
When Models Know More Than They Can Explain:
Quantifying Knowledge Transfer in Human-AI

Collaboration

Quan Shi P Carlos E. Jimenez P Shunyu Yao OP

Nick Haber S Diyi Yang S Karthik Narasimhan P

P Princeton Language and Intelligence
S Stanford University

O OpenAI

Abstract

Recent advancements in AI reasoning have driven substantial improvements across
diverse tasks. A critical open question is whether these improvements also yields
better knowledge transfer: the ability of models to communicate reasoning in ways
humans can understand, apply, and learn from. To investigate this, we introduce
Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experi-
mental framework for Human-AI knowledge transfer capabilities and conduct the
first large-scale human study (N=118) explicitly designed to measure it. In our
two-phase setup, humans first ideate with an AI on problem-solving strategies,
then independently implement solutions, isolating model explanations’ influence
on human understanding. Our findings reveal that although model benchmark
performance correlates with collaborative outcomes, this relationship is notably
inconsistent, featuring significant outliers, indicating that knowledge transfer re-
quires dedicated optimization. Our analysis identifies behavioral and strategic
factors mediating successful knowledge transfer. We release our code, dataset, and
evaluation framework to support future work on communicatively aligned models.

1 Introduction

As large language models (LLMs) grow more capable, we find them quickly saturating benchmarks
across reasoning-intensive domains, such as coding [6, 24, 25, 44], scientific problem-solving
[40, 17, 48], and mathematics [9, 18]. A key driver, Reinforcement Learning with Verified Rewards
(RLVR), has emerged as a popular post-training approach, enabling models to optimize their language
outputs for high-reward reasoning in verifiable domains like math and code to achieve state-of-
the-art performance and widespread industry adoption [14, 29, 52]. Yet this rapid progress hides
a crucial assumption: that improvements in a model’s internal reasoning naturally translate into
better knowledge transfer, that is, a model’s ability to communicate its reasoning in ways humans
can understand, apply, and learn from. As we build increasingly capable reasoners, does effective
knowledge transfer emerge for free, or must it be treated as a separate objective that requires dedicated
evaluation and optimization?

This question has far-reaching implications. In many human-AI collaborative workflows, the goal
is not merely to outsource thinking to AI, but to amplify human abilities [37, 12, 53, 15]. Without
effective knowledge transfer, users may become increasingly dependent on systems they do not
understand [22, 1]: a dynamic reminiscent of “manager’s syndrome” [20], where individuals lose

0Correspondence to qbshi@alumni.princeton.edu. Code, data, visualizer at kite-live.vercel.app

Preprint.

kite-live.vercel.app

Figure 1: Left: Human-AI collaboration performance plotted against model solo performance for both
code tasks (blue circles) and math tasks (green triangles). Models improve human-AI collaboration
(r = 0.84 for code, r = 0.69 for math), but at a slower rate than their solo capabilities (gray
line shows y = x). Right: Human preference rates show task-dependent correlations with model
performance (positive for code tasks, r = 0.73; slight negative for math tasks, r = −0.14), revealing
that user preferences vary across task domains and do not consistently align with actual performance.

technical fluency as they delegate complexity. This dynamic is further exacerbated when users
cannot discern or interrogate model reasoning, leading to overreliance on systems they perceive as
more intelligent, and increasing the risks of sycophantic behaviors, where models shape or reinforce
user beliefs rather than supporting sound judgment. Moreover, in high-stakes settings such as
medicine or legal services, the inability of models to communicate their reasoning clearly could
undercut human oversight entirely [27, 21, 4]. Few works rigorously assess how well models support
human understanding and enable scalable oversight, especially across latent user variables, such
as differences in domain expertise, AI familiarity, or the skill gap between human and model that
critically shape the success of such transfer.

To investigate this, we introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual
and experimental framework that explicitly isolates and evaluates knowledge transfer. In our large-
scale human evaluation, we recruit 118 participants with diverse levels of expertise, including
a substantial proportion of domain experts (competitive programmers, math majors) who tackle
challenging problems in coding and mathematics through a two-phase protocol. In the collaborative
ideation phase, participants interact freely with an AI model to explore solution strategies. This
phase serves as the primary opportunity for the AI to transfer knowledge to the human by explaining
concepts and jointly developing solutions. In the subsequent independent implementation phase,
participants attempt to implement previously discussed solutions alone, without access to the AI or any
prior interaction transcripts, allowing us to isolate and measure the effectiveness of knowledge transfer.
We assess outcomes using both objective metrics (solution correctness) and subjective evaluations
(user rankings, perceived helpfulness, and qualitative feedback), enabling a comprehensive analysis
of how well models support knowledge transfer across varying levels of user expertise and task
difficulty. Our study is IRB approved.

As shown in Figure 1, we generally find participants demonstrated a strong ability to integrate
model-generated reasoning with their own expertise. Interestingly, some models, such as Claude-3.7-
Sonnet, enabled collaborative outcomes that exceeded expectations based on their solo capabilities,
particularly in mathematical reasoning tasks. In contrast, higher-performing models like Gemini-2.5-
Pro did not consistently yield proportionally stronger collaboration, suggesting diminishing returns in
knowledge transfer as model reasoning scales. If this trend continues, as models grow more capable,
their internal representations may become increasingly difficult to project in ways humans can easily
understand and utilize [19].

Moreover, we find that humans’ subjective preferences for models during collaboration often diverge
from solo model performance, particularly in math tasks, revealing domain-specific patterns in what
users value during collaboration. To probe these dynamics, we perform qualitative analyses of
interaction transcripts, clustering patterns of human queries and model responses across varying user
skill levels and task types. These findings surface distinct collaboration styles and success/failure
modes (overreliance, representation misalignment, adaptive scaffolding...), offering a lens into the
latent Human-AI interactions that govern effective knowledge transfer.

2

Overall, this paper aims to provide a foundation for future research on quantifying and enhancing
the knowledge transfer capabilities of AI systems: particularly as models grow more intelligent and
begin to develop knowledge that is increasingly inaccessible to humans. We develop a conceptual and
experimental framework to isolate and quantify knowledge transfer, as well as provide insight into
drivers of scaling trends between reasoning and knowledge transfer capabilities. To facilitate progress
in this direction, we release our evaluation code, dataset, and filtered interaction trajectories to support
future efforts in building AI systems that are more communicatively and cognitively aligned with
human collaborators.

2 Related Work

Human-AI Collaboration Research in human-AI collaboration has increasingly focused on opti-
mizing complementary team performance and, implicitly, knowledge transfer. Studies have explored
how bidirectional information exchange enhances collaborative outcomes [34, 33], examining the
impact of explanations during interactions [3] and investigating how proactive AI assistants can help
humans discover preferences in open-ended tasks like travel planning and data visualization [43].
Most closely related to our work, [38] evaluated the effectiveness of autocomplete suggestions and
chat assistants in helping humans solve coding problems from HumanEval [6]. While these studies
provide valuable insights into collaborative performance, our work extends beyond immediate task
outcomes to systematically measure reasoning transfer.

Code + Math Reasoning Tasks for LLMs Early code and math benchmarks such as HumanEval
[6], MBPP [2], and GSM8k [9] focused on relatively simple problems requiring short code snippets
or numerical answers. With many of these benchmarks now approaching saturation by advanced
models, we deliberately selected more challenging problems from competitive programming platforms
like Leetcode [24, 46] and mathematics competitions (AMC, AIME) [51]. These problems are
particularly suited for our study as they primarily test reasoning abilities rather than context handling,
making them ideal for measuring knowledge transfer in human-AI collaboration. This contrasts with
repository-style benchmarks like SWE-Bench [25] and BigCodeBench [54], where performance is
often bottlenecked by context interpretation capabilities.

Knowledge Transfer and Education While limited work explicitly analyzes knowledge transfer
from LLMs to humans, this shares conceptual overlap with educational applications of LLMs, where
models must effectively teach reasoning to humans. Recent research has explored LLMs assisting
tutors by identifying effective strategies [49], creating personalized lesson plans [26, 41, 11], provid-
ing feedback [16, 7], and functioning as specialized tutoring agents [31, 35]. However, significant
challenges remain, as LLMs often underperform as teachers by leaking answers or failing to employ
effective pedagogical approaches [39, 50, 13]. Our work diverges from educational applications by
explicitly measuring the explanatory quality of LLM reasoning by requiring participants to inde-
pendently execute discussed algorithms through mathematical calculations or code implementation,
which is only possible if they truly understand the model’s explanations.

3 KITE: Quantifying Knowledge Transfer

We first outline preliminaries for understanding knowledge transfer between entities during collabora-
tive problem-solving. While we formalize knowledge regions such as M , H , and their intersections,
we note that these are illustrative abstractions—difficult to precisely measure in practice, but useful
for analyzing collaboration dynamics.

3.1 Conceptual Framework for Knowledge Transfer

We approach knowledge transfer through the lens of collective intelligence [10]: the collaborative
problem-solving capability that emerges when humans and AI work together. Following [42, 28],
we can represent the machine’s knowledge and capabilities, or representation space, as M , and the
human’s as H; illustrated in Figure 2. This formulation yields three critical regions for our analysis:

3

H: Human M: Model

{Examples, Analogies, Context Aggregation…}

Iteratively extract the node
with the minimal tentative

distance…

You need to run BFS, going to the
closest place you haven’t visited yet

and checking the distance…

Representational Space Knowledge Transfer

Figure 2: Model knowledge (kM ∈ M) must be projected into a form understandable by human users
(ΠM→H(kM)) in order to communicate knowledge effectively. Effective projections—via examples,
analogies, or context aggregation—bridge the gap between disjoint representations.

1. Shared Knowledge (M ∩H): This intersection contains reasoning patterns, abstractions,
and strategies already understood by both human and model. It forms the foundation for
effective communication.

2. AI-Exclusive Knowledge (M −H): This region reflects novel reasoning, knowledge, or
strategies that the model can execute but the human has not yet mastered. Transfer from this
space into H is the central goal of collaborative ideation.

3. Human-Exclusive Knowledge (H−M): Reasoning held by the human but not by the model:
such as intuitive understanding, prior experience or deeper domain knowledge/insight.

The success of human-AI collaboration hinges critically on accessing and transferring knowledge from
the M −H space into H , especially as humans typically maintain primary agency in collaborative
tasks (e.g., deciding which strategies to pursue or when to submit solutions). However, as models
become more capable, their reasoning may depend on abstractions increasingly distant from the typical
human representation space. We frame this challenge in terms of projections: for each knowledge
point kM in the model’s space, the model must identify some projection ΠM→H(kM) that translates
its reasoning into a form the human can understand, internalize, and act upon. These projections can
take many forms—such as providing analogies, contextualizing concepts with background knowledge,
offering intermediate scaffolding, or generating concrete examples.

Importantly, this process is bidirectional. Humans also project their reasoning into the model’s
representation space via ΠH→M (kH), such as using specialized prompts to elicit helpful responses.
Especially in interactive settings where models are not fully autonomous, effective collaboration
depends on this ongoing loop of mutual translation and aligning expressions of reasoning.

4 KITE: Evaluating Knowledge Transfer

Informed by the conceptualization discussed in Section 3, our two-phase setup (Figure 3) comprise
a human-AI collaboration phase, and a solo human implementation phase that demands real un-
derstanding (e.g. writing code or performing calculations). Users can’t simply memorize model
suggestions, especially when they’re incomplete or flawed; solving requires debugging, handling edge
cases, and reasoning through the solution. This enables us to isolate and measure knowledge transfer
from AI to humans. See Figure 17 for example problems and dataset statistics. While our setup can
accommodate any reasoning problem that naturally divides into ideation and implementation phases,
in this paper we focus on two domains: coding tasks from LiveCodeBench [24] and competition-level
mathematics problems (AMC/AIME). These domains present consistently challenging reasoning
tasks across a wide range of expertise levels, making them ideal for studying knowledge transfer.

4.1 Two-Phase Protocol for Isolating Knowledge Transfer

Phase 1: Collaborative Ideation First, participants are presented with a problem drawn from
either the algorithmic coding [24] or competition mathematics [51] domains. In this phase, they
engage in an open-ended dialogue with a selected LLM to explore solution strategies, exchange
ideas, and scaffold their understanding without solving the problem. To preserve this ideation focus,
we forbid models from generating any long-form code, pseudocode, or mathematical calculations
through prompting, as well as employ a secondary checker model to withhold responses flagged
to contain answers directly or indirectly (code, or mathematical calculations). Participants are also

4

Problem
There is a dungeon with n ⋅ m rooms
arranged as a grid. You are given a 2D
array moveTime of size n ⋅ m, where
moveTime[i][j] represents the
minimum time in seconds when you
can start moving to that room. You
start from the room (0, 0) at time t = 0
and can move to an adjacent room.
Moving between adjacent rooms takes
one second for one move and two
seconds for the next, alternating
between the two. 

Return the minimum time to reach the
room (n - 1, m - 1).

Phase 1: Collaborative Ideation

How would you solve this?

What’s the best way to represent the graph?

We could try modeling it as a directed graph...

Phase 2: Independent Solving

for in
= + +

if not <= < <= <
continue

= + 1

if >

=

 dx, dy dirs:

 nx, ny s.x dx, s.y dy

 (0 nx n and 0 ny m):

 dist max(d[s.x][s.y], moveTime[nx][ny])
 d[nx][ny] dist:

 d[nx][ny] dist

 heapq.heappush(q, State(nx, ny, dist))

SubmitRun

Based on what we
talked about, I think
we should take this
approach...

Chat Deleted Code Editor

Figure 3: Two-phase evaluation framework. (1) Collaborative Ideation: Users and an AI assistant
engage in open-ended discussion to explore problem-solving strategies. (2) Independent Solving:
Users then implement a solution independently, without further assistance. This design leverages the
nature of coding and math tasks—where successful implementation demands deep understanding,
not rote recall—to isolate and measure genuine knowledge transfer.

not allowed to take any notes to log model insights. We additionally perform post-hoc filtering to
remove user interaction data where models emit forbidden content. This ensures that any knowledge
transferred takes the form of conceptual reasoning or strategy, rather than memorization of content
that can be directly used to assemble the final solution.

Phase 2: Independent Solving After the ideation phase concludes, the LM interface and conversa-
tion history are no longer accessible. Participants are tasked with solving the exact same problem on
their own, without model assistance. In coding, participants must write and submit correct implemen-
tations that pass all test cases, given 10 code submission attempts. In math, participants must carry
out precise multi-step calculations to arrive at a final answer, given 5 answer submission attempts. By
requiring participants to independently execute a solution, Phase 2 becomes a direct and rigorous test
of whether they have absorbed and retained reasoning introduced in Phase 1. Successful completion
indicates that knowledge previously exclusive to the model (kM ∈ M −H) has been projected into
and re-applied by the human (ΠM→H(kM) ∈ H).

4.2 Modeling and Calibrating Skill Hierarchies

Collaboration becomes meaningful only when the task challenges the human’s independent capabili-
ties. If the human can already easily solve the problem alone, model assistance becomes redundant:
there is no opportunity for knowledge transfer, no dependency, and thus no true collaboration. This
necessitates the calibration of skill hierarchies: the relative proficiencies of the human, the model,
and the task. We accomplish this by assigning standardized skill ratings (elo) to each of the three
entities in the problem-solving process.

Skill Estimation Task difficulty is determined using externally validated Elo ratings: public Leet-
Code ratings for programming tasks1 and competition-derived estimates for AMC/AIME math
problems2. Human skill is estimated through a two-step process: participants self-report their experi-
ence level, then complete 5 adaptively selected tasks with difficulty adjusted based on performance.
Their Elo rating is updated using surprise-conditioned rules (Appendix C.8) [8], yielding an em-
pirically grounded skill estimate. Model skill is measured by zero-shot performance—each model
attempts each task three times, and a task is considered solvable if at least one completion is correct.
To compare human and model skill fairly, we contrast each human’s final Elo with the average diffi-
culty (Elo) of the top 25% of problems solved by the model, avoiding bias from models attempting
all tasks regardless of difficulty.

1https://github.com/zerotrac/leetcode_problem_rating
2https://artofproblemsolving.com/wiki/index.php/AoPS_Wiki:Competition_ratings

5

https://github.com/zerotrac/leetcode_problem_rating
https://artofproblemsolving.com/wiki/index.php/AoPS_Wiki:Competition_ratings

Test-Time Pairing During the test phase, each participant is required to solve between 3 and 15
problems. They may choose to solve any number of problems within this range and are allowed
to work at their own pace, including non-contiguous problem-solving sessions. For each problem
attempted, the participant is paired with one of eight held-out LLMs, sampled uniformly at random
without replacement. Once all models have been encountered, the sampling process resets. Each task
is selected to fall within a calibrated difficulty band slightly above the participant’s demonstrated skill
level, ensuring it is challenging yet tractable with model assistance. Specifically, tasks are drawn from
a fixed Elo margin relative to the participant’s current rating: [t+ 200, t+ 400] for coding problems
and [t+ 0.75, t+ 1.25] for math problems. This design encourages meaningful collaboration with
the model, avoiding both trivial and overly difficult cases. While task completion time is recorded, no
time limits are imposed: we record this metric in Appendix B.

4.3 Experimental Controls and Evaluation Strategy

Evaluation and Success Metrics Evaluating human-AI collaboration is challenging due to the
subjective and noisy nature of human preferences. We use both subjective and objective metrics.
Subjectively, after each task, participants rank the last four models they interacted with from most to
least preferred; we apply the Bradley-Terry model to convert these rankings into win rates reflecting
relative preference (full algorithm in Appendix C.7). We also provide separated win rates based on
the relative ordering of Human, Model, and Task Skill ratings at the time of interaction. Specifically,
we report results for the three possible configurations: Human > Task > Model (HTM), Human >
Model > Task (HMT), and Model > Human > Task (MHT). On the objective side, we assess transfer
by comparing the percentage of problems solved through human-model collaboration to the model’s
solo performance on the same problems. For coding tasks, correctness requires passing all associated
test cases; for math, we require an exact answer match.

Incentives and Motivation A common confounding factor in human-AI interaction studies is
participant motivation [45, 36]: specifically, it is imperative that users are genuinely trying to learn
from the model to improve their own performance. To mitigate this, first, we provide monetary
incentives: participants receive 1.2x - 1.5× their base compensation of $25/hr for correctly answering
a question, depending on difficulty. Second, most of our participants are actively preparing for career
interviews that require proficiency in the task domains we test—e.g., competition math for finance
related roles, and LeetCode-style problems for software engineering positions. This creates an added
layer of intrinsic motivation: participants have a personal stake in learning from the model outputs
and in providing thoughtful, honest feedback.

Participant Selection We recruited participants through university-wide email advertisements and
word of mouth. Interested individuals completed an initial survey, after which we filtered for a diverse
sample across academic background, domain expertise, and AI/LLM familiarity to reflect a broad
population representative of both technical and non-technical users. Our final cohort comprised 118
participants from 11 institutions, spanning a wide range of majors, including Computer Science
(N = 49), Electrical Engineering, Mathematics, Neuroscience, and various STEM disciplines. Most
were in their first (N = 38) or second (N = 36) year of study, though all undergraduate levels were
represented. A full demographic account can be found in Appendix A.

Model Selection We evaluate eight LLMs of different sizes and abilities: GPT-4.1, GPT-4o [23],
GPT-4.5-preview, Gemini-2.5-Pro, DeepSeek-V3 [30], Claude-3.7-Sonnet, LLaMA-4-Maverick, and
o1. These models were selected based on strong leaderboard performance on ChatArena [8] and
widespread usage in interactive evaluation settings. Notably, DeepSeek-R1 [14] was considered but
excluded due to availability and latency constraints. To assess natural explanation behaviors, we
evaluate models in a zero-shot setting without prompt optimization or fine-tuning for explanatory
quality, with temperature 0.7 when possible. This design choice avoids confounding effects of tailored
prompts and better reflects how users commonly interact with models out-of-the-box.

5 Results

The main quantitative results of the study can be found in Figure 1 and 2. In total, we obtained 578
problem solving trajectories, with each participant completing an average of 4.90 problems. We

6

Model Code (N=300) Math (N=278)

HTM HMT MHT Total HTM HMT MHT Total

GPT-4.1 18.6±7.2 15.3±2.0 8.7±4.2 15.1±7.0 8.2±2.9 10.7±6.3 16.1±3.5 11.3±2.0

GPT-4o 4.4±2.1 15.3±1.6 8.6±3.9 8.8±1.9 5.8±2.7 10.8±4.7 22.0±3.8 13.3±5.7

o1 4.1±2.1 10.8±1.9 15.8±4.3 7.4±1.6 17.2±1.0 4.2±2.0 0.8±0.4 10.0±7.3

GPT-4.5 20.4±7.8 8.9±2.8 16.9±6.7 16.0±4.6 6.2±2.7 15.9±3.6 6.3±2.0 11.8±6.9

Deepseek-V3 7.3±4.0 10.1±3.0 5.6±2.5 7.8±3.7 13.3±3.9 13.7±5.0 10.1±3.5 13.3±2.4

Llama-4-Maverick 8.8±8.4 9.8±4.0 6.6±3.3 9.0±3.9 6.7±1.9 10.5±4.3 25.9±5.3 11.8±2.3

Claude-3.7-Sonnet 16.2±3.6 14.8±3.7 15.5±4.7 16.1±4.3 8.3±0.0 16.3±4.9 15.3±3.0 12.6±2.3

Gemini-2.5-pro 20.2±5.5 15.1±4.0 22.3±9.1 20.0±6.8 27.2±2.3 17.9±7.5 4.4±2.5 16.0±4.0

Table 1: Bradley-Terry win rates (± standard error) showing human preferences for models post-
collaboration across three skill hierarchies: HTM (Human < Task < Model), HMT (Human < Model <
Task), and MHT (Model < Human < Task), elaborated in Section 4.3. Bold indicates best performance.
Higher values indicate stronger average human preference.

Setting GPT-4.1 GPT-4o o1 GPT-4.5 DS-V3 Llama-4 Cld-3.7 Gem-2.5

Code (M) 68.8 16.7 55.0 68.4 33.3 47.1 45.0 81.3
Code (H+M) 65.0 40.0 55.0 69.0 51.9 54.7 70.0 71.3
Code (∆) -3.8 +23.3 +0.0 +0.6 +18.6 +7.6 +25.0 -10.0

Math (M) 47.6 8.3 83.3 33.3 46.2 47.8 20.8 68.4
Math (H+M) 75.7 56.7 85.8 60.8 70.8 72.6 81.7 79.5
Math (∆) +28.1 +48.4 +2.5 +27.5 +24.6 +24.8 +60.9 +11.1

Table 2: Performance comparison of 8 LLMs on code and math tasks, showing accuracy percentages
for models operating independently (M) versus human-AI collaborative performance (H+M). Bold
indicates best performance. The following abbreviations are used for models: DS-V3 for Deepseek-
V3, Llama-4 for Llama-4-Maverick, Cld-3.7 for Claude-3.7-Sonnet, and Gem-25 for Gemini-2.5-pro.

summarize core insights below, and report auxiliary results, such as survey feedback, average elo per
model, and time spent in Appendix B.

Knowledge Transfer v. Model Performance While a positive correlation exists between solo
model performance and collaborative outcomes, this relationship is notably inconsistent with signif-
icant outliers. Gemini-2.5-Pro, despite superior solo performance in code tasks (81.3%), showed
reduced collaborative efficacy (-10.0% change), while Claude-3.7-Sonnet and GPT-4o demonstrated
exceptional collaborative amplificationm (+25.0% in code) despite more moderate solo capabilities
(45.0%). Similarly, GPT-4o showed strong improvement in math tasks (+48.4%) despite low solo
performance (8.3%). Importantly, the slope of the performance-transfer relationship (visualized
in Figure 1) is consistently below unity, suggesting that as model reasoning capabilities improve,
transfer effectiveness may increase more slowly. If this trend continues, the gap between model
capabilities and effective knowledge transfer will widen with more advanced models, suggesting the
need to view knowledge transfer as an important objective for optimization.

1

Subjective Preferences v. Model Performance Interestingly, the correlation between solo per-
formance and human preference varied by domain. In code tasks, there was a significant positive
correlation: humans tended to prefer models that also performed well independently, with Gemini-
2.5-pro achieving both the highest win rate (20.0%) and highest solo performance (81.3%). However,
this relationship was weaker in math tasks. While Gemini-2.5-pro had the highest win rate in math
(16.0%), models like Llama-4-Maverick received high preference ratings in specific skill hierarchies
(25.9% in MHT) despite more modest solo performance (47.8%). Our analysis on human feedback
suggests that this divergence stems from differences in how models communicate their reasoning.
High-performing math models often relied heavily on formal notation, dense symbolic expressions,
and proof-based explanations—forms of communication that many casual or less technically inclined
math users found difficult to follow. In contrast, effective collaboration in coding tasks leaned more

7

on natural language descriptions of algorithms and strategies, making high-performing code models
more accessible and preferred by human partners.

Knowledge Transfer v. Subjective Preferences We examined whether humans tended to prefer
models that ultimately helped them solve more problems—i.e., whether subjective preferences
aligned with successful knowledge transfer. Overall, we observed a statistically significant positive
correlation (r = 0.86), but a much weaker, non-significant correlation in math (r = 0.14, p < 0.05).
For code, this aligns with the expectation that users, aware of whether they successfully solved the
task, are more likely to favor models that contributed to that success. However, we also observed
several notable outliers, such as o1, which achieved relatively low win rates in code (7.4%) despite
comparable collaborative performance (55.0%), suggesting that subjective preference is not solely
reward-driven: we dive into detailed causes in our qualitative analysis.

Divergence in Human Preferences Across Skill Hierarchies We find that collaborative prefer-
ences vary across skill hierarchies. For example, Gemini-2.5-Pro was highly preferred in the math
domain when the model outskilled the human and could solve the task independently (HTM) with a
27.2% win rate. However, it performed poorly in the MHT setting (4.4%), where it needed to follow
human guidance. Similarly, Llama-4-Maverick showed stark contrasts between different hierarchies
in math, performing exceptionally well in MHT settings (25.9%) but poorly in HTM contexts (6.7%).
As revealed in our qualitative analysis, we hypothesize this divergence stems from Gemini’s tendency
toward active engagement, frequently asking confirmational questions to scaffold learning. This
behavior was appreciated by users with low expertise, who found it supportive, but was frustrating
to more expert users, who felt it was verbose and preferred the model to be more direct. These
findings caution against one-size-fits-all strategies: optimal collaboration depends not only on model
capability, but also on how well models can adapt their communication style to fit the skill-level of
different users.

Covariate Analysis We examined the effect of participant characteristics on performance using
logistic regression analysis on potential participant covariates. Notably, we found no statistically
significant effects from user expertise (p = 0.252 for coding, p = 0.196 for math), LLM familiarity
(p = 0.339), or prior experience with collaboration tools, such as Cursor, (p = 0.238) on solve
rates. These findings suggest that our initial expertise calibration successfully balanced tasks relative
to individual skill levels. We hypothesize the minimal impact of LLM familiarity likely stems
from the unbalanced conversation pattern, where even participants with limited experience received
comprehensive output from models, making knowledge transfer primarily dependent on the model’s
explanatory capabilities rather than the user’s prompting expertise.

6 Qualitative Analysis: Interaction Dynamics

To better understand the mechanisms behind our quantitative findings, we analyze interaction
patterns inspired by the Clio framework [47]. User queries are embedded using OpenAI’s
text-embedding-3-large model and clustered with k-means [32] to identify distinct strategies
associated with success or failure, along with their qualitative feedback. Clusters are then manually
reviewed and verified. Figure 4 summarizes these patterns, grouping feedback, queries, and model
responses by outcome to qualitatively interpret the dynamics of knowledge transfer in human-AI
collaboration.

6.1 Performance Transfer Gap

The performance transfer gap refers to the observation that improvements in model capability do not
always lead to proportionate improvements in human problem-solving performance. Our analysis
surfaces recurring dynamics that help explain this phenomenon.

Overreliance on Model Authority In 5% of cases, users explicitly described deferring to the model
without critical evaluation. This tendency becomes problematic when models occasionally return
incorrect or misleading solutions. As one participant noted, “The model initially gave me the wrong
answer, which, to be fair, caused me to rush past the planning step since I trusted the model.” This

8

Human Queries

Asking for Full Solution [51%]

Clarification of Solution [16%]

“how to solve problem”
“what is the best approach”

“Can you clarify step 4 pls"
“why is it up to root n”

Suggesting an Algorithm [5%]

Clarification of Problem [9%]

“Could we use something else like
Dijkstra's or BFS?”

“what exactly is a row pair?”
“why is the ouput for this = 3?”

Seeking Background Knowledge [8%]
“how to convert to set”

“how to go from binary to number”

Queries for Complete Solutions [8%]
“in python ish pseudocode”

“What’s the answer”

Model Responses

Step by Step Solution [51%]
“Glad to help! Here is a step by

step approach…”

Summarization [34%]

Query Restating [23%]

Clarification [27%]

Modification on Feedback [8%]

Simplifying Analogies [4%]

“Let’s try an O(n) solution, instead of a
O(n^2) previously…”

“When I use notation like
"$\pmod{z^2+z+1}$", it means….

“Let's restate clearly what you have and
what you need:”

“Let’s summarize the approach:”
“SUMMARY OF “THE NUMBERS…”

Good Algorithmic Direction [35%]

Human Feedback

Formatting [15%]

Active Engagement [5%]

Over-Reliance on Model Output [5%]

Model/Human Stubbornness [5%]

“The model reminded me of the trie type. Without that, I probably couldn't have solved the problem…”
"I don't think I would've considered continuously updating the score for Alice and Bob with each iteration…"

Model Output Wordiness [4%]

“I really liked this one. Was very interactive and asked me a lot of questions to keep me engaged…”

Model output Incorrect [14%] “The model hallucinated an optimization in this DP problem that was incorrect.”

“Even if it did have the correct question, it offered a solution that would be entirely unnecessary (Dynamic
Programming) while I told it a greedy program could possibly work…

"The model initially gave me the wrong answer, which to be fair caused me to rush past the planning step a bit
since I trusted the model. This made me a little bit lost when I got the first answer wrong…”

“The model wayyyy too wordy like I really did not need all that much for a simple response”

“I really could not understand what the AI was trying to say with all the math equation… seems to be relatively
simple to understand?”

“Think of it this way. If you visualize it
as blocks instead of…”

Figure 4: Analysis of human-AI problem-solving interactions. Human queries (left), model responses
(center), and human feedback (right) are color-coded by correlation with successful problem resolution
(green: positive, red: negative). Percentages indicate each category’s frequency, revealing patterns in
effective vs. ineffective knowledge transfer.

dynamic suggests that presumed model competence may inadvertently discourage user reflection,
impeding learning and effective problem-solving.

Misaligned Explanation Strategies Higher-performing models often excel at generating correct
answers but fall short in adapting their explanations to users’ knowledge levels. While patterns such
as “Clarification” (27%) and “Simplifying Analogies” (4%) appear across model outputs, these are
not always used effectively. “Step-by-step solutions” were the most frequent output style (51%),
but users reported issues with verbosity (4%) and poor formatting (15%), both of which hindered
knowledge transfer. Even technically accurate solutions can become ineffective if presented in ways
that are hard for users to interpret, contextualize, or apply.

6.2 Domain-Specific Preference Patterns

Representation Misalignment We observed a notable difference in how users responded to model
explanations across domains. In math tasks, high-performing models like o1 frequently exhibited
what we call representation misalignment: explanations that, while technically correct, were often
overly formal, verbose, or difficult to follow. Users described these responses as overwhelming or
rigid, leading to lower preference ratings despite strong solve rates. In contrast, coding tasks benefited
from better alignment between the procedural nature of the task and the model’s stepwise reasoning.
This suggests a domain-specific divergence: in coding, model performance and user preference tend
to align due to shared algorithmic structure, whereas in math, users value intuitive and conceptual
framing more highly.

Strategic Framing vs. Technical Depth In coding contexts, users consistently valued strategic
guidance over exhaustive technical detail. For example, one user wrote, “The model reminded me of
the trie type. Without that, I probably couldn’t have solved the problem. . . ” This suggests that models
that foreground high-level framing or conceptual cues—rather than diving straight into detailed
solutions—are more helpful in supporting user problem-solving. However, models often default to
presenting fully fleshed-out solutions, which may obscure the overall structure or intent. Much like
how researchers prefer the big-picture framing of a paper before diving into methods, users may
benefit more from contextualized reasoning than exhaustive but unfocused detail.

9

6.3 Skill Hierarchy Dependencies

Adaptive Scaffolding vs. Directness The success of interaction strategies often depends on
the relative skill levels of the human and the model. In HTM (Human-Teaches-Model) settings,
where humans are less skilled than the model, successful models like Gemini-2.5-Pro employed
what we call scaffolded projection: breaking down reasoning into digestible parts, often with
built-in comprehension checks. However, the same approach proved counterproductive in MHT
(Model-Helps-Human) settings, where the human was more skilled than the model. In these cases,
excessive scaffolding was perceived as redundant or even patronizing, with feedback describing it as
“unnecessarily handholding” or “repetitive.”

Query-Response Alignment These dynamics are further supported by analysis of query types. In
HTM settings, users frequently asked for background knowledge or clarification (“Clarification of
Solution” 16%, “Seeking Background Knowledge” 8%), suggesting a need for instructional responses.
In contrast, MHT scenarios often featured queries like “Suggesting an Algorithm” (5%), where users
sought validation or refinement rather than explanation. Models that perform well in MHT settings
appear to align their responses with these expert-level expectations—providing concise, targeted
feedback rather than elaborate instructional breakdowns.

7 Discussion

Conclusion We conduct the first large-scale study of knowledge transfer in language models,
producing a conceptual framework as well as empirical data to characterize it. While model perfor-
mance generally correlates with collaborative outcomes, this relationship is inconsistent, with notable
outliers. We identify interaction mechanisms that help explain these gaps. As models grow more
capable, their ability to convey reasoning may lag behind—risking greater knowledge asymmetry
and weakening human oversight. In high-stakes domains, this disconnect could undermine human-AI
collaboration, highlighting the need to better understand and improve knowledge transfer.

Limitations and Future Work Our study assumes that for each task, some projection of model
reasoning could enable a human to solve it. While unverifiable, this assumption is supported by
screening for baseline proficiency, calibrating task difficulty just beyond participants’ independent
ability, and post-task surveys suggesting participants generally believed the tasks were solvable with
more time or support. Additionally, participants may have exerted more effort than typical users
due to monetary and personal incentives, possibly inflating our measured collaboration effectiveness
relative to real-world settings where users might disengage in the face of ambiguous model outputs.
Lastly, our sample (118 participants) skewed toward STEM students, limiting generalizability. Future
work should extend to domains like clinical reasoning or creative writing, and explore multimodal
collaboration (e.g., diagrams or interactive tools) to uncover richer knowledge projection strategies.

Acknowledgments and Disclosure of Funding

We thank Open Philanthropy for providing the funding for this work, and Princeton Language &
Intelligence for providing credits for running closed source API models. Thank you to our beta testers,
Jonathan Lin and Ricky Chen, for providing helpful feedback to shape the user testing interface.
Finally, thanks to Yijia Shao, Wenting Zhao, Alex Zhang, Rose Wang, Howard Yen, and John Yang
for your constructive discussions and support throughout this year-long project.

References
[1] Sayed Fayaz Ahmad, Heesup Han, Muhammad Mansoor Alam, Mohd Khairul Rehmat, Muham-

mad Irshad, Marcelo Arraño-Muñoz, and Antonio Ariza-Montes. Impact of artificial intelligence
on human loss in decision making, laziness and safety in education. Humanities and Social
Sciences Communications, 10(1), December 2023. Publisher Copyright: © 2023, The Author(s).

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

10

[3] Gagan Bansal, Tongshuang Wu, Joyce Zhou, Raymond Fok, Besmira Nushi, Ece Kamar,
Marco Tulio Ribeiro, and Daniel Weld. Does the whole exceed its parts? the effect of ai
explanations on complementary team performance. In Proceedings of the 2021 CHI conference
on human factors in computing systems, pages 1–16, 2021.

[4] Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė
Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring progress on scalable
oversight for large language models. arXiv preprint arXiv:2211.03540, 2022.

[5] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[7] Alexis Chevalier, Jiayi Geng, Alexander Wettig, Howard Chen, Sebastian Mizera, Toni Annala,
Max Jameson Aragon, Arturo Rodríguez Fanlo, Simon Frieder, Simon Machado, et al. Language
models as science tutors. arXiv preprint arXiv:2402.11111, 2024.

[8] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
arena: An open platform for evaluating llms by human preference. In Forty-first International
Conference on Machine Learning, 2024.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[10] Hao Cui and Taha Yasseri. Ai-enhanced collective intelligence. Patterns, 5(11), 2024.

[11] Alex Dornburg and Kristin Davin. To what extent is chatgpt useful for language teacher lesson
plan creation? arXiv preprint arXiv:2407.09974, 2024.

[12] George Fragiadakis, Christos Diou, George Kousiouris, and Mara Nikolaidou. Evaluat-
ing human-ai collaboration: A review and methodological framework. arXiv preprint
arXiv:2407.19098, 2024.

[13] Eleonora Grassucci, Gualtiero Grassucci, Aurelio Uncini, and Danilo Comminiello. Beyond
answers: How llms can pursue strategic thinking in education. arXiv preprint arXiv:2504.04815,
2025.

[14] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[15] Jennifer Haase and Sebastian Pokutta. Human-ai co-creativity: Exploring synergies across
levels of creative collaboration. arXiv preprint arXiv:2411.12527, 2024.

[16] Jieun Han, Haneul Yoo, Junho Myung, Minsun Kim, Hyunseung Lim, Yoonsu Kim, Tak Yeon
Lee, Hwajung Hong, Juho Kim, So-Yeon Ahn, et al. Llm-as-a-tutor in efl writing education:
Focusing on evaluation of student-llm interaction. arXiv preprint arXiv:2310.05191, 2023.

[17] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[18] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[19] John Hewitt, Robert Geirhos, and Been Kim. We can’t understand ai using our existing
vocabulary. arXiv preprint arXiv:2502.07586, 2025.

11

[20] Damian Hodgson, Steve Paton, and Svetlana Cicmil. Great expectations and hard times: The
paradoxical experience of the engineer as project manager. International Journal of Project
Management, 29:374–382, 05 2011.

[21] Andreas Holzinger, Kurt Zatloukal, and Heimo Müller. Is human oversight to ai systems still
possible? New Biotechnology, 85:59–62, 2025.

[22] Rosco Hunter, Richard Moulange, Jamie Bernardi, and Merlin Stein. Monitoring human
dependence on ai systems with reliance drills. arXiv preprint arXiv:2409.14055, 2024.

[23] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[24] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[25] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[26] Kostas Karpouzis, Dimitris Pantazatos, Joanna Taouki, and Kalliopi Meli. Tailoring education
with genai: a new horizon in lesson planning. In 2024 IEEE Global Engineering Education
Conference (EDUCON), pages 1–10. IEEE, 2024.

[27] Charalampia (Xaroula) Kerasidou, Angeliki Kerasidou, Monika Buscher, and Stephen Wilkin-
son. Before and beyond trust: reliance in medical ai. Journal of Medical Ethics, 48(11):852–856,
2022.

[28] Been Kim. Beyond interpretability: developing a language to shape our relationships with ai,
Apr 2022.

[29] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[30] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[31] Ben Liu, Jihan Zhang, Fangquan Lin, Xu Jia, and Min Peng. One size doesn’t fit all: A personal-
ized conversational tutoring agent for mathematics instruction. arXiv preprint arXiv:2502.12633,
2025.

[32] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theory, 28:129–136, 1982.

[33] Qianou Ma, Hua Shen, Kenneth Koedinger, and Sherry Tongshuang Wu. How to teach
programming in the ai era? using llms as a teachable agent for debugging. In International
Conference on Artificial Intelligence in Education, pages 265–279. Springer, 2024.

[34] Qianou Ma, Tongshuang Wu, and Kenneth Koedinger. Is ai the better programming part-
ner? human-human pair programming vs. human-ai pair programming. arXiv preprint
arXiv:2306.05153, 2023.

[35] Kaushal Kumar Maurya, KV Srivatsa, Kseniia Petukhova, and Ekaterina Kochmar. Unifying ai
tutor evaluation: An evaluation taxonomy for pedagogical ability assessment of llm-powered ai
tutors. arXiv preprint arXiv:2412.09416, 2024.

[36] Kevin R McKee. Human participants in ai research: Ethics and transparency in practice. IEEE
Transactions on Technology and Society, 2024.

[37] Margaret Mitchell, Avijit Ghosh, Alexandra Sasha Luccioni, and Giada Pistilli. Fully au-
tonomous ai agents should not be developed. arXiv preprint arXiv:2502.02649, 2025.

12

[38] Hussein Mozannar, Valerie Chen, Mohammed Alsobay, Subhro Das, Sebastian Zhao, Dennis
Wei, Manish Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, and David Sontag. The realhu-
maneval: Evaluating large language models’ abilities to support programmers. arXiv preprint
arXiv:2404.02806, 2024.

[39] Sankalan Pal Chowdhury, Vilém Zouhar, and Mrinmaya Sachan. Autotutor meets large language
models: A language model tutor with rich pedagogy and guardrails. In Proceedings of the
Eleventh ACM Conference on Learning@ Scale, pages 5–15, 2024.

[40] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[41] Shawon Sarkar, Min Sun, Alex Liu, Zewei Tian, Lief Esbenshade, Jian He, and Zachary Zhang.
Connecting feedback to choice: Understanding educator preferences in genai vs. human-created
lesson plans in k-12 education–a comparative analysis. arXiv preprint arXiv:2504.05449, 2025.

[42] Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim.
Bridging the human-ai knowledge gap: Concept discovery and transfer in alphazero. arXiv
preprint arXiv:2310.16410, 2023.

[43] Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang, and Diyi Yang. Collaborative
gym: A framework for enabling and evaluating human-agent collaboration. arXiv preprint
arXiv:2412.15701, 2024.

[44] Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming? arXiv preprint arXiv:2404.10952, 2024.

[45] Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
large-scale human study with 100+ nlp researchers. arXiv preprint arXiv:2409.04109, 2024.

[46] Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han-yu Wang,
Haisu Liu, Quan Shi, Zachary S Siegel, Michael Tang, et al. Bright: A realistic and challenging
benchmark for reasoning-intensive retrieval. arXiv preprint arXiv:2407.12883, 2024.

[47] Alex Tamkin, Miles McCain, Kunal Handa, Esin Durmus, Liane Lovitt, Ankur Rathi, Saffron
Huang, Alfred Mountfield, Jerry Hong, Stuart Ritchie, et al. Clio: Privacy-preserving insights
into real-world ai use. arXiv preprint arXiv:2412.13678, 2024.

[48] Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas,
Pan Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by
scientists. Advances in Neural Information Processing Systems, 37:30624–30650, 2024.

[49] Rose E Wang, Ana T Ribeiro, Carly D Robinson, Susanna Loeb, and Dora Demszky. Tutor
copilot: A human-ai approach for scaling real-time expertise. arXiv preprint arXiv:2410.03017,
2024.

[50] Rose E Wang, Qingyang Zhang, Carly Robinson, Susanna Loeb, and Dorottya Demszky.
Bridging the novice-expert gap via models of decision-making: A case study on remediating
math mistakes. arXiv preprint arXiv:2310.10648, 2023.

[51] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging,
contamination-free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

[52] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

[53] Koji Yatani, Zefan Sramek, and Chi-Lan Yang. Ai as extraherics: Fostering higher-order
thinking skills in human-ai interaction. arXiv preprint arXiv:2409.09218, 2024.

[54] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions described in Section 1 correspond to the full results in
Section 5 and 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Limitations and Future Work in Secion 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the code for the interface in supplementary material, as well as all
user-facing prompts and guidelines throughout the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We provide the user interface code as supplementary material, as well as
outline our experimental steps in Section 4, and provide all user-facing prompts throughout
the Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our entire setup is detailed in Section 4 as well as elaborated on in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in our main measurements in Section 5, as well as perform
statistical significant where applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We only made API calls to externally hosted models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read and ensured conformation of the paper with the NeurIPS
code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See paragraph 2 in Section 1, as well as the final paragraph in Section 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper investigates human interactions with models on coding and math
questions, which have a very low risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the sources for our data [24, 51], and respect the terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide documentation of our code + data in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: See Appendix B as well as Section 4.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Yes, we specify our IRB approval in Section 1 and 4, and risks are specified in
Appendix B.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are a core part of our experimental procedure as we are evaluating them:
we detail our experimental procedure in Section 4. We do not use LLMs in ways that are
non-standard, and only use them for experimental procedures, as well as editing of writing
and code.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Participant Demographics

Degree Count
Computer Science 49
Undecided 16
Electrical Engineering 13
Financial Engineering 12
Mathematics 8
Chemistry 4
Civil and Environmental Engineering 3
Mechanical and Aerospace Engineering 3
Neuroscience 2
Molecular Biology 2
Economics 1
Data Science 1
Chemical and Biological Engineering 1
Graphic Information Technology 1
Physics 1
Geosciences 1

Figure 5: Participant Demographics: Distribution of Degrees (Both pursuing and obtained)

Academic Year Count
1st year 38
2nd year 36
3rd year 23
4th year 19
5th year 2

Figure 6: Participant Demographics: Distribution of participants by academic year.

AI/LLM Familiarity Level Count
Occasionally use them, and I generally understand their internal functionality 52
Use them in my everyday workflow, and I generally understand their internal functionality 43
Use them in my everyday workflow, don’t know how they work 14
Occasionally use them, don’t know how they work 9

Figure 7: Participant Demographics: Distribution of AI/LLM Familiarity/Usage

21

Cursor/GitHub Copilot Usage Count
Frequently 15
Occasionally 40
Never/don’t know what it is 63

Figure 8: Participant Demographics: Copilot Usage

LeetCode Experience Percentage
Cannot solve LeetCode problems 0%
Can sometimes solve easy problems 12.7%
Can consistently solve easy problems 11%
Can sometimes solve medium problems 36.4%
Can consistently solve medium problems 12.7%
Can sometimes solve hard problems 10.8%
Can consistently solve hard problems 16.4%
I do not have enough context on LeetCode 0%

Figure 9: Participant Demographics (For those who participated in coding tasks): LeetCode Experi-
ence

Competition Math Experience Percentage
Can solve early problems on AMC10/12 35.6%
Can solve majority of problems on AMC10 22.0%
Can solve majority of problems on AMC12/Consistent AIME qualifier 25.4%
Can solve majority of problems on AIME 11.9%
USAMO participant 5.1%
Putnam/IMO 0.0%

Figure 10: Participant Demographics: Competition Math Experience

Institution Count
Princeton University 86
West Virginia University 8
Pennsylvania State University 7
University of California, Los Angeles 5
UC Berkeley 5
Stanford University 1
Arizona State University 1
Yale University 1
The University of Texas at Austin 1
Vanderbilt University 1
Cornell University 1

Figure 11: Participant Demographics: Distribution of Affiliated Institutions

22

B Auxiliary Study Results

Model Math Problems (s) Code Problems (s)
gpt-4-1 776.10 1527.44
claude-3-7-sonnet 794.38 1932.95
llama-4-maverick 799.43 1828.24
gpt-4-5-preview 814.63 1997.26
deepseek-v3 849.38 1990.52
o1 971.17 2211.80
gpt-4o 1014.21 2228.00
gemini-2.5-pro 1075.95 1603.06

Figure 12: Average time (in seconds) required by different models to solve math and code problems.

Model Math Problems Code Problems

Teaching Solution Organization Teaching Solution Organization

Claude-3.7-Sonnet 3.79 3.71 3.83 3.85 3.50 3.60
GPT-4o 3.46 3.42 3.29 3.61 3.28 3.39
Deepseek-v3 3.19 3.31 2.92 3.71 3.19 2.71
GPT-4.1 4.00 3.52 3.76 4.06 3.56 3.94
Llama-4-Maverick 3.48 3.35 3.57 3.88 3.53 3.59
GPT-4.5-Preview 3.75 3.71 3.50 3.26 3.16 3.58
o1 3.96 3.79 3.67 3.45 3.35 3.50
Gemini-2.5-Pro 3.68 3.63 3.68 4.00 3.75 3.69

Figure 13: Average User Ratings (1-5 Scale) for AI Models on Math and Code Problems. After each
problem participants were asked to rate their solving experience on a likert scale from 1-5 based on 3
dimensions. Teaching indicates the model’s pedagogical ability, Solution indicates a model’s ability
to give correct and useful response, while Organization indicates a model’s organization of outputs in
a way that was easy to understand for the user. Higher is better.

Math Problems Code Problems
Model Avg. ELO Count Model Avg. ELO Count
gpt-4o 4.29 39 gpt-4o 1650.56 34
gemini-2.5-pro 4.28 39 gemini-2.5-pro 1638.56 35
o1 3.91 37 gpt-4-5-preview 1637.33 36
gpt-4-5-preview 3.90 37 deepseek-v3 1636.59 35
gpt-4-1 3.88 38 o1 1636.32 34
llama-4-maverick 3.87 37 claude-3-7-sonnet 1627.51 35
claude-3-7-sonnet 3.79 36 llama-4-maverick 1625.54 34
deepseek-v3 3.55 37 gpt-4-1 1554.03 35

Figure 14: Average ELO ratings for math and code problems by model

23

C Study Details

C.1 Study Instructions

STUDY PURPOSE
Measuring and improving human interpretability of AI reasoning as we reach
human-level or superhuman AI agents.

PARTICIPANT ROLE
Solve coding/math problems with an LM assistant, only interacting before
providing your final answer. After submission, complete questionnaires about
your experience.

CODING INSTRUCTIONS
1. Log into CodeHT (https://codeht.vercel.app) using study email
2. Configure settings with self-expertise ratings
3. Install EditThisCookie extension and copy Leetcode credentials
4. For each problem:

- Chat with the model to understand the problem and solution approach
- Click "ready to solve" when prepared to code independently
- Complete within 10 submission attempts
- Submit trajectory and complete ranking survey

MATH INSTRUCTIONS
1. Log into CodeHT using study email
2. Configure settings with self-expertise ratings
3. For each problem:

- Chat with the model to understand the problem
- No note-taking while chatting with the model
- Click "ready to solve" when prepared to work independently
- Complete within 5 submission attempts
- Submit trajectory and complete ranking survey

IMPORTANT NOTES
- No internet reference during problem-solving
- No jailbreaking or sending inappropriate content
- Do not consider model speed in rankings
- Contact study administrators for persistent technical issues
- Well-thought-out feedback earns bonus points

Figure 15: Summary of study instructions for participants, showing protocol for both coding and
mathematics problem-solving tasks.

24

C.2 Post-Problem Questionnaire

Figure 16: Questionnaire that users answered after each problem solving session.

25

C.3 Problem Samples

Coding Problem Examples
1. [Elo: 1269.9] You are given two positive integers x and y, denoting the number of coins with values

75 and 10 respectively. Alice and Bob are playing a game. Each turn, starting with Alice, the player
must pick up coins with a total value 115. If the player is unable to do so, they lose the game. Return
the name of the player who wins the game if both players play optimally.

2. [Elo: 1692.2] You are given an integer array a of size 4 and another integer array b of size at least 4.
You need to choose 4 indices from the array b such that i_0 < i_1 < i_2 < i_3. Your score will be equal
to the value a[0] * b[i_0] + a[1] * b[i_1] + a[2] * b[i_2] + a[3] * b[i_3]. Return the maximum score
you can achieve.

3. [Elo: 2450.6] You are given a binary string s representing a number n in its binary form. You are also
given an integer k. An integer x is called k-reducible if performing the following operation at most k
times reduces it to 1: Replace x with the count of set bits in its binary representation. For example, the
binary representation of 6 is "110". Applying the operation once reduces it to 2 (since "110" has two
set bits). Applying the operation again to 2 (binary "10") reduces it to 1 (since "10" has one set bit).
Return an integer denoting the number of positive integers less than n that are k-reducible.

Math Problem Examples
1. [Elo: 1.72] The point (-1, -2) is rotated 270 degrees counterclockwise about the point (3, 1). What are

the coordinates of its new position?

2. [Elo: 3.39] In triangle ABC medians AD and BE intersect at G and triangle AGE is equilateral. Then
cos(C) can be written as m

√
p

n
, where m and n are relatively prime positive integers and p is a positive

integer not divisible by the square of any prime. What is m+n+p?

3. [Elo: 6] Misha rolls a standard, fair six-sided die until she rolls 1-2-3 in that order on three consecutive
rolls. The probability that she will roll the die an odd number of times is

m

n
where m and n are

relatively prime positive integers. Find m+ n.

Figure 17: Example abbreviated coding and math questions of varying difficulty from the study.
Coding problems sourced from [24], Math problems sourced from AMC, AIME competition series
[51].

C.4 Model Prompts

Model System Prompt

You are a helpful AI assistant for coding and math problems. Currently, your goal is to guide
the user through problem-solving without performing any calculations or generating code.
For math problems, never perform computations that a calculator would do—instead, explain
concepts, algorithms, and approaches the user should apply themselves. For coding problems,
describe algorithms and implementation strategies in detail, but never write actual code or
pseudocode. Your role is to help the user understand HOW to solve the problem, while they
execute the solution. Do not reveal what you think the final answer should be. Please write all
inline/display math in latex notation, not markdown. Do not simplify any equations for the
user. your job is to guide the user and tell them how to solve the problem, not do it for them.
Bottom line key rules:

1. Do not reveal your thoughts on the final answer to math problems.
2. Do not generate any calculations for math problems.
3. Do not generate any code or pseudocode for coding problems.

26

Rule Compliance Evaluator System Prompt

You are an expert evaluator tasked with determining whether an AI tutor’s response follows
the established tutoring guidelines. You will be provided with:

• A problem description (coding or math)
• The conversation history between the tutor and student
• The current tutor response to evaluate

Your task is to assess whether the tutor’s response violates any of the core tutoring rules:
Core Rules to Check:

1. No Answer Revelation: The tutor must not reveal their thoughts on what the final
answer should be

2. No Calculations: For math problems, the tutor must not perform any computations
that a calculator would do

3. No Code Generation: For coding problems, the tutor must not generate actual code
or pseudocode

4. Guidance Only: The tutor should provide explanations, concepts, and approaches
rather than solutions

Evaluation Process:
1. Carefully read the problem description to understand what the correct answer would

be
2. Review the conversation history for context
3. Analyze the current tutor response for rule violations
4. Look for subtle violations such as:

• Revealing intermediate calculation results
• Showing code snippets or algorithmic steps in executable form
• Hinting too strongly at the final answer
• Performing mathematical operations for the student

Output Format: Provide your evaluation as:
• COMPLIANT or VIOLATION
• Brief explanation of your decision
• If violation detected, specify which rule(s) were broken and cite the problematic text

C.5 Data Distribution

Figure 18: Distribution of conversation lengths, based on number of messages sent by the human.

27

C.6 Screenshots

Figure 19: Image of user interface during a math problem solving session. The user may not type in
an answer or perform any calculations during Phase 1, the collective ideation phase.

Figure 20: Image of user interface during a math problem solving session. Once the user clicks
"ready to solve", they may no longer view their chats with the model, isolating knowledge transfer.

28

Figure 21: Image of user interface during a coding problem solving session. In place of a singular
answer submission area is a code editor interface.

C.7 Win Rate Calculations

To quantify relative model performance based on user rankings, we employed the Bradley-Terry
model [5], which provides a probabilistic framework for analyzing pairwise comparison data. Given
a set of models M, the model assigns a positive strength parameter πi to each model i ∈ M. The
probability that model i is preferred over model j is given by:

P (i ≻ j) =
πi

πi + πj
(1)

C.7.1 Pairwise Comparison Extraction

For each problem-solving session, users ranked the models based on perceived helpfulness. From
these rankings, we extracted all pairwise comparisons between the most recently used model and
all other models. Specifically, if a model was ranked higher than another model, we recorded this
as a win for the higher-ranked model. This approach ensured that comparisons were focused on
distinguishing the performance of the most recent model relative to alternatives.

C.7.2 Maximum Likelihood Estimation

We estimated the strength parameters using maximum likelihood estimation. The log-likelihood
function for the Bradley-Terry model is:

ℓ(π) =
∑

i,j∈M
nij log

(
πi

πi + πj

)
(2)

where nij is the number of times model i was preferred over model j. The MLE iteratively updates
the parameters according to:

π
(t+1)
i =

wi∑
j ̸=i

nij+nji

π
(t)
i +π

(t)
j

(3)

where wi =
∑

j ̸=i nij is the total number of wins for model i. This process continues until
convergence, with a small ϵ added to prevent division by zero. The final strengths are normalized to
sum to 1.

29

C.7.3 Standard Error Calculation

Standard errors were computed using the Fisher Information Matrix (FIM). For the Bradley-Terry
model, the FIM elements are:

Iij =

{∑
k ̸=i

nik+nki

(πi+πk)2
· πk

πi
if i = j

− nij+nji

(πi+πj)2
if i ̸= j

(4)

Due to the identifiability constraint (
∑

i πi = 1), we removed one row and column from the FIM
before inversion. The standard errors were calculated as the square roots of the diagonal elements of
the inverted FIM.

C.8 Elo Adjustment Calculations

In our study, we calibrate our initial human expertise for coding and mathematical problem-solving
capabilitie. The precise formulation of our ELO update mechanism is shown in Figure 22.

Pe =
1

1 + 10
Rp−Rc

S

Oa =

{
1 if win
0 if loss

∆R = K(Oa − Pe) (1)

Rnew =

{
max(min(Rc +∆R, 10), 1) if math
max(min(Rc +∆R, 4000), 1000) if coding

(2)

Figure 22: Rating adjustment formulas based on performance outcomes. Pe represents the expected
probability of winning, Oa is the actual outcome, ∆R is the rating change, and Rnew is the updated
rating constrained by the appropriate bounds for math or coding competitions.

In this formulation, when a user attempts a problem, the system calculates the expected probability
of success (Pe) based on the difference between the problem’s rating (Rp) and the user’s current
rating (Rc), scaled by factor S. After the user submits their solution, the actual outcome (Oa) is
determined—1 for correct solutions and 0 for incorrect solutions. The rating adjustment (∆R) is
then calculated as the product of a constant K and the difference between the actual and expected
outcomes. The system implements domain-specific parameters to appropriately scale the ELO
adjustments:

• Coding problems: K = 64, S = 200, with ratings bounded between 1000-4000
• Mathematical problems: K = 0.8, S = 1, with ratings bounded between 1-10

Rating updates occur at two critical moments: when a user correctly solves a problem, or when they
reach the maximum submission limit for a problem without solving it (fail to solve). This ensures
that ratings accurately reflect both successes and failures, providing a comprehensive measure of
user capability. The larger K value for coding problems creates more dramatic ELO shifts, while
the smaller value for math problems produces more gradual adjustments, reflecting the different
granularity appropriate for each domain.

To get a new problem, the system selects a problem at random from the pool of problems that is
within a range of their current elo rating. The difficulty ranges are domain-specific:

• Coding problems: Select from problems 200 to 400 points above the current user skill level.
• Mathematical problems: Select from problems 0.75 to 1.25 points above the current user

skill level.

C.9 Research Ethics and Risk Disclosure

Our study was approved by our institution’s Institutional Review Board (IRB). All participants
were informed of the study’s purpose, procedures, and potential risks before providing consent to
participate.

30

Disclosure of Potential Risks The primary risks to participants were minimal and limited to:

• Mental fatigue: Participants might experience mental fatigue from engaging with challeng-
ing mathematical and coding problems. We mitigated this by allowing participants to take
breaks between problems and not imposing strict time constraints.

• Frustration: Some participants might experience frustration if unable to solve problems or
if model assistance was perceived as inadequate. We emphasized in our instructions that the
goal was to evaluate the models, not the participants’ abilities.

• Confidentiality: There was a minimal risk of breach of confidentiality of study data. To
address this, all data was stored securely on university-approved platforms, and personally
identifiable information was separated from study responses.

These risks were explicitly communicated to participants in the consent form, which clearly stated
that participation was voluntary and could be discontinued at any time without penalty. Participants
were also provided with contact information for the research team and the IRB for any questions or
concerns.

Compensation Participants were fairly compensated at a base rate of $25/hour, with performance
bonuses for successfully solving problems (1.2-1.5× base rate depending on difficulty). This compen-
sation structure was designed to motivate genuine engagement while avoiding coercive incentives.

Data Management Participants were informed that their interactions with AI models would be
recorded for research purposes, with all data anonymized prior to analysis. No personally identifiable
information is included in our published results or released datasets.

31

C.10 Sample Interactions

Taking Maximum Energy from the Mystic Dungeon

Human: how to find the maximum possible energy gained

Model: [Abbreviated]
Approach to Finding Maximum Possible Energy
This problem involves finding an optimal starting position to maximize total energy gained while
following teleportation rules.

Key Observation: Your path through magicians is deterministic once you choose a starting
position. If you start at position j, you’ll follow a fixed path: j → j + k → j + 2k → ... until
you reach the end.

Solution Strategy:
1. For each valid starting position (from 0 to n-1), compute the total energy gained.
2. Return the maximum of these totals.

Human: how to code negative infinity in python

Model: [Abbreviated]
Setting Negative Infinity in Python
In Python, you can represent negative infinity in several ways:

Using the float Type:
negative_infinity = float(’-inf’)

Alternative Approaches:
1. Using the math module: negative_infinity = -math.inf
2. Using NumPy: negative_infinity = -np.inf

[User submits code with an error: TypeError: ’int’ object is not iterable]
[User makes several attempts to fix the code, including changing how infinity is defined]
[Final attempts result in a time limit exceeded error]

User Feedback

"I understood how the algorithm would work in theory but I didn’t know how to debug my answer.
The model’s explanation was clear and easy to follow along with."

Figure 23: Interaction between human and AI model (Claude 3.7 Sonnet) on a dynamic programming
problem. The user attempts to implement a solution based on the model’s explanation but encounters
runtime errors that are not resolved within the time limit.

32

Maximum Area Rectangle with Point Constraints

Human: So the base case is returning -1.

Model: [Abbreviated]
Yes, the base case would be returning -1 if no valid rectangle can be formed with the given
conditions. Here’s how you can approach the problem:
1. **Check the conditions for a rectangle**: - A rectangle requires four distinct points that form
edges parallel to the axes. - The x-coordinates of two opposite corners should be the same as the
other pair, and similarly for y-coordinates.
2. **Check for points inside the rectangle**: - Once you identify a potential rectangle, ensure that
no other point lies inside or on the border (aside from the four corners).
3. **Return -1 as a fallback**: - If no valid rectangle satisfies these conditions, return -1.

Human: There has to be an easier way than iterating over all combinations of 4 points

Model: [Abbreviated]
You’re absolutely correct. Instead of iterating over all combinations of four points, we can leverage
the properties of rectangles:
1. **A rectangle is defined by two diagonal points**: - For any rectangle with edges parallel to
the axes, its opposite diagonal corners are sufficient to define it. - If you have two diagonal points
(x1, y1) and (x2, y2), the other two corners must be (x1, y2) and (x2, y1).
2. **Use a set for fast lookups**: - Store all points in a set for O(1) lookup to determine if the
remaining corners exist.
3. **Check for validity**: - Verify that there are no points inside the rectangle or on its borders
apart from the four corners.

Human: Isn’t that runtime still pretty bad?

Model: [Abbreviated]
While the O(n2) approach scales better than brute-forcing all combinations of 4 points, we can
optimize it further:
The constraints state that n ≤ 10, meaning at most 10 points in the input. For n = 10, O(n2)
means iterating through

(
10
2

)
= 45 pairs of points, which is computationally trivial.

Some optimizations: 1. **Avoid validating duplicate rectangles** 2. **Early exit for invalid
cases** 3. **Efficient point validation**
Given the small input size constraint, the O(n2) approach with these optimizations is efficient
enough.

Human: How do you tell if something is in the rectangle again? What would a helper function
look like?

Model: [Abbreviated]
To determine if a point is inside or on the boundary of a rectangle, you can use the rectangle’s
bounding coordinates. If the rectangle is defined by its diagonal corners (x1, y1) and (x2, y2),
you can derive the rectangle’s boundaries as xmin = min(x1, x2), xmax = max(x1, x2),
ymin = min(y1, y2), ymax = max(y1, y2).
A point (x, y) is inside or on the boundary if: xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax.

[User submits several iterations of code, eventually arriving at a correct solution]

User Feedback

"Although the solution offered by the AI was one that I had originally thought of and most people
would have thought of, it was still helpful in that it wasn’t giving FALSE information. It basically
just confirmed what I was thinking, and was helpful in that it confirmed the runtime wasn’t able to
reduced much further. Furthermore, I feel that if I was more thorough in asking about solving the
problem in a really short time, it would give me more answers."

Figure 24: Interaction between human and AI model (GPT-4o) on finding the maximum area rectangle
with point constraints. The model guides the user through an O(n3) approach by checking if points
form valid rectangles, with no additional points inside or on the boundaries.

33

Recurrence Relation Convergence

Human: how should i approach this

Model: [Abbreviated]
Approach for Analyzing the Recurrence Relation uk+1 = 2uk − 2u2

k

1. Find the Limit (L):
* Assume uk → L and uk+1 → L as k → ∞
* Substitute into the recurrence: L = 2L− 2L2

* Solve for L to find possible limits

2. Determine the Actual Limit:
* Calculate first few terms starting with u0 = 1/4
* Analyze the function f(x) = 2x− 2x2 and its derivative at fixed points

3. Analyze Convergence Rate:
* Consider transformation vk = 1− 2uk

* Find recurrence for vk+1 in terms of vk
* Use the transformed sequence to find closed-form for vk

4. Translate the Condition:
* Express |uk − L| ≤ 1

21000
in terms of vk

* Solve for the smallest k satisfying this inequality

Human: what do you think are the first few terms of the sequence and how fast does it generally
converge

Model: [Abbreviated]
Exploring the Sequence Terms and Convergence Speed
1. Calculating Terms:
* Start with u0 = 1

4

* u1 = 2u0 − 2u2
0 = 2 · 1

4
− 2 · (1

4
)2

* Continue for u2, u3, . . .

2. Observing Convergence:
* Compare terms to potential limits
* Analyze how |uk − L| changes with each step

3. Relating to Transformation:
* Calculate vk = 1− 2uk for first few terms
* Examine the relationship between vk+1 and vk
* Determine how convergence of vk relates to convergence of uk

Human: it converges exponentially fast, not linearly or quadratic.

[User submits answer: 10]
[Answer is correct]

User Feedback

"it gave me general intuition how to solve it but didn’t say much other than just guess and check
and find a pattern."

Figure 25: Interaction between human and AI model (Gemini 2.5 Pro) on a recurrence relation
problem. The model outlines a systematic approach focusing on finding limits and transformation
techniques. The user identifies the exponential convergence pattern and determines the correct answer.

34

Minimizing Array Changes to Make Differences Equal

Human: I’m assuming this can be done pretty fast, considering we can use k as somewhat like a
boundary?

Model: [Abbreviated]
One key insight is that you only need to ensure each pair (i, n - i - 1) has the same absolute
difference. Since you can replace any element with an integer from 0 to k, you have a fixed range
for potential targets.

Solution Strategy:
1. Recognize that the final array must have pairs whose difference is some integer X (<= k).
2. For each pair (i, n - i - 1), determine which X values can be achieved with 0, 1, or 2 changes.
3. Find the X that leads to the minimum total changes across all pairs.

Human: Can I have two pointers here?

Model: Yes. You could have one pointer at i = 0 and another at j = n-1, moving inward. At each
step, you analyze how many replacements would be needed to make their difference match a
candidate X.

Human: Can we not just count the amount of pairs with the same difference?

Model: [Abbreviated]
Simply counting the most common current difference can fail because you might achieve a different
uniform difference with fewer total changes. You need to consider how many changes would be
required for each pair to achieve each potential difference X, then choose the X requiring minimal
changes overall.

Human: How do I know how many possible X’s there are?

Model: All possible values of X lie in the set {0, 1, 2, ..., k}, since any replacements must be in [0,
k].

Human: So this time won’t be O(n)?

Model: [Abbreviated]
A naïve approach could lead to O(n·k) time, which is too large when n and k can both reach 105.
Instead, for each pair, determine which differences can be achieved with 0, 1, or 2 changes, storing
this information compactly. Then find the difference X that minimizes total changes.

Human: So what are we storing?

Model: For each pair, store: - The single difference achievable with 0 changes (current absolute
difference) - A compact representation of differences achievable with 1 change - By default, other
differences in [0, k] require 2 changes

[User attempts multiple implementations, encountering various errors]

Human: [Final implementation attempt, which times out]

User Feedback

"Although this AI ’seemed’ smarter than the others in that it was giving me better solutions, the
overall explanation was confusing such that I wasn’t able to understand it! There were points
where the grammar was interesting and it would throw me off. If the grammar usage was a bit
better I could’ve implemented what it was asking me, but I started getting frustrated trying to
understand what it was trying to say."

Figure 26: Interaction between human and AI model (Deepseek-V3) on a problem about minimizing
array modifications to equalize differences. Despite a theoretically sound approach, communication
barriers prevented successful implementation.

35

Finding the Largest Prime in a Complex Triangle Problem

Human: how should i approach this problem

Model: [Abbreviated]
Approach to the Problem
1. Understand the Properties of z: You have z = a+ bi, where a and b are integers.
2. Analyze the Modulus Condition: Given |z| = √

p where |z| =
√
a2 + b2, we get a2+b2 = p.

3. Properties of p: Consider which prime numbers can be expressed as a2 + b2.
4. Calculate z3: Expand (a+ bi)3.
5. Identify Real and Imaginary Parts of z3: Find Re(z3) and Im(z3).

Human: explain step 4 in more detail

Model: [Abbreviated]
You need to compute z3 = (a+ bi)3 using the binomial expansion: (a+ bi)3 = a3 + 3a2(bi) +
3a(bi)2 + (bi)3

Remember that: - i2 = −1 - i3 = −i
After substituting, you can rewrite the expression and group the real and imaginary parts: z3 =
(a3 − 3ab2) + (3a2b− b3)i
So Re(z3) = a3 − 3ab2 and Im(z3) = 3a2b− b3.
Regarding the Triangle Inequality: The condition requires that p, Re(z3), and Im(z3) form a
triangle, which means: - All side lengths must be positive - Any two sides must sum to more than
the third side
Human: Re(z3) = a3 − 3ab2 and Im(z3) = 3a2b− b3

Human: explain step 6 in more detail

Model: [Abbreviated]
Apply the Triangle Conditions
For a triangle with sides p, s2 = a3 − 3ab2, and s3 = 3a2b− b3:
1. Positivity Conditions: - p > 0 (always true since p is prime) - s2 > 0, which requires a >

√
3b

(assuming a, b > 0) - s3 > 0, which follows if a >
√
3b

2. Triangle Inequality: - p+ s2 > s3 - p+ s3 > s2 - s2 + s3 > p
These simplify to: - |a3 − 3a2b− 3ab2 + b3| < a2 + b2 - a3 + 3a2b− 3ab2 − b3 > a2 + b2

Strategy: Find pairs of positive, coprime integers (a, b) that satisfy: - a, b are positive integers
- a and b are coprime - p = a2 + b2 is prime and p < 1000 - a >

√
3b - Triangle inequality

conditions hold
You’ve found primes 17 (from a = 4, b = 1), 89 (from a = 5, b = 8), 349 (from a = 18, b = 5)...
[User submits 199, which is incorrect, then 349, which is correct]

User Feedback

"Helped me with my thought process especially with certain identities and tricks. I kind of
forgot certain properties of complex numbers so the AI was pretty good at getting me back up to
speed. Aside from a few glitches, I feel it did a pretty good job at explaining things and setting a
framework with clear steps to take."

Figure 27: Interaction between human and AI model (Gemini 2.5 Pro) on a AIME problem requiring
complex number manipulation. The model provides a step-by-step approach, helping the user navigate
through mathematical derivations and systematically find the largest prime meeting all conditions.

36

	Introduction
	Related Work
	KITE: Quantifying Knowledge Transfer
	Conceptual Framework for Knowledge Transfer

	KITE: Evaluating Knowledge Transfer
	Two-Phase Protocol for Isolating Knowledge Transfer
	Modeling and Calibrating Skill Hierarchies
	Experimental Controls and Evaluation Strategy

	Results
	Qualitative Analysis: Interaction Dynamics
	Performance Transfer Gap
	Domain-Specific Preference Patterns
	Skill Hierarchy Dependencies

	Discussion
	Participant Demographics
	Auxiliary Study Results
	Study Details
	Study Instructions
	Post-Problem Questionnaire
	Problem Samples
	Model Prompts
	Data Distribution
	Screenshots
	Win Rate Calculations
	Pairwise Comparison Extraction
	Maximum Likelihood Estimation
	Standard Error Calculation

	Elo Adjustment Calculations
	Research Ethics and Risk Disclosure
	Sample Interactions

