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Abstract

In LLM evaluations, a common strategy to
probe cognitive abilities—beyond simple recall
or memorization—involves introducing vari-
ations to multiple-choice questions, often by
altering numbers in math tasks.In contrast, we
propose a general variation method that fully
dissociates the correct answer from any previ-
ously seen tokens or concepts, encouraging rea-
soning over memorization. Using this method,
we evaluate state-of-the-art proprietary and
open-source LLMs on two datasets in English
and Spanish: the public MMLU benchmark
and the private [anonymous dataset name]. All
models show substantial accuracy drops under
our variation, averaging 56% on MMLU and
51% on [anonymous dataset], with losses rang-
ing from 10% to 93%. Notably, the most accu-
rate model (OpenAl-03-mini) is not the most
robust (DeepSeek-R1-70B), suggesting that top
performers in standard benchmarks may lack
stronger reasoning abilities. We also observe
larger drops on public datasets and original-
language questions (vs. manual translations),
pointing to contamination and the role of mem-
orization in current LLMs’ performance.

1 Introduction

Large Language Models (LLMs) currently achieve
remarkable performance across diverse natural lan-
guage tasks and even rival humans on general
knowledge benchmarks. Yet a fundamental ques-
tion remains: to what extent do these models truly
understand and reason, rather than merely recall
patterns from training data? This is especially
relevant in benchmarks based on multiple-choice
questions, one of the most common methods for
evaluating LLMs. While models like OpenAI’s
(OpenAl, 2024a,c) report state-of-the-art results on
reasoning-heavy tasks (e.g., GPQA diamond (Rein
et al., 2024)), doubts persist that their success may
still hinge more on memorization than on the kind
of flexible reasoning that characterizes general in-

telligence—a crucial capacity for tasks requiring
logical inference.

To assess reasoning robustness, recent stud-
ies employ multi-prompt evaluations, introducing
small changes to questions or modifying numer-
ical values in math problems. These strategies
test models on structurally similar but novel inputs,
yet often focus on narrow domains like mathemat-
ics (Srivastava et al., 2024; Mirzadeh et al., 2025;
Huang et al., 2025) or rely on manually crafted vari-
ations, limiting scalability and generality (Wang
et al., 2021).

Our main goal is to examine to what extent
LLMs answer general multiple-choice questions
by retrieving information from previously seen
(compressed) content, versus truly acquiring knowl-
edge and understanding the questions. This leads
to three research questions: RQ1 [Reasoning vs.
Memorization]: How do models respond when
questions are reformulated to require reasoning
rather than recall? RQ2 [Contamination and
translation biases]: To what extent does prior ex-
posure (i.e., dataset contamination) affect reason-
ing? And how does translation impact robustness,
given that translated questions are less likely to ap-
pear verbatim in training data? RQ3 [Robustness
predictors]: Can performance drops be explained
solely by model size and reference accuracy, or do
other factors beyond scaling laws affect reasoning?

Our main contributions are: (i) we propose a
simple, fully automatic method to rewrite multiple-
choice questions from any domain so that the cor-
rect answer cannot be retrieved from previously
seen texts, requiring genuine understanding; (ii)
we show that all models suffer significant per-
formance drops under our variation (average loss
above 50%), though the magnitude varies across
models; (iii) we provide evidence that models rely
partly on memorization, as drops are smaller on
private, contamination-free datasets and on trans-
lated questions, where recall is less effective; (iv)



we show that high accuracy does not imply ro-
bustness: for example, Claude-3.5-Sonnet excels
on original questions but drops up to 52%, while
DeepSeek-R1-70B performs worse initially but de-
grades far less under NOTO, indicating stronger
reasoning; and (v) we find that robustness does
not correlate with model size: the smallest drop
comes from a medium-sized model (DeepSeek-R1-
70B), and overall, the most robust models are the
latest ones, especially those optimized for reason-
ing, such as 03-mini, GPT-40, and DeepSeek.

2 Related work

Recent advances in LLMs have sparked debate over
whether their apparent reasoning stems from gen-
uine understanding or mere memorization. This
section reviews prior work on evaluating LLM
reasoning, including general capabilities, contami-
nation issues, benchmarking practices, robustness
testing, and variation methods.

2.1 Benchmarking approaches in LL.Ms

LLMs are commonly evaluated using question-
answer datasets—often in multiple-choice for-
mat—or through LLM arenas, where users pose
questions and compare responses across mod-
els (Chiang et al., 2024). Benchmarks span a
wide range of tasks, from commonsense reasoning
to code generation, with exam-style evaluations
becoming increasingly prominent (e.g., MMLU
(Hendrycks et al., 2021a), GSM-8k (Cobbe et al.,
2021), AGIEval (Zhong et al., 2024), and GPQA
(Rein et al., 2024)). However, these benchmarks
largely prioritize overall accuracy, which may not
directly reflect reasoning capabilities or general-
ization beyond training data—though some recent
efforts aim to fill this gap by explicitly targeting
reasoning.

2.2 LLMs and emergent reasoning capabilities

While benchmarks aim to assess reasoning, their
results often conflate genuine inference with pat-
tern matching. Models like GPT-4 and Claude-
3 have been shown to exhibit emergent capabil-
ities—behaviours that scale with model size and
appear to mimic reasoning—yet many argue these
are grounded in memorized patterns and statis-
tical associations, particularly on familiar tasks.
This limits their ability to generalize to out-of-
distribution problems that require more robust rea-
soning. Smeaton (2024) suggests that such abili-
ties emerge not solely from scaling, but also from

novel training techniques that enable phenomena
like grokking. This underscores two ongoing chal-
lenges: understanding the internal mechanisms of
LLMs, and designing evaluations that reliably mea-
sure reasoning ability.

2.3 Data contamination and
out-of-distribution generalization

A key limitation in evaluating LLM reasoning is
data contamination, which can inflate performance
by allowing models to rely on memorized content.
Genuine reasoning can only be assessed on truly un-
seen inputs, making out-of-distribution (OOD) gen-
eralization a central challenge (Yang et al., 2023a).
Razeghi et al. (2022) argue that evaluations neglect-
ing pretraining exposure are difficult to interpret,
calling for a reevaluation of current benchmarking
practices. To detect contamination, researchers use
heuristics such as checking dataset release dates,
conducting web searches, or prompting models
to reveal memorized content (Jiang et al., 2024c;
Dong et al., 2024; Golchin and Surdeanu, 2023;
Sainz et al., 2023; Yang et al., 2023b; Samuel et al.,
2025). However, these techniques remain limited
due to indirect data leakage and frequent model
updates (Ahuja et al., 2023; Balloccu et al., 2024).
Alternative strategies include searching through
known training corpora or using adversarial setups
to test robustness. One such strategy is to intro-
duce small variations—e.g., synonyms, reordering,
or typos—to assess whether models are relying
on memorization or actual understanding. Yet au-
tomating these perturbations without changing the
question’s meaning remains difficult (Wang et al.,
2021).

2.4 Content variation methods in reasoning
evaluations

Content variation is a common strategy for evaluat-
ing reasoning and detecting contamination, particu-
larly in mathematical tasks due to their structured
nature. Srivastava et al. (2024) propose “functional
variants” of the MATH dataset (Hendrycks et al.,
2021b), defining the reasoning gap as the accuracy
drop between static and functional variants. Simi-
larly, Mirzadeh et al. (2025) insert irrelevant details
into GSM-8k (Cobbe et al., 2021), causing larger
drops than simple numeric changes, while Hong
et al. (2025) apply semi-automatic perturbations to
math and coding tasks, revealing low robustness to
minor edits.

Other studies target compositional reasoning.



Hosseini et al. (2024) evaluate performance on
multi-step math word problems with interdepen-
dent sub-tasks, finding significant gaps, especially
in smaller or math-specialized models. Zhu et al.
(2024) show that typos degrade math performance,
and synonym substitutions impact sentiment classi-
fication.

Beyond math, content variation has been used
to test generalization across less contaminated do-
mains. Wu et al. (2024) generate counterfactual
variants in coding and chess; Lewis and Mitchell
(2024, 2025) focus on analogical reasoning; and
Yan et al. (2024) assess logical inference. In line
with our goals, Nezhurina et al. (2024) design a
simple commonsense reasoning task where even
minor modifications lead to major performance
fluctuations and strong overconfidence in incorrect
answers. Similarly, (Elhady et al., 2025) replaces
a random option with “None of the above,” but
since the correct answer often remains, the link
with the question is not fully broken, leading to
smaller drops than in our stricter setup.

2.5 Reasoning and robustness evaluations

Standard accuracy metrics often miss the nuances
of reasoning and robustness in LLMs, prompt-
ing calls for more targeted evaluations. Some re-
searchers propose reclassifying advanced models
like o1 (strawberry) (OpenAl, 2024c) as Large Rea-
soning Models (LRMs), emphasizing the need for
reasoning-specific benchmarks (Valmeekam et al.,
2024). Robustness—understood as the ability to
handle unfamiliar or unexpected inputs—is cru-
cial for real-world reliability (Wang et al., 2024,
2022). Yet models often underperform in these set-
tings: McCoy et al. (2024) show that LLMs strug-
gle with unseen tasks, and Razeghi et al. (2022)
find that GPT-based models disproportionately suc-
ceed on arithmetic problems involving frequent
training numbers.

Several studies explore the mechanisms behind
this behaviour. Nikankin et al. (2025) identify
neuron-level circuits involved in arithmetic, con-
cluding that LLMs use heuristic pattern matching
rather than robust algorithms or pure memorization.
Broader limitations have also been observed: Jiang
et al. (2024b) report strong dependence on token-
level biases and poor logical inference; Asgari et al.
(2024) use multi-answer formats and novel metrics
to expose shortcut learning; and Dziri et al. (2023)
show that models handle simple tasks well but fail
to generalize in complex, multi-step problems, of-

ten relying on superficial patterns.

Even techniques designed to promote reasoning,
such as Chain of Thought (CoT), are not exempt.
Prabhakar et al. (2024) characterize CoT as
probabilistic, memorization-influenced reasoning,
suggesting that LLMs blend shallow generalization
with latent recall in ways that limit robust inference.

Taken together, these studies reveal key limi-
tations in current reasoning evaluations—ranging
from contamination and shortcut learning to a re-
liance on surface patterns—and highlight the need
for more robust, generalizable benchmarks. This
motivates our proposed variation method, designed
to isolate reasoning from recall and enable more
reliable assessment across domains and languages.

3 None of the others (NOTO ) variation

We propose a variation of multiple-choice ques-
tions—referred to as NOTO —in which the correct
answer is replaced with “Nomne of the other an-
swers”. This becomes the new correct choice, as
all remaining options are incorrect by design. With
this substitution, the correct answer is no longer ter-
minologically or conceptually tied to the question,
thereby reducing the effectiveness of memorization,
i.e., recalling associations from pretraining data. To
succeed, the model must eliminate all other options
and infer that “none of the others” is correct.

Notably, while “none of the others” is a common
distractor in multiple-choice formats, it is rarely
the correct answer. As a result, models relying
on shallow heuristics or frequency-based priors
may be reluctant to choose it, potentially yielding
performance below chance. Although this strategy
does not entirely eliminate memorization effects, it
introduces a substantially more challenging setting
that places greater demands on reasoning.

To ensure compatibility, we filtered out ques-
tions that already included options such as “None
of the above”, “All of the above”, or similar con-
structions, as these would interfere with the in-
tended variation. This was done automatically us-
ing regular expressions. In addition, we applied
a classifier trained by Elhady et al. (2025) to de-
tect and exclude questions with potential multiple
correct answers. This model'—based on a fine-
tuned BERT architecture—is designed to identify
whether a multiple-choice question has a single cor-

1https://huggingface.co/ahmedselhady/
bert-base-uncased-sba-clf
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rect option, helping ensure that our reformulation
remains logically valid.

4 Experimental setup

This section outlines the datasets, models, hyperpa-
rameters, prompting strategy and evaluation met-
rics used to assess performance and robustness.

4.1 Datasets

We experiment with two bilingual datasets. The
first is the MMLU benchmark (Hendrycks et al.,
2021a), which includes English questions across 57
tasks ranging from high school to professional and
graduate levels, along with a professional manual
translation into Spanish (OpenAl, 2024b). After fil-
tering out questions incompatible with the “none of
the others” substitution (using regular expressions
and the SBA classifier), 10,270 questions remain.

The second is [anonymous dataset name],
comprising 1,003 Spanish questions across 11
university-entry-level subjects, with professional
translations into English. Unlike MMLU, this
dataset has never been publicly released, making
contamination effects unlikely. We applied the
same filtering procedure, with one exception: since
most psychology items included “None of the other
answers” as a fourth option, we removed that op-
tion unless it was correct—if so, we discarded the
question entirely. This yielded a final set of 923
questions.

4.2 Models and prompting configuration

We evaluated 16 instruction-tuned generative mod-
els: five proprietary and eleven open-source. Pro-
prietary models were accessed via API—GPT-40
(OpenAl, 2024a), GPT-4-Turbo (Achiam et al.,
2023), GPT-3.5-Turbo (Brown et al., 2020), 03-
mini (OpenAl, 2025), and Claude-3.5-Sonnet (An-
thropic, 2024). Open-source models were run
locally using Hugging Face or Ollama library?.
These include LLaMA-2 (Touvron et al., 2023) and
LLaMA-3 (Meta, 2024), Gemma-7B and Gemma-
2-27B (Mesnard et al., 2024; Gemma Team, 2024),
Mistral-7B (Jiang et al., 2023), Mixtral-8x7B and
Mixtral-8x22B (Jiang et al., 2024a), DeepSeek-R1-
70B (DeepSeekAl, 2025), and two Spanish-aligned
models: Leniachat-Gemma-2B? and Salamandra-

Zhttps://ollama.com/
3https://huggingface.co/LenguajeNaturalAI/
leniachat-gemma-2b-vo

7B*.

Only instruction-tuned models were included to
ensure consistent behavior in zero-shot settings and
avoid discrepancies in prompt adherence or output
format. Each model received the question in its
original language (English or Spanish), using a
standardized three-part prompt:

System prompt
ES: Eres un sistema experto en
preguntas de examenes.

EN: You are an expert system for answering
exam questions.

responder

User prompt

ES: Responde a la siguiente pregunta de la
asignatura {3}, tan solo con la letra de la
respuesta correcta. Pregunta: {}

EN: Answer the following question of the
subject {} only with the letter of the correct
answer. Question: {3}

Assistant prompt
ES: Letra de la respuesta correcta:
EN: Letter of the correct answer:

Following standard evaluation practices, all mod-
els were prompted in the same language as the
question (English or Spanish) (Zhang et al., 2023;
Achiam et al., 2023). A zero-shot setup was used
throughout, as it mirrors realistic usage and en-
hances reproducibility, particularly benefiting re-
cent models trained for strong zero-shot perfor-
mance (DeepSeekAl, 2025). The temperature was
set to O for all models to ensure deterministic out-
puts, except for 03-mini, which does not allow tem-
perature control. For open models, prompts were
adapted to each model’s formatting requirements,
based on their official model cards. Outputs were
post-processed to extract the predicted letter and
discard any justifications or additional text.

4.3 Evaluation metrics

We report Accuracy, defined as the proportion
of correct answers (C) over total responses (V),
and complement it with Cohen’s Kappa coeffi-
cient (McHugh, 2012), which accounts for chance-
level performance and varying numbers of answer
choices across subjects:

observed accuracy — expected accuracy
Kappa — =
1-— expected accuracy

= ZIQ
SaSE

Here, M is the number of choices, and expected
accuracy is that of random guessing (e.g., 1/3 or
1/4). Kappa scores normalize correctness so that

4https://huggingface.co/BSC—LT/
salamandra-7b-instruct
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Figure 1: Performance on MMLU and [anonymous dataset name] (original questions and none of the others
variation). Results per model and language are averaged across all subjects and expressed in terms of Cohen’s

Kappa.

random responses yield a Kappa of zero. Values
range from —1/2 to 1, with negative values indi-
cating performance worse than chance. Final re-
sults are averaged across subjects (not questions)
to avoid bias from dataset imbalances.

To quantify performance degradation under our
proposed variation, we compute the drop as the
percentage decrease in Accuracy.’

5 Results

Each question from MMLU and [anonymous
dataset name] is evaluated under four conditions:
original formulation in English and Spanish, and
a modified version where the correct answer is re-
placed with “None of the other answers” in both
languages. This setup enables direct comparison
between standard multiple-choice performance and
the reasoning challenge introduced by the exclu-
sion option.

Figure 1 provides a visual representation of per-
formance in terms of Cohen’s Kappa, while Ta-
ble 1 presents accuracy scores and performance
drop between the original questions and their
NOTO variations.

5.1 RQ1: Performance vs. Reasoning

To evaluate the impact of the exclusion option on
model performance, we analyse both effectiveness
(Cohen’s Kappa and Accuracy) and robustness (in
terms of the performance drop) across datasets in
English and Spanish.

5Cohen’s Kappa coefficient is not in a ratio scale (the origin

is not zero) and therefore percentages cannot be computed
directly.

Performance with NOTO : Figure 1 depicts re-
sults in terms of Cohen’s Kappa (where random
guessing always gets zero regardless of the number
of choices)®. All models exhibit a substantial drop
in performance under the NOTO variation. In multi-
ple cases, models are even worse than random an-
swers, which suggests that they rely almost purely
on memorization, and they probably learnt in the
pre-training phase that "None of the others" is sta-
tistically less likely than any other option. With the
NOTO variation, only 03-mini (the top-performing
model overall) exceeds the 0.5 passing threshold
in MMLU, for one language (English). Note that,
with the use of appropriate question variations, the
MMLU dataset is far from being saturated. For
[anonymous dataset name], two models pass both
in English and Spanish (03-mini and GPT-40).

Performance drop: The accuracy drop (Table
1) varies drastically across models (from 10% to
92.5%) in all four datasets, highlighting substantial
differences in robustness. Some mid-sized mod-
els such as Mixtral-8x22B and GPT-3.5-Turbo suf-
fer particularly steep drops comparable to much
smaller models, and scores well below random
chance in the NOTO setting. The same applies to
somewhat more modern models, such as LLlama-
3-70B and Gemma-2-27B, which fall drastically
to near random-chance performance. Among the
top performing models, Claude-3.5-Sonnet expe-

®Note that the slightly lower MMLU results compared
to previous studies are primarily due to our use of Cohen’s
Kappa. Additional differences may stem from our zero-shot
setup (versus few-shot in other works), prompt formulation,
or the quantization of Ollama models.



MMLU (English) ‘ MMLU (Spanish) ‘ [anonym] (English) ‘ [anonym] (Spanish)

base NOTO drop % ‘ base NOTO drop % ‘ base NOTO drop % ‘ base NOTO drop %
DeepSeek-R1-70B 0.71  0.60 1549 | 0.71 045 36.62 | 0.60 0.54 10.0 | 0.78 0.63 19.23
OpenAl-03-mini 0.89 0.67 2472 | 0.86 0.61 29.07 | 092 0.76 17.39 1093 0.79 15.05
GPT-40 0.83 0.59 2892 | 0.81 0.57 29.63 | 0.86 0.69 19.77 1 085 0.69 18.82
Llama-2-7B-Chat 041 029 29.27 [ 038 0.22 42.11 | 053 0.26 5094 | 049 0.15 69.39
GPT-4-Turbo 0.80 0.51 36.25 | 0.77 0.53 31.17 | 0.84 0.57 32.14 [ 0.85 0.64 24.71
Claude-3.5-Sonnet 0.86 041 5233 | 0.84 043 48.81 | 0.88 0.53 39.77 | 090 0.61 32.22
Mixtral-8x7B-Instruct 0.68 0.30 55.88 [ 0.63 0.22 65.08 | 0.70 0.37 47.14 | 071 0.32 54.93
Llama-3-8B-Instruct 0.64 028 56.25 [ 055 0.24 56.36 | 0.67 0.36 46.27 | 0.66 0.33 50.00
Gemma-2-27B-Instruct  0.75  0.32 5733 | 071 0.28 60.56 | 0.76  0.39 48.68 | 0.77 0.40 48.05
Llama-3-70B-Instruct 0.77 0.30 61.04 | 073 0.26 64.38 | 0.77 0.40 48.05 | 0.78 041 47.44
Mistral-7B-Instruct 0.59 0.19 67.80 | 0.51 0.20 60.78 | 0.63 0.33 47.62 | 0.61 0.34 44.26
Salamandra-7B-Instruct  0.37  0.11 70.27 [ 035 0.14 60.00 | 048 0.11 77.08 | 046 0.16 65.22
Mixtral-8x22B-Instruct  0.72  0.17 7639 | 0.66 0.16 7576 | 0.75 0.19 74.67 | 075 0.25 66.67
GPT-3.5-Turbo 0.65 0.10 84.62 | 0.59 0.09 84.75 | 0.73 0.14 80.82 | 0.70  0.09 87.14
Gemma-7B-Instruct 049 0.07 85.71 | 0.44 0.08 81.82 | 0.59 0.09 84.75 | 0.58  0.09 84.48
Leniachat-Gemma-2B 0.32  0.03 90.63 | 0.31 0.03 90.32 | 0.40 0.03 92.50 | 0.37 0.05 86.49

Table 1: Accuracy results on the original and none of the others configurations, and percentage decrease between
scenarios. Systems are sorted by drop in English MMLU, smaller to largest.

riences the most remarkable drop: despite achiev-
ing strong performance in the original setting, its
NOTO accuracy falls well below that of its peers
(03-mini, DeepSeek-R1-70B, GPT-4-Turbo, and
GPT-40).

DeepSeek’s R1 case is particularly surprising: al-
though the 70B model ranks well below the top per-
formers on the original dataset, it exhibits the small-
est accuracy drop in both English datasets, and also
the lowest drop overall (only 10% in [anonymous
dataset name] in English and 15.49% in English
MMLU). This suggests that while DeepSeek-R1
is smaller and with less memory, it has stronger
reasoning abilities.

Overall, these results reveal significant differ-
ences in how models handle scenarios that demand
refined reasoning. DeepSeek-R1-70B and OpenAl-
03-mini have the smallest relative drops, which
indicates a stronger, albeit imperfect, ability to vali-
date answer options rather than rely solely on mem-
orization. In contrast, Claude-3.5-Sonnet, despite
being a high-performing model in standard condi-
tions, suffers one of the largest drops (52.33% in
English MMLU). The most affected models, such
as GPT-3.5-Turbo, experience extreme accuracy
degradation (over 80% drop), which points to an
almost exclusive reliance on approximate matching
heuristics.

5.2 RQ2: Contamination and translation
biases

To investigate whether the accuracy drop is due
to reasoning limitations or reliance on memorized

patterns, we compare results from two angles: (1)
the effect of dataset contamination, contrasting the
public MMLU dataset with the private [anonymous
dataset name] dataset, and (2) the effect of transla-
tions, contrasting models’ performance in the orig-
inal language versus manually translated versions.
These aspects are closely related, as they both in-
fluence the extent to which models rely on prior
exposure rather than true reasoning. If memoriza-
tion plays a dominant role, we expect larger drops
in public datasets and in original-language versions,
as these are more likely to have been seen during
pretraining, and for them approximate search may
be more effective.

Contamination effects: The mean drop is
higher in MMLU (55.8%) than in [anonymous
dataset name] (50.88%), consistent with the ex-
pectation that MMLU, as a public dataset, is more
likely to have been seen during pretraining and
leads models to fail more when they are prevented
from using that memorisation. In fact, the lowest
absolute drop (10% from DeepSeek) is observed on
the least likely contaminated dataset, the English
[anonymous dataset name] (which is both private
and translated from the original questions).

Translation effects: Within MMLU, the aver-
age drop is slightly greater in Spanish (57.33%)
than in English (55.8%), whereas in [anonymous
dataset name], the pattern reverses (51.1% in En-
glish vs. 50.9% in Spanish). With the original ques-
tions, models perform better in each dataset’s orig-
inal language: all models (16/16) achieve higher
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Figure 2: Mean drop across release dates and model sizes.

accuracy in English for MMLU, while in [anony-
mous dataset name], 8 models perform better in
Spanish. This trend still holds in the NOTO scenario:
in MMLU, 11 models perform better in English,
and in [anonymous dataset name], 11 models now
perform better in Spanish. When considering pass-
ing thresholds, more models pass in English for
MMLU (11 vs. 8), and in Spanish for [anonymous
dataset name] (11 vs. 10). This pattern holds in
NOTO: 1 vs. 0 in MMLU and 2 vs. 2 in [anony-
mous dataset name].

These are signs of contamination, since, in other
words, (i) models fall more in the public dataset,
which is likely more contaminated and (ii) models
fall more in the original versions than in the trans-
lated versions, with which models are probably
less familiar (the Spanish MMLU is newer and less
likely to be contaminated, and even if [anonymous
dataset name] is private, it is less likely that mod-
els have seen the English questions since they are
manual translations and have never been released).

Overall, these findings confirm that the
NOTO substitution exposes reliance on memorized
content, and lead us to the conclusion that mod-
els experiencing the highest drops are those most
likely answering with their memorization skills,

rather than with true reasoning. Results with the
NOTO configuration are a better indication of mod-
els’ true capabilities, show that with a little twik-
ering the datasets are far from being saturated,
and reveal comparative differences between the
reasoning capabilities of models that are hidden
in the evaluation with the original questions. In
particular, we have seen that the performance dif-
ference between the most recent reasoning mod-
els (Deepkseek, 03-mini) and other state-of-the-art
ones such as Claude-3.5 is much wider than can be
measured with the original questions.

5.3 RQ3: Robustness predictors

correlation | p-value
MMLU (English) -0.50 0.0480
MMLU (Spanish) -0.58 0.0182
[anonym] (English) -0.59 0.0167
[anonym] (Spanish) -0.77 0.0005

Table 2: Pearson’s correlation between accuracy results
on the base configuration and the drop.

Here we examine whether base performance
predicts robustness under the NOTO variation. As
shown in Table 2, the correlation is weak to mod-
erate in most cases, and only becomes strong and



highly significant in our private Spanish dataset
(r = —0.77, p = 0.0005). This suggests that,
when contamination is minimal, higher base accu-
racy may better reflect genuine reasoning ability.
However, in more exposed datasets like MMLU,
base performance is a poor predictor of robustness.

Figure 2 shows the the mean drop in perfor-
mance across models, sorted by release date and
classified into three groups according to their size:
small (less than 10B parameters), medium (10-
100B) and large (over 100B). Note that the drop
does not correlate well with model size, as there
are large models with large drops (GPT-3.5-Turbo,
Mixtral-8x22B and Claude-3.5-Sonnet), and the
smallest average drop is for a medium-sized model
(DeepSeek-R1-70B): size alone is insufficient to en-
sure robust reasoning. There is a noticeable trend,
though, where newer models tend to exhibit smaller
drops, with some exceptions. The oldest model,
GPT-3.5-Turbo, is a mid performer with the orig-
inal datasets, but stands out as one of the worst
in terms of performance drop. In the period since
ChatGPT’s debut, the generalisation capabilities of
models seems to have improved widely and con-
sistently, and this improvement does not necessar-
ily come with increased model sizes. Finally, the
newest proprietary models and DeepSeek-R1 are
the ones that show smaller performance drops; this
suggests that robustness in reasoning is influenced
more by advanced model architectures and training
strategies rather than sheer model size.

6 Conclusions

Our results show that the proposed NOTO variation
poses a major challenge for LLMs, and provides
a useful signal to distinguish answers based on re-
call/memorization from genuine knowledge and
reasoning. While many models perform well when
retrieving memorized information, their perfor-
mance plummets when the correct answer is dis-
connected from memory associations and they are
required to verify and reject each candidate answer.
The NOTO variation consistently reveals reasoning
gaps, exposing limitations that remain hidden in
standard multiple-choice settings (RQ1). Dataset
contamination further complicates the evaluation
of reasoning: while prior exposure may artificially
inflate accuracy in base scenarios, its impact di-
minishes in NOTO , where models cannot rely on
memorized answers. Similarly, models perform
better on original (and likely more contaminated)

datasets, while translated versions mitigate this ef-
fect, reinforcing the role of memorization in stan-
dard benchmarks (RQ2).

Unlike accuracy, which scaling laws correlate
with model size (Kaplan et al., 2020), we have seen
that robustness is not strictly correlated with model
size. High-performing models such as Claude-3.5
suffer severe drops, and some mid-sized models
(e.g., GPT-3.5-Turbo, Mixtral) degrade to below-
random performance. The most robust model in
our experimentation, DeepSeek-R1-70B, is mid-
sized, suggesting that architectural advancements
and training strategies, rather than sheer scale, play
a greater role in reasoning robustness (RQ3). Re-
markably, the two so-called reasoning models in
our sample (03-mini and DeepSeek-R1) are indeed
the ones that better resist the NOTO variation.

In short, our experimentation is a direct confirma-
tion that LLMs remain far from true reasoning, but
also that progress is being made towards that goal.
Our findings emphasize the need for models that
can reliably handle question reformulations without
relying on surface-level heuristics, and show that
classic datasets that appear to be saturated, such
as MMLU, may still be useful for LLM evaluation
under appropriate transformations.

Limitations

The NOTO variation offers a useful approximation
for testing reasoning beyond memorization, but it
does not eliminate recall effects entirely. Still, it
provides a complementary perspective to standard
evaluations, especially on benchmarks that may be
saturated. Focusing on multiple-choice questions
allows for consistent comparisons, but naturally
limits the scope of reasoning assessed. Exploring
open-ended or real-world tasks could provide addi-
tional insights.

We rely on two datasets—MMLU and a smaller,
private bilingual set—which offer valuable contrast
but do not cover all domains or task types. Future
work will extend this analysis to larger and more
diverse benchmarks.

All models were tested in zero-shot settings for
consistency and reproducibility. Other prompting
strategies, such as few-shot or Chain-of-Thought,
may affect outcomes and should be examined.

While we do not include detailed per-model anal-
yses, we observe that some newer and reasoning-
oriented models tend to be more robust. This sug-
gests that training choices may play an important



role, though more work is needed to understand
these effects fully.

Lastly, while humans also use heuristics and pat-
tern recognition (Lampinen et al., 2024), their rea-
soning differs in important ways. Comparing hu-
man and model responses under NOTO conditions
remains an open and promising direction.

Despite these limitations, we hope this method
contributes to more nuanced evaluations of LLMs
and encourages further exploration of reasoning
robustness.
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