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Abstract—The Receiver Operating Characteristic (ROC) curve
is a critical tool for binary classification analysis in medicine,
with the Area Under the ROC Curve (AUROC) serving as a
widely accepted metric to evaluate the performance of binary
classifiers. This study conducts a comprehensive review of the
ROC curve with a focus on its utility in outlier identification.
We introduce a novel scoring method to rank actual positives
and actual negatives within a test set, according to their impact
on AUROC degradation. We bridge the scoring system with the
ROC curve analysis to quantify each data point’s contribution
to AUROC loss. Furthermore, we introduce the IMICS ROC
Analyzer, a graphical user interface-based software, embedded
with our innovative algorithms. Through the use of an open-
source prostate cancer dataset, we illustrate the application of our
algorithms for practical outlier detection in binary classification
tasks. The IMICS ROC Analyzer enhances the field of precision
medicine by allowing for measuring an individual’s contributions
(be it patients, lesions, or samples) to the overall AUROC, thus
facilitating confidence measurement of Machine Learning (ML)
classifiers for individual cases of interest in a cohort.

Index Terms—AUROC, Binary Classification, Evaluation Met-
ric, Machine Learning, Outlier Identification, ROC

I. INTRODUCTION

Receiver Operating Characteristic (ROC) curve is a crit-
ical tool in binary classification evaluation, offering a vi-
sual demonstration of the balance between sensitivity and
specificity across varying thresholds. ROC application spans
multiple fields, notably in medical and engineering sciences,
where it serves as an essential measure for assessing classifier
efficacy.

The Area Under the ROC Curve (AUROC) represents a key
metric associated with the ROC curve, holding particular sig-
nificance within the medical field, although its adoption in en-
gineering commenced in the early 1990s [1], [2]. Subsequent
research on the AUROC has introduced several enhancements
aimed at broadening its utility across diverse settings.

ROC and AUROC possess distinctive features that ren-
der them suitable for ML applications within the healthcare
domain [3]. The ROC curve is instrumental in determining
the optimal threshold for binary classifiers, such as linear
models or Neural Networks (NN), enabling the conversion of
predicted probabilities into class labels. Additionally, AUROC
inherently balances the significance of each class, making
it a valuable metric for evaluating the efficacy of binary
classifiers in scenarios involving imbalanced datasets [4]. To
the best of our knowledge, the majority of existing AUROC
research has been concentrated on cohort-level analysis, with
a notable absence of methodologies for evaluating the impact
of individual contributions on AUROC loss and their influence
on the ROC curve’s configuration. Furthermore, there appears
to be a lack of graphical user interface (GUI)-enabled software
tailored for comprehensive ROC analysis. Our work aims to
fill these gaps.

Key contributions of this research include:

• We implement an optimized Python function designed for
plotting accurate and visually compelling ROC curves,
and make it open source.

• We establish scoring metrics for ranking actual positives
and actual negatives, helping to detect outliers within
cohorts.

• We introduce a precise analytical methodology for quanti-
fying the individual contributions of examples to AUROC
loss within a specific ROC curve.

• We propose B point as an alternative to Youden’s J point
[5] for optimal ROC curve threshold selection.

• We develop and open-source the Intelligent Medical
Informatics Computing Systems (IMICS) ROC Analyzer,
a GUI-enabled software tool, to facilitate detailed ROC
analysis.



II. RELATED WORK

Kottas et al. contributed to the development of a method-
ology for estimating confidence intervals for the AUROC,
thus providing a more dependable evaluation of classifier
performance [6]. Expanding on this foundation, Yu et al.
presented a revised AUROC metric tailored for gene ranking
to support genetic research [7]. Yu and Park suggested a
reformulated AUROC metric designed to penalize regression
models in gene selection processes involving high-dimensional
datasets [8].

The exploration of AUROC as a loss function for training
ML models by Rosenfeld et al. showed that models trained on
an AUROC basis exhibited superior generalization capabilities
[9]. Their investigation, however, primarily focused on Sup-
port Vector Machines (SVM) [10] and did not include NN,
particularly neglecting the incorporation of model confidence
in the calculation of AUROC.

In online learning [11] contexts, Zhao et al. proposed an
algorithm to maximize AUROC, thus facilitating effective
adjustments to evolving data streams [12]. Ying et al. adopted
a stochastic strategy, offering a different angle on AUROC
optimization within online learning frameworks, which maxi-
mizes AUROC during training [13]. Cortes and Mohri studied
the relationship between AUROC optimization and error rate
reduction, elucidating that a decrease in error rate does not
equal a decrease in AUROC [14].

While Ghanbari and Scheinberg focused on direct opti-
mization of error rate and AUROC for classifiers [15], their
methodologies were confined to linear classifiers. Namdar
et al. proposed an augmented version of the AUROC that
integrates the confidence of the model into its calculation [16].
Their findings indicated that this enhanced AUROC correlates
with the Binary Cross Entropy (BCE) loss function, suggesting
its superiority as a metric for supervising the training of
Convolutional Neural Networks (CNNs). This methodology
was validated across three distinct datasets, affirming its ef-
fectiveness. In this work, we use their fundamental AUROC
calculation discussions.

Yan et al. discussed the inadequacies of traditional loss
functions, including cross entropy (CE) and mean squared
error (MSE), which are primarily aimed at improving classi-
fication accuracy but may not effectively optimize models for
distinguishing between different outcomes at varying decision
thresholds [17]. They introduced a novel objective function
that serves as a differentiable surrogate for the Wilcoxon-
Mann-Whitney (WMW) statistic [18]. This function is directly
congruent with the AUROC, offering a more aligned approach
to model optimization with respect to the AUROC metric.
Inspired by this work, Namdar et al. developed an AUROC
loss function in another research [19]. Instead of considering
AUROC as the area under the ROC curve, they defined
AUROC as a probability. This direct definition is a second
pillar of our approach.

In contrast to the existing studies, our approach is fo-
cused on individual examples which are classified by a bi-

nary classifier. This aligns with the principles of precision
medicine, facilitating the assessment of confidence levels in
binary classifiers. Among the existing body of literature, the
concept most akin to our approach is the identification of
outliers. Evangelista et al. used rank distributions and fusing
models for the classification of imbalanced data [20]. Never-
theless, their approach is based on pseudo-ROC curves that
approximate the actual ROC curve. In contrast, our proposed
method is empirical and inherently precise, lightweight, and
faster. Additionally, our contributions are not limited to outlier
identification, and we provide AUROC loss contribution for
each example, all incorporated in a GUI-based software for
comprehensive ROC analysis.

III. METHODS

In the context of binary classification using an ML model,
the output of the classifier is typically a probability score. This
score, when applied against a threshold, is translated into a
predicted class label, often represented as 0 or 1. Depending on
the ground truth labels and the predicted labels, a true positive,
true negative, false positive, or false negative can occur, which
are shown by TP , TN , FP , and FN , respectively. The ROC
represents the trade-off between sensitivity (also known as the
true positive rate (TPR), described in Equation 1) and one
minus specificity (Equation 2, the false positive rate (FPR))
across all potential thresholds ranging from 0 to 1.

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

Namdar et al. uncovered several characteristics of ROC
curves [16]. They demonstrated that it is unnecessary to con-
sider every conceivable value within this interval to effectively
utilize thresholding. Instead, a limited set of effective threshold
boundaries suffices, encompassing both the extreme values of
0 and 1 as well as the unique predicted probabilities. Addi-
tionally, they used actual positives (AP) and actual negatives
(AN), to show examples with ground truth labels of 1 (APs),
and examples with ground truth labels of 0 (ANs).

A. IMICS ROC Plot Function

Inspired by previous works and Equations 1 and 2, we
identified AP number of rows with equal height on the vertical
axis of an ROC curve and AN number of columns with equal
widths on its horizontal axis. This is fundamental for plotting
an ROC curve. As a result, the grid for each ROC curve
consists of rectangles with a width equal to 1/AN and a height
of 1/AP . Thus, an arbitrary setting of ticks on the X- and Y-
axes is inappropriate.

AUROC equalizes class weights as if the number of APs
and ANs were the same. To reflect this on the ROC plots,
it is necessary to have a squared ROC curve, which is often
neglected in the literature. Furthermore, the aesthetics of ROC
curves in the literature are often inconsistent and inaccurate. To



bridge the gaps, we implemented and open-sourced a Python-
based function called IMICS ROC plot (https://github.com/
IMICSLab/ROC Analyzer). IMICS ROC plot is compatible
with Tufte’s guidelines [21], which emphasize the use of
minimal and clear visual designs with maximum data-ink and
minimum non-data-ink ratios.

B. AUROC Loss Scores

The AUROC can be efficiently calculated by comparing
sets of APs and ANs that have been sorted by their predicted
probabilities. Each example’s contribution to AUROC loss is
directly related to its position in this order, which can be
shown using a rank. When examples are sorted by predicted
probabilities, the first segment of examples whose number
equals the size of ANs, contributes to AUROC accumulation if
their ground truth label is 0; if not, they contribute to AUROC
loss. For the subsequent segment, if their ground truth label is
0, it results in AUROC loss. Therefore, for the first examples
in the sorted set, AUROC loss increases when lower-ranked
examples (i.e., those with the lowest predicted probability)
have a ground truth label of 1. Similarly, for the larger values
in the sorted examples, more significant loss occurs when
higher-ranked examples mistakenly have a ground truth label
of 0.

The mathematical representation involves several key ele-
ments. Firstly, a set of sorted predicted probabilities, SPr, and
a corresponding set of ground truth labels, GT are provided. n
is defined as the total number of examples in the cohort, with
each example i having a predicted probability, pri, as shown
in Equation 3. The true label for each example i is denoted
by yi in Equation 4. The dataset is composed of np APs and
nn ANs, as outlined in Equation 5.

SPr = {pri | pri ∈ [0, 1], for i = 1, 2, . . . , n} (3)

GT = {yi | yi ∈ {0, 1}, for pri ∈ SPr and i = 1, 2, . . . , n}
(4)

n = nn + np (5)

The set R is introduced to represent the rank of each
example (Equation 6). The influence of an example on the
overall AUROC metric, E, is specified in Equation 7. To assess
the magnitude of the impact, the severity of this influence is
mathematically defined in Equation 8, as S. This quantifies
the potential effect an example can have on the total AUROC.
Finally, the AUROC loss score is encapsulated in SScore,
as detailed in Equation 9. A higher SScore corresponds to a
greater AUROC loss.

R(i) = i for pri ∈ SPr and i = 1, 2, . . . , n (6)

Fig. 1. Visualizing AUROC loss contributions

E(i) =


+ if i ≤ nn and GT (i) = 0,

− if i ≤ nn and GT (i) = 1,

+ if i > nn and GT (i) = 1,

− otherwise.

(7)

S(i) =

{
nn −R(i) if i ≤ nn,

n−R(i) if i > nn.
(8)

SScore(i) =


0 if E(i) = +,

S(i) · 1
np

if E(i) = − and GT (i) = 1,

S(i) · 1
nn

if E(i) = − and GT (i) = 0.
(9)

C. AUROC Loss Contributions for Individual Examples

The cumulative AUROC loss for a specified ROC curve is
represented by the area above the curve. For ANs, the AUROC
loss attributed to each individual example manifests itself as a
vertical column, while for APs, it is represented as a horizontal
row, as shown in Fig. 1. At the intersection points on the
diagonal of the ROC grid, the AUROC contributions from
APs and ANs overlap. These intersections are divided equally
along their diagonals, facilitating the calculation of individual
AUROC loss contributions for each example. Transitioning to
the area beneath the ROC curve allows calculating the AUROC
gain contribution for each individual example.

D. B Point

We refer to the intersection of APs and ANs’ AUROC loss
contributions as the B line, also termed the label balance line.
The point where the B line intersects with the ROC curve
is referred to as the B point. B point signifies the juncture
at which the weights of the two classes are balanced, as
illustrated in Fig. 2.



Fig. 2. B line and B point on ROC curves

Fig. 3. IMICS ROC Analyzer

E. IMICS ROC Analyzer

To consolidate the proposed modules and enable their
application in research, we developed and open-sourced a
software named IMICS ROC Analyzer (https://github.com/
IMICSLab/ROC Analyzer). This software, built on PyQT
[22] and featuring a GUI, includes individual example-based
functionalities for calculating outlier scores and AUROC loss
contributions (Fig. 3). Additionally, IMICS ROC Analyzer
includes an investigation mode for excluding outliers and
recalculating adjusted ROC and AUROC.

IV. RESULTS

A. Synthetic ROC

A synthetic ROC curve, shown in Fig. 4 and derived from
Table I, illustrates the distribution of actual APs and ANs along

Fig. 4. Example 1 for ROC analysis

TABLE I
EXAMPLE 1 FOR ROC ANALYSIS

True Label/Model Prediction ANs APs

GT 0,0,0,0 1,1,1,1,1,1
SPr 0.1, 0.15, 0.5, 0.6 0.3, 0.55, 0.7, 0.8, 0.85, 0.99

the axes. It also demonstrates how AP and AN ranks influence
contributions to the AUROC. The IMICS ROC Plot Function
offers features for visualizing critical points such as Youden’s
J point and B point, along with the B line. These elements are
detailed with their respective coordinates and threshold values
on the ROC, as depicted in Fig. 5.



Fig. 5. Options of IMICS ROC Plot Function: a) basic ROC plot b) ROC
with J point shown c) ROC with B line and B point shown

B. ProstateX Dataset

To illustrate the application of our methodology to real-
world datasets with more extensive examples, we chose the
PROSTATEx dataset, sourced from the SPIE-AAPM-NCI
ProstateX Challenge, which is a repository designed to ad-
vance the development and validation of image analysis meth-
ods for prostate cancer detection and characterization [23].
The training cohort of the dataset comprises multi-parametric
Magnetic Resonance Imaging (mpMRI) scans obtained from
204 patients for whom prostate biopsy results are available.
Each patient’s data includes a variety of MRI sequences, such
as T2-weighted images, Diffusion-Weighted Images (DWIs),
and Dynamic Contrast Enhanced (DCE) images, alongside
annotated clinical findings and Gleason scores.

We randomly divided the dataset into training, validation,
and test cohorts with sizes of 154, 50, and 50 respectively,
and trained a shallow 3D CNN using DWIs for patient-
level prediction of significant Gleason scores, according to
methods detailed elsewhere [24], [25]. Unlike previous studies
on PROSTATEx, we did not use biopsy coordinates to guide
the CNN, which led to comparatively poorer results. However,
for the objectives of this study, the level of performance is
not a primary concern. The test set predictions are included
when the IMICS ROC Analyzer is installed. Fig. 6 displays
the ROC plot, SScores, and AUROC contribution for one of
the patients analyzed using the IMICS ROC Analyzer, both
with and without the exclusion of the top 3 outliers. As
demonstrated in Fig. 6, the exclusion of three specific test
examples accounts for an 11% decrease in AUROC.

C. BraTS Dataset

We developed a radiomics-based pipeline to classify low-
grade glioma (LGG) and high-grade glioma (HGG) brain
tumors using T1-contrast-enhanced (T1CE) MR images. The
dataset was sourced from open-radiomics [26] and included
369 adult patients with brain tumors from BraTS 2020 [27]–
[29]. The data was split into a stratified 70% training set and
30% test set. On the training set, features with variance below
0.05 were removed, and the Minimum Redundancy Maximum
Relevance (mRMR) method was used to select the top 200
out of 1688 radiomics features for classification. The same
200 features were selected from the test set, and an XGBoost
classifier [30] was trained. The model achieved an AUROC of
0.949 on the test set. The test set results were used to evaluate
the stability of the IMICS ROC Analyzer on larger datasets, as
illustrated in Fig. 7. The tool identified six patients as outliers.
As an alternative method for outlier identification, we calcu-
lated the absolute difference between ground truth labels and
predicted probabilities. This difference-based method assigns a
score to each patient but does not determine specific outliers
without thresholding and fails to rank outliers precisely, as
shown in Table II. For example, excluding the last four patients
in Table II from the test set does not have an effect on AUROC.



Fig. 6. ROC analysis of ProstateX results: a) without excluding outliers b)
with excluding outliers

TABLE II
DIFFERENCE-BASED VERSUS IMICS ROC ANALYZER OUTLIER SCORES

CALCULATION

Patient ID Prediction Ground Truth Outlier Score Difference

BraTS20 Training 274 0.998 0 0.443 0.998
BraTS20 Training 234 0.004 1 0.913 0.996
BraTS20 Training 288 0.993 0 0.273 0.995
BraTS20 Training 233 0.035 1 0.565 0.965
BraTS20 Training 345 0.154 1 0.304 0.846
BraTS20 Training 266 0.799 0 0.034 0.799
BraTS20 Training 264 0.658 0 - 0.658
BraTS20 Training 335 0.499 0 - 0.499
BraTS20 Training 285 0.407 0 - 0.407
BraTS20 Training 271 0.392 0 - 0.392

D. Non-medical Use Case

ROC analysis can be applied to any binary classification
scenario and is not limited to medicine. Thus, we used a
large and imbalanced non-medical dataset to further validate
IMICS ROC Analyzer. Specifically, we developed an ML
pipeline to classify phishing and non-phishing websites using
the Phishing Websites Dataset from the UC Irvine Machine
Learning Repository [31]. This dataset comprised 11,055 web-
sites, with 6,157 labeled as phishing and 4,898 as legitimate.
For model evaluation, we constructed an imbalanced dataset
by randomly sampling 96 phishing examples and 4,800 non-
phishing examples. The data was then divided into a stratified

Fig. 7. ROC analysis of BraTS results

50% training set and 50% test set.
To mitigate class imbalance in the training data, we applied

the Synthetic Minority Over-sampling Technique (SMOTE)
[32], generating synthetic examples to balance the dataset.
Following this preprocessing step, a LightGBM classifier [33]
was trained, with hyperparameters optimized via 5-fold cross-
validation grid search on the training set, according to Table
III. The model achieved an impressive AUROC of 0.965 on the
test set, with a 95% confidence interval of [0.918, 0.993]. To
facilitate the reproducibility of our results, the dataset and test
outcomes have been made publicly available on our GitHub
repository.

In addition, we employed the IMICS ROC Analyzer to
evaluate the tool’s capability in handling datasets containing
thousands of examples, whether medical and non-medical.
The tool successfully computed outlier scores, and notably,
the exclusion of the highest-ranked outlier (ID=2864) resulted
in a 2% improvement in AUROC. However, we observed
challenges in visualizing AUROC loss on ROC plots for
such large datasets, primarily due to the granularity of the
grid and the minimal size of the lost AUROC area (Fig. 8).
Nevertheless, IMICS ROC Analyzer did not fail to visualize
the AUROC loss.

TABLE III
HYPERPARAMETER GRID SEARCH FOR LIGHTGBM CLASSIFIER

Hyperparameter Values

num_leaves {31, 50, 100}
max_depth {-1, 10, 20}
learning_rate {0.01, 0.1, 0.2}
min_data_in_leaf {20, 50, 100}
scale_pos_weight {1, all/phishing ratio, 10}



Fig. 8. ROC analysis of the non-medical use case results

V. DISCUSSION

Equations 1 and 2 imply that TPR and FPR are only affected
by actual positives and actual negatives, respectively. As a
result, APs manifest on the vertical axis of the ROC curve,
whereas ANs delineate the horizontal axis.

Upon derivation of the ROC curve, computation of the
AUROC is achieved through integration of the curve between
the limits of 0 and 1. It has been elucidated that the AUROC
can be conceptualized independent of the ROC curve [19].
Under the premise that a randomly selected positive case and
a randomly selected negative case are evaluated, the AUROC
is the probability that the positive case will receive a higher
prediction score than the negative case. This indicates that
AUROC is a measure of goodness of ranking. This conceptual
framework enables the derivation of the ROC curve directly
from the AUROC calculation algorithm. Namdar et al. provide
a pseudocode to define AUROC as a probability and use nested
for loops to compare negative and positive examples [19].
Inspired by this algorithm, we proposed a methodology to
quantify the AUROC loss contribution of individual examples
within an evaluated cohort.

In this paper, we propose shifting from traditional
population-based ROC analysis, which typically reports over-
all AUROC, to a patient-centric ROC analysis approach. This
method addresses two key questions for individual patients:
(A) Which patients are outliers for the classifier? (B) How
much does excluding an outlier affect the ROC/AUROC? This
patient-centric perspective aligns the analysis pipeline more
closely with the principles of precision medicine, allowing
for a sophisticated evaluation of classifier performance and
its impact on individual patient predictions.

An ROC curve is derived through plotting TPR and FPR
across the thresholds and is on a grid of AP equal-height
rows on the vertical axis and AN equal-width columns on
the horizontal axis. Such grid, which is used by our proposed

Python functions, compared with an arbitrary one which is
usually used in the existing libraries, will streamline extracting
the coordinates of any point on the curve (e.g., B point).

In this study, we propose the B point as a replacement
for the J point [5] in determining the optimal threshold on
a ROC curve. The J point is identified where the summation
of sensitivity and specificity is maximized. However, the J
point may not be unique and does not consistently represent a
balanced point on the ROC curve. In contrast, the B point is
always unique and represents the optimal balance point on
any ROC curve, especially useful when aiming to balance
the weights of positive and negative classes in an imbalanced
dataset.

The core principles underlying AUROC loss contribution,
outlier scoring, and B point are universally applicable, making
the plotting function suitable for a wide range of scenar-
ios. Despite this, the IMICS ROC analyzer, currently in its
beta iteration, does not incorporate this plotting function.
Furthermore, it necessitates the manual exportation of model
predictions and ground truth labels into Comma-Separated
Values (CSV) format, and it does not offer an Application
Programming Interface (API) for integration with ML en-
vironments. Lastly, IMICS ROC analyzer as an installable
software is only available for Windows platform, and Linux
or Mac users need to run the Python source. As an alternative
approach, Linux or Mac users can use the Wine package (https:
//www.winehq.org/) to run IMICS ROC analyzer. IMICS ROC
analyzer can help identify potential bias in the classifiers, but
it will not mitigate the bias. Any bias in input may manifest in
the output of IMICS ROC analyzer. As future work, we will
apply our proposed method to improve a downstream task such
as outlier identification in the training set for active learning.
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