
On the Geometry and Topology of Neural Circuits for
Modular Addition

Gabriela Moisescu-Pareja∗
McGill University, Mila

Gavin McCracken∗

McGill University, Mila
Harley Wiltzer

McGill University, Mila

Vincent Létourneau
Université de Montréal, Mila

Colin Daniels
Independent

Jonathan Love
Leiden University

Abstract

Using tools from geometry and topology, we reveal that the circuits learned by
neural networks trained on modular addition are simply different implementations
of one global algorithmic strategy. We show that all architectures previously
studied on this problem learn topologically equivalent algorithms . Notably, this
finding concretely reveals that what appeared to be disparate circuits emerging
for modular addition in the literature are actually equivalent from a topological
lens. Furthermore, we introduce a new neural architecture that truly does learn a
topologically distinct algorithm. We then resolve this under the lens of geometry
however, and recover universality by showing that all networks learn modular
addition either via 2D toroidal intermediate representations, or via combinations of
certain projections of this 2D torus. Resultantly, we argue that our geometric and
topological perspective on neural circuits restores the universality hypothesis.

1 Introduction

As machine learning models scale and begin to be deployed in increasing high-stakes settings, it
will be imperative to develop a concrete understanding of how these models make decisions. Yet,
a line of work leading up to that of Zhong et al. [1] has suggested that such a pursuit is ultimately
doomed. Zhong et al. [1], in particular, focuses on the toy problem of modular addition to establish a
certificate of non-universality: even in this simple learning problem, upon investigation of logits and
embeddings, it was concluded that there are multiple distinct mechanisms by which neural networks
learn to solve the task. This suggests that the identification of simple circuits in larger neural networks
can be exponentially difficult; hence, their interpretability may be fundamentally unachievable.

Despite this finding, the recent work of McCracken et al. [2] found that the networks in Zhong et al.
[1]’s study are all invoking an approximate Chinese remainder theorem to perform modular addition,
suggesting that a universal interpretation may exist indeed. This work closes the apparent discrepancy
by introducing a new approach for inspecting hidden representations in neural networks, focusing
especially on the geometry and topology of neuron populations. Our contributions include:

A homological perspective on neural circuits. We introduce a method for prescribing a homology to
hidden representations in neural networks. This homology precisely encodes the topology induced by
the network, further encoding a rich latent metric between network inputs, and concisely informing
the effective dimension of representations.

A metric in circuit space. Leveraging an understanding of the topology of the hidden representa-
tions, we construct a metric that elucidates the degree to which trained neural networks differ as

∗Equal contribution. {gabriela.moisescu-pareja, gavin.mccracken}@mail.mcgill.ca

Mechanistic Interpretability Workshop at NeurIPS 2025.

computational circuits. Specializing to the case of modular addition, this metric takes the form of the
torus distance. Through extensive empirical testing, we find that the “clock” and “pizza” networks
analyzed by Zhong et al. [1] are indistinguishable by our metric, in correspondence with the findings
of McCracken et al. [2]. Simultaneously, we show that our metric can indeed separate these circuits
from others that are truly distinct.

Altogether, our work finds that inspection of hidden representations from a particular geometric
lens successfully characterizes circuits for modular addition. Ultimately, this result suggests that
the identification of particular geometric and topological structures can unlock the interpretability
of increasing large models. In the pursuit of ensuring the reliability and safety of machine learning
decision-makers when the stakes are high, we may not be doomed after all.

2 Related Work

Modular addition has become the standard testbed for toy interpretability settings [3, 1, 4, 5, 2, 6–9],
illuminating phenomena like grokking [10]. More broadly, group-theoretic tasks have been used as
controlled settings to study various learning settings [11–16]. Modular addition is both non-linearly
separable and mathematically well understood, making it ideal for asking: “What exactly do neural
networks learn, and how is that computation represented internally?”

Two influential works stand out. First, [3] reverse-engineered transformers trained on modular
addition and described their internal computations. They also introduced progress measures to track
grokking. Building on this, [14] claimed that the algorithm generalized to all group multiplications.
Second, [1] modified the transformer from [3] by interpolating between fixed (MLP-like) and
learnable (transformer-like) attention. Their model appeared to learn a distinct circuit, the Pizza, in
contrast to the Clock described by [3], and they proposed metrics to separate the two.

Replications underscore the brittleness of such interpretations. For instance, [15] took the exact
experimental setup of [14] and showed that the generalization claim of [14] didn’t apply for the
symmetric group, uncovering a different interpretation entirely. Returning to modular addition, we
replicated and extended the setup of [1] and likewise reached different conclusions than theirs and
find that their models in fact learn only one circuit.

Finally, [2] showed that across architectures (MLPs and transformers), networks converge to a divide-
and-conquer algorithm resembling an approximate Chinese Remainder Theorem (aCRT). They found
first-layer neurons are well fit by degree-1 sinusoids, with later layers requiring degree-2, in contrast
to the interpretation of [3] which used degree-2 sinusoids for all layers.

While most work has focused on reverse-engineering specific algorithms in modular addition, rela-
tively little has been done to systematically compare neural representations themselves in this specific
setting. However, a separate line of research in other settings has developed tools for comparing
neural representations, including Canonical Correlation Analysis-style methods [17], centered kernel
alignment [18], model stitching [19], and the neuroscience-inspired representational similarity anal-
ysis [20]. Tools from other domains, such as distributional hypothesis testing and topological data
analysis (TDA), offer complementary ways to characterize representations and may enrich mechanis-
tic interpretability. For instance, distributional methods such as maximum mean discrepancy (MMD)
[21] are rarely used in mechanistic interpretability, though widely applied to detect shifts, align
domains [22, 23], and test fairness [24, 25]. Topological data analysis (TDA) offers a complementary
view: [26] used persistent homology to track how network layers preserve or distort input topology,
and [27] surveyed TDA tools such as persistent homology and Mapper for analyzing architectures,
decision boundaries, representations, and training dynamics.

3 Background and setup

We consider various neural network architectures for the task of modular addition, which means
predicting the map (a, b) 7→ a+ b mod n for a, b ∈ Zn. For the sake of this paper, we fix n = 59,
following [1]. All architectures begin by embedding the inputs a, b to vectors Ea,Eb ∈ R128 using
a shared (learnable) embedding matrix. The architectures differ in how the embeddings are then
processed: MLP-Add immediately passes Ea + Eb through an MLP, MLP-Concat immediately
passes the concatenation Ea ⊕ Eb ∈ R256 through an MLP, and Attention 1.0 and Attention

2

0.0, introduced by [1] pass Ea,Eb through a self-attention layer before the MLP. Particularly,
Attention 1.0 uses the standard scaled softmax attention, while Attention 0.0 uses a fixed, constant
attention matrix (in effect having disabled learnable attention). These transformer-based architectures
correspond to networks associated with the Clock [3] and Pizza [1] interpretations, respectively.

3.1 Previous works’ interpretations of neural networks trained on modular addition

[3] and [1] discovered two distinct, architecture-specific interpretations for the circuits learned by
neural networks trained to solve modular addition: the Clock and the Pizza, respectively. They provide
analytical forms for the learned structures and key steps of the circuits. Both reverse engineer the
computation of a particular circuit circuit through the network, which is conditioned on a frequency
f . Both circuits begin by embedding each token a, b ∈ Zp (for p prime) on a circle:

Ea = [cos(2πfa/n), sin(2πfa/n)], Eb = [cos(2πfb/n), sin(2πfb/n)]. (1)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
angle summation

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
vector addition

0 20 40
a + b (mod 59)

Figure 1: Clock and
Pizza’s analytical forms
visualized, with fre-
quency assumed to be
f = 1 for simplicity.
Each point corresponds
to a pair (a, b) after
being transformed by the
corresponding analytical
form and is colored by its
sum (a+ b) mod 59.

What distinguishes them is how the embeddings are transformed post-
attention. Treating the attention as a blackbox and looking at its output
Eab, we see the two stories. Clock [3] (associated with networks α = 1.0
networks) computes the angle sum on the circle. The network learns
representations of the form:

Eab = [cos(2πf(a+ b)/n), sin(2πf(a+ b)/n)], (2)

encoding the modular sum as a point on the unit circle. This requires
second-order interactions (e.g. multiplying embedding components
through sigmoidal attention). Pizza [1] (associated with α = 0.0 net-
works), in contrast, Eab adds the embeddings directly as Ea+Eb, giving:

Eab = [cos(2πfa/n) + cos(2πfb/n), sin(2πfa/n) + sin(2πfb/n)],
(3)

producing a vector mean on the circle. This is entirely linear in the
embeddings. McCracken et al. [2] proposed the network-level aCRT
algorithm, describing how clusters of different frequencies interact to
compute modular addition. In this algorithm, first-layer neurons obey the
simple neuron model, where on input (a, b) a neuron of frequency f has
pre-activations (corresponding to the value before applying ReLU):

N(a, b) = cos(2πfa/n+ ϕa) + cos(2πfb/n+ ϕb), (4)

where frequencies f and phases ϕa, ϕb are learned across training. [2]
empirically verify the simple neuron model across MLPs and Transform-
ers. This model agrees with the features assumed in the theoretical works
of [4, 5]. This simple neuron model, composed of sinusoidal units,
provides a robust approximation of learned features, and explains how
the features collectively implement a CRT-like computation. While this
analytically explains the features, it leaves open how these features are
spatially organized and how different architectures converge to this form.

Neuron remapping. For a simple neuron of frequency f , we define a
canonical coordinate system via the mapping:

(a, b) 7→ (a · d, b · d), where d :=

(
f

gcd(f, n)

)−1

mod
n

gcd(f, n)
. (5)

This inverse is the modular multiplicative inverse, i.e. for any Zk let x ∈ Zk. Its inverse x−1 exists
if gcd(x, k) = 1 and gives x · x−1 ≡ 1 mod k. Here gcd is the greatest common divisor between
integers. This normalizes inputs relative to the neuron’s periodicity and allows for qualitative and
quantitative comparisons.

3.2 Interpretability metrics of Zhong et al. [1]

Gradient symmetricity measures, over some subset of input-output triples (a, b, c), the average
cosine similarity between the gradient of the output logit Q(a,b,c) with respect to the input embeddings

3

of a and b. For a network with embedding layer E and a set S ⊆ Z3
n of input-output triples:

sg =
1

|S|
∑

(a,b,c)∈S

sim

(
∂Qabc

∂Ea
,
∂Qabc

∂Eb

)
where sim(u, v) = u·v

∥u∥∥v∥ is the cosine similarity. It is evident that sg ∈ [−1, 1].

Distance irrelevance quantifies how much the model’s outputs depend on the distance between a and
b. For each distance d, we compute the standard deviation of correct logits over all (a, b) pairs where
a− b = d and average over all distances. It’s normalized by the standard deviation over all data.

Formally, let Qi,j,c denote the logit assigned to class c on input (i, j). We define the correct logit
matrix by Li,j = Qi,j, i+j mod n, i.e. for each input pair (i, j) we take the logit of the correct label
c = i+ j mod n. The distance irrelevance q is then defined as:

q =
1
n

∑
d∈Zn

std({Li,i+d|i ∈ Zn})
std({Li,j |i, j ∈ Zn})

where q ∈ [0, 1], with higher values indicating greater irrelevance to input distance.

3.3 Topology

We use Betti numbers from algebraic topology to distinguish the structure of different stages of
circuits across layers. The k-th Betti number βk counts k-dimensional holes: β0 counts connected
components, β1 counts loops, β2 counts voids enclosed by surfaces. For reference, a disc has Betti
numbers (β0, β1, β2) = (1, 0, 0), a circle has (1, 1, 0), and a 2-torus has (1, 2, 1).

We compute these using persistent homology, applied to point clouds constructed from intermediate
representations at different stages of the circuit, as well as the final logits. This yields a compact
topological signature that captures how the geometry of these representations evolves across layers,
helping us identify when the underlying structure resembles a disc, torus, or circle. We use the Ripser
library for these computations [28–30].

4 Hypothesis: modular addition as a factored map from the torus to the circle

Modular addition is the function Zn × Zn → Zn sending the pair (a, b) to c = a + b mod n.
Geometrically, we may embed a ∈ Zn on the unit circle R2 via Ea = (cos(2πa/n), sin(2πa/n)).
So the product space Zn × Zn embeds into R4 as a discretized torus, parameterized by

(a, b) 7→ (cosu, sinu, cos v, sin v), u = 2πa/n, v = 2πb/n.

In this embedding, modular addition corresponds to the following map from the torus to the circle:

(x1, x2, x3, x4) 7→ (x1x3 − x2x4, x1x4 + x2x3).

Parameterizing by angles, this becomes the familiar trigonometric identity

(cosu, sinu, cos v, sin v) 7→ (cos(u+ v), sin(u+ v)).

We claim that networks we study are approximating this specific geometric map from a torus in R4 to
a circle in R2. In Section 3.1 we saw that the “clock” and “pizza” interpretations included learned
embeddings of the form of Ea. Taken together, these embeddings define a torus T2 as the input
representation space. Our hypothesis is that architectures (MLP-Add, Attention 0.0 and 1.0, MLP-
Concat) do not learn fundamentally different solutions; rather they factor the same torus-to-circle
map via different intermediate representations. Fig. 4 shows factorizations of this map.

4.1 Qualitative analysis of intermediate representations

In this section, we provide suggestive evidence that “clock” and “pizza” networks are geometrically
almost indistinguishable: they correspond to a disc coming from “vector addition on the circle”. We
study 1-hidden layer versions of MLP-Add, Attention 0.0 [1, “pizza”], Attention 1.0 [1, “clock”],
and MLP-Concat. In all networks, we cluster neurons together and study the entire cluster at once

4

Figure 2: PCA of neuron pre-activations for a single frequency cluster f across architectures: MLP-
Add (f = 27), Pizza (f = 17), Clock (f = 21), MLP-Concat (f = 22). Each point is an input (a, b),
colored by (d · a+ d · b) mod 59 corresponding to the network’s output (see Section 3.1). Pizza and
Clock are nearly identical to each other and to MLP-Add, but differ strongly from MLP-Concat.

[2]. This is done by constructing an n× n matrix, with the value in entry (a, b) corresponding to the
preactivation value on datum (a, b). A 2D Discrete Fourier Transform (DFT) of the matrix gives the
key frequency f for the neuron. The cluster of preactivations of all neurons with key frequency f is
the n2 × |cluster f | matrix, made by flattening each neurons preactivation matrix and stacking the
resulting vector for every neuron with the same key frequency.

Principal component analysis (PCA). We apply PCA to each cluster matrix and project the n2

datapoints, for each input (a, b), onto the first two principal components. To compare clusters of
different frequencies, we use the remapping from [2] (Section 3.1), which normalizes all clusters
to frequency 1. This can be seen in Figure 2 where despite pre-activations coming from different
frequency clusters, the color grading is normalized to frequency 1. The figure shows that Pizza
(Attention 0.0), Clock (Attention 1.0), and MLP-Add’s pre-activations each collapse to the same 2D
disc, differing only by rotation; for these networks, the first two principal components explain more
than 99% of the variance, implying the cluster has a 2D structure. These clusters have negligible
activation near (0, 0) in the PCA plane, since neither principal component contributes strongly at that
point. In contrast, MLP-Concat is fundamentally different: its pre-activations form a 4D structure
resembling a torus, where four principal components each explain about 25% of the variance, and
no 2D projection fully captures the structure. Importantly, the 4D embedding has no datapoints at
(0, 0, 0, 0), indicating that the cluster activates on all points.

Distribution of post-ReLU activations. To probe how neurons activate, in Figure 3 we remap each
neuron to frequency 1, using the procedure of [2] (Section 3.1), and compute the sum of post-ReLU
activations across each frequency cluster. The figure shows that in MLP-Add, Pizza (Attention 0.0),
and Clock (Attention 1.0), clusters activate most strongly along the diagonal where the two inputs
align (a ≈ b), with activation strength decreasing smoothly as the distance from the diagonal grows.
This implies that neurons in these networks adopt phases such that they fire maximally when the two
embedded inputs are in phase (ϕa = ϕb). In contrast, MLP-Concat’s cluster activates more uniformly
across the input space, reflecting the different 4D geometry already seen in PCA.

These results give a geometric explanation for the observation of [1]: the apparent a− b dependency
in Pizza logits arise because neurons are phase-aligned, so they concentrate activation when inputs
coincide and the strength decreases smoothly as the difference between a and b grows. Since Clock
also exhibits this behaviour, we expect that it also has an a− b dependency and its activations, thus
intermediate representation, resemble that of Pizza. This is surprising, because [1] identified an a− b
dependency as the defining feature of Pizza circuits, for which they defined their distance irrelevance
metric. Our results show that this dependency arises just as strongly in Clock circuits, meaning
both architectures share the same underlying geometric mechanism. Given these observations, we
hypothesize that the structure of the intermediate representations depends on the distribution
of phases. Under the simple neuron model, this aligns with where the neuron activates most strongly.

Phase Alignment Distributions. To characterize the topological similarity of the learned represen-
tations across these networks at a more fine-grained level, we propose yet another representation: the
Phase Alignment Distribution (PAD). To a given architecture, a PAD is a distribution over Zn × Zn.
Samples of this distribution are drawn as follows:

5

50

40

30

10

0

0 20 40
b

0 20 40 0
b

20 40 0 20
b

40
b

N
o

r
m

a
li

z
e

d

1

0.8

0.6

0.4

0.2

0

Normalized sum of post-ReLU activations in a single cluster in each architecture
MLP-Add Attention 0.0 Attention 1.0 MLP-Concat

a
20

Figure 3: Given a trained network, a particular frequency cluster f is chosen and the post-ReLU
activations of all neurons in that cluster are summed over all (a, b) and then the sum is normalized.
This gives a summary of where a cluster activates most strongly. We visualize this summary for
a single cluster in each network: MLP-Add’s cluster is f = 27, Attention 0.0’s cluster is f = 17,
Attention 1.0’s cluster is f = 21 and MLP-Concat’s cluster is f = 22. Clusters in MLP-Add,
Attention 0.0 and 1.0 activate strongest on (a, b) with a close to b: the activation strength decreases
with distance from a = b; all three models have very similar behaviour. Clusters in MLP-Concat
activate almost uniformly in strength (equivariantly). The Attention 0.0 and 1.0 models are model
checkpoints from [1], where the Attention 0.0 is identified as a Pizza and Attention 1.0 identified as a
Clock by their metrics.

or

Embeddings

M
LP

-C
on

ca
t

M
LP

-A
dd

 /
At

te
nt

io
n

Layer 1 Layers 2 to k Logits

Figure 4: Different factorizations of the torus-to-circle map. We find first-layer intermediate repre-
sentations to be either a torus or a disc (resembling vector addition on the circle). Later layers can
construct a circle, and the logits approximate a circle.

1. Sample a random initialization (e.g., random seed) and train the network.

2. From the resulting trained network, sample a neuron uniformly.

3. Return the pair (a, b) ∈ Zn × Zn that achieves the largest activation in the resulting neuron.

A PAD illustrates, across independent training runs and neuron clusters, how often activations
are maximized on the a = b diagonal—that is, it depicts how often learned phases align. Even
beyond inspecting the proximity of samples to this diagonal, we propose to compare the PADs of
architectures according to a metrics on the space of distributions over Zn × Zn, giving an even
more precise comparison. In the following section, we will provide estimates of the PADs for the
aforementioned architectures, as well as PAD distances under the maximum mean discrepancy [21,
MMD]—a family of metrics with tractable unbiased sample estimators.

As suggested from our preliminary expositions in this section, our hypothesis is that PADs will
indicate that Clock and Pizza architectures learn nearly-topologically-identical circuits. Our approach
for accomplishing this will be based on the realization that the MLP-Add architecture has a PAD
supported entirely on the positive diagonal (this is ensured under the simple neuron model [2], since
the addition of sinusoids of the same frequency will achieve the largest value when the phases
align). By comparing the PADs of the Clock and Pizza to that of MLP-Add, we expect to find
roughly no difference (w.r.t. a distributional metric). Moreover, we hypothesize that the PAD of the
MLP-Concat architecture will be distinct, as a result of its higher-dimensional representation—this
would demonstrate effectively that topological analysis can distinguish the resulting circuits.

6

50

40

30

20

10

0

20 40
0
0

50

40

30

20

10

0 20 40 0 20 40 0 20 40

0

4.4

8.8
log(count)

0

4.2

8.4
log(count)

0

4.2

8.4
log(count)

0

2.5

5.0
log(count)

0

4.4

8.7
log(count)

0

3.8

7.5
log(count)

0

3.7

7.5
log(count)

0

2.7

5.4
log(count)

Histogram distributions of: neuron max activation (top); neuron activation center of mass (bottom)

b b b b

a
a

 MLP-Add Attention 0.0 Attention 1.0 MLP-Concat

↕a
vg

 3.
42

↕a
vg

 3.
69

↕a
vg

 4.
63

↕a
vg

 1.
34

↕a
vg

 2.
18

↕a
vg

 4.
50

↕a
vg

 0.
00

↕a
vg

 0.
00

 MLP-Add Attention 0.0 Attention 1.0 MLP-Concat

Figure 5: Log-density heatmaps for the distribution of neuron maximum activations (top) and
activation center of mass (bottom) across 703 trained models. Attention 0.0 and 1.0 architectures
exhibit modest off-diagonal spread compared to MLP-Add, but remain constrained by architectural
bias toward diagonal alignment. The maximum mean discrepancy scores between Attention 0.0 and
1.0 are 0.0237 and 0.0181 in rows 1 and 2 respectively, indicating they are very similar distributions.

5 Key results: Attention 0.0 and 1.0 models are both almost vector addition

5.1 PAD shows that MLP-Add, Attention 0.0 (Pizza) and Attention 1.0 (Clock) are the same

We study 703 trained one-hidden-layer networks drawn from our four architectures: MLP-Add,
Attention 0.0 (Pizza), Attention 1.0 (Clock) and MLP-Concat. Our goal is to show that the Attention
models are nearly equivalent to MLP-Add while being clearly distinct from MLP-Concat. Recall
that MLP-Add bypasses the attention mechanism and directly sums the input embeddings, yielding a
pre-ReLU representation that corresponds analytically to vector addition on the circle. Following
prior work on one-layer networks [3, 1], and building on the empirical validation of the simple neuron
model (Eq. 4) in [2], the only degree of freedom within a frequency cluster is the pair of learned
phases (ϕa, ϕb). In practice, raw activations can be noisy, so rather than fitting sinusoids directly, we
assume the simple neuron model and identify the phase either by the point of maximal activation or
by the activation’s center of mass.

Figure 5 shows PAD plots across architectures. We note that MLP-Add, Attention 0.0, Attention
1.0 are very concentrated on the diagonal, while MLP-Concat is not. To further quantify this, we
propose the torus distance, which is the discrete graph distance from a point (a, b) on the torus to the
a = b line. Figure 6 quantifies this with a histogram of torus distances to the a = b line. We see that
Attention 0.0 and 1.0 are almost indistinguishable and both very similar to MLP-Add; moreover, our
metric successfully discerns these models from MLP-Concat.

Table 1 shows the PAD distances under the MMD distance. All comparisons are statistically significant
(p-values ≈ 0). We see that Attention 0.0 and 1.0 are extremely close to each other, MLP-Add lies
moderately close to both, and MLP-Concat is strongly separated from all others.

Figure 7 shows the mean and standard deviation of the gradient symmetricity and distance irrelevance
metrics from [1] (Section 3.2). Unlike [1], who report gradient symmetricity results over a randomly
selected subset of 100 input-output triples (a, b, c) ∈ Z3

p, we compute the metric exhaustively across
all 593 = 205, 370 triples to add accuracy.2.

MLP-Add and MLP-Concat cluster on opposite extremes, implying the metrics just identify whether
neurons have phases ϕa ̸= ϕb. MLP-Add models have high gradient symmetricity and low distance
irrelevance and MLP-Concat models have low gradient symmetricity and high distance irrelevance.
Attention 1.0 models span a wide range between these extremes depending on two factors: 1) how
well the frequencies they learned intersect and 2) how well neurons are able to get their activation

2See Appendix B.3 for the GPU-optimized procedure.

7

5 10 15 20 25
0
0

100k

200k

300k

5 10 15 20 25
0
0

250k
200k
150k
100k

50k

5 10 15 20 25
0
0

200k
150k
100k

50k

5 10 15 20 25
0
0

25k
20k
15k
10k

5k

5 10 15 20 25
0
0

100k

200k

300k

5 10 15 20 25
0
0

200k

150k

100k

50k

5 10 15 20 25
0
0

50k

100k

150k

5 10 15 20 25
0
0

10k

20k

30k

Shortest torus‑distance from diagonal (a=b) to: max activation (row 1); center of mass (row 2)

distance distance distance distance

co
un

ts
co

un
ts

MLP-Add avg: 0.00 Attention 0.0 avg: 4.68 Attention 1.0 avg: 5.81 MLP-Concat avg: 14.69

MLP-Add avg: 0.00 Attention 0.0 avg: 2.77 Attention 1.0 avg: 3.60 MLP-Concat avg: 13.48

M
ax activation

C
enter of m

ass

distance distance distance distance

Figure 6: Histograms of torus-distance from each neuron’s phase to the diagonal a = b, across 703
trained models. MLP-Add neurons align perfectly with the diagonal, Attention 0.0 and 1.0 show
increasing off-diagonal spread, and MLP-Concat exhibits broadly distributed activations on the torus.

Table 1: Gaussian-kernel Maximum Mean Discrepancies (MMD) [21] and permutation p-values
between the empirical distributions shown in Figure 5. For each architecture comparison, we sampled
20,000 points from each empirical distribution (derived from histogram-based neuron statistics),
then computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median
heuristic. Significance was assessed using 50,000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP-Add vs Attention 0.0 0.0968 0.0000 Moderate difference; highly significant
MLP-Add vs Attention 1.0 0.1239 0.0000 Clear difference; highly significant
MLP-Add vs MLP-Concat 0.2889 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0338 0.0000 Subtle difference; highly significant
Attention 0.0 vs MLP-Concat 0.1987 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP-Concat 0.1723 0.0000 Strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP-Add vs Attention 0.0 0.0583 0.0000 Small difference; highly significant
MLP-Add vs Attention 1.0 0.0689 0.0000 Moderate difference; highly significant
MLP-Add vs MLP-Concat 0.2614 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0210 0.0084 Subtle difference; highly significant
Attention 0.0 vs MLP-Concat 0.2126 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP-Concat 0.1947 0.0000 Strong difference; highly significant

8

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

MLP-Add

Attention 0.0

Attention 1.0

MLP-Concat

Per‑architecture gradient symmetricity & distance irrelevance

avg gradient symmetricity avg distance irrelevance

s
t
d
 g

r
a
d
ie

n
t
 s

y
m

m
e
t
r
ic

it
y

s
t
d
 d

is
t
a
n
c
e
 i
r
r
e
le

v
a
n
c
e

Figure 7: Evaluation of gradient symmetricity (left) and distance irrelevance (right). Each point shows
the average (avg) and standard deviation (std) of one trained network. MLP-Add and MLP-Concat lie
at nearly opposite extremes, while attention 0.0 and 1.0 overlap substantially. Gradient symmetricity
separates Attention 1.0 better, but neither metric always distinguishes between Attention 1.0 and 0.0.

center of mass away from the ϕa = ϕb line. Attention 0.0 is closer to MLP-Add than Attention 1.0
because it’s harder for this architecture to learn ϕa ̸= ϕb. Notably, failure cases exist using both:
neither metric distinguishes between Attention 1.0 and 0.0 models.

Our metric has a nice topological interpretation unlike prior metrics, which we exploit further to
understand intermediate representations in multi-layer networks in the next subsection.

5.2 Homology consistently explains topological transformations in deep networks

It’s the case that the homology of what networks learn gives that MLP-Add, Attention 0.0 and
Attention 1.0 architectures are all making topologically equivalent computations. While the MLP-
Concat model appears to be different, it’s in fact just more efficient, which results from the torus
already having the holes necessary to accurately project the correct answer onto the logits after just
one non-linearity (see Fig. 8). It’s worth noting that while discs appear to be learned in the logits, in
all the cases checked by hand the discs were caused by limitations of persistent homology, which
struggles to find a hole of small radius.

6 Discussion and Conclusion

We’ve shown that architectures of various types with trainable embeddings are approximating the
torus to circle map for modular addition. Thus, how circuits differ is in the way this map factors, i.e.
the structure of the intermediate representations. As a consequence, we find that the architectures
associated with the “clock” and “pizza” interpretations are factoring this map in the same way, thus
they implement the same circuits. The distinction between “clock” and “pizza” is illusory, and they
differ more obviously from our MLP-Concat model. We were able to detect the similarities and
differences using geometric and topological methods.

Given our characterization of neural modular addition as factorizations of the torus to circle map, we
discover that this can be accomplished via intermediate representations that include the torus itself or
projections of it. This has interesting connections to the manifold hypothesis [31], which posits that
data lives on a lower dimensional manifold and that neural networks will discover this underlying
low-dimensional structure. Our results give a clear demonstration of how high-level architectural
choices can induce the learning of the entire manifold or a projection of it.

Finally, our analysis is limited to a single task: modular addition and a single modulus n = 59. While
the toroidal geometry provides a useful abstraction in this domain, the feasibility of recovering the
underlying manifold in more complex or real-world tasks remains to be established.

In conclusion, our work reframes the modular addition landscape: Clock and Pizza models lie on a
geometric continuum shaped by architectural bias, not algorithmic difference. This opens promising
directions for future research in mechanistic interpretability and theory: how do learned manifolds
and their geometry govern training dynamics, generalization, and representational efficiency? Various
tools from geometry and topology can be brought to bear on this problem, and many more will likely
need to be developed for the nuances of neural networks, particularly the presence of noise.

9

94.5%

63
.7

%

34.9%

1.43%

96.6%

1.96%
1.4%

77.1%

22.3%

86.8%

11.8%
1.47%

97.3%

1.35%
1.35%

52
.1

%

46
.1

%
1.8%

69
%

30.1%

0.949% 80.1%

18.8%
1.19%

96%
75

.3%

23.6%

1.04%

0.741%
0.37%

86.9%

11.8%
1.31%

92.1%

6.5%
1.44%

96.7%

59
.3

%

39
%

1.63%

73
.8%

24.4%

1.81%
78.5%

19.6%

99.7%

0.137%
0.137%

72
.7%

25.6%

1.74%

99.1%

0.54%
0.36%

68
.8

%

30.5%

0.718% 76
.9%

0.647%

100%
96.5%

3.54%

92.2%

5.68%
2.13%

95.3%

3.62%
1.07%

97%

98.9%

1.41%

98.1%

1.23%
0.705%

90.8%

0.531%
8.67%

97%

100%

1.07%
1.92%

94.9%

3.5%
1.56%

75
%

11.3%

83.2%

1.95%
14.8%

91.3%

2.17%
6.52%

1 0 0 1 3 0 other 1 1 0 1 2 0 1 2 1

MLP-Add MLP-Concat

layer 2 layer 3 logits layer 2 layer 3 logits

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

2.92%
layer 1layer 1

1.09%2.73%

1.56%

1.12%
2.23%

22.4%

1.82%

0.627%

13.6%

Attention 1.0Attention 0.0

Figure 8: Betti number distributions across layers for 1-, 2-, and 3-layer models (100 seeds for each
model). In layer 1, MLP-Add, Attention 0.0, and Attention 1.0 mostly yield disc-like representations,
while MLP-Concat produces a torus. From the second layer onward, MLP-Add and both Attention
variants converge to either a disc or a circle: the circle reflects the logits topology (correct answer),
while the disc is a transient intermediate that can persist in later layers. MLP-Concat instead
transitions directly to the circle. Across depth, Attention 0.0 and 1.0 are nearly identical with the
latter having fewer transient discs.

References
[1] Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza:

Two stories in mechanistic explanation of neural networks. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
S5wmbQc1We.

[2] Gavin McCracken, Gabriela Moisescu-Pareja, Vincent Letourneau, Doina Precup, and Jonathan
Love. Uncovering a universal abstract algorithm for modular addition in neural networks, 2025.
URL https://arxiv.org/abs/2505.18266.

[3] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress mea-
sures for grokking via mechanistic interpretability. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

[4] Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

[5] Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham M.
Kakade. Feature emergence via margin maximization: case studies in algebraic tasks. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=i9wDX850jR.

[6] Chun Hei Yip, Rajashree Agrawal, Lawrence Chan, and Jason Gross. Modular addition without
black-boxes: Compressing explanations of mlps that compute numerical integration, 2024. URL
https://arxiv.org/abs/2412.03773.

[7] Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence
of in-context learning and skill composition in modular arithmetic tasks. arXiv preprint
arXiv:2406.02550, 2024.

10

https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://arxiv.org/abs/2505.18266
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=i9wDX850jR
https://openreview.net/forum?id=i9wDX850jR
https://arxiv.org/abs/2412.03773

[8] Tao Tao, Darshil Doshi, Dayal Singh Kalra, Tianyu He, and Maissam Barkeshli. (how) can
transformers predict pseudo-random numbers? In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=asDx9sPAUN.

[9] Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gromov. To grok or not to grok: Disen-
tangling generalization and memorization on corrupted algorithmic datasets. arXiv preprint
arXiv:2310.13061, 2023.

[10] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets, 2022. URL https://arxiv.
org/abs/2201.02177.

[11] Gavin McCracken. Using Exact Models to Analyze Policy Gradient Algorithms. McGill
University (Canada), 2021.

[12] Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

[13] Giovanni Luca Marchetti, Christopher J Hillar, Danica Kragic, and Sophia Sanborn. Harmonics
of learning: Universal fourier features emerge in invariant networks. In The Thirty Seventh
Annual Conference on Learning Theory, pages 3775–3797. PMLR, 2024.

[14] Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse
engineering how networks learn group operations. In International Conference on Machine
Learning, pages 6243–6267. PMLR, 2023.

[15] Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman. Grokking group multiplication
with cosets. In Forty-first International Conference on Machine Learning, 2024.

[16] Gavin McCracken, Sihui Wei, Gabriela Moisescu-Pareja, Harley Wiltzer, and Jonathan Love.
The representations of deep neural networks trained on dihedral group multiplication. In
NeurIPS 2025 Workshop on Symmetry and Geometry in Neural Representations, 2025. URL
https://openreview.net/forum?id=weKecpFYNf.

[17] Ari S. Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in
neural networks with canonical correlation, 2018. URL https://arxiv.org/abs/1806.
05759.

[18] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pages
3519–3529. PMLR, 2019.

[19] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare
neural representations, 2021. URL https://arxiv.org/abs/2106.07682.

[20] Johannes Mehrer, Courtney J Spoerer, Nikolaus Kriegeskorte, and Tim C Kietzmann. Individual
differences among deep neural network models. Nature communications, 11(1):5725, 2020.

[21] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[22] Muhammad Ghifary, W Bastiaan Kleijn, and Mengjie Zhang. Domain adaptive neural networks
for object recognition. In Pacific Rim international conference on artificial intelligence, pages
898–904. Springer, 2014.

[23] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
representations for domain adaptation. In International conference on machine learning, pages
7523–7532. PMLR, 2019.

[24] Namrata Deka and Danica J Sutherland. Mmd-b-fair: Learning fair representations with
statistical testing. In International Conference on Artificial Intelligence and Statistics, pages
9564–9576. PMLR, 2023.

11

https://openreview.net/forum?id=asDx9sPAUN
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://openreview.net/forum?id=weKecpFYNf
https://arxiv.org/abs/1806.05759
https://arxiv.org/abs/1806.05759
https://arxiv.org/abs/2106.07682

[25] Insung Kong, Kunwoong Kim, and Yongdai Kim. Fair representation learning for continuous
sensitive attributes using expectation of integral probability metrics. IEEE transactions on
pattern analysis and machine intelligence, 2025.

[26] Archie Shahidullah. Topological data analysis of neural network layer representations, 2022.
URL https://arxiv.org/abs/2208.06438.

[27] Rubén Ballester, Carles Casacuberta, and Sergio Escalera. Topological data analysis for neural
network analysis: A comprehensive survey, 2024. URL https://arxiv.org/abs/2312.
05840.

[28] Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl.
Comput. Topol., 5(3):391–423, 2021. ISSN 2367-1726. doi: 10.1007/s41468-021-00071-5.
URL https://doi.org/10.1007/s41468-021-00071-5.

[29] Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, November 2011. ISSN 1361-6420. doi:
10.1088/0266-5611/27/12/124003. URL http://dx.doi.org/10.1088/0266-5611/27/
12/124003.

[30] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A lean persistent homology
library for python. The Journal of Open Source Software, 3(29):925, Sep 2018. doi: 10.21105/
joss.00925. URL https://doi.org/10.21105/joss.00925.

[31] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

https://arxiv.org/abs/2208.06438
https://arxiv.org/abs/2312.05840
https://arxiv.org/abs/2312.05840
https://doi.org/10.1007/s41468-021-00071-5
http://dx.doi.org/10.1088/0266-5611/27/12/124003
http://dx.doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.21105/joss.00925

A Additional experimental details

A.1 Training hyperparameters.

All models are trained with the Adam optimizer [32]. Number of neurons per layer in all models is
1024. Batch size is 59. Train/test split: 90%/10%.

Attention 1.0

• Learning rate: 0.00075
• L2 weight decay penalty: 0.000025

Attention 0.0

• Learning rate: 0.00025
• L2 weight decay penalty: 0.000001

MLP-Add and MLP-Concat

• Learning rate: 0.0005
• L2 weight decay penalty: 0.0001

MLP-Concat

A.2 Persistent homology

For our persistent homology computations, we set the k-nearest neighbour hyperparameter to 250.
Our point cloud consists of 592 = 3481 points.

B Experiments and computational details

B.1 Statistical significance of the main results

B.1.1 Figure 5

We trained 703 models of each architecture, being MLP vec add, Attention 0.0 and 1.0, and MLP
concat, and recorded the locations of the max activations of all neurons across all (a, b) inputs to the
network. We also computed the center of mass of each neuron as this doesn’t always align with the
max preactivation (though it tends to be close).

B.1.2 Figure 6: Torus distance from the max activation and center of mass to the line a = b

We trained 703 models of each architecture with 512 neurons in its hidden layer (MLP vec add,
Attention 0.0 and 1.0, and MLP concat), and recorded the a, b value of where the max activation of
a neuron takes place across all (a, b) inputs to the network and all neurons. We also computed the
(a, b) values for the location of the center of mass of each neuron as this doesn’t always align with
the max preactivation (though it tends to be close). Then we compute the shortest torus distance from
the point of the max activation or the center of mass, to the line a = b.

B.2 Figure 7 symmetricity

MMD results for these two metrics are reported below, again showing that the distance between
attention 0.0 and attention 1.0 models is small. This is the case even those these metrics were chosen
to differentiate between the two architectures.

Using just the x-axis (since the y-axis on those plots is the std dev) MMD results are presented next.

We can conclude that the attention transformers are far from vector addition, and very close to each
other under all metrics.

13

Table 2: Gaussian-kernel Maximum Mean Discrepancies (MMD) [21] and permutation p-values
between the empirical distributions shown in Figure 5. For each architecture comparison, we sampled
20,000 points from each empirical distribution (derived from histogram-based neuron statistics),
then computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median
heuristic. Significance was assessed using 50,000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0968 0.0000 Moderate difference; highly significant
MLP vec add vs Attention 1.0 0.1239 0.0000 Clear difference; highly significant
MLP vec add vs MLP concat 0.2889 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0338 0.0000 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.1987 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1723 0.0000 Strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0583 0.0000 Small difference; highly significant
MLP vec add vs Attention 1.0 0.0689 0.0000 Moderate difference; highly significant
MLP vec add vs MLP concat 0.2614 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0210 0.0084 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.2126 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1947 0.0000 Strong difference; highly significant

Table 3: Gaussian-kernel Maximum Mean Discrepancies (MMD) [21] and permutation p-values
between the empirical distributions shown in Figure 6. For each architecture comparison, we sampled
2000 points from each empirical distribution (derived from histogram-based neuron statistics), then
computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median
heuristic. Significance was assessed using 5000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.3032 0.0000 Strong difference; highly significant
MLP vec add vs Attention 1.0 0.3888 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 0.9508 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0705 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.6323 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.5695 0.0000 Very strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7727 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7517 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 0.9148 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0520 0.0006 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.7022 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.6391 0.0000 Very strong difference; highly significant

14

Table 4: Permutation–test MMDs on the empirical gradient symmetricity and distance irrelevance
distributions across all architectures. All p-values are ≤ 10−6 (reported as 0.0000).

(a) Gradient symmetricity (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2725 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9688 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3471 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7750 0.0000 Very strong difference; highly significant
Attention 0.0 vs MLP concat 1.3503 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2360 0.0000 Extremely strong difference; highly significant

(b) Distance irrelevance (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7534 0.0000 Very strong difference; highly significant
MLP vec add vs Attention 1.0 0.7079 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2488 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2078 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 1.2255 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.0990 0.0000 Extremely strong difference; highly significant

Table 5: Permutation-test MMDs on scatter-plot averages only (1-D). All p–values are ≤ 10−6, so
every difference is “highly significant.” Note that the distance between attention 0.0, attention 1.0,
and MLP vec add is large, implying they are not performing vector addition.

(a) Row 3: Gradient symmetricity (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2755 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9842 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3833 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7726 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs MLP concat 1.3802 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2559 0.0000 Extremely strong difference; highly significant

(b) Row 4: Distance irrelevance (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7739 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7268 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2501 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2109 0.0000 Strong difference; highly significant
Attention 0.0 vs MLP concat 1.2443 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.1093 0.0000 Extremely strong difference; highly significant

15

GPU-Optimized Centre-of-Mass in Circular Coordinates

Let p be the grid size and for each neuron n = 1, . . . , N we have a pre-activation map

x
(n)
i,j , (i, j = 0, . . . , p− 1).

Define nonnegative weights
w

(n)
i,j =

∣∣x(n)
i,j

∣∣.
Let fn ∈ {1, . . . , ⌊p/2⌋} be the dominant frequency for neuron n, and let

f−1
n be the modular inverse of fn modulo p, fn f

−1
n ≡ 1 (mod p).

Convert the row index i and column index j into angles (“un-wrapping” by f−1
n):

θ
(n)
i =

2π

p
f−1
n i, ϕ

(n)
j =

2π

p
f−1
n j.

Form the two complex phasor sums

S(n)
a =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i θ

(n)
i

)
,

S
(n)
b =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i ϕ

(n)
j

)
.

The arguments of these sums give the circular means of each axis:

µ(n)
a = arg

(
S(n)
a

)
, µ

(n)
b = arg

(
S
(n)
b

)
,

where arg returns an angle in (−π, π]. To ensure a nonnegative result, normalize into [0, 2π):

µ+ =
(
µ+ 2π

)
mod 2π.

Finally, map back from the angular domain to grid coordinates:

CoM(n)
a =

p

2π
µ(n)+
a , CoM

(n)
b =

p

2π
µ
(n)+
b .

This handles wrap-around at the boundaries automatically and weights each location (i, j) by |x(n)
i,j |,

producing a smooth, circularly-aware center of mass. All tensor operations—angle computation,
complex exponentials, and weighted sums—are expressed as parallel array primitives that JAX
can JIT-compile and fuse into a single GPU kernel launch, eliminating Python-level overhead.
By precomputing the angle grids and performing the phasor sums inside one jitted function, this
implementation fully exploits GPU parallelism and memory coalescing for maximal throughput.

B.3 Running metrics from [1]

B.3.1 GPU-vectorized distance irrelevance over all n2 input pairs

Let
I =

{
(a, b) | a, b ∈ {0, . . . , n− 1}

}
,

and order its elements lexicographically:

X =
[
(a0, b0), (a1, b1), . . . , (an2−1, bn2−1)

]
∈ Zn2×2.

A n2 single batched forward pass on the GPU computes

Logits = Transformer
(
X
)

∈ Rn2×n,

producing all n2 · n output logits in parallel. We then extract the “correct-class” logit for each input:

yk = Logits k, (ak+bk) mod n, k = 0, . . . , n2 − 1.

16

Next we reshape y into an n× n matrix L by
L i,j = yk where i = (ak + bk) mod n, j = (ak − bk) mod n.

All of the above—embedding lookup, attention, MLP, softmax and the advanced indexing—is
implemented as two large vectorized kernels (the batched forward pass and the gather), so each of the
n2 inputs is handled in O(1) time but fully in parallel on the GPU.

Finally, define

σglobal =

√
1

n2

∑
i,j

(
Li,j − µ

)2

, µ =
1

n2

∑
i,j

Li,j ,

and for each “distance” j

σj =

√
1

n

∑
i

(
Li,j − L̄·j

)2

, L̄·j =
1

n

∑
i

Li,j , qj =
σj

σglobal
.

We report

q =
1

n

n−1∑
j=0

qj , std(q) =

√√√√ 1

n

n−1∑
j=0

(
qj − q

)2
.

B.3.2 GPU-optimized gradient symmetricity over all n3 triplets

Let
E ∈ Rn×d with d = 128

be the learned embedding matrix, and denote by
Q
(
Ea, Eb

)
c

the scalar logit for class c obtained by feeding the pair of embeddings (Ea, Eb) into the model. We
define the per-triplet gradient cosine-similarity as

S(a, b, c) =

〈
∇Ea Q(Ea, Eb)c, ∇Eb

Q(Ea, Eb)c
〉∥∥∇Ea

Q(Ea, Eb)c
∥∥ ∥∥∇Eb

Q(Ea, Eb)c
∥∥ ,

for all (a, b, c) ∈ {0, . . . , n− 1}3.

To compute {S(a, b, c)} over the full n3 grid in one fused GPU kernel, we first form three index
tensors

Ai,j,k = i, Bi,j,k = j, Ci,j,k = k, i, j, k = 0, . . . , n− 1,

then flatten to vectors a = vec(A), b = vec(B), c = vec(C) ∈ {0, . . . , n − 1}n
3

. We gather the
embeddings

emba = E[a] ∈ Rn3×d, embb = E[b] ∈ Rn3×d,

and in JAX compute
ga = vmap

(
(ea, eb, c) 7→ ∇Ea

Q(ea, eb)c
)
(emba, embb, c),

gb = vmap
(
(ea, eb, c) 7→ ∇Eb

Q(ea, eb)c
)
(emba, embb, c),

each producing an (n3 × d)-shaped array. Finally the similarity vector is

S =
ga ⊙ gb

∥ga∥ ∥gb∥
∈ Rn3

,

and we report

S =
1

n3

n3∑
i=1

Si, σS =

√√√√ 1

n3

n3∑
i=1

(
Si − S

)2
.

Runtime. Because we express ga,gb and the subsequent dot-and-norm entirely inside a single
@jax.jit+ vmap invocation, XLA lowers it to one GPU kernel that processes all n3 triplets in paral-
lel. The kernel dispatch cost is therefore O(1), and each triplet’s gradient and cosine computations are
fused into vectorized instructions with constant per-element overhead. Although the total arithmetic
work is O(n3), the full data-parallel execution means the wall-clock latency grows sub-linearly in n3

and the per-triplet overhead remains effectively constant.

17

	Introduction
	Related Work
	Background and setup
	Previous works' interpretations of neural networks trained on modular addition
	Interpretability metrics of zhong2023the
	Topology

	Hypothesis: modular addition as a factored map from the torus to the circle
	Qualitative analysis of intermediate representations

	Key results: Attention 0.0 and 1.0 models are both almost vector addition
	PAD shows that MLP-Add, Attention 0.0 (Pizza) and Attention 1.0 (Clock) are the same
	Homology consistently explains topological transformations in deep networks

	Discussion and Conclusion
	Additional experimental details
	Training hyperparameters.
	Persistent homology

	Experiments and computational details
	Statistical significance of the main results
	Figure 5
	Figure 6: Torus distance from the max activation and center of mass to the line a=b

	Figure 7 symmetricity
	Running metrics from zhong2023the
	GPU‑vectorized distance irrelevance over all n2 input pairs
	GPU‑optimized gradient symmetricity over all n3 triplets

