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Abstract

In LLM evaluations, a common strategy to001
probe cognitive abilities—beyond simple recall002
or memorization—involves introducing vari-003
ations to multiple-choice questions, often by004
altering numbers in math tasks.In contrast, we005
propose a general variation method that fully006
dissociates the correct answer from any previ-007
ously seen tokens or concepts, encouraging rea-008
soning over memorization. Using this method,009
we evaluate state-of-the-art proprietary and010
open-source LLMs on two datasets in English011
and Spanish: the public MMLU benchmark012
and the private [anonymous dataset name]. All013
models show substantial accuracy drops under014
our variation, averaging 56% on MMLU and015
51% on [anonymous dataset], with losses rang-016
ing from 10% to 93%. Notably, the most accu-017
rate model (OpenAI-o3-mini) is not the most018
robust (DeepSeek-R1-70B), suggesting that top019
performers in standard benchmarks may lack020
stronger reasoning abilities. We also observe021
larger drops on public datasets and original-022
language questions (vs. manual translations),023
pointing to contamination and the role of mem-024
orization in current LLMs’ performance.025

1 Introduction026

Large Language Models (LLMs) currently achieve027

remarkable performance across diverse natural lan-028

guage tasks and even rival humans on general029

knowledge benchmarks. Yet a fundamental ques-030

tion remains: to what extent do these models truly031

understand and reason, rather than merely recall032

patterns from training data? This is especially033

relevant in benchmarks based on multiple-choice034

questions, one of the most common methods for035

evaluating LLMs. While models like OpenAI’s036

(OpenAI, 2024a,c) report state-of-the-art results on037

reasoning-heavy tasks (e.g., GPQA diamond (Rein038

et al., 2024)), doubts persist that their success may039

still hinge more on memorization than on the kind040

of flexible reasoning that characterizes general in-041

telligence—a crucial capacity for tasks requiring 042

logical inference. 043

To assess reasoning robustness, recent stud- 044

ies employ multi-prompt evaluations, introducing 045

small changes to questions or modifying numer- 046

ical values in math problems. These strategies 047

test models on structurally similar but novel inputs, 048

yet often focus on narrow domains like mathemat- 049

ics (Srivastava et al., 2024; Mirzadeh et al., 2025; 050

Huang et al., 2025) or rely on manually crafted vari- 051

ations, limiting scalability and generality (Wang 052

et al., 2021). 053

Our main goal is to examine to what extent 054

LLMs answer general multiple-choice questions 055

by retrieving information from previously seen 056

(compressed) content, versus truly acquiring knowl- 057

edge and understanding the questions. This leads 058

to three research questions: RQ1 [Reasoning vs. 059

Memorization]: How do models respond when 060

questions are reformulated to require reasoning 061

rather than recall? RQ2 [Contamination and 062

translation biases]: To what extent does prior ex- 063

posure (i.e., dataset contamination) affect reason- 064

ing? And how does translation impact robustness, 065

given that translated questions are less likely to ap- 066

pear verbatim in training data? RQ3 [Robustness 067

predictors]: Can performance drops be explained 068

solely by model size and reference accuracy, or do 069

other factors beyond scaling laws affect reasoning? 070

Our main contributions are: (i) we propose a 071

simple, fully automatic method to rewrite multiple- 072

choice questions from any domain so that the cor- 073

rect answer cannot be retrieved from previously 074

seen texts, requiring genuine understanding; (ii) 075

we show that all models suffer significant per- 076

formance drops under our variation (average loss 077

above 50%), though the magnitude varies across 078

models; (iii) we provide evidence that models rely 079

partly on memorization, as drops are smaller on 080

private, contamination-free datasets and on trans- 081

lated questions, where recall is less effective; (iv) 082
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we show that high accuracy does not imply ro-083

bustness: for example, Claude-3.5-Sonnet excels084

on original questions but drops up to 52%, while085

DeepSeek-R1-70B performs worse initially but de-086

grades far less under NOTO , indicating stronger087

reasoning; and (v) we find that robustness does088

not correlate with model size: the smallest drop089

comes from a medium-sized model (DeepSeek-R1-090

70B), and overall, the most robust models are the091

latest ones, especially those optimized for reason-092

ing, such as o3-mini, GPT-4o, and DeepSeek.093

2 Related work094

Recent advances in LLMs have sparked debate over095

whether their apparent reasoning stems from gen-096

uine understanding or mere memorization. This097

section reviews prior work on evaluating LLM098

reasoning, including general capabilities, contami-099

nation issues, benchmarking practices, robustness100

testing, and variation methods.101

2.1 Benchmarking approaches in LLMs102

LLMs are commonly evaluated using question-103

answer datasets—often in multiple-choice for-104

mat—or through LLM arenas, where users pose105

questions and compare responses across mod-106

els (Chiang et al., 2024). Benchmarks span a107

wide range of tasks, from commonsense reasoning108

to code generation, with exam-style evaluations109

becoming increasingly prominent (e.g., MMLU110

(Hendrycks et al., 2021a), GSM-8k (Cobbe et al.,111

2021), AGIEval (Zhong et al., 2024), and GPQA112

(Rein et al., 2024)). However, these benchmarks113

largely prioritize overall accuracy, which may not114

directly reflect reasoning capabilities or general-115

ization beyond training data—though some recent116

efforts aim to fill this gap by explicitly targeting117

reasoning.118

2.2 LLMs and emergent reasoning capabilities119

While benchmarks aim to assess reasoning, their120

results often conflate genuine inference with pat-121

tern matching. Models like GPT-4 and Claude-122

3 have been shown to exhibit emergent capabil-123

ities—behaviours that scale with model size and124

appear to mimic reasoning—yet many argue these125

are grounded in memorized patterns and statis-126

tical associations, particularly on familiar tasks.127

This limits their ability to generalize to out-of-128

distribution problems that require more robust rea-129

soning. Smeaton (2024) suggests that such abili-130

ties emerge not solely from scaling, but also from131

novel training techniques that enable phenomena 132

like grokking. This underscores two ongoing chal- 133

lenges: understanding the internal mechanisms of 134

LLMs, and designing evaluations that reliably mea- 135

sure reasoning ability. 136

2.3 Data contamination and 137

out-of-distribution generalization 138

A key limitation in evaluating LLM reasoning is 139

data contamination, which can inflate performance 140

by allowing models to rely on memorized content. 141

Genuine reasoning can only be assessed on truly un- 142

seen inputs, making out-of-distribution (OOD) gen- 143

eralization a central challenge (Yang et al., 2023a). 144

Razeghi et al. (2022) argue that evaluations neglect- 145

ing pretraining exposure are difficult to interpret, 146

calling for a reevaluation of current benchmarking 147

practices. To detect contamination, researchers use 148

heuristics such as checking dataset release dates, 149

conducting web searches, or prompting models 150

to reveal memorized content (Jiang et al., 2024c; 151

Dong et al., 2024; Golchin and Surdeanu, 2023; 152

Sainz et al., 2023; Yang et al., 2023b; Samuel et al., 153

2025). However, these techniques remain limited 154

due to indirect data leakage and frequent model 155

updates (Ahuja et al., 2023; Balloccu et al., 2024). 156

Alternative strategies include searching through 157

known training corpora or using adversarial setups 158

to test robustness. One such strategy is to intro- 159

duce small variations—e.g., synonyms, reordering, 160

or typos—to assess whether models are relying 161

on memorization or actual understanding. Yet au- 162

tomating these perturbations without changing the 163

question’s meaning remains difficult (Wang et al., 164

2021). 165

2.4 Content variation methods in reasoning 166

evaluations 167

Content variation is a common strategy for evaluat- 168

ing reasoning and detecting contamination, particu- 169

larly in mathematical tasks due to their structured 170

nature. Srivastava et al. (2024) propose “functional 171

variants” of the MATH dataset (Hendrycks et al., 172

2021b), defining the reasoning gap as the accuracy 173

drop between static and functional variants. Simi- 174

larly, Mirzadeh et al. (2025) insert irrelevant details 175

into GSM-8k (Cobbe et al., 2021), causing larger 176

drops than simple numeric changes, while Hong 177

et al. (2025) apply semi-automatic perturbations to 178

math and coding tasks, revealing low robustness to 179

minor edits. 180

Other studies target compositional reasoning. 181
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Hosseini et al. (2024) evaluate performance on182

multi-step math word problems with interdepen-183

dent sub-tasks, finding significant gaps, especially184

in smaller or math-specialized models. Zhu et al.185

(2024) show that typos degrade math performance,186

and synonym substitutions impact sentiment classi-187

fication.188

Beyond math, content variation has been used189

to test generalization across less contaminated do-190

mains. Wu et al. (2024) generate counterfactual191

variants in coding and chess; Lewis and Mitchell192

(2024, 2025) focus on analogical reasoning; and193

Yan et al. (2024) assess logical inference. In line194

with our goals, Nezhurina et al. (2024) design a195

simple commonsense reasoning task where even196

minor modifications lead to major performance197

fluctuations and strong overconfidence in incorrect198

answers. Similarly, (Elhady et al., 2025) replaces199

a random option with “None of the above,” but200

since the correct answer often remains, the link201

with the question is not fully broken, leading to202

smaller drops than in our stricter setup.203

2.5 Reasoning and robustness evaluations204

Standard accuracy metrics often miss the nuances205

of reasoning and robustness in LLMs, prompt-206

ing calls for more targeted evaluations. Some re-207

searchers propose reclassifying advanced models208

like o1 (strawberry) (OpenAI, 2024c) as Large Rea-209

soning Models (LRMs), emphasizing the need for210

reasoning-specific benchmarks (Valmeekam et al.,211

2024). Robustness—understood as the ability to212

handle unfamiliar or unexpected inputs—is cru-213

cial for real-world reliability (Wang et al., 2024,214

2022). Yet models often underperform in these set-215

tings: McCoy et al. (2024) show that LLMs strug-216

gle with unseen tasks, and Razeghi et al. (2022)217

find that GPT-based models disproportionately suc-218

ceed on arithmetic problems involving frequent219

training numbers.220

Several studies explore the mechanisms behind221

this behaviour. Nikankin et al. (2025) identify222

neuron-level circuits involved in arithmetic, con-223

cluding that LLMs use heuristic pattern matching224

rather than robust algorithms or pure memorization.225

Broader limitations have also been observed: Jiang226

et al. (2024b) report strong dependence on token-227

level biases and poor logical inference; Asgari et al.228

(2024) use multi-answer formats and novel metrics229

to expose shortcut learning; and Dziri et al. (2023)230

show that models handle simple tasks well but fail231

to generalize in complex, multi-step problems, of-232

ten relying on superficial patterns. 233

Even techniques designed to promote reasoning, 234

such as Chain of Thought (CoT), are not exempt. 235

Prabhakar et al. (2024) characterize CoT as 236

probabilistic, memorization-influenced reasoning, 237

suggesting that LLMs blend shallow generalization 238

with latent recall in ways that limit robust inference. 239

240

Taken together, these studies reveal key limi- 241

tations in current reasoning evaluations—ranging 242

from contamination and shortcut learning to a re- 243

liance on surface patterns—and highlight the need 244

for more robust, generalizable benchmarks. This 245

motivates our proposed variation method, designed 246

to isolate reasoning from recall and enable more 247

reliable assessment across domains and languages. 248

3 None of the others (NOTO ) variation 249

We propose a variation of multiple-choice ques- 250

tions—referred to as NOTO —in which the correct 251

answer is replaced with “None of the other an- 252

swers”. This becomes the new correct choice, as 253

all remaining options are incorrect by design. With 254

this substitution, the correct answer is no longer ter- 255

minologically or conceptually tied to the question, 256

thereby reducing the effectiveness of memorization, 257

i.e., recalling associations from pretraining data. To 258

succeed, the model must eliminate all other options 259

and infer that “none of the others” is correct. 260

Notably, while “none of the others” is a common 261

distractor in multiple-choice formats, it is rarely 262

the correct answer. As a result, models relying 263

on shallow heuristics or frequency-based priors 264

may be reluctant to choose it, potentially yielding 265

performance below chance. Although this strategy 266

does not entirely eliminate memorization effects, it 267

introduces a substantially more challenging setting 268

that places greater demands on reasoning. 269

To ensure compatibility, we filtered out ques- 270

tions that already included options such as “None 271

of the above”, “All of the above”, or similar con- 272

structions, as these would interfere with the in- 273

tended variation. This was done automatically us- 274

ing regular expressions. In addition, we applied 275

a classifier trained by Elhady et al. (2025) to de- 276

tect and exclude questions with potential multiple 277

correct answers. This model1—based on a fine- 278

tuned BERT architecture—is designed to identify 279

whether a multiple-choice question has a single cor- 280

1https://huggingface.co/ahmedselhady/
bert-base-uncased-sba-clf
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rect option, helping ensure that our reformulation281

remains logically valid.282

4 Experimental setup283

This section outlines the datasets, models, hyperpa-284

rameters, prompting strategy and evaluation met-285

rics used to assess performance and robustness.286

4.1 Datasets287

We experiment with two bilingual datasets. The288

first is the MMLU benchmark (Hendrycks et al.,289

2021a), which includes English questions across 57290

tasks ranging from high school to professional and291

graduate levels, along with a professional manual292

translation into Spanish (OpenAI, 2024b). After fil-293

tering out questions incompatible with the “none of294

the others” substitution (using regular expressions295

and the SBA classifier), 10,270 questions remain.296

The second is [anonymous dataset name],297

comprising 1,003 Spanish questions across 11298

university-entry-level subjects, with professional299

translations into English. Unlike MMLU, this300

dataset has never been publicly released, making301

contamination effects unlikely. We applied the302

same filtering procedure, with one exception: since303

most psychology items included “None of the other304

answers” as a fourth option, we removed that op-305

tion unless it was correct—if so, we discarded the306

question entirely. This yielded a final set of 923307

questions.308

4.2 Models and prompting configuration309

We evaluated 16 instruction-tuned generative mod-310

els: five proprietary and eleven open-source. Pro-311

prietary models were accessed via API—GPT-4o312

(OpenAI, 2024a), GPT-4-Turbo (Achiam et al.,313

2023), GPT-3.5-Turbo (Brown et al., 2020), o3-314

mini (OpenAI, 2025), and Claude-3.5-Sonnet (An-315

thropic, 2024). Open-source models were run316

locally using Hugging Face or Ollama library2.317

These include LLaMA-2 (Touvron et al., 2023) and318

LLaMA-3 (Meta, 2024), Gemma-7B and Gemma-319

2-27B (Mesnard et al., 2024; Gemma Team, 2024),320

Mistral-7B (Jiang et al., 2023), Mixtral-8x7B and321

Mixtral-8x22B (Jiang et al., 2024a), DeepSeek-R1-322

70B (DeepSeekAI, 2025), and two Spanish-aligned323

models: Leniachat-Gemma-2B3 and Salamandra-324

2https://ollama.com/
3https://huggingface.co/LenguajeNaturalAI/

leniachat-gemma-2b-v0

7B4. 325

Only instruction-tuned models were included to 326

ensure consistent behavior in zero-shot settings and 327

avoid discrepancies in prompt adherence or output 328

format. Each model received the question in its 329

original language (English or Spanish), using a 330

standardized three-part prompt: 331

◆ System prompt 332
ES: Eres un sistema experto en responder 333
preguntas de exámenes. 334
EN: You are an expert system for answering 335
exam questions. 336

◆ User prompt 337
ES: Responde a la siguiente pregunta de la 338
asignatura {}, tan solo con la letra de la 339
respuesta correcta. Pregunta: {} 340
EN: Answer the following question of the 341
subject {} only with the letter of the correct 342
answer. Question: {} 343

◆ Assistant prompt 344
ES: Letra de la respuesta correcta: 345
EN: Letter of the correct answer: 346

Following standard evaluation practices, all mod- 347

els were prompted in the same language as the 348

question (English or Spanish) (Zhang et al., 2023; 349

Achiam et al., 2023). A zero-shot setup was used 350

throughout, as it mirrors realistic usage and en- 351

hances reproducibility, particularly benefiting re- 352

cent models trained for strong zero-shot perfor- 353

mance (DeepSeekAI, 2025). The temperature was 354

set to 0 for all models to ensure deterministic out- 355

puts, except for o3-mini, which does not allow tem- 356

perature control. For open models, prompts were 357

adapted to each model’s formatting requirements, 358

based on their official model cards. Outputs were 359

post-processed to extract the predicted letter and 360

discard any justifications or additional text. 361

4.3 Evaluation metrics 362

We report Accuracy, defined as the proportion 363

of correct answers (C) over total responses (N ), 364

and complement it with Cohen’s Kappa coeffi- 365

cient (McHugh, 2012), which accounts for chance- 366

level performance and varying numbers of answer 367

choices across subjects: 368

Kappa =
observed accuracy − expected accuracy

1− expected accuracy
=

C
N − 1

M

1− 1
M

369

Here, M is the number of choices, and expected 370

accuracy is that of random guessing (e.g., 1/3 or 371

1/4). Kappa scores normalize correctness so that 372

4https://huggingface.co/BSC-LT/
salamandra-7b-instruct
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Figure 1: Performance on MMLU and [anonymous dataset name] (original questions and none of the others
variation). Results per model and language are averaged across all subjects and expressed in terms of Cohen’s
Kappa.

random responses yield a Kappa of zero. Values373

range from −1/2 to 1, with negative values indi-374

cating performance worse than chance. Final re-375

sults are averaged across subjects (not questions)376

to avoid bias from dataset imbalances.377

To quantify performance degradation under our378

proposed variation, we compute the drop as the379

percentage decrease in Accuracy.5380

5 Results381

Each question from MMLU and [anonymous382

dataset name] is evaluated under four conditions:383

original formulation in English and Spanish, and384

a modified version where the correct answer is re-385

placed with “None of the other answers” in both386

languages. This setup enables direct comparison387

between standard multiple-choice performance and388

the reasoning challenge introduced by the exclu-389

sion option.390

Figure 1 provides a visual representation of per-391

formance in terms of Cohen’s Kappa, while Ta-392

ble 1 presents accuracy scores and performance393

drop between the original questions and their394

NOTO variations.395

5.1 RQ1: Performance vs. Reasoning396

To evaluate the impact of the exclusion option on397

model performance, we analyse both effectiveness398

(Cohen’s Kappa and Accuracy) and robustness (in399

terms of the performance drop) across datasets in400

English and Spanish.401

5Cohen’s Kappa coefficient is not in a ratio scale (the origin
is not zero) and therefore percentages cannot be computed
directly.

Performance with NOTO : Figure 1 depicts re- 402

sults in terms of Cohen’s Kappa (where random 403

guessing always gets zero regardless of the number 404

of choices)6. All models exhibit a substantial drop 405

in performance under the NOTO variation. In multi- 406

ple cases, models are even worse than random an- 407

swers, which suggests that they rely almost purely 408

on memorization, and they probably learnt in the 409

pre-training phase that "None of the others" is sta- 410

tistically less likely than any other option. With the 411

NOTO variation, only o3-mini (the top-performing 412

model overall) exceeds the 0.5 passing threshold 413

in MMLU, for one language (English). Note that, 414

with the use of appropriate question variations, the 415

MMLU dataset is far from being saturated. For 416

[anonymous dataset name], two models pass both 417

in English and Spanish (o3-mini and GPT-4o). 418

Performance drop: The accuracy drop (Table 419

1) varies drastically across models (from 10% to 420

92.5%) in all four datasets, highlighting substantial 421

differences in robustness. Some mid-sized mod- 422

els such as Mixtral-8x22B and GPT-3.5-Turbo suf- 423

fer particularly steep drops comparable to much 424

smaller models, and scores well below random 425

chance in the NOTO setting. The same applies to 426

somewhat more modern models, such as Llama- 427

3-70B and Gemma-2-27B, which fall drastically 428

to near random-chance performance. Among the 429

top performing models, Claude-3.5-Sonnet expe- 430

6Note that the slightly lower MMLU results compared
to previous studies are primarily due to our use of Cohen’s
Kappa. Additional differences may stem from our zero-shot
setup (versus few-shot in other works), prompt formulation,
or the quantization of Ollama models.
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MMLU (English) MMLU (Spanish) [anonym] (English) [anonym] (Spanish)

base NOTO drop % base NOTO drop % base NOTO drop % base NOTO drop %

DeepSeek-R1-70B 0.71 0.60 15.49 0.71 0.45 36.62 0.60 0.54 10.0 0.78 0.63 19.23
OpenAI-o3-mini 0.89 0.67 24.72 0.86 0.61 29.07 0.92 0.76 17.39 0.93 0.79 15.05
GPT-4o 0.83 0.59 28.92 0.81 0.57 29.63 0.86 0.69 19.77 0.85 0.69 18.82
Llama-2-7B-Chat 0.41 0.29 29.27 0.38 0.22 42.11 0.53 0.26 50.94 0.49 0.15 69.39
GPT-4-Turbo 0.80 0.51 36.25 0.77 0.53 31.17 0.84 0.57 32.14 0.85 0.64 24.71
Claude-3.5-Sonnet 0.86 0.41 52.33 0.84 0.43 48.81 0.88 0.53 39.77 0.90 0.61 32.22
Mixtral-8x7B-Instruct 0.68 0.30 55.88 0.63 0.22 65.08 0.70 0.37 47.14 0.71 0.32 54.93
Llama-3-8B-Instruct 0.64 0.28 56.25 0.55 0.24 56.36 0.67 0.36 46.27 0.66 0.33 50.00
Gemma-2-27B-Instruct 0.75 0.32 57.33 0.71 0.28 60.56 0.76 0.39 48.68 0.77 0.40 48.05
Llama-3-70B-Instruct 0.77 0.30 61.04 0.73 0.26 64.38 0.77 0.40 48.05 0.78 0.41 47.44
Mistral-7B-Instruct 0.59 0.19 67.80 0.51 0.20 60.78 0.63 0.33 47.62 0.61 0.34 44.26
Salamandra-7B-Instruct 0.37 0.11 70.27 0.35 0.14 60.00 0.48 0.11 77.08 0.46 0.16 65.22
Mixtral-8x22B-Instruct 0.72 0.17 76.39 0.66 0.16 75.76 0.75 0.19 74.67 0.75 0.25 66.67
GPT-3.5-Turbo 0.65 0.10 84.62 0.59 0.09 84.75 0.73 0.14 80.82 0.70 0.09 87.14
Gemma-7B-Instruct 0.49 0.07 85.71 0.44 0.08 81.82 0.59 0.09 84.75 0.58 0.09 84.48
Leniachat-Gemma-2B 0.32 0.03 90.63 0.31 0.03 90.32 0.40 0.03 92.50 0.37 0.05 86.49

Table 1: Accuracy results on the original and none of the others configurations, and percentage decrease between
scenarios. Systems are sorted by drop in English MMLU, smaller to largest.

riences the most remarkable drop: despite achiev-431

ing strong performance in the original setting, its432

NOTO accuracy falls well below that of its peers433

(o3-mini, DeepSeek-R1-70B, GPT-4-Turbo, and434

GPT-4o).435

DeepSeek’s R1 case is particularly surprising: al-436

though the 70B model ranks well below the top per-437

formers on the original dataset, it exhibits the small-438

est accuracy drop in both English datasets, and also439

the lowest drop overall (only 10% in [anonymous440

dataset name] in English and 15.49% in English441

MMLU). This suggests that while DeepSeek-R1442

is smaller and with less memory, it has stronger443

reasoning abilities.444

Overall, these results reveal significant differ-445

ences in how models handle scenarios that demand446

refined reasoning. DeepSeek-R1-70B and OpenAI-447

o3-mini have the smallest relative drops, which448

indicates a stronger, albeit imperfect, ability to vali-449

date answer options rather than rely solely on mem-450

orization. In contrast, Claude-3.5-Sonnet, despite451

being a high-performing model in standard condi-452

tions, suffers one of the largest drops (52.33% in453

English MMLU). The most affected models, such454

as GPT-3.5-Turbo, experience extreme accuracy455

degradation (over 80% drop), which points to an456

almost exclusive reliance on approximate matching457

heuristics.458

5.2 RQ2: Contamination and translation459

biases460

To investigate whether the accuracy drop is due461

to reasoning limitations or reliance on memorized462

patterns, we compare results from two angles: (1) 463

the effect of dataset contamination, contrasting the 464

public MMLU dataset with the private [anonymous 465

dataset name] dataset, and (2) the effect of transla- 466

tions, contrasting models’ performance in the orig- 467

inal language versus manually translated versions. 468

These aspects are closely related, as they both in- 469

fluence the extent to which models rely on prior 470

exposure rather than true reasoning. If memoriza- 471

tion plays a dominant role, we expect larger drops 472

in public datasets and in original-language versions, 473

as these are more likely to have been seen during 474

pretraining, and for them approximate search may 475

be more effective. 476

Contamination effects: The mean drop is 477

higher in MMLU (55.8%) than in [anonymous 478

dataset name] (50.88%), consistent with the ex- 479

pectation that MMLU, as a public dataset, is more 480

likely to have been seen during pretraining and 481

leads models to fail more when they are prevented 482

from using that memorisation. In fact, the lowest 483

absolute drop (10% from DeepSeek) is observed on 484

the least likely contaminated dataset, the English 485

[anonymous dataset name] (which is both private 486

and translated from the original questions). 487

Translation effects: Within MMLU, the aver- 488

age drop is slightly greater in Spanish (57.33%) 489

than in English (55.8%), whereas in [anonymous 490

dataset name], the pattern reverses (51.1% in En- 491

glish vs. 50.9% in Spanish). With the original ques- 492

tions, models perform better in each dataset’s orig- 493

inal language: all models (16/16) achieve higher 494
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Figure 2: Mean drop across release dates and model sizes.

accuracy in English for MMLU, while in [anony-495

mous dataset name], 8 models perform better in496

Spanish. This trend still holds in the NOTO scenario:497

in MMLU, 11 models perform better in English,498

and in [anonymous dataset name], 11 models now499

perform better in Spanish. When considering pass-500

ing thresholds, more models pass in English for501

MMLU (11 vs. 8), and in Spanish for [anonymous502

dataset name] (11 vs. 10). This pattern holds in503

NOTO : 1 vs. 0 in MMLU and 2 vs. 2 in [anony-504

mous dataset name].505

These are signs of contamination, since, in other506

words, (i) models fall more in the public dataset,507

which is likely more contaminated and (ii) models508

fall more in the original versions than in the trans-509

lated versions, with which models are probably510

less familiar (the Spanish MMLU is newer and less511

likely to be contaminated, and even if [anonymous512

dataset name] is private, it is less likely that mod-513

els have seen the English questions since they are514

manual translations and have never been released).515

Overall, these findings confirm that the516

NOTO substitution exposes reliance on memorized517

content, and lead us to the conclusion that mod-518

els experiencing the highest drops are those most519

likely answering with their memorization skills,520

rather than with true reasoning. Results with the 521

NOTO configuration are a better indication of mod- 522

els’ true capabilities, show that with a little twik- 523

ering the datasets are far from being saturated, 524

and reveal comparative differences between the 525

reasoning capabilities of models that are hidden 526

in the evaluation with the original questions. In 527

particular, we have seen that the performance dif- 528

ference between the most recent reasoning mod- 529

els (Deepkseek, o3-mini) and other state-of-the-art 530

ones such as Claude-3.5 is much wider than can be 531

measured with the original questions. 532

5.3 RQ3: Robustness predictors 533

correlation p-value
MMLU (English) -0.50 0.0480
MMLU (Spanish) -0.58 0.0182
[anonym] (English) -0.59 0.0167
[anonym] (Spanish) -0.77 0.0005

Table 2: Pearson’s correlation between accuracy results
on the base configuration and the drop.

Here we examine whether base performance 534

predicts robustness under the NOTO variation. As 535

shown in Table 2, the correlation is weak to mod- 536

erate in most cases, and only becomes strong and 537

7



highly significant in our private Spanish dataset538

(r = −0.77, p = 0.0005). This suggests that,539

when contamination is minimal, higher base accu-540

racy may better reflect genuine reasoning ability.541

However, in more exposed datasets like MMLU,542

base performance is a poor predictor of robustness.543

Figure 2 shows the the mean drop in perfor-544

mance across models, sorted by release date and545

classified into three groups according to their size:546

small (less than 10B parameters), medium (10-547

100B) and large (over 100B). Note that the drop548

does not correlate well with model size, as there549

are large models with large drops (GPT-3.5-Turbo,550

Mixtral-8x22B and Claude-3.5-Sonnet), and the551

smallest average drop is for a medium-sized model552

(DeepSeek-R1-70B): size alone is insufficient to en-553

sure robust reasoning. There is a noticeable trend,554

though, where newer models tend to exhibit smaller555

drops, with some exceptions. The oldest model,556

GPT-3.5-Turbo, is a mid performer with the orig-557

inal datasets, but stands out as one of the worst558

in terms of performance drop. In the period since559

ChatGPT’s debut, the generalisation capabilities of560

models seems to have improved widely and con-561

sistently, and this improvement does not necessar-562

ily come with increased model sizes. Finally, the563

newest proprietary models and DeepSeek-R1 are564

the ones that show smaller performance drops; this565

suggests that robustness in reasoning is influenced566

more by advanced model architectures and training567

strategies rather than sheer model size.568

6 Conclusions569

Our results show that the proposed NOTO variation570

poses a major challenge for LLMs, and provides571

a useful signal to distinguish answers based on re-572

call/memorization from genuine knowledge and573

reasoning. While many models perform well when574

retrieving memorized information, their perfor-575

mance plummets when the correct answer is dis-576

connected from memory associations and they are577

required to verify and reject each candidate answer.578

The NOTO variation consistently reveals reasoning579

gaps, exposing limitations that remain hidden in580

standard multiple-choice settings (RQ1). Dataset581

contamination further complicates the evaluation582

of reasoning: while prior exposure may artificially583

inflate accuracy in base scenarios, its impact di-584

minishes in NOTO , where models cannot rely on585

memorized answers. Similarly, models perform586

better on original (and likely more contaminated)587

datasets, while translated versions mitigate this ef- 588

fect, reinforcing the role of memorization in stan- 589

dard benchmarks (RQ2). 590

Unlike accuracy, which scaling laws correlate 591

with model size (Kaplan et al., 2020), we have seen 592

that robustness is not strictly correlated with model 593

size. High-performing models such as Claude-3.5 594

suffer severe drops, and some mid-sized models 595

(e.g., GPT-3.5-Turbo, Mixtral) degrade to below- 596

random performance. The most robust model in 597

our experimentation, DeepSeek-R1-70B, is mid- 598

sized, suggesting that architectural advancements 599

and training strategies, rather than sheer scale, play 600

a greater role in reasoning robustness (RQ3). Re- 601

markably, the two so-called reasoning models in 602

our sample (o3-mini and DeepSeek-R1) are indeed 603

the ones that better resist the NOTO variation. 604

In short, our experimentation is a direct confirma- 605

tion that LLMs remain far from true reasoning, but 606

also that progress is being made towards that goal. 607

Our findings emphasize the need for models that 608

can reliably handle question reformulations without 609

relying on surface-level heuristics, and show that 610

classic datasets that appear to be saturated, such 611

as MMLU, may still be useful for LLM evaluation 612

under appropriate transformations. 613

Limitations 614

The NOTO variation offers a useful approximation 615

for testing reasoning beyond memorization, but it 616

does not eliminate recall effects entirely. Still, it 617

provides a complementary perspective to standard 618

evaluations, especially on benchmarks that may be 619

saturated. Focusing on multiple-choice questions 620

allows for consistent comparisons, but naturally 621

limits the scope of reasoning assessed. Exploring 622

open-ended or real-world tasks could provide addi- 623

tional insights. 624

We rely on two datasets—MMLU and a smaller, 625

private bilingual set—which offer valuable contrast 626

but do not cover all domains or task types. Future 627

work will extend this analysis to larger and more 628

diverse benchmarks. 629

All models were tested in zero-shot settings for 630

consistency and reproducibility. Other prompting 631

strategies, such as few-shot or Chain-of-Thought, 632

may affect outcomes and should be examined. 633

While we do not include detailed per-model anal- 634

yses, we observe that some newer and reasoning- 635

oriented models tend to be more robust. This sug- 636

gests that training choices may play an important 637

8



role, though more work is needed to understand638

these effects fully.639

Lastly, while humans also use heuristics and pat-640

tern recognition (Lampinen et al., 2024), their rea-641

soning differs in important ways. Comparing hu-642

man and model responses under NOTO conditions643

remains an open and promising direction.644

Despite these limitations, we hope this method645

contributes to more nuanced evaluations of LLMs646

and encourages further exploration of reasoning647

robustness.648
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