent works have considered mechanism design on Markov
Games (Curry et al., 2024; Baumann et al., 2020; Guo et al., 2023). In the case of congestion games,
mechanisms have been proposed to circumvent the price of anarchy (Balcan et al., 2013; Paccagnan
and Gairing, 2021; Roughgarden and Tardos, 2004), i.e. equililbria with low social welfare.

There is also a line of work has focused on control strategies for evolutionary games (Gong et al.,
2022; Paarporn et al., 2018). However, the game and learning dynamics differ significantly from our
setting. For a full survey of control-theoretic approaches, we refer the reader to Ratliff et al. (2019);
Riehl et al. (2018).

Bilevel Reinforcement Learning Bilevel RL considers the problem of designing an MDP—by
for example changing the rewards—with a desireable optimal policy. Recently, several works
have studied gradient-based approaches to find such good MDP configurations (Chen et al., 2022;
Chakraborty et al., 2023; Shen et al., 2024; Thoma et al., 2024). While similar in some regards, in
this setting we assume the lower level is a Markov Game instead of just an MDP. Moreover, our aim
is not to design a game with a desireable equilibrium from scratch, but to take a given game and
agent dynamics and steer them with minimal additional rewards to a desired outcome within a certain
amount of time. Therefore our upper-level problem is a strategic decision-making problem, solved by
RL instead of running gradient descent on some parameter space.
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Episodic RL and Non-Episodic RL Most of the existing RL literature focus on the episodic
learning setup, where the entire interaction history can be divided into multiple episodes starting
from the same initial state distribution(Dann and Brunskill, 2015; Dann et al., 2017). Comparing
with this setting, our finite-horizon non-episodic setting is more challenging because the mediator
cannot simply learn from repeated trial-and-error. Therefore, the learning criterions (e.g. no-regret
(Azar et al., 2017; Jin et al., 2018) or sample complexity (Dann and Brunskill, 2015)) in episodic RL
setting is not suitable in our case, which targets at finding a near-optimal policy in maximizing return.
This motivates us to consider the new objective (Obj. (1)).

To our knowledge, most of the previous works use “non-episodic RL” to refer to the learning in
infinite-horizon MDP. One popular setting is the infinite-horizon MDPs with stationary transitions,
where people consider the discounted (Schulman et al., 2017; Dong et al., 2019) or average return
(Auer et al., 2008; Wei et al., 2020). The infinit-horizon setting with non-stationary dynamics is
known as the continual RL (Khetarpal et al., 2022; Abel et al., 2024), where the learners “never stops
learning” and continue to adapt to the dynamics. Since we focus on the steering problem with fixed
and finite horizon, the methodology in those works cannot be directly applied here.

Most importantly, we are also the first work to model the steering problem as a RL problem.

B.3 A BRIEF INTRODUCTION TO MARKOV DECISION PROCESS

A finite-horizon Markov Decision Process is specified by a tuple M :“ tx1, T,X ,U ,T, pη, ηtermqu,
where x1 is the fixed initial state, T is the horizon length, X is the state space, U is the action
space. Besides, T :“ tTtutPrT s with Tt : X ˆ U Ñ ∆pX q denoting the transition function4,
η :“ tηtutPrT s with ηt : X ˆ U Ñ r0, 1s is the normal reward function and ηterm : X ˆ U Ñ r0, 1s

denotes the additional terminal reward function. In this paper, without further specification, we
will consider history dependent non-stationary policies Ψ :“ tψ :“ tψ1, ..., ψT u|@t P rT s, ψt :
pX ˆ Uqt´1 ˆ X Ñ ∆pUqu. Given a ψ P Ψ, an episode of M is generated by: @t P rT s, ut „

ψtp¨|txt1 ,ut1 u
t´1
t1“1, xtq, ηt Ð ηtpxt,utq, xt`1 „ Ttp¨|xt,utq; η

term Ð ηtermpxT`1q;

B.4 ALGORITHM FOR LEARNING OPTIMAL (HISTORY-INDEPENDENT) STRATEGY WHEN f˚

IS KNOWN

Algorithm 3: Learning with Known Steering Dynamics

1 Input: Model Set F :“ tf˚u; Initial steering strategy ψ1 :“ tψ1
t utPrT s; Regularization

coefficient β; Iteration number K;
2 for k “ 1, 2, ...,K do
3 Agents initialize with policy πk1 .
4 Sample trajectories with ψζk , @t P rT s:

ukt „ ψkt p¨|πkt q, πkt`1 „ f˚p¨|πkt , r ` ukt q, ηkt “ ´ηcostpπkt ,u
k
t q.

5 Update ψk`1 Ð RLAlgorithmpψk, tπkt ,u
k
t , η

k
t uTt“1 Y tβ ¨ ηgoalpπkT`1quq.

6 end
7 Output pψ˚ Ð ψζK .

B.5 ALGORITHM FOR LEARNING BELIEF-STATE DEPENDENT STEERING STRATEGY

C MISSING PROOFS IN SECTION 3

Proposition 3.3. [Justification for Obj. (1)] By solving Obj. (1): (1) ψ˚ is Pareto Optimal; (2) Given
any ε, ε1 ą 0, if Ψε{|F | ‰ H and β ě

UmaxNHT |F |

ε1 , we have ψ˚ P Ψε`ε1

;

4In this paper, we focus on stationary transition function, i.e. T1 “ ... “ TT .
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Algorithm 4: Solving Obj. (1) by Learning Belief State-Dependent Strategy

1 Input: Model Set F ; Regularization coefficient β; Initial steering strategy ψ1 :“ tψ1
t uTt“1;

Iteration number K;
2 for k “ 1, 2, ...,K do
3 Sample f „ UniformpFq; Initialize πk1 “ π1.
4 Sample trajectories with ψk from simulator of f :
5 @t P rT s bkt :“ Prp¨|πk1 ,u

k
1 , ...,π

k
t´1,u

k
t´1,π

k
t q, ukt „ ψkt p¨|bkt ,π

k
t q,

6 πkt`1 „ fp¨|πkt , r ` ukt q, ηkt Ð ´ηcostpπkt ,u
k
t q

7 Update ψk`1 Ð RLAlgorithmpψk, tpπkt , b
k
t q,ukt , η

k
t uTt“1 Y tβ ¨ ηgoalpπkT`1quq.

8 end
9 return pψ˚ :“ ψK “ tψKt uTt“1

Proof. Suppose Ψε{|F | is non-empty, we denote ψε{|F | as one of the elements in Ψε{|F |. By definition,
since maxπ η

goalpπq is fixed, we have:

ψ˚ Ð argmax
ψ

1

|F |

ÿ

fPF
´β∆pψ, f, T q ´ Cpψ, f, T q.

If β ě
UmaxNHT |F |

ε1 , by definition,

0 ď

´ 1

|F |

ÿ

fPF
´β∆pψ˚, f, T q ´ Cpψ˚, f, T q

¯

´

´ 1

|F |

ÿ

fPF
´β∆pψε{|F |, f, T q ´ Cpψε{|F |, f, T q

¯

ď
1

|F |

ÿ

fPF
β

´

∆pψε{|F |, f, T q ´ ∆pψ˚, f, T q

¯

` UmaxNHT

(the steering reward u P r0, Umaxs)

ď
1

|F |

ÿ

fPF
β

´ ε

|F |
´ ∆pψ˚, f, T q

¯

` UmaxNHT (ψε{|F | P ΨεT,Umax
pFq)

ď
UmaxNHT

ε1

´ ε

|F |
´

1

|F |

ÿ

fPF
∆pψ˚, f, T q

¯

` UmaxNHT

As a direct observation, if Ef„UnifpFqr∆pψ˚, f, T qs “ 1
|F |

ř

fPF ∆pψ˚, f, T q ą ε`ε1

|F |
, the RHS will

be strictly less than 0, which results in contradiction. Therefore, we must have
@f P F , ∆pψ˚, f, T q ď |F | ¨ Ef„UnifpFqr∆pψ˚, f, T qs ď ε` ε1.

which implies ψ˚ P Ψε`ε1

.

Next, we show the Pareto Optimality. If there exists ψ and f such that

• For all f 1 P F with f ‰ f 1, Cpψ˚, f, T q ě Cpψ, f, T q and ∆pψ˚, f, T q ě ∆pψ, f, T q;

• For f , either Cpψ˚, f, T q ą Cpψ, f, T q and ∆pψ˚, f, T q ě ∆pψ, f, T q or Cpψ˚, f, T q ě

Cpψ, f, T q and ∆pψ˚, f, T q ą ∆pψ, f, T q.

Therefore, we must have:
1

|F |

ÿ

fPF
β∆pψ, f, T q ´ Cpψ, f, T q ă

1

|F |

ÿ

fPF
β∆pψ˚, f, T q ´ Cpψ˚, f, T q,

which conflicts with the optimality condition of Obj. (1). ˝

D MISSING PROOFS FOR EXISTENCE WHEN THE TRUE MODEL f˚ IS KNOWN

In this section, we study the Policy Mirror Descent as a concrete example. In Appx. D.1, we provide
more details about PMD. Then, we study the PMD with exact updates and stochastic updates in
Appx. D.2.1 and D.2.2, respectively. The theorems in Sec. 4.1 will be subsumed as special cases.
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D.1 MORE DETAILS ABOUT POLICY MIRROR DESCENT

Definition D.1 (Policy Mirror Descent). For each agent n P rN s, the updates at step t P rT s follows:

@h P rHs, sh P S, θnt`1,hp¨|shq Ð θnt,hp¨|shq ` α pAn,πt

h|rn`un
t

ps, ¨q, (Update in the mirror space)

znt`1,hp¨|shq Ð p∇ϕnq´1pθnt`1,hp¨|shqq (Map θ back to the primal space)

πnt`1,hp¨|shq Ð argmin
zP∆pAnq

Dϕnpz, znt`1,hp¨|shqq, (Projection)

Similar to Def. 4.1, here pAn,πt

h|rn`un
t

is some random estimation for the advantage value An,πt

h|rn`un
t

with Eπnr pAn,πt

h|rn`un
t

psh, ¨qs “ 0. Besides, θnt,h P R|S||A| denotes the variable in the dual space.
ϕn : dompϕnq Ñ R is a function satisfying Assump. C below, which gives the mirror map ∇ϕn;
p∇ϕnq´1 is the inverse mirror map; Dϕnpz, rzq :“ ϕnpzq ´ϕnprzq ´ x∇ϕnprzq, z´ rzy is the Bregman
divergence regarding ϕn.
Assumption C. We assume for all n P rN s, ϕn is µ-strongly convex and essentially smooth, i.e.
differentiable and }∇ϕnpzkq} Ñ `8 for any sequence zk P dompϕnq converging to a point on the
boundary of dompϕnq.

By Pythagorean Theorem and the strictly convexity of Dϕn , the projection π in Def. D.1 is unique.
Lemma D.2. Given a convex set C and a function ϕ which is µ-strongly convex on C, we have

} argmin
zPC

Dϕpz, p∇ϕq´1pθ1qq ´ argmin
zPC

Dϕpz, p∇ϕq´1pθ2qq} ď
1

µ
}θ1 ´ θ2}2.

Proof. Given any dual variables θ1 and θ2, and their projection z1 :“
argminzPC Dϕpz, p∇ϕq´1pθ1qq and z2 :“ argminzPC Dϕpz, p∇ϕq´1pθ2qq, by the first order
optimality condition, we have:

@z P C, x∇ϕpz1q ´ θ1, z ´ z1y ě 0,

x∇ϕpz2q ´ θ2, z ´ z2y ě 0

If we choose z “ z2 in the first equation and z “ z1 in the second equation, and sum together, we
have:

xθ1 ´ ∇ϕpz1q ` ∇ϕpz2q ´ θ2, z1 ´ z2y ě 0,

By strongly convexity of ϕ, the above implies:

xθ1 ´ θ2, z1 ´ z2y ě x∇ϕpz1q ´ ∇ϕpz2q, z1 ´ z2y ě µ ¨ }z1 ´ z2}2

Therefore,

µ}z1 ´ z2} ď }θ1 ´ θ2},

and we finish the proof. ˝

Next, we discuss some concrete examples.

Example D.3 (Natural Policy Gradient). If we consider the mirror map and Bregman Divergence
generated by ϕnpzq :“

ř

anPAn zpanq log zpanq, we have Dn
ϕpz1, z2q “ KLpz1}z2q, and recover

the NPG in Def. 4.1. Note that ϕn is 1-strongly convex on the convex set ∆pAnq, Assump. C is
satisfied with µ “ 1.

Example D.4 (Online Gradient Ascent (Zinkevich, 2003)). If we consider the Euclidean distance
generated by l2-norm ϕnpzq “ 1

2}z}22, we recover the projected gradient ascent
Definition D.5. For each agent n P rN s, the updates at step t P rT s follows:

@h P rHs, sh P S, πnt`1,hp¨|shq Ð Proj∆pAnqpπnt,hp¨|shq ` α pAn,πt

h|rn`un
t

ps, ¨qq,

Note that the projection with Euclidean distance is 1-Lipschitz, Assump. C is satisfied with µ “ 1.
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Other Notations and Remarks In the following, we use Π` to be the “feasible policy set” (for
NPG in Def. 4.1, Π` refers to be set of policies bounded away from 0), such that for any π P Π`,
there exists a dual variable θ corresponding to π, i.e.,

@n P rN s, h P rHs, sh P S, πnhp¨|shq Ð argmin
zP∆pAnq

Dϕnpz, p∇ϕnq´1pθnhp¨|shqqq.

In the following Lem. D.6, we show that constant shift in θnt,hp¨|shq does not change the projection
result. Therefore, when we say the dual variable θ associated with a given policy π, we only consider
those θ satisfying Eanh„πn

h
rθnhpanh|shqs “ 0.

Lemma D.6 (Constant Shift does not Change the Projection). For any n P rN s, regularizer ϕn

satisfying conditions in Assump. C, and any θ P R|An
|, consider the constant vector c1, where c P R

is a constant and 1 “ t1, 1, ..., 1u P R|An
|, we have:

argmin
zP∆pAnq

Dϕnpz, p∇ϕnq´1pθqq “ argmin
zP∆pAnq

Dϕnpz, p∇ϕnq´1pθ ` c1qq

Proof.

arg min
zP∆pAnq

Dϕnpz, p∇ϕnq´1pθ ` c1qq

“ arg min
zP∆pAnq

ϕnpzq ´ xθ ` c1, zy

“ arg min
zP∆pAnq

ϕnpzq ´ xθ, zy ` c (we have constraints that z P ∆pAnq)

“ arg min
zP∆pAnq

ϕnpzq ´ xθ, zy

“ argmin
zP∆pAnq

Dϕnpz, θq.

˝

D.2 PROOFS FOR THE EXISTENCE OF DESIRED STEERING STRATEGY

We first formally introduce the Lipschitz condition that Thm. 4.2 requires.
Assumption D (ηgoal is L-Lipschitz). For any π,π1 P Π, |ηgoalpπq ´ ηgoalpπ1q| ď L}π ´ π1}2.

In the following, in Appx. D.2.1, as a warm-up, we start with the exact case when the estimation pAπ

is exactly the true advantage value Aπ (which can be regarded as a special case of Assump. B). Then,
in Appx. D.2.2, we study the general setting and prove Thm. 4.2 as a special case of PMD.

D.2.1 SPECIAL CASE: PMD WITH EXACT ADVANTAGE-VALUE

Lemma D.7 (Existence of Steering Path between Feasible Policies). Consider two feasible policies
π, rπ which are induced by dual variables tθn1,huhPrHs,nPrNs and trθnhuhPrHs,nPrNs, respectively.
If the agents follow Def. D.1 with exact Q value and start with π1 “ π, as long as Umax ě

2H ` 2
αT pmaxn,h,sh,anh |rθnhpanh|shq ´ θnhpanh|shq ´ Eānh„πn

t,hp¨|snhqrrθnhpānh|shq ´ θnhpranh|shqs|q, there
exists a (history-independent) steering strategy ψ :“ tψtutPrT s with ψt : Π` Ñ U , s.t., πT`1 “ rπ.

Proof. For agent n P rN s, given a πt, we consider the following steering reward functions

unt,hpsh, a
n
hq “νnt,hpsh, a

n
hq ´An,πt

h|rn psh, a
n
hq ´ E

ran„πn
t,hp¨|shqrνnt,hpsh,ra

n
hq ´An,πt

h|rn psh,ra
n
hqs

´ min
s̄h,ānh

tνnt,hps̄h, ā
n
hq ´An,πt

h|rn ps̄h, ā
n
hq ´ E

ran„πn
t,hp¨|shqrνnt,hps̄h,ra

n
hq ´An,πt

h|rn ps̄h,ra
n
hqsu,

where νnt,h : S ˆ An Ñ R will be defined later. By construction, we have:

Eanh„πn
t,hp¨|shqrunt,hpsh, a

n
hqs (2)

“ ´ min
s̄h,ānh

tνnt,hps̄h, ā
n
hq ´An,πt

h|rn ps̄h, ā
n
hq ´ E

ran„πn
t,hp¨|shqrνnt,hps̄h,ra

n
hq ´An,πt

h|rn ps̄h,ra
n
hqsu, (3)
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which is a constant and independent w.r.t. sh, anh. Besides, by definition, we can ensure the non-
negativity of unt,h. As a result,

@t P rT s, Qt,πt

h|rn`un
t

psh, a
n
hq

“At,πt

h|rnpsh, a
n
hq ` unt,hpsh, a

n
hq ` Chpshq (Eq. (3))

“νnt,hpsh, a
n
hq ` C 1

hpshq. (4)

where we use Chpshq and C 1
hpshq to denote some state-dependent but action-independent value.

According to Lem. D.6, under the above steering reward design, the dynamics of π1, ...,πt, ...,πT
can be described by the following dynamics:

@t P rT s, @n P rN s, h P rHs, sh P S : θnt`1,hp¨|shq Ð θnt,hp¨|shq ` ανnt,hpsh, a
n
hq (5)

πnt`1,hp¨|shq Ð argmin
zP∆pAnq

Dϕnpz, θnt`1,hp¨|shqq, (6)

Now we consider the following choice of νnt,h:

νnt,hpsh, a
n
hq “

rθnhpanh|shq ´ θnhpanh|shq

αT
,

which implies θT`1 “ rθ, and therefore, πT`1 “ rπ. Besides, the steering reward function can be
upper bounded by:

unt,hpsh, a
n
hq ď2 max

s̄h,ānh
|νnt,hps̄h, ā

n
hq ´An,πt

h|rn ps̄h, ā
n
hq ´ E

ran„πn
t,hp¨|shqrνnt,hps̄h,ra

n
hq ´An,πt

h|rn ps̄h,ra
n
hqs|

ď2H `
2

αT
p max
n,h,sh,anh

|rθnhpanh|shq ´ θnhpanh|shq|q,

which implies the appropriate choice of Umax.

˝

Theorem D.8. Under Assump. D, given the initial π1 :“ π P Π`, for any T ě 1 and ε ą 0, if
the agents follow Def. 4.1 with exact Q value, then ΨεT,Umax

‰ H if the following conditions are
satisfied:

• There exists feasible rπ P Π` such that ηgoalprπq ě maxπ η
goalpπq ´ ε

• Denote θ and rθ as the dual variables associated with π and rπ, respectively. We require Umax ě

2H ` 2
αT pmaxn,h,sh,anh |rθnhpanh|shq ´ θnhpanh|shq|q

Proof. The proof is a directly application of Lem. D.7. ˝

NPG as a Special Case For NPG, we have the following results.
Lemma D.9. Given @π, rπ P Π`, T ě 1, if the agents follow Def. 4.1 with exact adv-value and start
from π1 “ π, by choosing Umax appropriately, there exists a (history-independent) steering strategy
ψ :“ tψtutPrT s with ψt : Π` Ñ U , s.t., πT`1 “ rπ.

Theorem D.10. Under Assump. D, given any initial π1 P Π`, for any T ě 1 and ε ą 0, if the agents
follow Def. 4.1 with exact Q value, by choosing Umax appropriately, we have Ψε ‰ H.

Proof for Lem. D.9 and Thm. D.10 The proof is by directly applying Lem. D.7 and Thm. D.8 since
NPG is a special case of PMD with KL-Divergence as Bregman Divergence. For any π, rπ P Π`, we
consider the dual variables θ, rθ such that:

θnhp¨|shq “ log πnhp¨|shq ´ Eanh„πn
h

rlog πnhpanh|shqs, rθnhp¨|shq “ log rπnhp¨|shq ´ Eanh„πn
h

rlog rπnhpanh|shqs.

(7)

Choice of Umax in Lem. D.9 By applying Lem. D.7 and Thm. D.8, we consider the following
choice of Umax

Umax ě 2H `
2

αT
p max
n,h,sh,ah

| log
rπnhpsh, a

n
hq

πnhpsh, anhq
´ E

ranh„πn
h

rlog
rπnhpsh,ra

n
hq

πnhpsh,ranhq
s|q. (8)
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Choice of Umax in Thm. D.10 We denote π˚ P argmaxπPΠ η
goalpπq R Π`.

When π˚ P Π`, we can directly apply Thm. D.8 with rπ Ð π˚, and choosing Umax correspondingly
following Eq. (8).

However, in some cases, π˚ R Π` because it takes deterministic action in some states. In that
case, since ηgoal is L-Lipschitz in π, we can consider the mixture policy rπ :“ p1 ´ Op εL qqπ˚ `

Op εL qπUniform, where πUniform is the uniform policy. As a result, we have rπ P Π` as well as
ηgoalprπq ě maxπPΠ η

goalpπq ´ ε. Then the Umax can be chosen following Eq. (8).

D.2.2 THE GENERAL INCENTIVE DRIVEN AGENTS UNDER ASSUMP. B

Theorem D.11 (Formal Version of Thm. 4.2 for the general PMD). Under Assump. D and Assump. C,
given the initial π1 :“ π P Π`, for any ε ą 0, if the agents follow Def. 4.1 under the Assump. B,
then ΨεT,Umax

‰ H if the following conditions are satisfied:

• There exists feasible rπ P Π` such that ηgoalprπq ě maxπ η
goalpπq ´ ε

2

• Denote θ and rθ as the dual variables associated with π and rπ, respectively. We require Umax ě

2pH ` λmin

αλ2
max

p1 ` λmin

λmax
qT }rθ ´ θ}2q and T “ Θp

λ2
max

λ2
min

log L}rθ´θ}2
µε q.

Remark D.12. In Thm. D.2.2, our bound for Umax here is just a worst-case bound to handle the
noisy updates in the worst case. With high probability, the dual variable θt will converge to rθ and the
steering reward does not have to be as large as Umax.

Proof. Given a πt, we consider the following steering reward ut:

unt,hpsh, a
n
hq “νnt,hpsh, a

n
h,πtq ´An,πt

h|rn psh, a
n
hq ´ E

ran„πn
t,hp¨|shqrνnt,hpsh,ra

n
h,πtq ´An,πt

h|rn psh,ra
n
hqs

´ min
s̄h,ānh

tνnt,hps̄h, ā
n
h,πtq ´An,πt

h|rn ps̄h, ā
n
hq ´ E

ran„πn
t,hp¨|shqrνnt,hps̄h,ra

n
h,πtq ´An,πt

h|rn ps̄h,ra
n
hqsu,

Here we choose νnt,hpsh, a
n
h,πtq :“ 1

γ ¨ prθnhpanh|shq ´ θnt`1,hpanh|shqq, where rθ denotes the dual
variable of policy rπ and γ will be determined later. Comparing with the design in the proof of
Thm. D.8, here the “driven term” νnh need to depend on πt because of the randomness in updates.

As we can see, unt,hpsh, a
n
hq ě 0, and for each t, we have:

Er}rθ ´ θt`1}22s “Er}rθ ´ θt}
2
2s ´ 2Erxrθ ´ θt, θt`1 ´ θtys ` Er}θt`1 ´ θt}

2
2s

“Er}rθ ´ θt}
2
2s ´ 2αErxrθ ´ θt, pAπt

|r`ut
ys ` Er} pAπt

|r`ut
}22s

ďp1 ´ 2λmin
α

γ
` λ2max

α2

γ2
qEr}rθ ´ θt}

2
2s,

which implies

Er}rθ ´ θT`1}22s ď p1 ´ 2λmin
α

γ
` λ2max

α2

γ2
qT }rθ ´ θ}22.

We consider the choice γ “
λ2
maxα
λmin

, which implies,

Er}rθ ´ θT`1}22s ď p1 ´
λ2min

λ2max

qT }rθ ´ θ}22.

When T “ 2c0
λ2
max

λ2
min

log 2L}rθ´θ}2
µε ě c0 log

1´
λ2
min

λ2
max

p ν2ε2

2L2}rθ´θ}22
q for some constant c0, we have:

Er}rθ ´ θT`1}2s ď
µε

2L
,

which implies,

Erηpπ˚q ´ ηgoalpπT`1qs ď
ε

2
` LEr}rπ ´ πT`1}2s ď

ε

2
`
L

µ
Er}rθ ´ θT`1}2s “ ε.
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Next, we discuss the choice of Umax, by Assump. B, we know,

}rθ ´ θt`1}2 “}rθ ´ θt ´ α pAπt

|r`ut
}2 ď }rθ ´ θt}2 ` α} pAπt

|r`ut
}2

ď}rθ ´ θt}2 ` αλmax}Aπt

|r`ut
}2

ďp1 `
λmin

λmax
q}rθ ´ θt}2

where we use the fact that }Aπτ

|r`uτ
}2 “ 1

γ }rθ ´ θτ }2 and our choice of γ. Therefore, for all t P rT s,

}rθ ´ θt}2 ď p1 ` λmin

λmax
qT }rθ ´ θ}2. To ensure our design of unt,h is feasible, we need to set:

Umax “2pH `
1

γ
p1 `

λmin

λmax
qT }rθ ´ θ}2q

“2pH `
λmin

αλ2max

p1 `
λmin

λmax
qT }rθ ´ θ}2q.

˝

Proof for Thm. 4.2 As we discuss in Example. D.3, Assump. C is satisfied with µ “ 1. The proof
is a direct application of Thm. D.8 with the same choice of dual variables as Eq. (7).

E MISSING PROOFS FOR EXISTENCE WHEN THE TRUE MODEL f˚ IS
UNKNOWN

In the following, we establish some technical lemmas for the maximal likelihood estimator. Given a
steering dynamics model class F and the true dynamics f˚ „ p0 and a steering strategy ψ : Π Ñ U ,
we consider a steering trajectory τT0 :“ tπ1,u1, ...,πT0 ,uT0 ,πT0`1u generated by:

@t P rT0s, ut Ð ψpπtq, πt`1 „ f˚p¨|πt,utq, (9)

where πt`1 is independent w.r.t. πt1 for t1 ă t conditioning on πt. In the following, we will denote
τt :“ tπ1,u1, ...,πt,ut,πt`1u to be the trajectory up to step t.

For any f P F , we define:

pf pτT0q :“
T0
ź

t“1

fpπt`1|πt,utq. (10)

Given τT0
, we use τ̄T0

to denote the “tangent” trajectory tpπt,ut, π̄t`1qu
T0
t“1 where π̄t`1 „

f˚p¨|πt,utq is independently sampled from the same distribution as πt`1 conditioning on the
same πt and ut.

Lemma E.1. Let l : Π ˆ U ˆ Π Ñ R be a real-valued loss function. Define LpτT0q :“
řT0

t“1 lpπt,ut,πt`1q and Lpτ̄T0
q :“

řT0

t“1 lpπt,ut, π̄t`1q. Then, for arbitrary t P rT0s,

ErexppLpτtq ´ logEτ̄T0
rexppLpτ̄tqq|τtsqs “ 1.

Proof. We denote Ei :“ Eπ̄i`1rexpplpπi, ui, π̄i`1qq|πi, ui, f
˚s. By definition, we have:

Eτ̄trexpp

t
ÿ

i“1

lpπi, ui, π̄i`1qq|τts “

k
ź

i“1

Ei.

Therefore,

EτT0
rexppLpτT0q ´ logEτ̄T0

rexppLpτ̄T0qq|τT0sqs

“EτT0´1YtπT0
,uT0

urEπT0`1
r

expp
řT0

t“1 lpπt,ut,πt`1qq

Eτ̄T0
rexpp

řT0

t“1 lpπt,ut,πt`1qq|τT0
s
|τT0´1 Y tπT0

,uT0
uss
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“EτT0´1YtπT0
,uT0

urEπT0`1
r
expp

řT0

t“1 lpπt,ut,πt`1qq
śT0

t“1E
t

|τT0´1 Y tπT0 ,uT0uss

“EτT0´1YtπT0
,uT0

ur
expp

řT0´1
t“1 lpπt,ut,πt`1qq

śT0´1
t“1 Et

¨ EπT0`1
r
lpπT0

,uT0
,πT0`1q

ET0
|τT0´1 Y tπT0 ,uT0uss

“EτT0´1
r
expp

řT0´1
t“1 lpπt,ut,πt`1qq

śT0´1
t“1 Et

s “ ... “ 1.

˝

Lemma E.2. [Property of the MLE Estimator] Under the condition in Prop. 4.4, given
the true model f˚ and any deterministic steering strategy ψ : Π Ñ U , define fMLE Ð

argmaxfPF
řT0

t“1 log fpπt`1|πt,utq, where the trajectory is generated by:

@t P rT0s, ut Ð ψpπtq, πt`1 „ f˚p¨|πt,utq,

then, for any δ P p0, 1q, w.p. at least 1 ´ δ, we have:

T0
ÿ

t“1

H2pfMLEp¨|πt,utq, f
˚p¨|πt,utqq ď logp

|F |

δ
q.

Proof. Given a model f P F , we consider the loss function:

lM pπ, u,π1q :“

#

1
2 log

fpπ1
|π,uq

f˚pπ1|π,uq
, if f˚pπ1|π, uq ‰ 0

0, otherwise

Considering the event E :

E :“ t´ logEτ̄T0
rexpLM pτ̄T0q|τT0s ď ´LM pτT0q ` logp

|F |

δ
q, @f P Fu.

where we define LM pτT0
q :“

řT0

t“1 lM pπt,ut,πt`1q and LM pτ̄T0
q :“

řT0

t“1 lM pπt,ut, π̄t`1q.
Besides, by applying Lem. E.1 on lM defined above and applying Markov inequality and the union
bound over all f P F , we have PrpEq ě 1 ´ δ. On the event E , we have:

´ logEτ̄T0
rexpLfMLE pτ̄T0

q|τT0
s

ď ´ LfMLE pτT0
q ` logp

|F |

δ
q

ďlMLEpf˚q ´ lMLEpfMLEq ` logp
|F |

δ
q

ď logp
|F |

δ
q. (fMLE maximizes the log-likelihood)

Therefore,

logp
|F |

δ
q ě ´

T0
ÿ

t“1

logE
τ̄T0

r

d

fpπ̄t`1|πt,utq

f˚pπ̄t`1|πt,utq
|πt,ut, f

˚s

ě

T0
ÿ

t“1

1 ´ Eπ̄t`1
r

d

fpπ̄t`1|πt,utq

f˚pπ̄t`1|πt,utq
|πt,ut, f

˚s (´ log x ě 1 ´ x)

“

T0
ÿ

t“1

H2pfp¨|πt,utq, f
˚p¨|πt,utqq.

˝

Example 4.4. [One-Step Difference] If @π P Π, there exists a steering reward uπ P U , s.t.
minf,f 1PF H2pfp¨|π, r ` uπq, f 1p¨|π, r ` uπqq ě ζ, for some universal ζ ą 0, where H is the
Hellinger distance, then for any δ P p0, 1q, F is pδ, T δF q-identifiable with T δF “ Opζ´1 logp|F |{δqq.
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Proof. Consider the steering strategy ψpπq “ uπ . Given any f P F , and the trajectory sampled by
ψ and f , by Lem. E.2, w.p. 1 ´ δ

|F |
, we have:

2 logp
|F |

δ
q ě

T0
ÿ

t“1

H2pfp¨|πt,utq, fMLEp¨|πt,utqq ě T0ζ.

By union bound, if T0 “ r 4ζ log
|F |

δ s ` 1, with probability at least 1 ´ δ,

max
fPF

Ef,ψ rIrf “ fMLEss “ max
fPF

Ef,ψ

«

Irf “ argmax
f 1PF

Tδ
ÿ

t“1

log f 1pπt`1|πt,utqs

ff

ě 1 ´ δ.

˝

Theorem 4.5. [A Sufficient Condition for Existence] Given any ε ą 0, ΨεT pF ;π1q5 ‰ H, if D rT ă T ,
s.t., (1) F is p ε

2ηmax
, rT q-identifiable, (2) Ψε{2

T´ rT
pF ;π

rT q ‰ H for any possible π
rT generated at step

rT during the steering.

Proof. We denote ψExplore :“ tψExplore,tutPrT s to be the exploration strategy to identify f˚. Given a

π
rT , we denote ψε{2

π
ĂT
:“ tψ

ε{2
π

ĂT
,tutPrT s P Ψ

ε{2

T´ rT
pπ

rT q to be one of the steering strategy with ε-optimal
gap starting from π

rT .

We consider the history-dependent steering strategy ψ :“ tψtutPrT s, such that for t ď rT , ψt “

ψExplore,t, and for all t ą rT , we have ψt “ ψ
ε{2
π

ĂT
,t.

As a result, for any f P F , the final gap would be:

∆ψ,T pfq “ PrpfMLE “ fq ¨
ε

2
` PrpfMLE ‰ fq ¨ ηmax ď ε,

which implies ψ P ΨεT pF ;π1q. ˝

F GENERALIZATION TO PARTIAL OBSERVATION MDP SETUP

F.1 POMDP BASICS

Partial Observation Markov Decision Process A (finite-horizon) Partial-Observation Markov
Decision Process (with hidden states) can be specified by a tuple M :“ tν1, T,X ,U ,O,T, η,Ou.
Here ν1 is the initial state distribution, L is the maximal horizon length, X is the hidden state space,
U is the action space, O is the observation space. Besides, T : X ˆ U Ñ X denotes the stationary
transition function, O : X Ñ ∆pOq denotes the stationary emission model, i.e. the probability of
some observation conditioning on some state. We will denote Hh :“ O1 ˆ U1... ˆ Oh to be the
history space, and use τh :“ to1, u1, ..., ohu to history observation up to step h. We consider the
history dependent policy ψ :“ tψ1, ..., ψHu with ψh : Hh Ñ ∆pUq. Starting from the initial state
x1, the trajectory induced by a policy ψ is generated by:

@h P rHs, oh „ Op¨|xhq, uh „ ψhp¨|τhq, ηh „ ηhpoh, uhq, xh`1 „ Tp¨|xh, uhq.

F.2 STEERING PROCESS AS A POMDP

Given a game G, we consider the following Markovian agent dynamics:

@t P rT s, τt „ πt, πt`1 „ fp¨|πt, τt, rq,

where τt :“ tst,k1 ,at,k1 , , ..., st,kH ,at,kH uKk“1 is several trajectories generated by the policy πt.

In each step t, we assume the agents first collect trajectories τt with policy πt, and then optimize their
policies following some update rule fp¨|πt, τt, rq. Comparing with the Markovian setup in Sec. 3,
here f has additional dependence on the trajectories τt.

5Here we highlight the dependence on initial policy, model, and time for clarity (see Footnote 2)
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Figure 4: Probabilistic Graphic Model (PGM) of the POMDP formulation of the steering
process. Starting with the initial state x1 :“ pπ1, τ1q, for all t ě 1, the mediator receives observation
ot „ Op¨|xtq and output the steering reward given the history ut „ ψp¨|o1, u1, ..., otq. The agents
then update their policies following the dynamics f and the modified reward function r ` ut.

Based on this new formulation, the dynamics given the steering strategy is defined by:

@t P rT s, τt „ πt, ut „ ψtp¨|τ1, u1, ..., τt´1, ut´1,πtq, πt`1 „ fp¨|πt, r ` utq,

In Fig. 4, we illustrate the steering dynamics by Probabilistic Graphical Model (PGM). Here we treat
the joint of πt and τt as the hidden state at step t, and the trajectory τt is the partial observation ot
received by the mediator. Next, we introduce the notion of decodable POMDP, where the hidden
state is determined by a short history.
Definition F.1 (m-Decodable POMDP). Given a POMDP M , we say it is m-decodale, if there exists
a decoder ϕ, such that, xh “ ϕpoh´m, uh´m, ...oh´1, uh´1, ohq,

In our steering setting, if for any f P F , f is m-decodable, we just need to learn a steering strategy
ψ :“ pO ˆ Uqm ˆ O Ñ U , which predicts the steering reward given the past m-step history. This
is the motivation for our experiment setup in the Grid World Stag Hunt game in Sec. 6.1. More
concretely, we assume the agents trajectories in the past few steps can be used as sufficient statistics
for the current policy, and use them as input of the steering strategy (see Appx. G.2.2 for more
details).

G MISSING EXPERIMENT DETAILS

G.1 ABOUT INITIALIZATION IN EVALUATION

In some experiments, we will evaluate our steering strategies with multiple different initial policy π1,
in order to make sure our evaluation results are representative.

Here we explain how we choose the initial policies π1. We will focus on games with two actions
which is the only case we use this kind of initialization. For each player, given an integer i, we
construct an increasing sequence with common difference Seqi :“ p 1

2i ,
3
2i , ...,

2i´1
2i q. Then, we

consider the initial policies π1 such that π1pa1q “ 1 ´ π1pa2q P Seqi, π
2pa1q “ 1 ´ π2pa2q P Seqi.

In this way, we obtain a set of initial policies uniformly distributed in grids with common difference
1
i . As a concrete example, the initial points in Fig. 1-(b) marked in color black is generated by the
above procedure with i “ 10.

G.2 EXPERIMENTS FOR KNOWN MODEL SETTING

G.2.1 EXPERIMENT DETAILS IN NORMAL-FORM STAG HUNT GAME

We provide the missing experiment details for the steering experiments in Fig. 1-(b).

Choice of ηgoal We consider the total utility as the goal function. But for the numerical stability, we
choose ηgoalpπq “

ř

nPrNs J
n
|rpπq ´ 10 where we shift the reward via the maximal utility value 10.
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Figure 5: Trade-off between Steering Gap (Left) and Steering Cost (Right). (averaged over 5x5
uniformly distributed grids as initializations of π1, see Appx. G.1).

The Steering Strategy The steering strategy is a 2-layer MLP with 256 hidden layers and tanh as
the activation function. Given a time step t and the policy πt :“ tπ1

t , π
2
t u with πnt pHq ` πnt pGq “ 1

for n P t1, 2u, the input of the steering strategy is

plog

d

π1
t pHq

π1
t pGq

,´ log

d

π1
t pHq

π1
t pGq

, log

d

π2
t pHq

π2
t pGq

,´ log

d

π2
t pHq

π2
t pGq

,
T ´ t

100
q. (11)

Here the first (second) two components correspond to the “dual variable” of the policy π1
t pHq and

π1
t pGq (π2

t pHq and π2
t pGq), respectively; the last component is the time embedding because our

steering strategy is time-dependent.

The steering strategy will output a vector with dimension 4, which corresponds to the steering rewards
for two actions of two players. Note that here the steering reward function u1 : S ˆ A1r0, Umaxs

(for agent 1) and u2 :“ S ˆ A2 Ñ r0, Umaxs (agent 2) is defined on the joint of state space and
individual action space. This can be regarded as a specialization of the setup in our main text, where
we consider un : S ˆ A Ñ r0, Umaxs @n P rN s, which is defined on the joint of state space and the
entire action space.

Training Details The maximal steering reward Umax is set to be 10, and we choose β “ 25. We
use the PPO implementation of StableBaseline3 (Raffin et al., 2021). The training hyper-parameters
can be found in our codes in our supplemental materials.

During the training, the initial policy is randomly selected from the feasible policy set, in order
to ensure the good performance in generalizing to unseen initialization points. Another empirical
trick we adopt in our experiments is that, we strengthen the learning signal of the goal function
by including ηgoalpπtq for each step t P rT s. In another word, we actually optimize the following
objective function:

ψ˚ Ð argmax
ψPΨ

1

|F |

ÿ

fPF
Eψ,f

”

β ¨ ηgoalpπT`1q `

T
ÿ

t“1

β ¨ ηgoalpπtq ´ ηcostpπt,utq
ı

. (12)

The main reason is that here T “ 500 is very large, and if we only have the goal reward at the
terminal step, the learning signal is extremely sparse and the learning could fail.

Other Experiment Results In Fig. 5, we investigate the trade-off between steering gap and the
steering cost when choosing different coefficients β. In general, the larger β can result in lower
steering gap and higher steering cost.

G.2.2 EXPERIMENT DETAILS IN GRID-WORLD VERSION OF STAG HUNT GAME

We recall the illustration in LHS of Fig. 2. We consider a 3x3 grid world environment with two agents
(blue and red). At the bottom-left and up-right blocks, we have ‘stag’ and ‘hares’, respectively, whose
positions are fixed during the game. At the beginning of each episode, agents start from the up-left
and bottom-right blocks, respectively.

For each time step h P rHs, every agent can take four actions {up,down,left,right} to move
to the blocks next to their current blocks. But if the agent hits the wall after taking the action (e.g. the
agent locates at the most right column and takes the action right), it will not move. As long as one
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agent reaches the block with either stag or hare, the agents will receive rewards and be reset to the
initial position (up-left and bottom-right blocks). The reward is defined by the following.

• If both agents reach the block with stag at the same time, each of them receive reward 0.25.

• If both agents reach the block with hares at the same time, each of them receive reward 0.1.

• If one agent reaches the block with hares, it will get reward 0.2 and the other get reward 0.

• In other cases, the agents receive reward 0.

We choose H “ 16. The best strategy is that all the agents move together towards the block with
Stag, so within one episode, the agents can reach the Stag 16 / 2 = 8 times, and the maximal total
return would be 8 * 0.25 = 4.0.

In the following, we introduce the training details. Our grid-world environment and the PPO training
algorithm is built based on the open source code from (Lu et al., 2022).

Agents Learning Dynamics The agents will receive a 3x3x4 image encoding the position of
all objects to make the decision. The agents adopt a CNN, and utilize PPO to optimize the CNN
parameters with learning rate 0.005.

Steering Setup and Details in Training Steering Strategy Our steering strategy is another CNN,
which takes the agents recent trajectories as input. More concretely, for each steering iteration t, we
ask the agents to interact and generated 256 episodes with length H , and concatenate them together
to a tensor with shape [256 * H , 3, 3, 4]. The mediator takes that tensor as input and output an
8-dimension steering reward vector. Here the steering rewards corresponds to the additional rewards
given to the agents when one of them reach the blocks with stag or hares (we do not provide individual
incentives for states and actions before reaching those blocks). To be more concrete, the 8 rewards
correspond to the additional reward for blue and red agents for the following 4 scenarios: (1) both
agents reach stag together (2) both agents reach hares together (3) this agent reach stag while the
other does not reach stag (4) this agent reach hares while the other does not reach hares.

The steering strategy is also trained by PPO. We choose β “ 25 and learning rate 0.001. We consider
the total utility as the goal function, and we adopt the similar empirical trick as the normal-form
version, where we include ηgoal into the reward function for every t P rT s (Eq. (12)). The results in
Fig. 2 is the average of 5 steering strategies trained by different seeds for 80 iterations. The two-sigma
error bar is shown.

G.2.3 EXPERIMENTS IN MATCHING PENNIES

Matching Pennies is a two-player zero-sum game with two actions H=Head and T=Tail and its payoff
matrix is presented in Table 2.

Table 2: Payoff Matrix of Two-Player Game Matching Pennies. Two actions H and T stand for Head
and Tail, respectively.

H T
H (1, -1) (-1, 1)
T (-1, 1) (1, -1)

Choice of ηgoal In this game, the unique Nash Equilibrium is the uniform policy πNE with
πn,NEpHq “ πn,NEpTq “ 1

2 for all n P t1, 2u. We consider the distance with πNE as the goal
function, i.e. ηgoal “ ´}π ´ πNE}2.

Experiment Setups We follow the same steering strategy and training setups for Stag Hunt Game
in Appx. G.2.1. The agents follow NPG to update the policies with learning rate α “ 10.
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(a) Dynamics of Agents Policies.
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(b) Trade-off between Accuracy and Cost by β.

Figure 6: Experiments in MatchingPennies. (a) x and y axes correspond to the probability that
agents take Head. Black dots mark the initial policies, and red curves represents the trajectories
of agents policies. The steering strategy to plot the figure is trained with β “ 25. (b) We compare
β “ 10, 25, 100. Error bar shows 95% confidence intervals. (averaged over 5x5 uniformly distributed
grids as initializations of π1, see Appx. G.1)

Experiment Results As shown in Fig. 6-(a), we can observe the cycling behavior without steering
guidance (Akin and Losert, 1984; Mertikopoulos et al., 2018). In contrast, our learned steering
strategy can successfully guide the agents towards the desired Nash. In Fig. 6-(b), we also report the
trade-off between steering gap and steering cost with different choice of β.

G.3 EXPERIMENTS FOR UNKNOWN MODEL SETTING

G.3.1 DETAILS FOR EXPERIMENTS WITH SMALL MODEL SET F

The results in Table 1 is averaged over 5 seeds and the error bars show 95% confidence intervals.

Training Details for ψ˚
0.7 and ψ˚

1.0 The training of ψ˚
0.7 and ψ˚

1.0 follow the similar experiment
setup as Appx. G.2.2, except here the agents adopt random learning rates. For the choice of β, we
train the optimal steering strategy with β P t10, 20, 30, 40, 50, 60, 70, 80, 90, 100u for both f0.7 and
f1.0, and choose the minimal β such that the resulting steering strategy can achieve almost 100%
accuracy (i.e. ∆ψ,f ď ε for almost all 5x5 uniformly distributed initial policies generated by process
in Appx. G.1). As we reported in the main text, we obtain β “ 70 for f0.7 and β “ 20 for f1.0.

Training Details for ψ˚
Belief For the training of ψ˚

Belief, the input of the steering strategy is the
original state (Eq. (11)) appended by the belief state of the model. In each steering step t P rT s, we
assume the mediator can observe a learning rate sample α, and use it to update the model belief state
correspondingly. The regularization coefficient β for the training of ψBelief is set to be the expected
regularization coefficient over the belief state β “ bpf0.7q ¨ 70 ` bpf1.0q ¨ 20. In another word, we
use the sum of the coefficient of two models weighted by the belief state. This is reasonable by the
definition of the reward function in the belief state MDP lifted from the original POMDP. ψ˚

Belief is
trained the PPO algorithm.

During the training of ψ˚
Belief, we find that the train is not very stable, possibly because the chosen

β for two models are quite different. Therefore, we keep tracking the steering gap of the steering
strategy during the training and save the model as long as it outperforms the previous ones in steering
gap. Our final evaluation is based on that model.

G.3.2 DETAILS FOR EXPERIMENTS WITH LARGE MODEL SET F

We set Umax “ 1.0, and the random exploration strategy (red curve in the left sub-plot in Fig. 3)
will sample the steering reward uniformly from the interval r0, Umaxs. We use the PPO (Raffin et al.,
2021) to train of exploration policy and also the steering strategy given hidden model. To amplify the
exploration challenge, we set βn “ 1 when πnpAq ď 0.5 and increase to βn “ 10 when πnpAq ď 0.5.
As a result, if the mediator follows first-explore-then-exploit strategy and fail to distinguish avaricious
agents from the normal ones, adopting large steering reward can lead to much worse performance.

For the training of exploration policy, although the learning signal Irf “ fMLEs in Proc. 2
is supported by theory, it contains much less information than the posterior probability
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rPrpf |π1, u1, ...,πT , uT ,πT`1qsfPF . Therefore, empirically, we instead train a history-independent
steering strategy to maximize the posterior probability of f :

ψExplore Ð argmax
ψ

1

|F |

ÿ

fPF
Eψ,f r

ÿ

nPrNs

Prpλn|π1, u1, ...,π rT , u rTπ rT`1qs. (13)

Here we use the sum of posteriors of λns since the λns are independent for all n P rN s. We observe it
results in better performance, and it is doable by keep tracking the model belief state of each agent. Be-
sides, similar to Stag Hunt games, we observe that using the posterior Prpλn|π1, u1, ...,πt, ut,πt`1q

as rewards in the non-terminal steps t ă T increase the performance, and we use the same trick
(Eq. (12)).

To plot the results in the middle and right sub-plots in Fig. 3, for each model f˚ P tf1, f2, f3u, we
train three steering strategies (with the same state design in Eq. (11)). The first one is the oracle
strategy, which starts with π1 and steering for T “ 500 steps. The second one is the FETE strategy,
including an exploration policy and another exploitation policy. The exploration policy is trained
following the above Eq. (13) with exploration horizon rT “ 30. Then, we estimate the model
from samples generated by the exploration policy, and train another exploitation policy following
the remaining step of FETE with exploitation horizon T “ 470 (Procedure 2). The third strategy
FETE-RE is the same as FETE except we just use random policy as the exploration policy, and
estimate the model by interaction samples generated by that. During the evaluation, for FETE and
FETE-RE, we steer with the exploration policy for the first 30 steps, and execute the exploitation
policy for the rest. The results are averaged over 5 seeds and two-sigma error bar is shown.

G.4 EXPLANATION OF THE CONSISTENCY OF THE ADAPTION

We first want to highlight it is not easy to have an apples-to-apples comparison with (Canyakmaz
et al., 2024). First, because the experiment setting in (Canyakmaz et al., 2024) does not present
significant exploration challenges, we design and decide to evaluate both methods in the “avaricious
agents” setting (Fig. 3). Second, SIAR-MPC is specialized for polynomial function classes and the
dynamics tractable by MPC, making it difficult to generalize beyond that setting. Therefore, we have
to do some necessary adaption. To ensure the fair comparison, we consider to use FETE-RE as the
adaption of SIAR-MPC in our setting. For the exploration stage, FETE-RE aligns with SIAR-MPC
in using random exploration. For the model identification and exploitation phase, FETE-RE adopts
MLE estimation and RL methods to train the exploitation policy, which inherit the same inspirits as
SIAR-MPC and also aligned with our original FETE.

From another perspective, the main focus of our empirical comparison between FETE and (Canyak-
maz et al., 2024) is the impact of different exploration strategies on the final steering gap and steering
costs. This is reasonable. Because from the discussion in Sec. 5.2, we can conclude that our FETE
is more general compared with SIAR-MPC in (Canyakmaz et al., 2024) in terms of both the model
estimation strategy and exploitation strategy. The main distinction and improvement of our FETE
compared with (Canyakmaz et al., 2024) is our strategic exploration strategy.

G.5 A SUMMARY OF THE COMPUTE RESOURCES BY EXPERIMENTS IN THIS PAPER

Experiments on Two-Player Normal-Form Games For the experiments in ‘Stag Hunt’ and
‘Matching Pennies’ (illustrated in Fig. 1, 5, 6), we only use CPUs (AMD EPYC 7742 64-Core
Processor). It takes less than 5 hours to finish the training.

Experiments on Grid-World Version of ‘Stag Hunt’ For the experiments in grid-world ‘Stag
Hunt’ (illustrated in Fig. 2), we use one RTX 3090 and less than 5 CPUs (AMD EPYC 7742 64-Core
Processor). The training (per seed) takes around 48 hours.

Experiments onN -Player Normal-Form Cooperative Games For the experiments in cooperative
games (illustrated in Fig. 3), we only use CPUs (AMD EPYC 7742 64-Core Processor). It takes less
than 10 hours to finish the training.
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H ADDITIONAL DISCUSSION ABOUT GENERALIZING OUR RESULTS

In this section, we discuss some extensions of the principle and algorithms in this paper to more
general settings.

Non-Tabular Setting When the game is non-tabular and its state and action spaces are infinite, the
steering problem itself is fundamentally challenging without additional assumptions, since the policies
are continuous distributions with infinite dimension and the learning dynamics can be arbitrarily
complex.

Nonetheless, when the agents’ policies and steering rewards are parameterized by finite variables, our
methods and algorithms can still be generalized by treating the parameters as representatives.

As a concrete example, the Linear-Quadratic (LQ) game is a popular model with countinuous state
and action spaces (Jacobson, 1973; Başar and Bernhard, 2008; Zhang et al., 2019). In zero-sum LQ
game, the game dynamics are characterized by a linear system:

xt`1 “ Axt `Byt ` Czt,

with one-step reward function

r1pxt, yt, ztq “ ´r2pxt, yt, ztq “ xJ
t Qxt ` yJ

t R
uyt ´ zJ

t R
vzt.

Here xt, xt`1 P Rd are the system states, yt P Rm1 and zt P Rm2 denote the actions of two agents.

Besides, the agents policies are parameterized by matrices Kt P Rm1ˆd, Lt P Rm2ˆd, i.e.

yt “ ´Ktxt, zt “ ´Ltxt.

Following the quadratic form of the original reward, one may consider quadratic steering reward
functions with parameters Θt :“ pΘQt ,Θ

u
t ,Θ

v
t q and Ξt :“ pΞQt ,Ξ

u
t ,Ξ

v
t q, such that, the steering

reward for two agents at step t is specified by:

u1t pxt, yt, ztq “ xJ
t Θ

Q
t xt ` yJ

t Θ
u
t yt ´ zJ

t Θ
v
t zt,

u2t pxt, yt, ztq “ xJ
t Ξ

Q
t xt ` yJ

t Ξ
u
t yt ´ zJ

t Ξ
v
t zt,

and the reward after modification would be:

r1pxt, yt, ztq ` u1t pxt, yt, ztq “xJ
t pΘQt `Qqxt ` yJ

t pΘut `Ruqyt ´ zJ
t pΘvt `Rvqzt,

r2pxt, yt, ztq ` u2t pxt, yt, ztq “xJ
t pΘQt ´Qqxt ` yJ

t pΘut ´Ruqyt ´ zJ
t pΘvt ´Rvqzt.

Although the state, action and steering reward spaces are continuous, both the policies and steering
reward are determined by their parameters. Therefore, the agents’ learning dynamics can be modeled
by a function f˚ mapping between those parameters instead:

pKt`1, Lt`1q „ f˚p¨| pKt, Ltq
looomooon

agents’ policies

, pΘQt `Q,Θut `Ru,Θut `Rv,ΞQt ´Q,Ξut ´Ru,Ξut ´Rvq
loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

modified rewards

q.

Besides, the learning of steering strategy is equivalent to learning a function mapping ψ from
parameters in history tpKτ , Lτ ,Θτ ,Ξτ qu

t´1
τ“1 Y tpKt, Ltqu to the next steering reward parameter

pΘt,Ξtq. Since both the policy parameters and steering reward parameters have finite dimension, this
problem is tractable under our frameworks.

Uncountable function class F Our results can be extended to cases where the model class F is
infinite but has a finite covering number. We denote Fε0 as the ε0-cover for F , s.t.

@f P F , Df 1 P Fε0 , s.t. max
πPΠ,u

TV
´

fp¨|π,uq ´ f 1p¨|π,uq

¯

ď ε0.

where TV denotes the total variation distance. If F is uncoutable but Fε0 is finite, we run our
algorithms with Fε0 instead of F . Under Assump. A, we denote f˚

ε0 P Fε0 is the function ε0 close to
f˚. By simmulation lemma, then we have:

|Eψ,f˚ rηgoalpπT`1qs ´ Eψ,f˚
ε0

rηgoalpπT`1qs| ďT ¨ ε0 ¨ ηmax
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|Eψ,f˚ r

T
ÿ

t“1

ηcostpπt,utqs ´ Eψ,f˚
ε0

r

T
ÿ

t“1

ηcostpπt,utqs| ďT 2 ¨ ε0 ¨ max
π,u

ηcostpπ,uq.

As we can see, we can still optimize the objective in Eq. (1) with Fε0 , and then transfer guarantees
on steering gap and cost for f˚

ε0 (e.g. the the worst case guarantees in Prop. 3.3) to f˚ with additional
OpT 2 ¨ ε0q errors, which is ignorable when ε0 is small enough.

Non-Markovian Learning Dynamics In general, non-Markovian learning dynamics is intractable,
as implied by the fundamental difficulty in learning optimal policies in POMDPs. However, when
some special structures exhibit, our methods for Markovian agents can be generalized. One example
is the non-Markovian agents with finite-memory, i.e.,

πt`1 „ f˚p¨|πt´m`1, r ` ut´m`1, ...,πt, r ` utq.

This can be reformulated by a Markovian dynamics

xt`1 „ F˚p¨|xt, r ` utq,

with the same steering rewards as actions but a new definition of “state”: xt :“ tπt´m`1, r `

ut´m`1, ...,πt´1, r ` ut´1,πtu. Comparing with Def. 3.1, the dimension of the state space is
expanded by m times, which is still tractable for small m.

Neural Networks as Model Class to Approximate Complex f˚ The main principle for choosing
F is to ensure our “realizability” assumption holds with high probability, i.e. the true model f˚ P F .
The concrete choice of F depends on the prior knowledge we have about the agents’ learning
dynamics. In general, the less prior knowledge we have, the larger F should be to ensure realizability,
and vice versa.

In practice, one “safe-choice” can be consider a class of parameterized neural networks as F , since it
has been proven in deep RL and supervised learning literature that neural networks have powerful
approximation ability when f˚ is potentially very complex. Because in our formulation, we allow
the randomness of next policy πt`1 (instead of a deterministic output) given πt and r ` ut, we
may consider a neural network taking the concatenation of πt, r ` ut and another random Gaussian
vector ξ as inputs. Here the noise vector is introduced to model the stochasticity of πt.

The parameters of neural networks are in general continous variables, which implies the model class
is uncountable. However, if the parameters has bounded value range, we can show the finite covering
number on the parameter space. If we consider Lipschitz continuous activation functions (which is
most of the cases), it implies the bounded covering number.

Besides, when considering neural networks, the resulting model class F can be extremely large
and the MLE-based strategic exploration in Procedure 2 will be inefficient. We highlight that we
design such exploration step in order to align with the main principle: the algorithm design should
be supported by theoretical guarantees on the performance of the learned steering strategy.
This focus on theoretical rigor is the main factor limiting the scalability of our algorithms in more
complex settings. Conversely, if we relax the requirements on theoretical guarantees, it is not very
challenging to adapt our algorithms to complex scenarios. For example, we can instead consider
more scalable exploration methods, such as Random Network Distillation (RND) (Burda et al., 2018)
or Bootstrapped DQN (Osband et al., 2016), although without theoretical guarantees.
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