Under review as a conference paper at ICLR 2026

HIERARCHICAL SEQUENCE ITERATION FOR HETERO-
GENEOUS QUESTION ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-augmented generation (RAG) remains brittle on multi-step questions
and heterogeneous evidence sources, trading accuracy against latency and to-
ken/tool budgets. This paper introduces Hierarchical Sequence (HSEQ) Iter-
ation for Heterogeneous Question Answering, a unified framework that (i) lin-
earize documents, tables, and knowledge graphs into a reversible hierarchical se-
quence with lightweight structural tags, and (ii) perform structure-aware iteration
to collect just-enough evidence before answer synthesis. A Head Agent provides
guidance that leads retrieval, while an Iteration Agent selects and expands HSeq
via structure-respecting actions (e.g., parent/child hops, table row/column neigh-
bors, KG relations); Finally the head agent composes canonicalized evidence to
genearte the final answer, with an optional refinement loop to resolve detected con-
tradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text),
and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-
hop, and agentic RAG baselines, alongside higher efficiency. Beyond aggregate
metrics, HSEQ exhibits three key advantages: (1) a format-agnostic unification
that enables a single policy to operate across text, tables, and KGs without per-
dataset specialization; (2) guided, budget-aware iteration that reduces unneces-
sary hops, tool calls, and tokens while preserving answer quality; and (3) evidence
canonicalization for reliable QA, improving consistency and auditability of the
generated answers.

1 INTRODUCTION

Large language models (LLMs), such as ChatGPT (Achiam et al., [2023)), LLaMA (Dubey et al.,
2024), Falcon (Zuo et al., [2025), have been increasingly relying on retrieval-augmented generation
(RAG) to ground answers in external evidence. With reliable supplementary knowledge offered
factual errors are reduced, especially in domain-specific questions, leading to higher accuracy and
fewer hallucinations (Zhu et al.| [2021b; |Gao et al.| [2023; |Zhao et al.| [2024). Yet state-of-the-art
pipelines, remain brittle on multi-step questions and heterogeneous sources, and still struggle to
cope with the following challenges:

C; : Coverage in Single-pass Retrievers: Single-pass pipelines (retrieve-k then generate) (Luo
et al.l 2023} |Glass et al., [2022) focus on isolated retrieval and generation tasks. Although they
can be setup and achieve data retrieval quickly, they struggle to trace complete evidence chains:
dense retrievers, typically trained for pointwise recall and re-ranking, often lack path coverage;
chunking heuristics fragment long documents and break discourse; long-context prompting shifts
budget toward tokens irrelevant to the final answer and provides no explicit sufficiency signal.

C. : Uncontrolled iteration and latency in multi-agent systems: With multi-agent collaboration
and reasoning, agentic systems (Liu et al.,|2025}|Yang et al., 2025} |Chen et al., 20235)) easily explode
the search space and can achieve multi-step reasoning. However they may fall with branchy plans,
repeated web/file calls, and verbose chain-of-thought prompts, yielding unpredictable token/tool
costs and latency; termination is often heuristic, leading to premature answers or extra wasted loops
with budgets decoupled from the evidence actually inspected (Singh et al., [2025)).

C3 : Heterogeneity across formats: Free text, relational tables, and KGs typically require distinct
indices, retrievers, prompt styles, and controller logic, preventing policy reuse and complicating

Under review as a conference paper at ICLR 2026

training and deployment. Although existing heterogeneous RAG systems (Yul 2022} |Christmann
& Weikum, 2024) are available to deal with multiple formats of data, they may still face issues in
either weak alignment across representations or lossy and non-reversible serialization that obscures
provenance and blocks faithful reconstruction.

Hierarchical Sequence Iteration (HSEQ) for Heterogeneous Question Answering introduces a re-
versible hierarchical sequence interface that linearizes documents, tables, and KGs into a sequence
of typed segments with lightweight structure (e.g., parent/child locality, offsets or coordinates, min-
imal schema/time tags). An iteration policy operates on this unified substrate using short, budgeted
steps: at each step it selects a few promising segments and predicts whether the accumulated set
is sufficient to answer. A concise guidance plan—produced by a lightweight planner or a heuristic
template—acts as a soft prior over which regions to probe first and when to stop. Once sufficiency is
predicted, the selected segments are canonicalized into a compact, provenance-preserving package
consumed by a head module to produce the final answer; an optional verifier can trigger a brief
refinement if contradictions are detected.

To address above issues, this paper introduces HSEQ, a Hierarchical Sequence Iteration Sys-
tem that first recasts heterogeneous knowledge source into a single, LLM-native interface, then
turning retrieval into a guided, budget-aware iterative process. The reversible HSEQ interface lin-
earizes documents, tables, and KGs into a sequence of typed segments with lightweight structure
(e.g., parent/child locality, offsets or coordinates, minimal schema/time tags). An iteration policy
operates on this unified substrate using short, budgeted steps: at each step it selects a few promis-
ing segments and predicts whether the accumulated set is sufficient to answer. A concise guidance
plan—produced by a lightweight planner or a heuristic template—acts as a soft prior over which
regions to probe first and when to stop. Once sufficiency is predicted, the selected segments are
canonicalized into a compact, provenance-preserving package consumed by a head module to pro-
duce the final answer; an optional verifier can trigger a brief refinement if contradictions are detected.
pecifically, our key contributions are as followed:

 Unified, reversible interface. A hierarchical sequence representation that standardizes
text, tables, and KGs with lightweight structure and provenance, enabling a single con-
troller to operate across formats.

* Guided, budget-aware iteration. A learned selection policy with an explicit sufficiency
signal that concentrates computation on evidence actually inspected, delivering predictable
latency under token/tool budgets.

* Canonicalized evidence for reliable QA. A compact, provenance-preserving evi-
dence package that improves answer synthesis and auditability, and supports optional
contradiction-driven refinement.

2 RELATED WORK

LLM Finetuning Large Language Models (LLMs) often adopt finetuning to unlock their capabil-
ities for downstream applications, like medical (Goyal et al.,[2024), economic|Guo & Yang|(2024),
or human activity recognition |Li et al.[(2024)). To enhance finetuning efficiency, methods like quan-
tization (Dettmers et al.|[2022) parameter efficient fine tuning (Hu et al., 2022} Dettmers et al., 2023
Li & Liang, |2021) can be applied.

Retrieval Augmented Generation RAG systems help LLMs retrieve extra knowledge according
to queries and thereby improving the accuracy of LLM response (Fan et al.,[2024)), with no necessity
to finetune the model. External databases ensure knowledge offered is domain-specific and timely,
adding reliability and interpretability (Lewis et al.,[2020; Jiang et al.,2023)). Accuracy of knowledge
retrieval and quality of responses are two key factors for RAG systems evaluation (Yu et al., 2024)).
Apart from text, table, or html sources (Guo et all [2024bj |Chan et al.l [2024; Jin et al.| |2025),
recent researches have combined graph-structured data into RAG systems(GraphRAG) to improve
the efficiency of knowledge interpretability by capturing relationships between entities and utilizing
triplets as the primary data source (Edge et al.,[2024} Peng et al., [2024; Hu et al., 2024; Mavromatis
& Karypis| 2024).

Under review as a conference paper at ICLR 2026

Multi Agent QA system LLM-based Multi-Agent Systems (MASs) enable groups of intelligent
agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated mod-
els to collaboration-centric approaches [2025). Agents can cooperate with each other
for tasks like code generation (Hong et al., 2024 Islam et al.} [2024), decision making
et al Shinn et al., [2023), while competitions among agents are appiled on gaming environ-
ment[Wang et al.|(2022) or question answering (Puerto et al.|[2021)). By interacting with each other,
the system can be used for both problem solving or world simulation

Structural and unified RAG interfaces. Beyond standard text-centric RAG, a line of work in-
troduces structural or unified retrieval layers. Graph-based RAG systems construct heterogeneous
or chunk-level graphs where nodes represent passages, entities, or sections, and edges encode se-
mantic or hyperlink connectivity; retrieval then propagates over this graph to improve multi-hop
reasoning and global coverage (Wu et all, [2024; [Huang et all, 2025}, [Cuo et all} [2025). Other sys-
tems build hierarchical or modular indices over mixed document formats, or define unified data
schemas for training language agents and tools, but still operate over opaque contexts at inference
time (Reynolds & Corrigan} 2024} [Liu et al.} 2025} [Chen et al} [2024). These approaches share the
intuition that adding structure on top of unstructured text helps reasoning, but typically (i) collapse
different modalities into a single graph or index without a reversible, modality-preserving represen-
tation; (ii) use structure primarily for neighborhood expansion or re-ranking rather than as a generic
segment schema with explicit level, parent, and alignment fields; and (iii) do not provide formal
guarantees on faithful reconstruction or budgeted selection cost under an explicit sufficiency-based
stopping rule.

While existing RAG-based methods still suffered from limitation mentioned above, there is a rising
need for RAG interfaces that (i) preserve modality-specific structure in a reversible way rather than
collapsing all sources into an opaque graph or index; (ii) expose a generic, LLM-native segment
schema with explicit level, parent, and alignment fields so that a single controller can navigate
text, tables, and KGs uniformly; and (iii) couple this interface with an explicit sufficiency-aware,
budget-controlled selection process, so that evidence gathering is both auditable and aligned with
resource constraints. HSEQ is designed to meet these requirements by treating all sources as typed,
provenance-aware segments in a hierarchical sequence and pairing this representation with a learned
sufficiency head and budget-aware iteration policy.

3 HSEQ: A MULTI-AGENT HETEROGENEOUS QUESTION ANSWERING
FRAMEWORK

3.1 BACKGROUND AND SETUP

Heterogeneous QA with budgets. Given a natural-language query ¢ and a heterogeneous corpus
D = {(x;,m;)}}_, with modality m; € {text,table,kg}, the goal is to produce an answer
y €) and optional supporting evidence £ C D while satisfying resource budgets B (tokens, tool
calls, latency, steps). Let E* denote a minimally sufficient evidence set for ¢ in D under a fixed
answerer.

From retrieval to guided iteration. We recast retrieval as a short sequence of structure-aware se-
lections under an explicit sufficiency criterion. A modality-aware adapter T converts D into a single
hierarchical sequence S;, = 7(D). A learned iteration policy my interacts with (g, Sp,) to accumu-
late a compact evidence set M* under budgets B, guided by a concise plan g. A canonicalizer x
packages M™ for a head module #, which produces the final answer. This preserves the familiar
RAG workflow while adding a principled stopping signal and a unified interface across modalities.

3.2 HSEQ ARCHITECTURE

The proposed system couples a unified hierarchical sequence(HSEQ) representation with an iter-
ation policy and a head module H for answer synthesis. Let ¢ denote a user query and D a het-
erogeneous corpus. A modality-aware adapter 7 converts D into a single hierarchical sequence

Under review as a conference paper at ICLR 2026

Guidance Generation

' o0 ' E) l Y Answer Generation
7Y H ! Insufficient H , N
') : ;@53 1Question Analysis | Guidance Check solvability 1 ' :
i Question —> ‘L: ' ' Prompt | Sufficient H E :
:‘ Head Agent ' E Iteration Agent E ! E
---------------------- ! StartPlan — HSEQ 6roupt—| | :
H SR ' H
______________ ! o Continue Retrieving... HSEQ | . 56 H
"r N ! an; . Group2 | H 1 ’ |
' H H H i i
E HSEQ ! ! ——| Continue Retrieving... HSEQ ! 1 Head Agent !
H Database ! I Plan3 — : !
' ' \ _ Group3 | ' ' '
[H H H H i

H ! ' ' ' QA Prompt

' HSEQ — > — Continue Retrieving... HSEQ H ' H
; Adapter | R e | : ! :
: Initial ! ; '
! Database ! I - Final Retrieval (™ Triplets . i i
' . ' H Final plan P T H H

\ ;! ' | combination | H ! !
M cccesseccensee . ' 1 N '
i ! 1> HSEQData |

. .

Data Preparation Retrieval HSEQ Knowledge | \ '
' Plan Iteration Agent Base ! Temmmnmeeeee- g
A Judging S

Knowledge Retrieving from HSEQ Base

Figure 1: HSEQ overview. (i) HSEQ-A linearizes heterogeneous sources into .S;, with level
tags, parent pointers, and standardized metadata; (ii) HSEQ-I iterates over a windowed stream
of segments under budgets, guided by g, and queries ¢ for sufficiency; (iii) x compacts M, into
provenance-preserving evidence; (iv) HSEQ-H produces the final answer and optionally triggers a
brief refinement if inconsistencies are detected.

Sp = 7(D). An iteration module 7y operates on (g, Sp,) and maintains an evolving evidence set M.
The final evidence M™* is then canonicalized by « and passed to H for final answer generation. The
end-to-end mapping is summarized as

F=(r,m9,®,5,H), F(q,D) = H(q, s(M*)), (1)

Specifically, during iteration module 7 selecting and expanding segments on S}, the budget-aware
sufficiency criterion ® and the budget state B; (tokens, tool calls, steps) functioned inside the module
to decide when the accumulated evidence is adequate for answering as well as triggering potential
early stopping.

Sh=T1(D), M* = m9(q, Sn; @, B). (2)

After the iteration, x maps raw segments M* to a normalized evidence package consumable by .
The same policy 7y is shared across modalities due to the common interface of Sy,

Generally, to achieve iteration through an unified data structure building from heterogeneous data
sources, the HSEQ framework consists of three key modules: HSEQ-Adapter (HSEQ-A), HSEQ-
Iterator (HSEQ-I), and HSEQ-Head (HSEQ-H).

3.3 HSEQ-ADAPTER(HSEQ-A)

The HSEQ-Adapter is build to produce unified structure(HSEQ Sp) that exposes locality (par-
ent/child), alignment (span or coordinates), and lightweight semantics (time, schema, language)
in a modality-agnostic format, while remaining reconstructable. Formally, each item x; is mapped
by a modality-specific adapter 7, to a finite set of segments 7,,, (z;) C S and then concatenated:

N
Sho= |7, (z5) € 8%, S35 = (id(s), Us), p(s), c(5), p(s))- 3)

Jj=1

Here /(s) is a level tag matching the raw content, including sentence, paragraph, table, triplet, etc.,
while p(s) is a parent pointer recording the roots. ¢(s) is compact human-readable content, and (s)
is metadata with fixed keys to record content attributes.

Under review as a conference paper at ICLR 2026

. HSEQ Construction “ The single, modality-aware adapter converts
: / N ' heterogeneous sources into a common se-
[N Hierarchical i+ quence of hierarchical segments. After the
: Toxt Sequence | construction, each segment is a lightweight

e
7

record s = (id, level, parent, content, metadata),
where level marks granularity (e.g., docu-
ment/paragraphl/sentence, table_row/table_cell,
triplet/subgraph), parent keeps locality via a
unique container pointer, content is a compact
human-readable summary (text span, serialized

row, or compact triple), and metadata standard-
Heterogerieous ' izes provenance and alignment with fixed keys
B - (e.g., source_id, uri, offsets, schema, time). Seg-
ments are concatenated into a final usable S,
in parent-before-child order. This minimal con-
tract enables structure-aware neighborhoods and
budget-aware iteration without inspecting raw

HSEQ
Adapter

KG

—

Figure 2: HSEQ S construction: Different
modalities of data are transformed into unified
sequence by HSEQ-A

files.

Concrete fragment examples. Below we instantiate (¢, p, ¢, ;1) for three modalities (all values are
illustrative):

Stext = (id = s1, { = sentence, p = p1, ¢ = “...capital is Paris...”,

= {source_id = doc.12, offsets = (128,172), time = 1992});
Srow = (id =rs3, { = table_row, p = t1, ¢ = “France — 67.4M — EU”,

1= {source_id = tbl.7, schema = [country,pop,bloc], row = 3});
Scell = (id = usz,2, { =table_cell, p=r3, c = “67.4M”,

p = {source_id = tbl.7, row = 3, col = 2});
Skg = (id = ko, { = triplet, p = g1, ¢ = “(Paris, capital_of, France)”,

p = {source_id = kg_2}).

Segments are concatenated in parent-before-child order. This minimal contract enables structure-
aware neighborhoods and budget-aware iteration without inspecting raw files.

3.4 HSEQ-ITERATOR(HSEQ-I)

After HSEQ S}, are build, the HSEQ-Iterator 7y can be used on (g, S}) and maintains an evolving
evidence set M, regarding question g.

Guidance prior. A short guidance g = g(q, type) is treated as a prior over iterator actions. g is
generated before each episode to shape exploration on Sy. This guidance can come from directly
from head agent H, or from heuristic templates keyed by type.

Iteration control. Let M; C S} denote the selected evidence at step ¢, C; C S}, a candidate
window obeying a budget state By, and N (-) the structure-aware neighborhood operators induced
by levels, parents, and coordinates. The HSEQ-I module 7y functions each step following the policy

7T9(a/t58t | q, Sh7 Mt7 Ct7 9, Bt)’

which emits an action a; (e.g., selecting up to k segments from C; and/or expanding via N) and a
sufficiency prediction s; € {0,1}. A deterministic ordering p over S, (e.g., paragraph < row <
sentence < triplet) defines the stream exposed to the policy. State evolves via a deterministic update
M1 = u(My,at) and Cyyy = window(Sy, My41, Biy1, p). Termination occurs at 7 = min{¢ :
st = 1} or when the budget is exhausted.

With set window size W and step cap Tyax, the algorithm can be described as Alg. [I] where the
Refresh operator advances the window while removing already selected segments, keeping the per-
step context bounded independent of corpus size.

Under review as a conference paper at ICLR 2026

One-step worked example. Suppose p is paragraph < row < sentence < triplet and
W =5. Att=0, Cj is the first 5 segments under p. The policy selects K1 C Cy (|K1| < k) and
optionally expands with Nohiaren (t0 get sentences within a paragraph) or Ny (to fetch a full table
row when a cell is promising). Then M; = My U K;. Refresh advances the window to the next
5 unseen segments in Sy. If ® deems evidence sufficient (s; = 1) and t > Ty, iteration halts;
otherwise proceed to ¢t =2 with updated B;.

3.5 HSEQ-HEAD (HSEQ-H).

The HSEQ-Head module H can be used in two parts: 1) Guiding the retrieval for HSEQ-I; and 2)
Generating final conclusion regarding the question.

Guidance Generation. Although heuristic templates can be used, regarding an incoming ques-
tion, H is available to be called first to analysis the content, generating guidance including: 1) Initial
Retrieval Plan; 2) What information may be needed; 3) Potential conditions to stop.

Answer synthesis and optional refinement. Upon termination at step 7, the canonicalizer x con-
verts M into a compact, provenance-preserving evidence package(ids, levels, offsets/coordinates,
short snippets). The head module #H then produces the final prediction:

2} = H(% F':(M‘r))

An optional verifier inspects (M) for contradictions; if detected, a brief refinement pass (at most
A additional steps) resumes iteration in Alg. [I{with tightened guidance ¢’ and reduced budget B’.

Algorithm 1 Guided Iterative Selection under HSEQ-I

Require: question ¢, HSEQ S}, guidance g, budget B, window size W, step cap Ty ax, minimum
steps Tiin, top-k k, ordering p

1: My + &5 Cy « Window(Sy; W, By, p)
2: fort =1to Tiax do

3: Update a;

4: (Kt s¢) <= mo(q, g, My—1, Cy—1; By) > Ky C Oy, | K| <k
5: My +— M; 1 UK,

6: C} < Refresh(Sy, My; W, p)

7: if s; = 1land ¢ > T,,;, then

8: break

9: end if

10: Update By

11: end for

12: 7+ t; return k(M)

4 LEARNING TO USE HSEQ WITH OPEN-SOURCE LLMS

This section details how we instantiate HSEQ with open-source LLMs, with Section |§| as the theo-
retical interface and reuse all symbols without redefining them.

4.1 FINE-TUNING HSEQ-I

Training tuples and supervision. We organize supervision as tuples (g, type, Sy, A*). Besides
q and Sy, an optional label type is added. The trajectory A* = {(a}, s¥)}7_, contains an action
and a binary sufficiency signal with 7% = min{¢ : s} = 1}. When explicit trajectories are unavail-
able, weak positives P* C Sj, are induced by high-precision matching between gold answers (or
oracle spans) and segment content, optionally augmented by lexical overlap with q. A target action
sequence is synthesized by greedily selecting from P* under the budget (details in App.[A.2).

Under review as a conference paper at ICLR 2026

Policy learning. Let the step state be (g, Si, My, Cy, g, By). We train mp by supervised risk mini-
mization with parameter-efficient adaptation of a base LLM. With teacher forcing for ¢ < 7*,

min E[Zéact(m(~ | state;), aF) + A Lutop(mo(- | statey), 5:)},

t=1

action loss sufficiency loss

where state; = (q, Sp, My, Cy, g, B;) and A > 0 balances early stopping. When A* is synthe-
sized from P*, per-step weights attenuate low-confidence choices to reduce label noise (App. .
During experiments, Low-Rank Adaptation is used for finetuning (Hu et al.| 2022} (App. .

4.2 HSEQ-H: GUIDANCE AND ANSWER GENERATION

Iteration Module
Prepartion

Guidance generation (HSEQ-H). Given a ques- VG

tion ¢ (and optional type), HSEQ-H produces a short : ,qx;s o) @%
guidance ¢ that steers the iterator and specifies a T Guidance

stop rule. We use two modes: (i) a lightweight HeadAgent Pre-trained LLM
planner that drafts g in 2—4 sentences; (ii) a heuris- (Tren Question \

tic template keyed by coarse question patterns (e.g.,
number/factoid/yes—no). g follows a fixed structure:
first-look targets (entities/rows/1-2-hop neighbors),

LoRA

Fine-tune

expansion rule (parent/child, row/column, or rela- :'s::f-:'s'flhw?"hseqzwly

tion hops), and stop rule (e.g., “answer span/number :uue;tr:xm", ﬁ%

is explicit and corroborated by > 1 snippet”). ¢ is e

cached and reused; on a cache miss, we generate or) lermionAgent

fall back to the template. g is a soft prior—the itera-

tor may override it when stronger signals appear. Figure 3: HSEQ-I is trained from multi-

source questions. After guidance sets are
prepared, LoRA is applied for finetuning.

Evidence-conditioned answering (HSEQ-H).

After k compacts M, to Z = k(M) (snippets plus

ids/levels/source and minimal offsets/coordinates),

HSEQ-H performs evidence-conditioned answering:y = H(q, Z, g) using a minimal prompt:
answer only (span/number/yes—no) grounded in Z, no chain-of-thought. When useful, we also
return supporting ids from Z for auditability. A lightweight entailment-style check over Z may
trigger a one-shot refinement—the iterator resumes for a few steps under a tightened g’—otherwise
7y is emitted.

5 EXPERIMENT

HSEQ are evaluated on multiple QA datasets with a focus on both answer quality and efficiency.
Metrics include Accuracy, F1, alongside efficiency indicators that reflect the evidence actually in-
spected: average iteration steps and end-to-end latency (ms).

5.1 EXPERIMENT SETUP: BENCHMARKS AND BASELINES

Benchmarks. To eval-
vate HSEQ wusage from
different data modalities,
four benchmarks are used

Table 1: Datasets used in our study (modality abbreviations: T=Text,
Tb=Table, KG=Knowledge Graph).

for experiments, stressing Dataset Modality #Train #Validation #Test
text-only, table—text hy- “poin0QA T 90447 7405 7405
brid, ‘and KG reasoning: TAT.QA Tb+T 13251 1644 1,663
HompotQA (Yang et _al} gypriqQa Tb+T 62,682 3,466 3463
2018) (multi-hop reason- p\faaQA-2Hop KG 119,986 14,872 14,872
ing over Wikipedia text), MeaQA-3Hop — KG 17,482 14274 14274

Under review as a conference paper at ICLR 2026

TAT-QA (Zhu et al.| |20214)

(table-centric financial

QA with accompanying paragraphs and numerical operations), HybridQA (Chen et al.| |2020)
(Wikipedia tables linked to passages requiring cross-format grounding), and MetaQA (Zhang et al.|
2018) over a Wikidata-style KG (Since 1-hop variants are not emphasized due to triviality, during
experiment only 2-hop and 3-hop questions are used for experiments).

Baselines. Three groups are divided for experiments including:

* LLM-only QA. Multiple LLMs are used to directly answers each question from raw inputs
without HSEQ (no unified adapter, no iterative controller), under same prompt instruction.

* RAG-based methods. Since HSEQ explores different formats of data sources, RAG mod-
els specializing in separately Text, Table and Knowledge Graphs have been tested.

Specifically, for HybridQA and TAT-QA, TAT-LLM (Zhu et all 2024), TableRAG (Yu
et al.| [2025), ODYSSEY (Agarwal et al., [2025), TTQA-RS (Bardhan et al., 2024) and
HippoRAG (Jimenez Gutierrez et al., |2024) are chosen for comparison. While for Hot-
potQA and MetaQA-2hop and 3hop, graph-centric RAG systems Graph-constrained Rea-
soning(GcR) (Luo et al., [2024), Think on Graph (ToG) (Ma et al., [2024) and Adap-
tiveRAG (Jeong et al., [2024])) are set as baselines. Each is configured per its recommended
settings for the corresponding modality.

* HSEQ (ours). (i) The best iteration—head pair results and (ii) The median pair results over
a grid of open-source models are provided. Three ablations are also included in experi-
ments: (i) LLM-only (no HSEQ); (ii) HSEQ w/o SFT (iteration agent not fine-tuned) and
(iii) heuristic-only guidance under fixed template without HSEQ-H.

HSEQ variants. For the iteration agent (HSEQ-I) and the head agent (HSEQ-H), different LLMs
are finetuned and used, listed as:

HSEQ-I: Falcon-H1-3B-Instruct; Qwen3-4B-Instruct-2507; DeepSeek-R1-Distill-Qwen-7B;
Falcon3-3B-instruct; Falcon3-7B-instruct; Llama-3.2-3B-Instruct.

HSEQ-H: Falcon3-10B-instruct; Falcon-H1-7B-Instruct; Llama-3.1-8B-Instruct; DeepSeek-
R1-Distill-Qwen-7B.

Compatible pairs are swept and final “best” and “median” results across benchmarks are counted,
with hyperparameters settings listed in App.

5.2 EXPERIMENT RESULT: HOW COMPETITIVE 1S HSEQ WITH OTHER BASELINES?

Table[2]summarizes answer quality across all datasets. HSEQ consistently improves over both LLM-
only and strong RAG baselines, while using controlled iteration and exposing explicit provenance.
Detailed per-model pairs are reported in Table |3] Efficiency measurements (tokens/latency/steps)
are in Table

Our HSEQ achieves strong and consistent gains on multiple benchmarks. On HotpotQA, MetaQA-
2hop, and MetaQA-3hop, both the best and median HSEQ configurations surpass all baselines. On
TAT-QA, HSEQ’s best run attains the top score overall, while the median run trails slightly behind
TAT-LLM (Zhu et al.| 2024). On the table-and-text HybridQA, HSEQ attains the best accuracy and
the second-best F1 (just behind HippoRAG (Jimenez Gutierrez et al., [2024)); the median configura-
tion remains third among baselines.

5.3 YIELDING BETWEEN EFFICIENCY AND ACCURACY

Table[3lists results using different HSEQ-I and HSEQ-A. The HybridQA results reveal a clear accu-
racy—efficiency trade-off across HSEQ agent pairs. The highest accuracy/F1 comes from Qwen3-4B
(HSEQ-I) + Falcon-H1-7B (HSEQ-H) (66.2 / 71.4), with the second-best Qwen3-4B + Llama-3.1-
8B (65.5 / 71.2). These configurations, however, incur larger iteration depth and latency (about
3.7-4.1 steps; 16.5-21.5 second). On the efficiency end, Llama-3.2-3B + Llama-3.1-8B delivers
the lowest steps and latency (2.11; 8.35k ms) with moderate accuracy (55.4 / 57.9), while Falcon3-
3B + Falcon-H1-7B attains the second-best efficiency (2.25; 11.7k ms) at similar quality. Taken

Under review as a conference paper at ICLR 2026

Table 2: Overall QA performance on heterogeneous benchmarks. Shaded cells (N/A) indicate the
method is not applicable to that benchmark; gray dashes () indicate metric not reported. The record

results use Qwen3-4B-Instruct-2507 for HSEQ-I; and Falcon-H1-7B-Instruct for HSEQ-H

Method HybridQA TAT-QA HotpotQA | MetaQA-2hop | MetaQA-3hop
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
LLM-only (direct QA)
Falcon3-10B-instruct 224 352 16.5 43.0 39.8
Falcon-H1-7B-Instruct 329 43.7 21.1 48.3 44.6
Llama-3.1-8B-Instruct 28.1 37.6 14.6 37.8 31.9
Qwen3-4B-Instruct-2507 30.3 42.1 17.8 422 38.5
RAG-based methods (single-pass / agentic baselines)
TAT-LLM 73.1 81.0 | NNA N/A N/A N/A | NJA N/A
TableRAG 479 619 686 | NJ/A N/A N/A N/A | NA N/A
ODYSSEY 51.5 66.0 N/A N/A N/A N/A | NJA N/A
TTQA-RS 62.3 706 N/A N/A N/A N/A | NJA N/A
HippoRAG 658 724 | 70.1 749 | 532 557 N/A N/A | NJA N/A
Graph-constrained Reasoning (GcR) N/A N/A | N/A N/A | 39.2 41.6 | 86.7 88.1 83.2 80.6
Think on Graph (ToG) N/A N/A | NJA N/A | 43.1 447 | 83.2 84.8 81.1 78.5
AdaptiveRAG N/A N/A | NJA N/A | 503 525 | 882 90.1 84.5 85.7
Our method: HSEQ
HSEQ (best) 664 72.1 | 75.7 83.5 | 563 58.6 | 959 91.1 934 883
HSEQ (median) 639 708 | 73.2 79.6 | 554 57.1 | 932 89.7 | 90.1 86.6

together, the Pareto frontier spans (i) Qwen-based iterators with larger heads for top accuracy, and
(ii) lightweight Llama/Falcon pairs for predictable low latency. Different agent pairs can be chosen
regarding whether accuracy or budget dominates.

Table 3: Overall performance of HSEQ agent pairs on Hybrid-QA: Accuracy/F1 and Efficiency.

Accuracy & F1 Efficiency
Tteration Agent (HSEQ-I) Head Agent (HSEQ-H) Avg. Acc | Avg. FI | Steps | | Latency (ms) |
Llama-3.2-3B-Instruct Falcon3-10B-instruct 60.4 62.8 2.08 12055.5
Qwen3-4B-Instruct-2507 | Falcon3-10B-instruct 63.9 64.5 4.1 20577.5
Falcon3-3B-instruct Falcon3-10B-instruct 59.3 61.1 2.6 10530.1
Llama-3.2-3B-Instruct Llama-3.1-8B-Instruct 554 57.9 2.11 8346.3
Qwen3-4B-Instruct-2507 | Llama-3.1-8B-Instruct 65.5 71.2 3.29 16503.2
Falcon3-3B-instruct Llama-3.1-8B-Instruct 61.2 65.1 2.46 11616.7
Llama-3.2-3B-Instruct Falcon-H1-7B-Instruct 58.7 63.9 241 12080.0
Qwen3-4B-Instruct-2507 | Falcon-H1-7B-Instruct 66.2 714 3.71 21479.2
Falcon3-3B-instruct Falcon-H1-7B-Instruct 56.1 58.6 2.25 11714.4
Llama-3.2-3B-Instruct DeepSeek-R1-Distill-Qwen-7B 62.5 60.2 2.75 15073.7
Qwen3-4B-Instruct-2507 | DeepSeek-R1-Distill-Qwen-7B 62.8 66.7 4.07 21094.8
Falcon3-3B-instruct DeepSeek-R1-Distill-Qwen-7B 61.4 62.0 3.01 13709.7

5.4 EFFICIENCY ANALYSIS

To test HSEQ framework’s latency, evidence actually inspected are calculated: iteration steps for
HSEQ-I and wall-clock latency are calculated. Results are summarized below. “LLM-only” incurs
a single forward pass (1 step) and thus the lowest raw latency, but this comes at the cost of weaker
multi-hop accuracy and no explicit provenance in Table[3] In contrast, graph-centric ToG performs
many expansion steps (11-17 on average), which substantially increases latency (e.g., over 22k ms
on HotpotQA and 24k ms on MetaQA-3hop), even though it is designed for multi-hop reasoning.

Table 4: Efficiency metrics on HotpotQA, MetaQA-2hop and MetaQA-3hop.

Efficiency
Method HotpotQA MetaQA-2hop MetaQA-3hop
Steps | Latency (ms) | | Steps | Latency (ms) | | Steps [Latency (ms) |
LLM-only 1 3266.3 1 2556.4 1 3631.1
Think on Graph (ToG) | 13.28 22708.2 11.73 15707.6 16.58 24307.4
HSEQ (ours, best) 4.00 6247.0 3.27 5732.2 4.11 10632.8
HSEQ (ours, median) 4.17 12114.4 3.76 9480.1 4.59 13505.3

Under review as a conference paper at ICLR 2026

HSEQ occupies a middle ground in this trade-off. Both the best and median HSEQ variants main-
tain short, budgeted loops of roughly 3-5 steps across datasets, yet reduce latency by more than
half relative to ToG on all three benchmarks. This indicates that guided, windowed iteration over
HSEQ can retain multi-hop capability while avoiding the long expansion chains and repeated graph
traversals of ToG. Compared with LLM-only, HSEQ pays a moderate overhead in latency but gains
structured evidence and substantially higher accuracy on multi-step questions. HSEQ provides a
more balanced operating point with bounded steps and competitive performance.

5.5 ABLATION STUDIES

Ablation studies are set to evaluate each component of HSEQ framework on representative text
(HotpotQA) and table-text (HybridQA) tasks. Following tasks are considered: (a) No SFT (iteration
agent not fine-tuned); (b) No guidance (remove g); (c) Heuristic-only guidance (no planner) ; and
(d) LLM-only (without multi-agent but use HSEQ as part of prompt for data input).

Table 5: Ablations on benchmarks.

Variant HybridQA TAT-QA HotpotQA | MetaQA-3hop | MetaQA-3hop
Acc Fl Acc Fl Acc Fl Acc F1 Acc F1
HSEQ (full) 664 721 | 75.7 83.5 | 563 58.6 | 95.9 91.1 93.4 88.3
w/o SFT (base iteration) | 57.3 65.7 | 60.4 669 | 46.5 47.8 | 78.3 80.1 74.6 72.5
w/o guidance 59.2 62.6 | 68.8 75.1 | 50.5 512 | 824 83.0 79.2 73.8
heuristic-only guidance | 63.8 67.3 | 704 79.9 | 54.7 56.1 | 87.3 854 | 83.9 86.1
LLM-only (no HSEQ) 329 437 21.1 48.3 44.6

The ablation study demonstrates the necessities of all HSEQ’s components, with differing sensitiv-
ity across formats. Using heuristic-only guidance yields the smallest degradation from the full sys-
tem—typically a modest drop in Acc/F1—indicating that a lightweight, template-style prior already
guides HSEQ-I effectively when the planner is absent. Removing fine-tuning (w/o SFT) causes
a larger decline, but with the use of structured HSEQ data, accuracy remains substantially higher
than LLM-only. Without guidance (w/o guidance) influence performance, as in prompt HSEQ-I is
only asked to choose necessary evidence from below to answer the question. The results under-
score the role of guidance as a portable sufficiency prior. Finally, the LLM-only setting performs
worst across all benchmarks, reflecting the difficulty of recovering minimally sufficient evidence
without iterative, structure-aware selection. Overall, the results suggest that (i) HSEQ’s unified data
structure is the primary source of robustness, (ii) SFT HSEQ-I provides consistent gains, and (iii)
guidance—even a simple heuristic ones from template-would increase overall accuracy strongly.

6 CONCLUSION

This paper introduces HSEQ, a compact framework for heterogeneous QA that (i) unifies text,
tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structure and
provenance; (ii) performs guided, budget-aware iteration that selects small sets of salient segments
and predicts sufficiency for early stopping; and (iii) feeds a canonicalized evidence package to a head
module for answer synthesis. By replacing single-shot retrieval and unconstrained agentic loops with
short, structure-aware selections equipped with an explicit sufficiency signal, HSEQ concentrates
computation on evidence actually inspected, delivers predictable latency under token/tool budgets,
and preserves auditability through provenance-aware canonicalization.

Across heterogeneous QA benchmarks, HSEQ achieves strong answer quality alongside consistent
efficiency, revealing a controllable trade-off between accuracy and cost: larger head with finetuned
small iterators achieved both fast and accurate QA. The format-agnostic interface and standardized
action schema enable a single learned policy to operate across modalities without per-dataset retriev-
ers, bespoke prompts, or tokenizer changes. Future work will extend HSEQ to multi-turn/streaming
settings with dynamic corpora, mitigate hallucination on sufficiency judge under noisy evidence.

10

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT.

We affirm adherence to the ICLR Code of Ethics. All experiments use publicly available benchmarks
(HybridQA, TatQA, HotpotQA, MetaQA) under their respective licenses; no new human-subject
data were collected, and no personally identifiable information (PII) is processed. Our HSEQ con-
struction preserves provenance via identifiers and offsets while avoiding storage of copyrighted text
beyond short snippets necessary for QA. As with any LLM-based system, model outputs may re-
flect societal biases inherited from pretraining corpora; we mitigate this risk by requiring explicit,
auditable evidence and by permitting abstention when sufficiency is not met. We release code and
configuration solely for research use and discourage deployment in high-stakes settings without
domain-specific evaluation and additional safeguards (fairness, privacy, and safety audits).

8 REPRODUCIBILITY STATEMENT.

We provide an anonymous GitHub link (https://anonymous.4open.science/r/HSEQ-anonymous-
0DAC) with code and scripts to (i) construct HSEQ from raw corpora, (ii) fine-tune the iteration
policy with LoRA, and (iii) run guided inference and evaluation. Implement details are shown
in App.[A3] containing models used (App.[A.3.1), prompts (App.[A.3.2} [A.3.3), LoRA adaption
parameters (App.[A.3.4) and reproducibility notes (App. [A.3.6). Theorems include complete as-
sumptions and proofs (App. [A.T). Apart from the code, detailed examples of agents interactions
(example questions, LLM outputs, data retreived each steps, etc.) are provided in App.[A.5]and as a
jsonl file in our anonymous repository.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ankush Agarwal, Chaitanya Devaguptapu, et al. Hybrid graphs for table-and-text based question
answering using llms. arXiv preprint arXiv:2501.17767, 2025.

Jayetri Bardhan, Bushi Xiao, and Daisy Zhe Wang. Ttqa-rs-a break-down prompting approach
for multi-hop table-text question answering with reasoning and summarization. arXiv preprint
arXiv:2406.14732, 2024.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. Rq-rag:
Learning to refine queries for retrieval augmented generation. arXiv preprint arXiv:2404.00610,
2024.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hy-
bridqa: A dataset of multi-hop question answering over tabular and textual data. arXiv preprint
arXiv:2004.07347, 2020.

Xinyue Chen, Pengyu Gao, Jiangjiang Song, and Xiaoyang Tan. Hiqa: A hierarchical contextual
augmentation rag for multi-documents qa. arXiv preprint arXiv:2402.01767, 2024.

Yiqun Chen, Lingyong Yan, Weiwei Sun, Xinyu Ma, Yi Zhang, Shuaigiang Wang, Dawei Yin,
Yiming Yang, and Jiaxin Mao. Improving retrieval-augmented generation through multi-agent
reinforcement learning. arXiv preprint arXiv:2501.15228, 2025.

Philipp Christmann and Gerhard Weikum. Rag-based question answering over heterogeneous data
and text. arXiv preprint arXiv:2412.07420, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318-30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088—10115, 2023.

11

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 6491-6501, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Rajaram Naik, Pengshan
Cai, and Alfio Gliozzo. Re2g: Retrieve, rerank, generate. arXiv preprint arXiv:2207.06300, 2022.

Sagar Goyal, Eti Rastogi, Sree Prasanna Rajagopal, Dong Yuan, Fen Zhao, Jai Chintagunta, Gautam
Naik, and Jeff Ward. Healai: A healthcare 1lm for effective medical documentation. In Proceed-
ings of the 17th ACM International Conference on Web Search and Data Mining, pp. 1167-1168,
2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024a.

Yue Guo and Yi Yang. Econnli: evaluating large language models on economics reasoning. arXiv
preprint arXiv:2407.01212, 2024.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. arXiv preprint arXiv:2410.05779, 2024b.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. Grag: Graph retrieval-
augmented generation. arXiv preprint arXiv:2405.16506, 2024.

Yiqgian Huang, Shiqi Zhang, and Xiaokui Xiao. Ket-rag: A cost-efficient multi-granular indexing
framework for graph-rag. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining V. 2, pp. 1003-1012, 2025.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving. arXiv preprint arXiv:2405.11403, 2024.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong C Park. Adaptive-rag:
Learning to adapt retrieval-augmented large language models through question complexity. arXiv
preprint arXiv:2403.14403, 2024.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969-7992, 2023.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
ologically inspired long-term memory for large language models. Advances in Neural Information
Processing Systems, 37:59532-59569, 2024.

12

Under review as a conference paper at ICLR 2026

Jiajie Jin, Yutao Zhu, Zhicheng Dou, Guanting Dong, Xinyu Yang, Chenghao Zhang, Tong Zhao,
Zhao Yang, and Ji-Rong Wen. Flashrag: A modular toolkit for efficient retrieval-augmented
generation research. In Companion Proceedings of the ACM on Web Conference 2025, pp. 737-
740, 2025.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459-9474, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zechen Li, Shohreh Deldari, Linyao Chen, Hao Xue, and Flora D Salim. Sensorllm: Aligning large
language models with motion sensors for human activity recognition. 2024.

Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, and Jun Ma. Hm-rag: Hierar-
chical multi-agent multimodal retrieval augmented generation. arXiv preprint arXiv:2504.12330,
2025.

Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting
Dong, Meina Song, Wei Lin, Yifan Zhu, et al. Chatkbqa: A generate-then-retrieve framework
for knowledge base question answering with fine-tuned large language models. arXiv preprint
arXiv:2310.08975, 2023.

Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, and Shirui Pan. Graph-
constrained reasoning: Faithful reasoning on knowledge graphs with large language models.
arXiv preprint arXiv:2410.13080, 2024.

Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Dinh Phung, Chen Gong, and Shirui Pan. Gfm-rag:
graph foundation model for retrieval augmented generation. arXiv preprint arXiv:2502.01113,
2025.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-
guided retrieval augmented generation. arXiv preprint arXiv:2407.10805, 2024.

Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model
reasoning. arXiv preprint arXiv:2405.20139, 2024.

Nathalia Nascimento, Paulo Alencar, and Donald Cowan. Self-adaptive large language model (1lm)-
based multiagent systems. In 2023 IEEE International Conference on Autonomic Computing and
Self-Organizing Systems Companion (ACSOS-C), pp. 104-109. IEEE, 2023.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and
Siliang Tang. Graph retrieval-augmented generation: A survey. arXiv preprint arXiv:2408.08921,
2024.

Haritz Puerto, Gozde Giil Sahin, and Iryna Gurevych. Metaqa: Combining expert agents for multi-
skill question answering. arXiv preprint arXiv:2112.01922, 2021.

Andrew Reynolds and Felix Corrigan. Improving real-time knowledge retrieval in large language
models with a dns-style hierarchical query rag. Authorea Preprints, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
generation: A survey on agentic rag. arXiv preprint arXiv:2501.09136, 2025.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

13

Under review as a conference paper at ICLR 2026

Jianrui Wang, Yitian Hong, Jiali Wang, Jiapeng Xu, Yang Tang, Qing-Long Han, and Jiirgen Kurths.
Cooperative and competitive multi-agent systems: From optimization to games. IEEE/CAA Jour-
nal of Automatica Sinica, 9(5):763-783, 2022.

Junde Wu, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Min Xu, Filippo Menolascina, and Vicente Grau.
Medical graph rag: Towards safe medical large language model via graph retrieval-augmented
generation. arXiv preprint arXiv:2408.04187, 2024.

Ruiyi Yang, Hao Xue, Imran Razzak, Hakim Hacid, and Flora D Salim. Beyond single pass, looping
through time: Kg-irag with iterative knowledge retrieval. arXiv preprint arXiv:2503.14234, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu, and Zhaofeng Liu. Evaluation of retrieval-
augmented generation: A survey. arXiv preprint arXiv:2405.07437, 2024.

Wenhao Yu. Retrieval-augmented generation across heterogeneous knowledge. In Proceedings of
the 2022 conference of the North American chapter of the association for computational linguis-
tics: human language technologies: student research workshop, pp. 52-58, 2022.

Xiaohan Yu, Pu Jian, and Chong Chen. Tablerag: A retrieval augmented generation framework for
heterogeneous document reasoning. arXiv preprint arXiv:2506.10380, 2025.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander Smola, and Le Song. Variational reasoning
for question answering with knowledge graph. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
Yang, Wentao Zhang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473, 2024.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng,
and Tat-Seng Chua. Tat-qa: A question answering benchmark on a hybrid of tabular and textual
content in finance. arXiv preprint arXiv:2105.07624, 2021a.

Fengbin Zhu, Wenqgiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng Chua.
Retrieving and reading: A comprehensive survey on open-domain question answering. arXiv
preprint arXiv:2101.00774, 2021b.

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang, Moxin Li, and Tat Seng Chua. Tat-llm: A
specialized language model for discrete reasoning over financial tabular and textual data. In
Proceedings of the 5th ACM International Conference on Al in Finance, pp. 310-318, 2024.

Jingwei Zuo, Maksim Velikanov, Ilyas Chahed, Younes Belkada, Dhia Eddine Rhayem, Guillaume
Kunsch, Hakim Hacid, Hamza Yous, Brahim Farhat, Ibrahim Khadraoui, et al. Falcon-hl: A
family of hybrid-head language models redefining efficiency and performance. arXiv preprint
arXiv:2507.22448, 2025.

A APPENDIX

A.1 THEORETICAL PROPERTIES OF HSEQ
A.1.1 PRELIMINARIES AND ASSUMPTIONS

Segment schema. An HSEQ is a finite multiset S}, of segments s = (id(s), £(s), p(s), ¢(s), u(s)).
Here / is a level tag; p is a parent pointer with p(s) = L if s is a root; ¢ is content; 4 is metadata,
possibly including of fsets (for text), schema and row indices (for tables), and triplet fields (for
KGs).

14

Under review as a conference paper at ICLR 2026

Encoder/decoder. Let ® map any finite corpus X (text + tables + KG) to .S, = ®(X), and let ¥
map Sy, back to a corpus (.S,). We assume the following modality-specific invariants are enforced
by the adapters (they match the implementation but are stated abstractly).

(T1) Text offsets. For each text item € X7, if s is a paragraph (resp. sentence) segment for a
span z[a : b) (resp. xz[u : v) inside a paragraph), then u(s).offsets = [a,b] (resp.
[a + u,a+v]), c(s) = x[a : b) (resp. z[a + u : a + v)), and p is the unique parent in the
containment chain (sentence — paragraph — document).

(T2) Table rows. For a table with header H = (hy,...,h¢) and n rows (r;)?_;, the table-root
segment stores H in p(-).schema; each row-segment s; stores c¢(s;) = dict(H +— r;)
and either (a) an explicit row index p(s;).of fsets = [i, —1], or (b) a total order on row
segments consistent with the original row order.

(T3) KG triples. For a KG edge multiset £ C £ x R x £ (optionally time-stamped), each
edge (h,r,t,7) corresponds to exactly one triplet segment s with ¢(s) = (h,r,t) and
p(s).time = 7; parent p(s) is the unique subgraph-root for the neighborhood.

Benign equivalence. Define an equivalence relation = over corpora by (i) ignoring differences in
text whitespace that do not change the sequence of non-whitespace characters; (ii) allowing a global
column permutation 7 € S¢ applied uniformly to the header and all row dictionaries of a table; (iii)
treating KGs as edge multisets (edge order immaterial).

Ordering and window. Let p be a total order over S}, (e.g., paragraph < row < sentence < triplet
with a deterministic tie-break). The stream induced by p lists S}, as (s1, . . ., sy). For a window size
W € N, Window(Sp; W, p) returns the first W items of the stream that are not already selected;
Refresh(Sy, M; W, p) returns the next W unseen items after removing M. Both are monotone w.r.t.
p: the sequence of items exposed across refreshes is exactly the p-stream with already selected items
removed.

Admissibility. For a question ¢, a supporting set E* C S}, is answer-supporting if the head module
‘H yields the correct answer when given only E*. An order p is admissible for (q, Sy,) if there exists
aminimal L € {1,...,|Sp|} such that E* C {sq,..., sy} for some answer-supporting E*.

Sufficiency predicate. Let Suff(}) be a predicate that holds iff M contains some answer-
supporting subset. We assume a calibrated sufficiency head: whenever Suff(M/;) becomes true,
the policy can set its stop flag s; = 1 at that step or earlier

A.1.2 FAITHFUL LINEARIZATION

Theorem 1 (Faithful linearization). For any finite corpus X, under (T1)—(T3), the encoder ® is
injective up to =, i.e., U(P(X)) = X.

Proof. Write X = Xiext W Xep1 W Xy and let S, = ©(X). We show ¥(P(-)) acts as identity
modulo = on each modality and hence on their disjoint union.

Text. Consider z € Xiext. By (T1) each paragraph (resp. sentence) segment s stores the exact
substring ¢(s) = z[a : b) (resp. z[u' : v")) and absolute offsets in p(s).of fsets. Let S, C Sy,
be all segments rooted at the document node of x. The decoder reconstructs =’ by placing every
paragraph substring at its [a, b) range and merging overlaps implied by sentence children; uniqueness
of parents eliminates ambiguity. Because offsets are absolute and children are contained in parents
by construction, the reconstructed x’ equals x character-for-character; any whitespace normalization
is permitted by =.

Tables. Let a table have header H = (hy, ..., h¢) and rows (r;)"_;. By (T2), p(-).schema stores
H, and each row segment s; stores the dictionary c(s;) mapping H to the row tuple r;, together
with either an explicit row index or a total order consistent with the original order. The decoder

!This is standard in supervised setups where the stop head is trained to fire at first sufficiency (or with
tolerance).

15

Under review as a conference paper at ICLR 2026

reassembles the matrix [H;71;. . .;7,]. Any global column permutation 7 yields an equivalent table
under =; thus the reconstruction is unique modulo schema-order permutations.

KGs. Let E be the multiset of edges. By (T3), each edge (h,r,t,) corresponds bijectively to one
triplet segment with ¢(s) = (h,r,t) and p(s).t ime = 7, and parentage is irrelevant to content. The
decoder collects the multiset of triplets, which equals £'; edge order is immaterial and thus fits =.

Since the three reconstructions are independent and disjointly supported, ¥(®(X)) = X follows.
O

A.1.3 WINDOWED ITERATION: COVERAGE AND COMPLEXITY

Let E* C {s1,..., s} be an answer-supporting set with minimal prefix length L under an admis-
sible order p. Fix window W > k > 1 and define the iterative selection with refresh as in the main
text.

Lemma 1 (Prefix coverage under k-selection). After t steps, the selected set M, contains at least
min{kt, L} items from the p-prefix {s1,...,sp}. In particular, E* C My for T = [L/k].

Proof. We prove by induction on ¢ > 0 that |M; N {s1,...,sr}| > min{kt, L}.
Base ¢t = 0: My = @ so the bound is 0.

Inductive step: assume the claim for £ — 1. At step ¢, the window exposes (by monotonicity of
Refresh) the earliest W unseen items under p; hence at least the next k unseen items in the prefix
{s1,...,sL} are eligible (because W > k). Selecting k new items (or fewer if fewer remain in the
prefix) increases the count by at least min{k, L — (¢ — 1)k}, giving min{k¢, L}. Once all L prefix
items are selected, the bound saturates at L. O

Proposition 1 (Guaranteed halt). Assume a step cap Thax and a sufficiency head that can set
sy = 1 whenever Suff(My;) holds. Under admissibility, the control loop halts after at most
min{Tnax, [L/k]} steps.

Proof. By Lemma [1] after T = [L/k] steps, E* C Mrp; hence Suff(M7) holds and the stop
head can fire at or before 7. Independently, the hard cap T},.x forces termination by 7}, steps.
Therefore 7 < min{T ax, T}

Theorem 2 (Budgeted selection complexity). Let C(W) > 0 be the (deterministic) per-step context
cost determined by window size W. Under admissibility, the total selection cost is bounded by

COStselect é C(W) : min{Tmaxv I—L/k;l}v
independent of |Sy|. If L is a nonnegative integer random variable with E[L] = L < oo, then

E[Costselect] < C(W) - Elmin{Tiax, [L/k]}] < C(W) - min{Tax, L/k + 1}.

Proof. The first bound follows by multiplying the per-step cost by the halt bound in Proposition|[I]
For the expectation, use linearity of expectation and the inequality [z] < z + 1 for z > 0:
E[[L/k]] < E[L]/k+1 = L/k+1, and E[min{a, X }] < min{a,E[X]} fora > 0and X > 0. O

A.2 WEAK-POSITIVE LABELING AND TRAJECTORY SYNTHESIS

Positive identification. For each instance, segments are sorted by a level priority that favors
container-like units (e.g., paragraphs, rows). Within a capped candidate set, a positive pool P~ is
constructed by: (i) exact/substring matching of the gold answer in content; and (ii) if insufficient,
selecting top segments by lexical Jaccard overlap between tokenized ¢ and segment content.

Sufficiency heuristic. A sufficiency threshold is used to label s} if the union of already-selected
and newly-picked positives reaches > u, mark sufficient= 1 and stop; otherwise continue.
Small © encourages minimal-evidence solutions.

16

Under review as a conference paper at ICLR 2026

Trajectory construction. Given P* and a per-step cap k, a target sequence is synthesized by
greedily choosing up to k& unseen positives at each step until sufficiency holds or candidates are
exhausted. Low-confidence choices (from lexical overlap rather than exact match) can be down-
weighted in the loss.

Proxy selection metric. During development, a lightweight proxy evaluates selection quality:
for a held-out set, the agent’s chosen ids are compared with target ids to compute micro Preci-
sion/Recall/F1 over segment identifiers. This tracks selection ability without requiring full QA eval-
uation.

A.2.1 CANONICALIZATION AND SOUNDNESS

Definition 1 (Canonicalizer). A canonicalizer k maps M C Sy, to a finite structure k(M) consisting
only of tuples (id, £, content_view, provenance) where content_view is a deterministic, lossless
projection of ¢(s) and 11(s), and provenance contains the fields needed to locate s in Sy, (e.g., offsets
or coordinates). We say k is content-preserving if for all M, the multiset {(c(s),u(s)) : s € M} is
reconstructible from r(M).

Proposition 2 (Soundness and auditability). If Suff(M) holds and k is content-preserving, then the
head H applied 1o (q, k(M) is supported solely by items in M, and every atomic support can be
traced back to a unique segment in M via id and provenance.

Proof. By content preservation, x (M) contains all information from {(c(s), u(s)) : s € M}; there-
fore H restricted to x(M) depends only on evidence in M. Since « stores id and provenance per
item, any atomic support used by H can be mapped to a unique s € M. Auditability follows. O

A.2.2 PROBABILISTIC COMPLETENESS UNDER STOCHASTIC SELECTION

We next quantify success probability for a stochastic policy that may fail to pick all supporting items
even if they appear early in the stream.

Definition 2 (Exposure count). Fix an admissible p with prefix length L and selection size k > 1.
Let R = [L/k). An element e € {s1,...,s1} is said to be exposed at steps 1, ..., R, meaning it
either is in the first window where it lies or remains eligible until selected; monotone refresh ensures
at most R exposures before all prefix items are exhausted.

Assumption 1 (Per-exposure success). There exists p € (0, 1] such that for every e € E* and for
every step t at which e is exposed and not yet selected, the policy includes e in K; with probability
at least p, independently across steps for the same e.

Theorem 3 (Stochastic completeness). Under admissibility and Assumption |I| with R = [L/k]
and m = |E*|, the probability that all items in E* are selected within R steps is bounded below by

P[E* C Mg] > 1—m(1—p)E.

Consequently, by Proposition the probability that the loop halts by min{Ty,.x, R} with a correct
answer is at least 1 — m (1 — p)™.

Proof. Fix e € E*. By Assumption[I] across its at most R exposures, the probability that e is never
selected is at most (1 — p)*t. By the union bound over the m items in E*,

P[3e € E* not selected by step R < m (1 —p)*.

Taking complements yields the first claim. The second claim follows because once E* C M,,
Suff (M) holds and the stop head can fire; the hard cap can only make halting earlier. O

A.2.3 DISCUSSION OF ASSUMPTIONS

The injectivity result (Thm. (1) relies on invariants (T1)—(T3), which are satisfied by construction in
the HSEQ adapters (offsets and row indices/ordering are recorded; triplets are stored verbatim). Ad-
missibility is a regularity condition stating that an order p exists (often paragraph/row-first) placing
supporting segments early; in practice this is further improved by guidance. Assumption [I]abstracts
a calibrated selector that repeatedly assigns nontrivial probability mass to any exposed, still-missing
support item; the bound in Theorem [3]is conservative (union bound) and can be tightened under
additional structure (e.g., adaptive k, or margin assumptions on scoring).

17

Under review as a conference paper at ICLR 2026

A.3 IMPLEMENTATION DETAILS

A.3.1 AGENT MODELS USED FOR HSEQ

Models used for both iteration agent and head agent are shown in Table[6] grouped by size. Most
experiments are done by using small and medium models (as of the result shown in main text).

Table 6: Iteration-agent and head agent base models grouped by size.

Group Model (HF id)
tiiuae/Falcon-H1-0.5B-Instruct
tiiuae/Falcon-Hl1-1.5B-Instruct

SMALL tiiuae/Falcon3-1B-instruct
meta-llama/Llama-3.2-1B-Instruct
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
tiiuae/Falcon3-3B-instruct
tiiuae/Falcon-H1-3B-Instruct
Qwen/Qwen3-4B-Instruct-2507
tiiuae/Falcon3-7B-instruct
tiiuvae/Falcon-H1-7B-Instruct
meta-llama/Llama-3.2-3B-Instruct
meta—-llama/Meta-Llama-3-8B-Instruct
meta-llama/Llama-3.1-8B-Instruct
deepseek-ai/DeepSeek—-R1-Distill-Qwen-7B
deepseek-ai/DeepSeek-R1-Distill-Llama-8B
tiiuae/Falcon3-10B-instruct
tiiuvae/Falcon-H1-34B-Instruct
Qwen/Qwen3-30B-A3B-Instruct—-2507

LARGE deepseek—-ai/DeepSeek-R1-Distill-Qwen-14B
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
deepseek-ai/DeepSeek-R1-Distill-Llama-70B
meta-llama/Llama-3.1-70B-Instruct

MEDIUM

A.3.2 ITERATION-AGENT PROMPTS AND OUTPUT SCHEMA

System instruction. The iteration agent is conditioned with a concise, role-defining system mes-
sage:

You are an iteration agent working over a hierarchical
sequence (H-Seq) .

Given a question and a list of candidate segments (each with
an id and text)

select the top-k segment_ids that best support answering the
question.

Then decide if the selected evidence is sufficient to stop.
Return ONLY compact JSON with keys: type, args.segment_ids,
args.strategy, args.top-k, sufficiency.

WITHOUT ANY EXPLAINATION.

Prompt template. Each training step uses a structured multi-section prompt:

Instruction
{system-instruction}

Question

{a}

Guidance

{g (g, type)}

Selected-So-Far

- [seg_.id] truncated_content

##4# Candidate-Window

— [seg_.id] truncated_content

18

Under review as a conference paper at ICLR 2026

Output (JSON)

Only identifiers, levels, truncated content, and key metadata of segments are serialized.

Output schema. The agent must emit deterministic, machine-checkable JSON:

{ "type": T"select", "args": { "segment_ids": [...],
"strategy": "guided_topk", "topk": k }, "sufficiency":
true/false }

No free-form text is allowed. This constraint simplifies supervision and evaluation.

Masking for SFT. During supervised fine-tuning, the loss is applied only to the output portion of
the sequence (prompt tokens are masked), yielding a standard next-token objective over the action
string while keeping inputs loss-free.

A.3.3 GUIDANCE GENERATION AND CACHING

Head-generated guidance. A lightweight planner (“head”) converts (g, type) into a short plan g
that specifies: (i) what to retrieve first, (ii) optional branches, and (iii) a sufficiency hint. The planner
is prompted with:

You are a planning assistant. Given a question, write
a short retrieval plan for an iteration agent selecting
evidence snippets. Specify ONLY what to retrieve first,

possible branches, and when to stop (sufficiency condition).

A short completion is generated and, if too brief or incomplete, a single continuation is requested to
end with an explicit stop condition.

Heuristic templates. When a head is unavailable or for ablations, templates keyed by coarse pat-
terns produce g, start with:

"Plan: retrieve a minimal set of highly relevant snippets; prefer
concise facts."

Then add the following according to Qyype:

* Numeric: Look for numeric mentions and table rows; stop when final number is explicit
or corroborated.

» Factoid (who/which/where/when): Focus on short spans that directly contain the answer;
stop on a clear statement..

* Binary: Retrieve one-two definitive statements; stop when evidence strongly supports
yes/no..

* Default: Prefer snippets naming key entities/relations; stop when answer is explicitly
stated.

Caching. Guidance strings are cached per example using a stable key (dataset name and a hash of
@) under a directory organized by head model id. Cache is consulted before running the head planner
to reduce overhead.

Settings. The planning head is run with short outputs and deterministic decoding. A minimal-
length heuristic is applied to avoid truncated guidance.

A.3.4 LORA ADAPTATION AND OPTIMIZATION

Parameterization. The iteration agent is obtained by adding low-rank adapters to a base causal
LLM. Adapters are attached to attention projections (q_proj, k_proj, v.proj, o_proj) and
MLP projections (gate_proj, up-proj, down_proj); vocabulary and positional embeddings
are unchanged.

19

Under review as a conference paper at ICLR 2026

Table 7: Supervised fine-tuning (SFT) hyperparameters for each model-size group. These settings
apply to all models within the corresponding group.

Group Target steps | Batch | GA LR ML | MS | Top-k | Mi | BF16
SMALL 12000 2 8 2.0x107° | 3072 | 48 2 4 Yes
MEDIUM 9000 2 8 1.5x107° | 3072 | 48 4 4 Yes
LARGE 4500 1 16 | 1.0x10°° [2048 | 32 5 4 | Yes

Notes. Batch is ——per_device_train_batch_size. GradAccis ——grad_accum. LRis ——1r. ML,
MS, Top-k, Mi map to ——-max_length, ——max_segments, ——top-k, ——max_iters. BF16 indicates
——-bf16 enabled.

Default configuration. LoRA rank » = 16, scaling o = 32, dropout 0.05, no bias; the language
head is preserved as a save-module. Mixed-precision and 4-bit weight quantization (NF4 with dou-
ble quantization) are used to reduce memory. Gradient checkpointing is enabled.

Training schedule. A cosine learning-rate schedule with warmup ratio 0.03 is used; batches are
accumulated over several steps to match the target global batch size. Maximum input length is
capped to a few thousand tokens; candidate windows and per-step k are tuned to respect the overall
budget.

Mixture and curriculum. Examples are sampled across datasets by normalized weights; quotas
are computed for a target mixed size and shuffled. A short-to-long curriculum increases the maxi-
mum number of steps 7" as training progresses.

Finetuning Parameters

A.3.5 CANONICALIZATION AND SUFFICIENCY

Canonical evidence package. At termination, a modality-agnostic canonicalizer x converts the
selected set M into a compact, auditable structure

k(M) = {(id, level,uri,offsets, source_type, snippet; meta)}seMT,
with the following contract: (i) id: globally unique, deterministically derived (e.g.,
shal(uri,offsets)); (ii) uri: source identifier with version (e.g., document path or graph
name); (iii) offsets: zero-based half-open character indices [a,b) into the original source; for
tables, [i,j] denotes row/column coordinates; for KGs, of fsets= (—1,—1); (iv) snippet: a
human-readable content aligned to sentence/field boundaries when possible; (v) meta: integrity
and alignment helpers (schema, time, source_version, shal). Duplicates are removed by
(uri,offsets) and the package is deterministically ordered by uri then offsets. Typed
views are derived on demand: text = spans with section/paragraph ids; table = row_id, col_ids,
schema, cell_coords; KG = (h,r,t) plus optional validity time.

Stopping signal. The sufficiency head outputs s; € {0,1} at each step. Training targets follow
a coverage-based heuristic: s} = 1 if and only if the current M, satisfies task-specific adequacy
(e.g., contains at least one gold-positive segment; achieves full slot coverage for table QA; or yields
a unique answer span/number under a fixed head). For weak supervision, per-step weights down-
weight low-confidence positives (App.[A.2)). Inference uses a calibrated threshold 7 on the model’s
sufficiency score p; and enforces a minimum step count 7yi,:

stopat 7 = min{t > Tinin : P+ > 7} or when budget B is exhausted.

Optionally, a lightweight contradiction checker triggers a one-shot refinement loop of at most A
additional steps with tightened guidance ¢’ and reduced budget B’. Thresholds (7, Trin) are selected
on the development split and may be calibrated via temperature scaling.

A.3.6 REPRODUCIBILITY NOTES

* Seed and sampling. A fixed seed is used for example subsampling and order shuffling.

20

Under review as a conference paper at ICLR 2026

Table 8: Notation used throughout the paper.

Symbol

Meaning

Natural-language query (question).

D = {(x,m;)},

Heterogeneous corpus with items x;
{text,table, kg}.

and modality tags m; S

m;

Modality label for the j-th item (text / table / KG).

T, Tm Modality-aware adapter; 7(D) produces the unified hierarchical sequence. 7, is
the adapter for modality m.
Sh The HSEQ (hierarchical sequence): S}, = |_|j Tm, (2;) € S*.
S Segment universe. Each segment s € S is a lightweight record.
s = (id(s), £(s),p(s),c(s), u(s)) | Segment fields: unique identifier, level tag (granularity), parent pointer, compact
human-readable content, standardized metadata.
£(s) Level tag (e.g., document/paragraph/sentence,
table_row/table_cell, triplet/subgraph).
p(s) Parent pointer (container linkage) encoding locality in the hierarchy.
c(s) Compact content snippet (text span / serialized table row / triple).
1(s) Metadata with fixed keys (e.g., source_id, uri, offsets/coordinates,
schema, time).
Ty HSEQ-I iteration policy (LLM-based) with parameters 6; operates over (g, Sp) to

select evidence iteratively.

g = g(q, type)

Short guidance prior (from planner/head or heuristics) shaping early exploration
and stop notion.

B, B,

Budget (global / per-step): token, tool-call, step, and/or latency limits.

M,

Selected-evidence set at step ¢; M* is the final selected set at termination.

C

Candidate window at step ¢ (bounded by window size and ordering).

kW

Top-k selection cap per step; window size W for the exposed candidate stream.

Tm ax) Tmin

Maximal and minimal number of iteration steps (cap and anti—early-stop).

p

Deterministic ordering over S}, levels (e.g., paragraph < row < sentence < triplet)
to form the stream.

N()

Structure-aware neighborhood operators (parent/child, row/column, KG relation
hops).

Qt, St

Action at step ¢ (e.g., select up to k segments and/or expand neighborhoods) and
sufficiency prediction s, € {0, 1}.

Budget-aware sufficiency criterion queried by the iterator to trigger termination.

Canonicalizer mapping M, to provenance-preserving evidence package (ids, lev-
els, offsets/coordinates, snippets).

HSEQ-H head module for answer synthesis from (¢, <(]M;)); can also generate
guidance g.

Optional verifier; on contradiction detection, triggers a brief refinement loop with
tightened ¢’ and reduced B’.

Gold answer and system prediction, respectively.

Minimally sufficient evidence set (w.r.t. a fixed answerer) for ¢ in D.

Window(+), Refresh(-)

Operators to expose a bounded candidate window and to advance it while removing
already selected segments.

A

Max number of additional refinement steps if the verifier £ requests a retry.

* Segment capping. The number of serialized candidate segments per step is capped to
respect the overall token budget; truncation is applied to content strings for display.

* Budget control. Global limits on steps, tokens, and optional tool calls are enforced; guid-
ance encourages early sufficiency.

* Hardware. Experiments are run on maximum 4 NVIDIA H200 Tensor Core GPU.
Mixed-precision and 4-bit quantization substantially reduce memory; typical training runs

fit on a single GPU.

A.4 NOTATIONS

Table [8|lists all symbols used in main context.

21

Under review as a conference paper at ICLR 2026

A.5 EXAMPLE USING HSEQ
A.5.1 CASE STUDY: GUIDED ITERATIVE RETRIEVAL ON HYBRIDQA

Setup. Query q: “Who is the author of the novel that inspired the 2004 Russian film directed
by Timur Bekmambetov?” HSEQ-I (iterator): Qwen3-4B-Instruct-2507; HSEQ-H (head):
Falcon-H1-7B-Instruct. Guidance mode: head; source: cache (latency ~ 0.12 ms).

Head-generated guidance. The head planner emits a short plan: (i) identify the 2004 Russian
film directed by Bekmambetov; (ii) locate the novel that inspired it; (iii) stop once the author of that
novel is found. This plan is injected as a prefix and acts as a soft prior on where the iterator should
probe first.

Guided iteration over S;. The iterator consumes the guidance and operates over the HSEQ
stream with a fixed window and top-k selection. Table [9] summarizes the six steps (all sufficiency
flags were false; the loop terminates by budget).

Table 9: Stepwise selection (abridged). Segment ids prefixed by level: p_ (paragraph), row_ (table
row).

Step | Key picks (content excerpt) Sufficient?

1 p-6d£9c849: “Night Watch (...) is a 2004 Russian ...directed by No
Timur Bekmambetov. It is loosely based on the novel The Night Watch
by Serg[ei Lukyanenko]...”

2 p-c15173df, p_-3bc4al08, p-54f6ef94: contextual paragraphs No
(“List of Russian films of 20047, “2004” entries)
3 row_a44adal’: table row confirming Night Watch with director No
“Timur Bekmambetov”
4-6 | additional table rows from the same list (Arie, Countdown, Dad or Yes

Papa, etc.) providing film set context

Answer synthesis. After 7=6 iterations, the canonicalizer x compacts the selected set M. (para-
graph + corroborating table rows) into a provenance-preserving package (segment ids, levels, offsets,
snippets). The head # is prompted only with (g, k(M)) and outputs:

9 = Sergei Lukyanenko.

The prediction matches the gold answer (EM/F1=1.0). Runtime profile: selection latency
~ 32,185 ms, head latency ~ 1,826 ms, total ~ 34,011 ms; number of iterations = 6.

Takeaway. Guidance steers the iterator to a high-yield paragraph in the first step, which already
contains the sufficient evidence (film identity and source novel). Subsequent steps provide cor-
roboration from structured rows. The provenance in x(M,) makes the final answer auditable: the
paragraph p_6df 9c84 9 explicitly ties Night Watch (2004, Bekmambetov) to the novel Night Watch
by Sergei Lukyanenko, enabling concise and well-grounded answer synthesis by the head.

A.5.2 CASE STUDY: GUIDED ITERATIVE RETRIEVAL ON HOTPOTQA

Setup. Query q: “Which style is the building located on the East Side of Midtown Manhattan that
Robert Von Ancken appraised?” HSEQ-I (iterator): Qwen3-4B-Instruct-2507; HSEQ-H
(head): Falcon-H1-7B-Instruct. Guidance mode: head; source: generated online (latency
~ 8,496 ms).

Head-generated guidance. The head planner issues a short plan: (i) identify buildings on the
East Side of Midtown Manhattan connected to appraiser Robert Von Ancken; (ii) once the specific
building is found, retrieve its architectural style; (iii) stop when the style is clearly linked to the
appraised building.

22

Under review as a conference paper at ICLR 2026

Guided iteration over S;,. The iterator follows the guidance with a fixed window and top-% se-
lection. Table[T0]lists the six steps (all sufficiency flags false; termination by budget). Note that
Step 1 already surfaces the key paragraph about the Chrysler Building.

Table 10: Stepwise selection (abridged). Segment ids prefixed by level: p_ (paragraph).

Step | Key picks (content excerpt) Sufficient?

1 p-a73a8d8f: “The Chrysler Building is an Art Deco-style skyscraper No
located on the East Side of Midtown Manhattan ...”

2 p-c01522d2: “23 Beekman Place ...apartment building ...East Side No
of Midtown Manhattan ...”

3 p-7c2aa386: “The Helmsley Building ... Midtown Manhattan ...” No

4 p-658d6333: “Robert Von Ancken is a prominent New York City real No
estate appraiser ...”

5 p-e97ef7e6: “Lenox Hill Neighborhood House ... East Side of Man- Yes
hattan ...”

Answer synthesis. After 7=5 iterations, the canonicalizer x compacts the selected set M, (in-
cluding p_a73a8d8f and the Von Ancken paragraph p_658d6333) into a provenance-preserving
package. The head answers using only (g, <(M;)):

4 = Art Deco-style skyscraper.

The prediction matches the gold answer. Runtime profile: selection latency ~ 32,153 ms, head
latency ~ 838 ms, total = 41,487 ms; iterations = 5.

Takeaway. The head’s guidance steers the iterator directly to a paragraph that states both the loca-
tion (East Side of Midtown) and the architectural style (Art Deco) of the relevant building (Chrysler
Building), while additional picks provide neighborhood and appraiser context. Provenance in (M)
supports auditable linking from the final answer to its evidence.

A.6 STATEMENT FOR THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as general-purpose tools for writing assistance and engi-
neering support. For writing, we employed LLMs to improve clarity and style (e.g., rephrasing
sentences, tightening paragraphs, standardizing notation, and proofreading grammar). Drafting,
technical claims, algorithms, proofs, experiment design, and all final wording were authored and
verified by the authors. For engineering, we consulted LLMs for debugging; all research code, data
processing, and experiment scripts were implemented, audited, and executed by the authors. No text
or code generated by an LLM was used verbatim without author review; we take full responsibility
for the content.

23

	Introduction
	Related Work
	HSEQ: A Multi-Agent Heterogeneous Question Answering Framework
	Background and Setup
	HSEQ Architecture
	HSEQ-Adapter(HSEQ-A)
	HSEQ-Iterator(HSEQ-I)
	HSEQ-Head (HSEQ-H).

	Learning to Use HSEQ with Open-Source LLMs
	Fine-tuning HSEQ-I
	HSEQ-H: Guidance and Answer Generation

	Experiment
	Experiment Setup: Benchmarks and Baselines
	Experiment Result: How competitive is HSEQ with other baselines?
	Yielding between efficiency and accuracy
	Efficiency Analysis
	Ablation Studies

	Conclusion
	Ethics Statement.
	Reproducibility Statement.
	Appendix
	Theoretical Properties of HSEQ
	Preliminaries and Assumptions
	Faithful Linearization
	Windowed Iteration: Coverage and Complexity

	Weak-Positive Labeling and Trajectory Synthesis
	Canonicalization and Soundness
	Probabilistic Completeness Under Stochastic Selection
	Discussion of Assumptions

	Implementation Details
	Agent models used for HSEQ
	Iteration-Agent Prompts and Output Schema
	Guidance Generation and Caching
	LoRA Adaptation and Optimization
	Canonicalization and Sufficiency
	Reproducibility Notes

	Notations
	Example Using HSEQ
	Case Study: Guided Iterative Retrieval on HybridQA
	Case Study: Guided Iterative Retrieval on HotpotQA

	Statement for The Use of Large Language Models (LLMs)

