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Abstract

Using tools from geometry and topology, we reveal that the circuits learned by1

neural networks trained on modular addition are simply different implementations2

of one global algorithmic strategy. We show that all architectures previously3

studied on this problem learn topologically equivalent algorithms . Notably, this4

finding concretely reveals that what appeared to be disparate circuits emerging5

for modular addition in the literature are actually equivalent from a topological6

lens. Furthermore, we introduce a new neural architecture that truly does learn a7

topologically distinct algorithm. We then resolve this under the lens of geometry8

however, and recover universality by showing that all networks learn modular9

addition either via 2D toroidal intermediate representations, or via combinations of10

certain projections of this 2D torus. Resultantly, we argue that our geometric and11

topological perspective on neural circuits restores the universality hypothesis.12

1 Introduction13

As machine learning models scale and begin to be deployed in increasing high-stakes settings, it14

will be imperative to develop a concrete understanding of how these models make decisions. Yet,15

a line of work leading up to that of Zhong et al. [1] has suggested that such a pursuit is ultimately16

doomed. Zhong et al. [1], in particular, focuses on the toy problem of modular addition to establish a17

certificate of non-universality: even in this simple learning problem, upon investigation of logits and18

embeddings, it was concluded that there are multiple distinct mechanisms by which neural networks19

learn to solve the task. This suggests that the identification of simple circuits in larger neural networks20

can be exponentially difficult; hence, their interpretability may be fundamentally unachievable.21

Despite this finding, the recent work of McCracken et al. [2] found that the networks in Zhong et al.22

[1]’s study are all invoking an approximate Chinese remainder theorem to perform modular addition,23

suggesting that a universal interpretation may exist indeed. This work closes the apparent discrepancy24

by introducing a new approach for inspecting hidden representations in neural networks, focusing25

especially on the geometry and topology of neuron populations. Our contributions include:26

A homological perspective on neural circuits. We introduce a method for prescribing a homology to27

hidden representations in neural networks. This homology precisely encodes the topology induced by28

the network, further encoding a rich latent metric between network inputs, and concisely informing29

the effective dimension of representations.30

A metric in circuit space. Leveraging an understanding of the topology of the hidden representa-31

tions, we construct a metric that elucidates the degree to which trained neural networks differ as32

computational circuits. Specializing to the case of modular addition, this metric takes the form of the33

torus distance. Through extensive empirical testing, we find that the “clock” and “pizza” networks34

analyzed by Zhong et al. [1] are indistinguishable by our metric, in correspondence with the findings35
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of McCracken et al. [2]. Simultaneously, we show that our metric can indeed separate these circuits36

from others that are truly distinct.37

Altogether, our work finds that inspection of hidden representations from a particular geometric38

lens successfully characterizes circuits for modular addition. Ultimately, this result suggests that39

the identification of particular geometric and topological structures can unlock the interpretability40

of increasing large models. In the pursuit of ensuring the reliability and safety of machine learning41

decision-makers when the stakes are high, we may not be doomed after all.42

2 Related Work43

Modular addition has become the standard testbed for toy interpretability settings [3–6, 2, 7–10], illu-44

minating phenomena like grokking [11]. This task is both non-linearly separable and mathematically45

well understood, making it ideal for asking: “What exactly do neural networks learn, and how is that46

computation represented internally?”47

Two influential works stand out. First, [3] reverse-engineered transformers trained on modular48

addition and described their internal computations. They also introduced progress measures to track49

grokking. Building on this, [4] claimed that the algorithm generalized to all group multiplications.50

Second, [1] modified the transformer from [3] by interpolating between fixed (MLP-like) and51

learnable (transformer-like) attention. Their model appeared to learn a distinct circuit, the Pizza, in52

contrast to the Clock described by [3], and they proposed metrics to separate the two.53

Replications underscore the brittleness of such interpretations. For instance, [12] took the exact54

experimental setup of [4] and showed that the generalization claim of [4] didn’t apply for the55

symmetric group, uncovering a different interpretation entirely. Returning to modular addition, we56

replicated and extended the setup of [1] and likewise reached different conclusions than theirs and57

find that their models in fact learn only one circuit.58

Finally, [2] showed that across architectures (MLPs and transformers), networks converge to a divide-59

and-conquer algorithm resembling an approximate Chinese Remainder Theorem (aCRT). They found60

first-layer neurons are well fit by degree-1 sinusoids, with later layers requiring degree-2, in contrast61

to the interpretation of [3] which used degree-2 sinusoids for all layers.62

While most work has focused on reverse-engineering specific algorithms in modular addition, rela-63

tively little has been done to systematically compare neural representations themselves. Tools from64

other domains–such as distributional hypothesis testing and topological data analysis (TDA)–offer65

complementary ways to characterize representations and may enrich mechanistic interpretability.66

For instance, distributional methods such as maximum mean discrepancy (MMD) [13] are rarely67

used in mechanistic interpretability, though widely applied to detect shifts, align domains [14, 15],68

and test fairness [16, 17]. Topological data analysis (TDA) offers a complementary view: [18] used69

persistent homology to track how network layers preserve or distort input topology, and [19] surveyed70

TDA tools such as persistent homology and Mapper for analyzing architectures, decision boundaries,71

representations, and training dynamics.72

3 Background and setup73

Our task is modular addition, using the same modulus n = 59 as [1]. We evaluate four architectures:74

two 1-hidden layer multi-layer perceptrons (MLPs) we introduce as baselines and two 1-hidden layer75

transformer variants we take from [1]. We use 128-dimensional trainable embeddings. The first MLP,76

MLP-Add, inputs the sum of the embeddings of a and b, Ea +Eb. The second, MLP-Concat, inputs77

their concatenation, (Ea,Eb). The transformers we take from [1] are modulated by an attention78

coefficient α. Setting α = 1.0 yields a standard attention model, Attention 1.0. Setting α = 0.079

disables learnable attention (becoming a matrix of all-ones), yielding Attention 0.0. These correspond80

to networks associated with the Clock and Pizza interpretations, respectively.81

3.1 Previous works’ interpretations of neural networks trained on modular addition82

[3] and [1] discovered two distinct, architecture-specific interpretations for the circuits learned by83

neural networks trained to solve modular addition: the Clock and the Pizza, respectively. They provide84
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analytical forms for the learned structures and key steps of the circuits. Both reverse engineer the85

computation of a particular circuit circuit through the network, which is conditioned on a frequency86

f . Both circuits begin by embedding each token a, b ∈ Zp (for p prime) on a circle:87

Ea = [cos(2πfa/p), sin(2πfa/p)], Eb = [cos(2πfb/p), sin(2πfb/p)]. (1)
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Figure 1: Clock and
Pizza’s analytical forms
visualized, with fre-
quency assumed to be
f = 1 for simplicity.
Each point corresponds
to a pair (a, b) after
being transformed by the
corresponding analytical
form and is colored by its
sum (a+ b) mod 59.

What distinguishes them is how the embeddings are transformed post-88

attention. Treating the attention as a blackbox and looking at its output89

Eab, we see the two stories. Clock [3] (associated with networks α = 1.090

networks) computes the angle sum on the circle. The network learns91

representations of the form:92

Eab = [cos(2πf(a+ b)/p), sin(2πf(a+ b)/p)], (2)

encoding the modular sum as a point on the unit circle. This requires93

second-order interactions (e.g. multiplying embedding components94

through sigmoidal attention). Pizza [1] (associated with α = 0.0 net-95

works), in contrast, Eab adds the embeddings directly as Ea+Eb, giving:96

Eab = [cos(2πfa/p) + cos(2πfb/p), sin(2πfa/p) + sin(2πfb/p)],
(3)

producing a vector mean on the circle. This is entirely linear in the97

embeddings. McCracken et al. [2] proposed the network-level aCRT98

algorithm, describing how clusters of different frequencies interact to99

compute modular addition. In this algorithm, first-layer neurons obey the100

simple neuron model, where on input (a, b) a neuron of frequency f has101

pre-activations102

N(a, b) = cos(2πfa/p+ ϕa) + cos(2πfb/p+ ϕb), (4)

where frequencies f and phases ϕa, ϕb are learned across training. [2]103

empirically verify the simple neuron model across MLPs and Transform-104

ers. This model agrees with the features assumed in the theoretical works105

of [5, 6]. This simple neuron model, composed of sinusoidal units,106

provides a robust approximation of learned features, and explains how107

the features collectively implement a CRT-like computation. While this108

analytically explains the features, it leaves open how these features are109

spatially organized and how different architectures converge to this form.110

Neuron remapping. For a simple neuron of frequency f , we define a111

canonical coordinate system via the mapping:112

(a, b) 7→ (a · d, b · d), where d :=

(
f

gcd(f, n)

)−1

mod
n

gcd(f, n)
. (5)

This inverse is the modular multiplicative inverse, i.e. for any Zk let x ∈ Zk. Its inverse x−1 exists113

if gcd(x, k) = 1 and gives x · x−1 ≡ 1 mod k. This normalizes inputs relative to the neuron’s114

periodicity and allows for qualitative and quantitative comparisons.115

3.2 Interpretability metrics of Zhong et al. [1]116

Gradient symmetricity measures, over some subset of input-output triples (a, b, c), the average117

cosine similarity between the gradient of the output logit Q(a,b,c) with respect to the input embeddings118

of a and b. For a network with embedding layer E and a set S ⊆ Z3
p of input-output triples:119

sg =
1

|S|
∑

(a,b,c)∈S

sim

(
∂Qabc

∂Ea
,
∂Qabc

∂Eb

)
where sim(u, v) = u·v

∥u∥∥v∥ is the cosine similarity. It is evident that sg ∈ [−1, 1].120

Distance irrelevance quantifies how much the model’s outputs depend on the distance between a and121

b. For each distance d, we compute the standard deviation of correct logits over all (a, b) pairs where122

a− b = d and average over all distances. It’s normalized by the standard deviation over all data.123
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Formally, let Li,j = Qij,i+j be the correct logit matrix. The distance irrelevance q is defined as:124

q =

1
p

∑
d∈Zp

std({Li,i+d|i ∈ Zp})
std({Li,j |i, j ∈ Zp})

where q ∈ [0, 1], with higher values indicating greater irrelevance to input distance.125

3.3 Topology126

We use Betti numbers from algebraic topology to distinguish the structure of different stages of127

circuits across layers. The k-th Betti number βk counts k-dimensional holes: β0 counts connected128

components, β1 counts loops, β2 counts voids enclosed by surfaces. For reference, a disc has Betti129

numbers (β0, β1, β2) = (1, 0, 0), a circle has (1, 1, 0), and a 2-torus has (1, 2, 1).130

We compute these using persistent homology, applied to point clouds constructed from intermediate131

representations at different stages of the circuit, as well as the final logits. This yields a compact132

topological signature that captures how the geometry of these representations evolves across layers,133

helping us identify when the underlying structure resembles a disc, torus, or circle. We use the Ripser134

library for these computations [20–22].135

4 Hypothesis: modular addition as a factored map from the torus to the circle136

Modular addition is the function Zn × Zn → Zn sending the pair (a, b) to c = a + b mod n.137

Geometrically, we may embed a ∈ Zn on the unit circle R2 via Ea = (cos(2πa/n), sin(2πa/n)).138

So the product space Zn × Zn embeds into R4 as a discretized torus, parameterized by139

(a, b) 7→ (cosu, sinu, cos v, sin v), u = 2πa/n, v = 2πb/n.

In this embedding, modular addition corresponds to the following map from the torus to the circle:140

(x1, x2, x3, x4) 7→ (x1x3 − x2x4, x1x4 + x2x3).

Parameterizing by angles, this becomes the familiar trigonometric identity141

(cosu, sinu, cos v, sin v) 7→ (cos(u+ v), sin(u+ v)).

We claim that networks we study are approximating this specific geometric map from a torus in R4 to142

a circle in R2. In Section 3.1 we saw that the “clock” and “pizza” interpretations included learned143

embeddings of the form of Ea. Taken together, these embeddings define a torus T2 as the input144

representation space. Our hypothesis is that architectures (MLP-Add, Attention 0.0 and 1.0, MLP-145

Concat) do not learn fundamentally different solutions; rather they factor the same torus-to-circle146

map via different intermediate representations. Fig. 4 shows factorizations of this map.147

4.1 Qualitative analysis of intermediate representations148

In this section, we provide suggestive evidence that “clock” and “pizza” networks are geometrically149

almost indistinguishable: they correspond to a disc coming from “vector addition on the circle”. We150

study 1-hidden layer versions of MLP-Add, Attention 0.0 [1, “pizza”], Attention 1.0 [1, “clock”],151

and MLP-Concat. In all networks, we cluster neurons together and study the entire cluster at once152

[2]. This is done by constructing an n× n matrix, with the value in entry (a, b) corresponding to the153

preactivation value on datum (a, b). A 2D Discrete Fourier Transform (DFT) of the matrix gives the154

key frequency f for the neuron. The cluster of preactivations of all neurons with key frequency f is155

the n2 × |cluster f | matrix, made by flattening each neurons preactivation matrix and stacking the156

resulting vector for every neuron with the same key frequency.157

Principal component analysis (PCA). We apply PCA to each cluster matrix and project the n2158

datapoints, for each input (a, b), onto the first two principal components. To compare clusters of159

different frequencies, we use the remapping from [2] (Section 3.1), which normalizes all clusters160

to frequency 1. This can be seen in Figure 2 where despite pre-activations coming from different161

frequency clusters, the color grading is normalized to frequency 1. The figure shows that Pizza162

(Attention 0.0), Clock (Attention 1.0), and MLP-Add’s pre-activations each collapse to the same 2D163
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Figure 2: PCA of neuron pre-activations for a single frequency cluster across architectures: MLP-Add
(f = 27), Pizza (f = 17), Clock (f = 21), MLP-Concat (f = 22). Each point is an input (a, b),
colored by (d · a+ d · b) mod 59 corresponding to the network’s output (see Section 3.1). Pizza and
Clock are nearly identical to each other and to MLP-Add, but differ strongly from MLP-Concat.

disc, differing only by rotation; for these networks, the first two principal components explain more164

than 99% of the variance, implying the cluster has a 2D structure. These clusters have negligible165

activation near (0, 0) in the PCA plane, since neither principal component contributes strongly at that166

point. In contrast, MLP-Concat is fundamentally different: its pre-activations form a 4D structure167

resembling a torus, where four principal components each explain about 25% of the variance, and168

no 2D projection fully captures the structure. Importantly, the 4D embedding has no datapoints at169

(0, 0, 0, 0), indicating that the cluster activates on all points.170

Distribution of post-ReLU activations. To probe how neurons activate, in Figure 3 we remap each171

neuron to frequency 1, using the procedure of [2] (Section 3.1), and compute the sum of post-ReLU172

activations across each frequency cluster. The figure shows that in MLP-Add, Pizza (Attention 0.0),173

and Clock (Attention 1.0), clusters activate most strongly along the diagonal where the two inputs174

align (a ≈ b), with activation strength decreasing smoothly as the distance from the diagonal grows.175

This implies that neurons in these networks adopt phases such that they fire maximally when the two176

embedded inputs are in phase (ϕa = ϕb). In contrast, MLP-Concat’s cluster activates more uniformly177

across the input space, reflecting the different 4D geometry already seen in PCA.178

These results give a geometric explanation for the observation of [1]: the apparent a− b dependency179

in Pizza logits arise because neurons are phase-aligned, so they concentrate activation when inputs180

coincide and the strength decreases smoothly as the difference between a and b grows. Since Clock181

also exhibits this behaviour, we expect that it also has an a− b dependency and its activations, thus182

intermediate representation, resemble that of Pizza. This is surprising, because [1] identified an a− b183

dependency as the defining feature of Pizza circuits, for which they defined their distance irrelevance184

metric. Our results show that this dependency arises just as strongly in Clock circuits, meaning185

both architectures share the same underlying geometric mechanism. Given these observations, we186

hypothesize that the structure of the intermediate representations depends on the distribution187

of phases. Under the simple neuron model, this aligns with where the neuron activates most strongly.188

Phase Alignment Distributions. To characterize the topological similarity of the learned represen-189

tations across these networks at a more fine-grained level, we propose yet another representation: the190

Phase Alignment Distribution (PAD). To a given architecture, a PAD is a distribution over Zn × Zn.191

Samples of this distribution are drawn as follows:192

1. Sample a random initialization (e.g., random seed) and train the network.193

2. From the resulting trained network, sample a neuron uniformly.194

3. Return the pair (a, b) ∈ Zn × Zn that achieves the largest activation in the resulting neuron.195

A PAD illustrates, across independent training runs and neuron clusters, how often activations196

are maximized on the a = b diagonal—that is, it depicts how often learned phases align. Even197

beyond inspecting the proximity of samples to this diagonal, we propose to compare the PADs of198

architectures according to a metrics on the space of distributions over Zn × Zn, giving an even199

more precise comparison. In the following section, we will provide estimates of the PADs for the200

aforementioned architectures, as well as PAD distances under the maximum mean discrepancy [13,201

MMD]—a family of metrics with tractable unbiased sample estimators.202
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As suggested from our preliminary expositions in this section, our hypothesis is that PADs will203

indicate that Clock and Pizza architectures learn nearly-topologically-identical circuits. Our approach204

for accomplishing this will be based on the realization that the MLP-Add architecture has a PAD205

supported entirely on the positive diagonal (this is ensured under the simple neuron model [2], since206

the addition of sinusoids of the same frequency will achieve the largest value when the phases207

align). By comparing the PADs of the Clock and Pizza to that of MLP-Add, we expect to find208

roughly no difference (w.r.t. a distributional metric). Moreover, we hypothesize that the PAD of the209

MLP-Concat architecture will be distinct, as a result of its higher-dimensional representation—this210

would demonstrate effectively that topological analysis can distinguish the resulting circuits.211

5 Key results: attention 0.0 and 1.0 models are both almost vector addition212

5.1 PAD shows that MLP-Add, Attention 0.0 (Pizza) and Attention 1.0 (Clock) are the same213

We study 703 trained one-hidden-layer networks drawn from our four architectures: MLP-Add,214

Attention 0.0 (Pizza), Attention 1.0 (Clock) and MLP-Concat. Our goal is to show that the Attention215

models are nearly equivalent to MLP-Add while being clearly distinct from MLP-Concat. Recall216

that MLP-Add bypasses the attention mechanism and directly sums the input embeddings, yielding a217

pre-ReLU representation that corresponds analytically to vector addition on the circle. Following218

prior work on one-layer networks [3, 1], and building on the empirical validation of the simple neuron219

model (Eq. 4) in [2], the only degree of freedom within a frequency cluster is the pair of learned220

phases (ϕa, ϕb). In practice, raw activations can be noisy, so rather than fitting sinusoids directly, we221

assume the simple neuron model and identify the phase either by the point of maximal activation or222

by the activation’s center of mass.223

Figure 5 shows PAD plots across architectures. We note that MLP-Add, Attention 0.0, Attention224

1.0 are very concentrated on the diagonal, while MLP-Concat is not. To further quantify this, we225

propose the torus distance, which is the discrete graph distance from a point (a, b) on the torus to the226
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a = b line. Figure 6 quantifies this with a histogram of torus distances to the a = b line. We see that227

Attention 0.0 and 1.0 are almost indistinguishable and both very similar to MLP-Add; moreover, our228

metric successfully discerns these models from MLP-Concat.229

Table 1 shows the PAD distances under the MMD distance. All comparisons are statistically significant230

(p-values ≈ 0). We see that Attention 0.0 and 1.0 are extremely close to each other, MLP-Add lies231

moderately close to both, and MLP-Concat is strongly separated from all others.232

Figure 7 shows the mean and standard deviation of the gradient symmetricity and distance irrelevance233

metrics from [1] (Section 3.2). Unlike [1], who report gradient symmetricity results over a randomly234

selected subset of 100 input-output triples (a, b, c) ∈ Z3
p, we compute the metric exhaustively across235

all 593 = 205, 370 triples to add accuracy.1.236

MLP-Add and MLP-Concat cluster on opposite extremes, implying the metrics just identify whether237

neurons have phases ϕa ̸= ϕb. MLP-Add models have high gradient symmetricity and low distance238

irrelevance and MLP-Concat models have low gradient symmetricity and high distance irrelevance.239

Attention 1.0 models span a wide range between these extremes depending on two factors: 1) how240

well the frequencies they learned intersect and 2) how well neurons are able to get their activation241

center of mass away from the ϕa = ϕb line. Attention 0.0 is closer to MLP-Add than Attention 1.0242

1See Appendix B.3 for the GPU-optimized procedure.
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Table 1: Gaussian-kernel Maximum Mean Discrepancies (MMD) [13] and permutation p-values
between the empirical distributions shown in Figure 5. For each architecture comparison, we sampled
20,000 points from each empirical distribution (derived from histogram-based neuron statistics),
then computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median
heuristic. Significance was assessed using 50,000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP-Add vs Attention 0.0 0.0968 0.0000 Moderate difference; highly significant
MLP-Add vs Attention 1.0 0.1239 0.0000 Clear difference; highly significant
MLP-Add vs MLP-Concat 0.2889 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0338 0.0000 Subtle difference; highly significant
Attention 0.0 vs MLP-Concat 0.1987 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP-Concat 0.1723 0.0000 Strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP-Add vs Attention 0.0 0.0583 0.0000 Small difference; highly significant
MLP-Add vs Attention 1.0 0.0689 0.0000 Moderate difference; highly significant
MLP-Add vs MLP-Concat 0.2614 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0210 0.0084 Subtle difference; highly significant
Attention 0.0 vs MLP-Concat 0.2126 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP-Concat 0.1947 0.0000 Strong difference; highly significant
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Figure 7: Evaluation of gradient symmetricity (left) and distance irrelevance (right). Each point shows
the average (avg) and standard deviation (std) of one trained network. MLP-Add and MLP-Concat lie
at nearly opposite extremes, while attention 0.0 and 1.0 overlap substantially. Gradient symmetricity
separates Attention 1.0 better, but neither metric always distinguishes between Attention 1.0 and 0.0.

because it’s harder for this architecture to learn ϕa ̸= ϕb. Notably, failure cases exist using both:243

neither metric distinguishes between Attention 1.0 and 0.0 models.244

Our metric has a nice topological interpretation unlike prior metrics, which we exploit further to245

understand intermediate representations in multi-layer networks in the next subsection.246

5.2 Homology consistently explains topological transformations in deep networks247

It’s the case that the homology of what networks learn gives that MLP-Add, Attention 0.0 and248

Attention 1.0 architectures are all making topologically equivalent computations. While the MLP-249

Concat model appears to be different, it’s in fact just more efficient, which results from the torus250

already having the holes necessary to accurately project the correct answer onto the logits after just251

one non-linearity (see Fig. 8). It’s worth noting that while discs appear to be learned in the logits, in252

all the cases checked by hand the discs were caused by limitations of persistent homology, which253

struggles to find a hole of small radius.254

8



94.5%

63
.7

%

34.9%

1.43%

96.6%

1.96%
1.4%

77.1%

22.3%

86.8%

11.8%
1.47%

97.3%

1.35%
1.35%

52
.1

%

46
.1

%
1.8%

69
%

30.1%

0.949% 80.1%

18.8%
1.19%

96%
75

.3%

23.6%

1.04%

0.741%
0.37%

86.9%

11.8%
1.31%

92.1%

6.5%
1.44%

96.7%

59
.3

%

39
%

1.63%

73
.8%

24.4%

1.81%
78.5%

19.6%

99.7%

0.137%
0.137%

72
.7%

25.6%

1.74%

99.1%

0.54%
0.36%

68
.8

%

30.5%

0.718% 76
.9%

0.647%

100%
96.5%

3.54%

92.2%

5.68%
2.13%

95.3%

3.62%
1.07%

97%

98.9%

1.41%

98.1%

1.23%
0.705%

90.8%

0.531%
8.67%

97%

100%

1.07%
1.92%

94.9%

3.5%
1.56%

75
%

11.3%

83.2%

1.95%
14.8%

91.3%

2.17%
6.52%

1 0 0 1 3 0 other 1 1 0 1 2 0 1 2 1

MLP-Add MLP-Concat

layer 2 layer 3 logits layer 2 layer 3 logits

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

1-
la

ye
r

2-
la

ye
r

3-
la

ye
r

2.92%
layer 1layer 1

1.09%2.73%

1.56%

1.12%
2.23%

22.4%

1.82%

0.627%

13.6%

Attention 1.0Attention 0.0

Figure 8: Pie charts of Betti numbers across layers. 100 models of each type; 400 total.

6 Conclusion255

We’ve shown that architectures of various types with trainable embeddings are approximating the256

torus to circle map for modular addition. Thus, how circuits differ is in the way this map factors, i.e.257

the structure of the intermediate representations. As a consequence, we find that the architectures258

associated with the “clock” and “pizza” interpretations are factoring this map in the same way, thus259

they implement the same circuits. The distinction between “clock” and “pizza” is illusory, and they260

differ more obviously from our MLP-Concat model. We were able to detect the similarities and261

differences using geometric and topological methods.262

Given our characterization of neural modular addition as factorizations of the torus to circle map, we263

discover that this can be accomplished via intermediate representations that include the torus itself or264

projections of it. This has interesting connections to the manifold hypothesis [23], which posits that265

data lives on a lower dimensional manifold and that neural networks will discover this underlying266

low-dimensional structure. Our results give a clear demonstration of how high-level architectural267

choices can induce the learning of the entire manifold or a projection of it.268

Finally, our analysis is limited to a single task: modular addition. While the toroidal geometry269

provides a useful abstraction in this domain, the feasibility of recovering the underlying manifold270

in more complex or real-world tasks remains to be established. In conclusion, our work reframes271

the modular addition landscape: Clock and Pizza models lie on a geometric continuum shaped by272

architectural bias, not algorithmic difference. This opens promising directions for future research in273

mechanistic interpretability and theory: how do learned manifolds and their geometry govern training274

dynamics, generalization, and representational efficiency? Various tools from geometry and topology275

can be brought to bear on this problem, and many more will likely need to be developed for the276

nuances of neural networks, particularly the presence of noise.277
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A Additional experimental details349

We will absolutely provide code for a camera-ready version. We were unable to include it in this350

submission due to unfortunately running out of time.351

A.1 Training hyperparameters.352

All models are trained with the Adam optimizer [24]. Number of neurons per layer in all models is353

1024. Batch size is 59. Train/test split: 90%/10%.354

Attention 1.0355

• Learning rate: 0.00075356

• L2 weight decay penalty: 0.000025357

Attention 0.0358

• Learning rate: 0.00025359

• L2 weight decay penalty: 0.000001360

MLP-Add and MLP-Concat361

• Learning rate: 0.0005362

• L2 weight decay penalty: 0.0001363

MLP-Concat364

A.2 Persistent homology365

For our persistent homology computations, we set the k-nearest neighbour hyperparameter to 250.366

Our point cloud consists of 592 = 3481 points.367

B Experiments and computational details368

B.1 Statistical significance of the main results369

B.1.1 Figure 5370

We trained 703 models of each architecture, being MLP vec add, Attention 0.0 and 1.0, and MLP371

concat, and recorded the locations of the max activations of all neurons across all (a, b) inputs to the372

network. We also computed the center of mass of each neuron as this doesn’t always align with the373

max preactivation (though it tends to be close).374

B.1.2 Figure 6: Torus distance from the max activation and center of mass to the line a = b375

We trained 703 models of each architecture with 512 neurons in its hidden layer (MLP vec add,376

Attention 0.0 and 1.0, and MLP concat), and recorded the a, b value of where the max activation of377

a neuron takes place across all (a, b) inputs to the network and all neurons. We also computed the378

(a, b) values for the location of the center of mass of each neuron as this doesn’t always align with379

the max preactivation (though it tends to be close). Then we compute the shortest torus distance from380

the point of the max activation or the center of mass, to the line a = b.381

B.2 Figure 7 symmetricity382

MMD results for these two metrics are reported below, again showing that the distance between383

attention 0.0 and attention 1.0 models is small. This is the case even those these metrics were chosen384

to differentiate between the two architectures.385

Using just the x-axis (since the y-axis on those plots is the std dev) MMD results are presented next.386

We can conclude that the attention transformers are far from vector addition, and very close to each387

other under all metrics.388
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Table 2: Gaussian-kernel Maximum Mean Discrepancies (MMD) [13] and permutation p-values
between the empirical distributions shown in Figure 5. For each architecture comparison, we sampled
20,000 points from each empirical distribution (derived from histogram-based neuron statistics),
then computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median
heuristic. Significance was assessed using 50,000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0968 0.0000 Moderate difference; highly significant
MLP vec add vs Attention 1.0 0.1239 0.0000 Clear difference; highly significant
MLP vec add vs MLP concat 0.2889 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0338 0.0000 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.1987 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1723 0.0000 Strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.0583 0.0000 Small difference; highly significant
MLP vec add vs Attention 1.0 0.0689 0.0000 Moderate difference; highly significant
MLP vec add vs MLP concat 0.2614 0.0000 Very strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0210 0.0084 Subtle difference; highly significant
Attention 0.0 vs MLP concat 0.2126 0.0000 Strong difference; highly significant
Attention 1.0 vs MLP concat 0.1947 0.0000 Strong difference; highly significant

Table 3: Gaussian-kernel Maximum Mean Discrepancies (MMD) [13] and permutation p-values
between the empirical distributions shown in Figure 6. For each architecture comparison, we sampled
2000 points from each empirical distribution (derived from histogram-based neuron statistics), then
computed the unbiased Gaussian-kernel MMD with a bandwidth chosen via the pooled median
heuristic. Significance was assessed using 5000 permutation tests per comparison.

(a) Row 1: Max activation

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.3032 0.0000 Strong difference; highly significant
MLP vec add vs Attention 1.0 0.3888 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 0.9508 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0705 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.6323 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.5695 0.0000 Very strong difference; highly significant

(b) Row 2: Center of mass

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7727 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7517 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 0.9148 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.0520 0.0006 Moderate difference; highly significant
Attention 0.0 vs MLP concat 0.7022 0.0000 Very strong difference; highly significant
Attention 1.0 vs MLP concat 0.6391 0.0000 Very strong difference; highly significant
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Table 4: Permutation–test MMDs on the empirical gradient symmetricity and distance irrelevance
distributions across all architectures. All p-values are ≤ 10−6 (reported as 0.0000).

(a) Gradient symmetricity (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2725 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9688 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3471 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7750 0.0000 Very strong difference; highly significant
Attention 0.0 vs MLP concat 1.3503 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2360 0.0000 Extremely strong difference; highly significant

(b) Distance irrelevance (2-D: avg and std)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7534 0.0000 Very strong difference; highly significant
MLP vec add vs Attention 1.0 0.7079 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2488 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2078 0.0000 Moderate difference; highly significant
Attention 0.0 vs MLP concat 1.2255 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.0990 0.0000 Extremely strong difference; highly significant

Table 5: Permutation-test MMDs on scatter-plot averages only (1-D). All p–values are ≤ 10−6, so
every difference is “highly significant.” Note that the distance between attention 0.0, attention 1.0,
and MLP vec add is large, implying they are not performing vector addition.

(a) Row 3: Gradient symmetricity (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 1.2755 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.9842 0.0000 Extremely strong difference; highly significant
MLP vec add vs MLP concat 1.3833 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.7726 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs MLP concat 1.3802 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.2559 0.0000 Extremely strong difference; highly significant

(b) Row 4: Distance irrelevance (avg only)

Description MMD p-value Interpretation

MLP vec add vs Attention 0.0 0.7739 0.0000 Extremely strong difference; highly significant
MLP vec add vs Attention 1.0 0.7268 0.0000 Very strong difference; highly significant
MLP vec add vs MLP concat 1.2501 0.0000 Extremely strong difference; highly significant
Attention 0.0 vs Attention 1.0 0.2109 0.0000 Strong difference; highly significant
Attention 0.0 vs MLP concat 1.2443 0.0000 Extremely strong difference; highly significant
Attention 1.0 vs MLP concat 1.1093 0.0000 Extremely strong difference; highly significant
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GPU-Optimized Centre-of-Mass in Circular Coordinates389

Let p be the grid size and for each neuron n = 1, . . . , N we have a pre-activation map390

x
(n)
i,j , (i, j = 0, . . . , p− 1).

Define nonnegative weights391

w
(n)
i,j =

∣∣x(n)
i,j

∣∣.
Let fn ∈ {1, . . . , ⌊p/2⌋} be the dominant frequency for neuron n, and let392

f−1
n be the modular inverse of fn modulo p, fn f

−1
n ≡ 1 (mod p).

Convert the row index i and column index j into angles (“un-wrapping” by f−1
n ):393

θ
(n)
i =

2π

p
f−1
n i, ϕ

(n)
j =

2π

p
f−1
n j.

Form the two complex phasor sums394

S(n)
a =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i θ

(n)
i

)
,

S
(n)
b =

p−1∑
i=0

p−1∑
j=0

w
(n)
i,j exp

(
i ϕ

(n)
j

)
.

The arguments of these sums give the circular means of each axis:395

µ(n)
a = arg

(
S(n)
a

)
, µ

(n)
b = arg

(
S
(n)
b

)
,

where arg returns an angle in (−π, π]. To ensure a nonnegative result, normalize into [0, 2π):396

µ+ =
(
µ+ 2π

)
mod 2π.

Finally, map back from the angular domain to grid coordinates:397

CoM(n)
a =

p

2π
µ(n)+
a , CoM

(n)
b =

p

2π
µ
(n)+
b .

This handles wrap-around at the boundaries automatically and weights each location (i, j) by |x(n)
i,j |,398

producing a smooth, circularly-aware center of mass. All tensor operations—angle computation,399

complex exponentials, and weighted sums—are expressed as parallel array primitives that JAX400

can JIT-compile and fuse into a single GPU kernel launch, eliminating Python-level overhead.401

By precomputing the angle grids and performing the phasor sums inside one jitted function, this402

implementation fully exploits GPU parallelism and memory coalescing for maximal throughput.403

B.3 Running metrics from [1]404

B.3.1 GPU-vectorized distance irrelevance over all n2 input pairs405

Let406

I =
{
(a, b) | a, b ∈ {0, . . . , n− 1}

}
,

and order its elements lexicographically:407

X =
[
(a0, b0), (a1, b1), . . . , (an2−1, bn2−1)

]
∈ Zn2×2.

A n2 single batched forward pass on the GPU computes408

Logits = Transformer
(
X
)

∈ Rn2×n,

producing all n2 · n output logits in parallel. We then extract the “correct-class” logit for each input:409

yk = Logits k, (ak+bk) mod n, k = 0, . . . , n2 − 1.
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Next we reshape y into an n× n matrix L by410

L i,j = yk where i = (ak + bk) mod n, j = (ak − bk) mod n.

All of the above—embedding lookup, attention, MLP, softmax and the advanced indexing—is411

implemented as two large vectorized kernels (the batched forward pass and the gather), so each of the412

n2 inputs is handled in O(1) time but fully in parallel on the GPU.413

Finally, define414

σglobal =

√
1

n2

∑
i,j

(
Li,j − µ

)2

, µ =
1

n2

∑
i,j

Li,j ,

and for each “distance” j415

σj =

√
1

n

∑
i

(
Li,j − L̄·j

)2

, L̄·j =
1

n

∑
i

Li,j , qj =
σj

σglobal
.

We report416

q =
1

n

n−1∑
j=0

qj , std(q) =

√√√√ 1

n

n−1∑
j=0

(
qj − q

)2
.

B.3.2 GPU-optimized gradient symmetricity over all n3 triplets417

Let418

E ∈ Rn×d with d = 128

be the learned embedding matrix, and denote by419

Q
(
Ea, Eb

)
c

the scalar logit for class c obtained by feeding the pair of embeddings (Ea, Eb) into the model. We420

define the per-triplet gradient cosine-similarity as421

S(a, b, c) =

〈
∇Ea Q(Ea, Eb)c, ∇Eb

Q(Ea, Eb)c
〉∥∥∇Ea

Q(Ea, Eb)c
∥∥ ∥∥∇Eb

Q(Ea, Eb)c
∥∥ ,

for all (a, b, c) ∈ {0, . . . , n− 1}3.422

To compute {S(a, b, c)} over the full n3 grid in one fused GPU kernel, we first form three index423

tensors424

Ai,j,k = i, Bi,j,k = j, Ci,j,k = k, i, j, k = 0, . . . , n− 1,

then flatten to vectors a = vec(A), b = vec(B), c = vec(C) ∈ {0, . . . , n − 1}n
3

. We gather the425

embeddings426

emba = E[a] ∈ Rn3×d, embb = E[b] ∈ Rn3×d,

and in JAX compute427

ga = vmap
(
(ea, eb, c) 7→ ∇Ea

Q(ea, eb)c
)
(emba, embb, c),

428

gb = vmap
(
(ea, eb, c) 7→ ∇Eb

Q(ea, eb)c
)
(emba, embb, c),

each producing an (n3 × d)-shaped array. Finally the similarity vector is429

S =
ga ⊙ gb

∥ga∥ ∥gb∥
∈ Rn3

,

and we report430

S =
1

n3

n3∑
i=1

Si, σS =

√√√√ 1

n3

n3∑
i=1

(
Si − S

)2
.

Runtime. Because we express ga,gb and the subsequent dot-and-norm entirely inside a single431

@jax.jit+ vmap invocation, XLA lowers it to one GPU kernel that processes all n3 triplets in paral-432

lel. The kernel dispatch cost is therefore O(1), and each triplet’s gradient and cosine computations are433

fused into vectorized instructions with constant per-element overhead. Although the total arithmetic434

work is O(n3), the full data-parallel execution means the wall-clock latency grows sub-linearly in n3435

and the per-triplet overhead remains effectively constant.436
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