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ABSTRACT

Automatic seizure detection and classification from electroencephalography
(EEG) hold significant potential to enhance epilepsy diagnosis and treatment.
However, deep learning approaches often suffer from limited generalization abil-
ity to unseen patients due to inter-patient variability in EEG. While existing studies
primarily focus on model architecture design or pre-training strategies to allevi-
ate the problem, the optimization framework for robust cross-patient generaliza-
tion, especially under the inherently spatiotemporal structure of EEG, remains
underexplored. In this work, we propose SpatioTemporal Distributionally Robust
Optimization (STDRO), a novel method to improve cross-patient seizure analy-
sis in parallel to existing architectural/pre-training solutions. STDRO constructs
and learns structured uncertainty sets that explicitly capture the spatial and tem-
poral characteristics of EEG signals, thereby inducing data-adaptive worst-case
distributions for robust optimization and improving cross-patient generalization.
Extensive experiments demonstrate the effectiveness of STDRO as a plug-and-
play approach to consistently enhance state-of-the-art seizure detection and clas-
sification models across diverse evaluation scenarios. Our work advances robust
EEG-based seizure analysis toward practical applications with cross-patient sce-
narios.

1 INTRODUCTION

Automatic seizure analysis is a critical task for assisting and accelerating clinical diagnosis and ef-
fective treatment, as epilepsy seizure is a chronic neurologic disorder affecting nearly 50 million
people worldwide (Mormann et al., 2007; World Health Organization, 2016). Currently, electroen-
cephalography (EEG) remains a primary tool for identifying and characterizing seizures in clinical
practice (Ahmad et al., 2016).

Recent progress in automatic EEG-based seizure analysis has been primarily driven by deep learning
approaches (Tang et al., 2023; Afzal et al., 2024; Gui et al., 2024). However, a major challenge lies
in the cross-patient setting, where the subjects in the training set differ from those in the test set
(Zhou et al., 2022; Tang et al., 2022; Zhang et al., 2024a). This scenario closely reflects real-world
clinical practice, where models should be able to generalize to new patients without retraining. The
difficulty arises from substantial inter-patient variability in EEG patterns, along with the complex
spatiotemporal structure of EEG signals. Achieving robust performance under these conditions
requires models to maintain strong generalization across diverse patient distributions.

To tackle the cross-patient challenge, existing works have explored several directions. The prevail-
ing paradigm follows a pretrain-finetune framework, e.g., DCRNN (Tang et al., 2022), VQMTM
(Gui et al., 2024), and NeuroLM (Jiang et al., 2025). They leverage self-supervised pretraining on
large data to encourage learning more generalizable representations, facilitating cross-patient gener-
alization in downstream tasks. Another line of research focuses on innovative network architectures
to enhance the performance or efficiency of EEG analysis (Peng et al., 2022; Tang et al., 2023; Afzal
et al., 2024; Hong et al., 2025). However, these works do not consider the fundamental optimiza-
tion process of models. Some works explore robust representation learning to improve cross-patient
generalization, such as through adversarial learning (Zhang et al., 2020; 2024a) or invariant repre-
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sentation learning (Wu et al., 2024). Nevertheless, they often rely on strong assumptions (Rosenfeld
et al., 2021) and presuppose the existence of fully invariant representations across patients, which
may be unrealistic, and risk over-invariance with degraded performance (Jiaqi et al., 2025).

Distributionally Robust Optimization (DRO) is a promising optimization tool to improve the gen-
eralizability of the model for unseen data (Kuhn et al., 2025; Chen et al., 2020; Sinha et al., 2018;
Rahimian & Mehrotra, 2019). Unlike invariance-based approaches, DRO optimizes performance
under the worst-case distribution within a defined uncertainty set that aims to cover possible distri-
bution shifts. A key problem of DRO is how to properly specify this uncertainty set. Many existing
methods manually instantiate it as a ball under a distributional distance metric (e.g., Wasserstein
distance (Sinha et al., 2018; Mohajerin Esfahani & Kuhn, 2018) or maximum mean discrepancy
(Staib & Jegelka, 2019)). While analytically convenient, such sets can be either overly conserva-
tive for generalization or insufficiently protective for feasible learning under the worst case in real
applications (Frogner et al., 2021; Sagawa et al., 2020). This particularly brings challenges to EEG
seizure analysis with complex spatiotemporal data structures.

Specifically, the key challenge for DRO lies in constructing a practical uncertainty set that properly
adapts to the properties and structures of EEG data. Since EEG signals are composed of dynamic
time series across spatial channels, with spatial autocorrelation across brain regions and temporal
continuity (Gloor et al., 1990; Amor et al., 2009; Tang et al., 2023), the uncertainty set should reflect
such structures to better capture potentially plausible distributional shifts adaptive to data, which
is rarely studied in DRO. Apart from the spatiotemporal structure, the uncertainty set should also
consider the stability to characterize the significant variability, where components exhibiting higher
variance on the objective require larger perturbation ranges. Jointly accounting for the data structure
and stability is critical for constructing a practically better uncertainty set.

In this work, we propose the SpatioTemporal Distributionally Robust Optimization (STDRO) al-
gorithm to solve the cross-patient problem for EEG-based seizure analysis. The key is to build
and learn the uncertainty set with both the spatiotemporal structure of EEG and a surrogate stabil-
ity objective. First, we initially construct the uncertainty set for EEG data with spatial correlation
graphs and temporarily evolving properties, incorporating data structure into distribution modeling.
Second, we leverage a stability objective, mainly characterized by the gap between worst and best
performance across patient groups, to optimize the uncertainty set. Third, we further enforce the spa-
tiotemporal properties, i.e., the spatial connectivity and temporal continuity, during the optimization
of the uncertainty set. In this way, STDRO synergizes the spatiotemporal structure and stability of
EEG for data-adaptive distribution modeling, facilitating robust optimization for cross-patient gener-
alization. Notably, our method is complementary to most existing methods such as pretrain-finetune
or architecture design. Extensive experiments on various datasets and settings demonstrate the ef-
fectiveness of STDRO as a plug-and-play approach to further improve state-of-the-art approaches’
performance in seizure detection and classification tasks, advancing robust EEG-based seizure anal-
ysis in cross-patient scenarios.

2 RELATED WORK

Automatic epileptic seizure analysis has been propelled by deep learning, with a large body of work
advancing network design and representation learning. For the network architecture, graph-based
models are popular for capturing the non-Euclidean structure of multichannel EEG (Chen et al.,
2025; Klepl et al., 2024; Tang et al., 2022). For example, Dist-DCRNN (Tang et al., 2022) com-
bines graph diffusion convolutional recurrent neural network with self-supervised pretraining, and
Graphs4former (Tang et al., 2023) introduces the combination of graph neural networks and Struc-
tured State Space models to capture long-range spatiotemporal dependencies, achieving remarkable
performance even for cross-patient settings. Other architectural directions include Tie-EEGNet with
a temporal information enhancement module (Peng et al., 2022), ConvLSTM for spatiotemporal
modeling (Yang et al., 2022), densely connected inception-style CNNs trained with weak labels
(Saab et al., 2020), neural memory networks with plasticity (Ahmedt-Aristizabal et al., 2020), spik-
ing neural networks tailored for efficiency (Shan et al., 2023; Zhang et al., 2024b), and KAleepNet
based on Kolmogorov–Arnold networks (Akbar et al., 2025). Along with network architectures,
self-supervised representation learning emerges as a powerful approach, with many works focusing
on jointly designing network structure and pre-training, such as VQMTM (Gui et al., 2024) with vec-
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tor quantization masked time-series modeling and BERT-style self-supervised learning for the EEG
time series data analysis. NeuroLM (Jiang et al., 2025) further leverages the capabilities of pre-
trained Large Language Models (LLMs) by regarding EEG signals as a foreign language to enhance
the model’s multi-task and inference capabilities. These advances principally target architecture or
pretraining rather than the optimization approaches.

Besides architecture and pre-training, there are also other works to deal with the cross-patient prob-
lem. To mitigate inter-patient variability, domain generalization and adaptation techniques have
been explored, such as invariant representation learning (Wu et al., 2024; Zhang et al., 2023), ad-
versarial learning (Zhang et al., 2024a; Ayodele et al., 2020), feature disentanglement(Feng et al.,
2026; Zhao et al., 2022; Zhang et al., 2020), as well as domain adaptation across datasets (Fan et al.,
2024; Xia et al., 2022; Nasiri & Clifford, 2021; He & Wu, 2020). Meta-learning has also been
explored to simulate distribution shifts across episodes and facilitate rapid adaptation (Liu et al.,
2025; Zhu et al., 2020; Duan et al., 2020). As a parallel technique, some works also investigated
data augmentation methods (Shu et al., 2024; Wang et al., 2023; Peng et al., 2022; Gómez et al.,
2020; Wei et al., 2019). In EEG decoding, there are also works exploring cross-subject problems
under the perspective of online continula learning (Duan et al., 2023a). Among current approaches,
the self-supervised pre-training (Gui et al., 2024; Yuan et al., 2023; Tang et al., 2022) remains the
state-of-the-art method in large-scale settings. There is limited work to consider robust optimization
to improve the cross-patient generalization.

Distributionally robust optimization offers a principled optimization framework that targets
worst-case performance over an uncertainty set designed to capture potential train-to-test shifts
(Kuhn et al., 2025; Chen et al., 2020; Rahimian & Mehrotra, 2019; Sinha et al., 2018). Classical un-
certainty sets are often specified via moment constraints (Delage & Ye, 2010; Bertsimas et al., 2018),
f -divergences (Sagawa et al., 2020; Namkoong & Duchi, 2016), or Wasserstein balls (Sinha et al.,
2018; Mohajerin Esfahani & Kuhn, 2018). While analytically convenient, such generic sets can
be overly conservative or misaligned with real-world shifts, limiting practical gains (Frogner et al.,
2021; Hu et al., 2018). Some works try to adapt uncertainty sets with data-driven approaches (Liu
et al., 2021; 2022), but they do not delve into the specific structures of data, such as the inherent
spatiotemporal structure of EEG signals. Duan et al. (2023b) explored DRO in EEG decoding tasks
by introducing dynamically evolved data distributions via Wasserstein gradient flows, while their
approach does not exploit the intrinsic spatiotemporal structure of EEG signals as our method. For
EEG seizure analysis, little work has explored optimization-centric, structure-aware DRO in this
domain.

3 METHOD

3.1 PROBLEM FORMULATION

We first introduce the problem formulation of cross-patient seizure detection and classification tasks.

Seizure detection and classification Given a period of multivariate EEG signal X ∈ RC×T from
a patient with T time steps and C spatial channels (electrodes), we aim to construct a machine learn-
ing model f(θ) to predict the seizure label y for X . The seizure detection task aims to automatically
classify the seizure and non-seizure periods from the EEG of epilepsy patients, so y ∈ {0, 1} and it
is a binary classification problem. The seizure classification task aims to classify the seizure type of
the seizure EEG periods, therefore, y is the multiclass label in the seizure classification task.

Cross-patient setting We aim to build the robust model under the cross-patient setting, where
the patients Ntrain in the training dataset P0 are totally different from the testing patients Ntest, i.e.
Ntrain∩Ntest = ∅. The key difficulty of cross-patient seizure detection is the model’s generalization
ability challege introduced by the variation of different individuals. Following a prior study (Tang
et al., 2022), we examine our model’s capability for fast detection and classification over EEG clips
with different time window sizes.

3.1.1 FORMULATION AS DISTRIBUTIONALLY ROBUST OPTIMIZATION

Under the cross-patient setting, the model requires generalization to new populations with distri-
bution shift, so we formulate the problem as a distributionally robust optimization problem and
optimize the model for the worst-case performance. Specifically, the target generalized populations
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Figure 1: Overview of the proposed spatiotemporal distributionally robust optimization. DRO opti-
mizes neural networks under the worst-case distribution within the defined uncertainty set. STDRO
constructs and learns the critical uncertainty set by incorporating the spatiotemporal characteristics
of EEG signals and the stability objective.

are represented as the uncertainty setH = {Q|dist(Q,P0) < ρ}, where ρ is a hyperparameter indi-
cating the distribution shift strength and dist is a function to characterize the distribution distance.
Then the optimization problem of our classification model can be formulated as:

min
θ∈Θ

sup
Q:dist(Q,P0)≤ρ

EX,Y∼Q[ℓ(θ;X, Y )],

where P0 is the training distribution, θ is the model parameter, X is the EEG signals and
Y is the seizure label. The Wasserstein distance function dist(Q,P0) = Wc(Q,P0) =
infM∈Π(Q,P0) E(z,z′)∼M[c(z, z′)], where c : X × § → [0,∞) is the transportation cost function.
ℓ is the cross-entropy loss function for binary or multi-class classification. DRO leverages adver-
sarial perturbation to get the worst-case distribution, i.e., solving the inner optimization problem to
obtain data points for model optimization.

3.2 SPATIOTEMPORAL DISTRIBUTIONALLY ROBUST OPTIMIZATION (STDRO)

Figure 1 shows the schematic diagram of our proposed spatiotemporal distributionally robust op-
timization (STDRO) method. The core idea of our approach is to construct a more practical spa-
tiotemporal uncertainty set for EEG signals by incorporating the structure and stability information
of the data. Specifically, the uncertainty set will dynamically change over time while containing
spatial correlation information and, meanwhile, will be optimized based on the stability information
under the spatio-temporal constraints. We will elaborate on each part in Sections 3.2.1 and 3.2.2.

3.2.1 SPATIOTEMPORALLY STRUCTURED UNCERTAINTY SET

EEG signals have spatial and temporal dimensions. Specifically, epileptic brain activity is not con-
fined to a single brain region, instead, it involves different brain regions that are spatially distributed
and have functional connectivity (Tang et al., 2023). The EEG signals of different electrodes and
their underlying connectivity are changing dynamically over time (Gloor et al., 1990; Amor et al.,
2009).

To better capture the dynamic structure into the uncertainty set, we first split the EEG signals into N
short time periods, and each time period has L = T

N time steps. During each period t, we character-
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ize the uncertainty set through the current non-Euclidean spatial structure among different EEG elec-
trodes, and we represent the uncertainty set through the correlation graph Wt, where W jk

t is the ab-
solute value of the normalized cross-correlation between the preprocessed signals in electrode vj and
electrode vk among all EEG siganls at the t-th period, i.e. W jk

t = |X
j,

(t−1)∗T
N : t∗TN

∗X
k,

(t−1)∗T
N : t∗TN

|,
1 ≤ t ≤ N, 1 ≤ j ≤ C, 1 ≤ k ≤ C. Wt controls the shape of the uncertainty set in t-th period.

Then the initial spatiotemporal uncertainty set can be represented by the dynamic graphs {Wt}Nt=1,
where the t-th time period of EEG signals’ perturbation level are controlled by Wt. Thus the covari-
ate weight W ∈ R(C×T+1)×(C×T+1) of the initial spatiotemporal uncertainty set can be formulated
as

W =

[
I T

N

⊗
diag(W1,W2, · · · ,WN ) 0(C∗T )×1

01×(C∗T ) 1

]
,

where
⊗

represents the element-wise tensor product. Based on it, the intial spatiotemporal uncer-
tainty set can be formulated as H = {Q : Wcw(Q,P0) ≤ ρ}, where Wcw denotes the Wasserstein
distance with the transportation cost function cw defined as

cw(z, z
′) = (z − z′)TW (z − z′). (1)

We further provide a theoretical analysis of the proposed spatiotemporal uncertainty set in Ap-
pendix F to show that when the spatiotemporal structure captures the intrinsic low-dimensional
manifold of EEG data, the distributionally robust generalization bound can be tightened compared
to standard DRO with Wasserstein balls. Complete details are given in Appendix F.

During training, the spatiotemporal uncertainty set will be learnable so that it can incorporate sta-
bility information as will be introduced below. To ensure that the ever-changing uncertainty set
still contains the spatiotemporal information, we restrict the shape of the covariate weight in the
uncertainty set as

W =

[
I T

N

⊗
diag(W1M1,W2M2, · · · ,WNMN ) 0(C×T )×1

01×(C×T ) 1

]
where Wi is fixed while Mi is learnable and initialzed as I . Then the spatial information embedded
in the covariate weight can ensure a similar distribution of correlated channels in the uncertainty set.
In addition, to incorporate the prior that neighboring temporal distributions are similar, we design a
loss to constrain the weights of neighboring times H = ∥WtMt −Wt+1Mt+1∥F to be close, as
will be introduced below.

3.2.2 STABILITY-INDUCED UNCERTAINTY SET

As mentioned above, the constructed uncertainty set in our method not only has a dynamic spa-
tiotemporal structure but also incorporates stability information that can be learned from data auto-
matically. We will introduce the learning process of the EEG uncertainty set in this section.

In the uncertainty set of our method, the transportation cost function can be formulated as

cw(z, z
′) = (X −X ′)T I T

N

⊗
diag(W1M1,W2M2, · · · ,WNMN )(X −X ′) +∞× Iy ̸=y′

(2)

=

N∑
t=1

(X:,(t−1)×L:t×L −X ′
:,(t−1)×L:t×L)

TWtMt(X:,(t−1)×L:t×L −X ′
:,(t−1)×L:t×L) +∞× Iy ̸=y′ ,

where the covariate weight At = WtMt controls the perturbation level of each dimension in the
EEG uncertainty set of the t-th period. The higher the weight element value is, the lower perturbation
will be imposed in this dimension.

Ideally, we hope the range of different data dimensions (i.e. channels multiplied by time) in EEG
uncertainty set is heterogeneous, and the dimension with higher “variance” has a larger range in the
uncertainty set for EEG signals. To better capture the dimensional “variance”, we leverage the idea
of feature stability across environments as a surrogate objective. We first group the training patients

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

into different environments (patient groups) Etr according to the EEG signals. Specifically, we
average the EEG signals of each single patient, and conduct clustering algorithms on these averaged
EEG signals. Then, since the features that minimally affect the performance difference among
environments are stable with low variability, the maximum margin among different patient groups
maxep,eq∈Etr

(ℓep(θ(W ))− ℓeq (θ(W )) can reflect the stability, where the model parameter θ is the
function of uncertainty set’s covariate weight W under the DRO framework. So we design the loss
function maxep,eq∈Etr (ℓ

ep(θ(W )) − ℓeq (θ(W )) to adapt W . Additionally, we expect the model
learned from the constructed uncertainty set has good performance across all patient groups, so we
come up with another objective function 1

|Etr|
∑

e∈Etr
ℓe(θ(W )) to adapt W .

Overall, the objective function of our STDRO method can be summarized as:
min
θ∈Θ

sup
Q:Wcw (Q,P0)≤ρ

EX,Y∼Q[ℓ(θ;X,Y )],

s.t.M ∈ arg min
M∈M

∑
e∈Etr

ℓe(θ)

|Etr|
+ αmaxep,eq∈Etr (ℓ

ep − ℓeq ) + β
∑
t

∥Wt+1Mt+1 −WtMt∥2F

(3)
where Wcw denotes the Wasserstein distance with transportation cost function cw defined as

cw(z, z
′) = (z − z′)T

[
I T

N

⊗
diag(W1M1,W2M2, · · · ,WNMN ) 0(C×T )×1

01×(C×T ) 1

]
(z − z′).

M = {{M1,M2, ..,MN} : diag(WtMt) ⪰ 0, 1 ≤ t ≤ N}.
∥Wt+1Mt+1−WtMt∥2F denotes the similar distribution restriction between adjacent time periods

in EEG signals, where ∥ · ∥F denotes the Frobenius norm.
∑

e∈Etr
ℓe(θ)

|Etr| are the average loss across
environments Etr. maxep,eq∈Etr

(ℓep − ℓeq ) measures the feature stability. α and β are the hyperpa-
rameters that adjust the tradeoff among average performance, feature stability, and time continuity.
The architecture of the model parameterized by θ is arbitrary and can be any type of neural network.
During the learning process, Wt is fixed while Mt is learnable. M refers to any Mt, 1 ≤ t ≤ N .

3.3 OVERALL OPTIMIZATION PROCEDURE

The whole objective function is a bi-level optimization problem, and the optimization of model
parameter θ and weight M is performed alternately. Given the current M , the objective function of
model parameter θ is minθ∈Θ supQ:Wcw (Q,P0)≤ρ EX,Y∼Q[ℓ(θ;X,Y )], which can be reformulated
as below through the Lagrangian relaxation (Sinha et al., 2018):

min
θ∈Θ

sup
Q
{EX∼Q[ℓ(θ;X, Y )]− λWcw(Q,P0)} . (4)

For simplicity in notation, we denote Sλ(θ; (X, y)) = supε∈Z

(
l(θ, ε) − λcw(ε, (X, y))

)
. This

problem can be solved through adversarial optimization, and we denote the approximation maxi-
mizer solution of Sλ(θ,X, Y ) as X̃ . Then we can optimize the model parameter θ using (X̃, Y ).

During the optimization of weight M , the objective function is a multi-environment objective R(θ).

R(θ) =

∑
e∈Etr

ℓe(θ)

|Etr|
+ αmaxep,eq∈Etr (ℓ

ep − ℓeq ) + β

N−1∑
t=1

∥WtMt −Wt+1Mt+1∥F . (5)

We denote A(θ) =
∑

e∈Etr
ℓe(θ)

|Etr| + αmaxep,eq∈Etr
(ℓep − ℓeq ). The weight M is updated through

gradient descent, and ∂R(θ(W (M)))
∂M is approximated as following:

∂R (θ (W (M)))

∂M
=

∂A

∂θ

∂θ

∂X̃

∂X̃

∂W

∂W

∂M
+ β

∂
∑N−1

t=1 ∥WtMt −Wt+1Mt+1∥F
∂M

. (6)

Among these components, ∂A
∂θ and ∂W

∂M of the first term and the second term can be calculated easily.
∂θ

∂X̃
of the first term can be approximated through the gradient descent of θ as

∂θ

∂X̃
≈ −ϵθ

∑
i

∇θ ℓ̂(θ
i; X̃, Y )

∂X̃
, (7)
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Table 1: Comparisons results of different methods for 12s EEG-based cross-patient seizure detection
on the TUSZ dataset.
Method AUROC (%) F1-score (%) Accuracy (%) Recall (%) Precision (%)

TieEEG Net 68.7 30.3 73.5 52.8 21.3
CNN-LSTM 70.5 29.3 75.7 46.2 21.5
LSTM 77.6 36.5 81.3 49.2 29.0
Dense-CNN 78.0 32.6 85.8 40.1 36.6

VQ-MTM 79.2 42.0 88.5 41.0 43.1
VQ-MTM+STDRO (ours) 80.0 40.6 90.6 31.9 55.9

GraphS4former 85.7 50.5 85.8 66.1 40.8
GraphS4former+STDRO (ours) 87.1 52.2 87.4 63.0 44.5

DCRNN 86.7 50.8 87.8 57.6 45.4
DCRNN+STDRO (ours) 88.2 54.8 89.5 58.1 51.8

where i is the iteration index, ϵθ is the learning rate of θ. And ∇θ ℓ̂(θ
i;X̃,Y )

∂X̃
can be calculated through

training. The third term ∂X̃
∂W can be approximated during the adversarial process as

∂X̃

∂W
≈ −2ϵxλ

∑
i

Diag(X̃i −X). (8)

The details can be found in the Appendix, and the whole optimization process is illustrated in Algo-
rithm 1.

4 EXPERIMENT

4.1 DATASET AND PREPROCESSING

We use several publicly available datasets: the Temple University Hospital EEG Seizure Corpus
(TUSZ) V1.5.2 dataset (Obeid & Picone, 2016; Shah et al., 2018) and the CHB-MIT dataset (Gold-
berger et al., 2000) for seizure detection and classification. Meanwhile, we also evaluate the ex-
tension to the Dreem Open Dataset-Healthy (DOD-H) dataset (Guillot et al., 2020) for EEG-based
sleep stage classification.

TUSZ dataset is the largest EEG database, which includes more than 5000 EEG files recorded by 19
electrodes in the traditional 10-20 systems. The dataset has both detection and seizure classification
labels. It contains more than 900 hours of seizure duration. And there are four seizure classes in
total: combined focal (CF), generalized non-specific (GN), absence (AB), and CT seizures. CHB-
MIT dataset was collected by the Children’s Hospital Boston focusing on the annotation of seizure
detection. It is recorded by the traditional 10-20 systems. For our study, we analysed 21-channel
EEGs of 23 patients in CHB-MIT. It contains more than 3 hours of seizure duration. DOD-H dataset
has 16 polysomnographic (PSG) sensors. The sampling rate is 250 Hz. Each 30s-signal has 7500
time steps. And there are five sleep stages: wake, rapid eye movement (REM), non-REM sleep
stages, N1, N2, and N3. The data preprocessing details can be found in the Appendix.

4.2 BASELINES AND EVALUATION METRICS

The baseline methods mainly include (1) pre-training finetune approaches: DCRNN (Tang et al.,
2022) and VQ-MTM (Gui et al., 2024); and (2) architecture-based methods: Dense-CNN (Saab
et al., 2020), LSTM (Graves, 2012), CNN-LSTM (Ahmedt-Aristizabal et al., 2020), TieEEG Net
(Peng et al., 2022), and graphs4former (Tang et al., 2023). Additionally, we also evaluate and
compare with the adversarial learning method PANN (Zhang et al., 2024a) for invariant feature
learning and further show that our method is complementary to it as well. For all these baseline
methods, we utilize their officially released code and adopt the suggested training strategies and
hyperparameter settings in their original papers.

We first evaluate the baselines on the datasets and then apply our method to the three approaches
with the highest performance. For the methods that follow the pretrain-finetune paradigm (Tang
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Table 2: Comparisons results of different methods for 60s EEG-based cross-patient seizure detection
on the TUSZ dataset.
Method AUROC (%) F1-score (%) Accuracy (%) Recall (%) Precision (%)

TieEEG Net 59.4 28.8 62.6 51.5 20.0
CNN-LSTM 62.5 28.0 71.8 37.4 22.4
LSTM 70.8 35.8 69.8 57.2 26.0
Dense-CNN 81.7 50.5 84.8 52.9 48.3

VQ-MTM 81.8 51.7 87.6 46.5 58.2
VQ-MTM+STDRO (ours) 81.9 52.1 87.8 46.5 59.3

DCRNN 87.8 56.4 84.4 68.6 47.9
DCRNN+STDRO (ours) 88.3 61.7 88.1 65.6 58.3

GraphS4former 89.5 58.2 91.6 82.1 45.1
GraphS4former+STDRO (ours) 90.1 69.7 91.6 66.1 73.8

Table 3: Results of EEG-based cross-patient seizure classification on TUSZ dataset under 12s and
60s settings.

Method 12s 60s
F1-score (%) Accuracy (%) F1-score (%) Accuracy (%)

GraphS4former 53.4 64.3 63.8 69.1
TieEEG Net 56.1 65.1 63.7 67.2
LSTM 65.1 71.6 66.2 71.2

Dense-CNN 66.6 72.6 60.0 68.9
Dense-CNN + STDRO (Ours) 68.2 73.1 61.5 70.2

DCRNN 67.4 74.7 66.8 68.9
DCRNN+STDRO (Ours) 70.8 75.4 68.8 72.2

VQ-MTM 69.4 73.0 55.3 65.3
VQ-MTM+STDRO (Ours) 70.2 74.1 65.5 71.0

et al., 2022; Gui et al., 2024), we combine them with our method during the fine-tuning of models.
For other models, we combine them with our method during the training of models. The covariate
weight in our method is trained using the Adam optimizer (Kingma, 2015).

Following the common practice, we adopt weighted F1-score as the main evaluation metrics for
seizure classification while we also report accuracy, and we leverage AUROC and F1-score as the
main evaluation metrics for seizure detection while we also report accuracy, recall and precision.

4.3 MAIN RESULTS

The seizure detection results of different methods on the TUSZ dataset with 12s-EEG clips and
60s-EEG clips are presented in Table 1 and Table 2, respectively, and the seizure classification
results on the TUSZ dataset is shown in Table 3. Table 4 shows the seizure detection results on the
CHB-MIT dataset with 4s-EEG clips. Further, Table 5 shows the extended results to the sleep stage
classification on the DOD-H dataset.

The results show that among various settings, tasks, and datasets, STDRO consistently boosts the
performance of the state-of-the-art methods, demonstrating the effectiveness of our STDRO method.
Particularly, STDRO significantly enhances the F1-score for the cross-patient seizure detection, and
is complementary not only to pre-training/architecture approaches but also to other optimized-based
methods such as adversarial learning for invariance. Meanwhile, STDRO can be successfully ex-
tended to other EEG-based BCI tasks. This validates the advantages of STDRO with incorporated
spatiotemporal characteristics and stability of EEG signals for improved cross-patient generaliza-
tion.
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Table 4: Results of 4s EEG-based cross-patient seizure detection on CHB-MIT dataset.
Method AUROC (%) F1-score (%) Accuracy (%) Recall (%) Precision (%)

CNN-LSTM 90.9 55.2 87.5 68.9 46.1
DenseCNN 93.5 65.4 90.6 79.6 55.4

DCRNN 94.0 69.3 93.7 63.9 75.7
DCRNN+STDRO (ours) 95.4 69.5 93.2 69.9 69.2

DCRNN+PANN 95.4 71.6 94.2 66.1 78.1
DCRNN+PANN+STDRO (ours) 96.2 71.9 93.9 70.0 73.8

Table 5: Results of cross-subject sleeping stage classification on the DOD-H dataset.
Method Macro-F1 Kappa

LSTM 0.609 ± 0.034 0.539 ± 0.046
SimpleSleepNet 0.720 ± 0.001 0.703 ± 0.013
RobustSleepNet 0.777 ± 0.007 0.758 ± 0.008
DeepSleepNet 0.716 ± 0.025 0.711 ± 0.032

GraphS4former 0.810 ± 0.015 0.790 ± 0.020
GraphS4former+STDRO (ours) 0.822 ± 0.011 0.807 ± 0.010

Table 6: Ablation study on 12s cross-patient seizure detection on the TUSZ dataset. Results are
based on three runs of experiments.
Method AUROC F1-score Accuracy Recall Precision

DCRNN 0.865±0.010 0.495±0.013 0.868±0.013 0.589±0.030 0.429±0.031
+DRO 0.868±0.006 0.514±0.001 0.883±0.003 0.564 ±0.009 0.472±0.010
+DRO w/ spatiotemporal W 0.874±0.005 0.524±0.007 0.878±0.001 0.612±0.050 0.462±0.036
+DRO w/ stability-induced W 0.875±0.013 0.521±0.034 0.881±0.026 0.585±0.077 0.486±0.101
+STDRO (ours) 0.876±0.008 0.542±0.007 0.893±0.002 0.570±0.008 0.510±0.008

4.4 ABLATION STUDY

To verify the effect of each part of our method, we conduct an ablation study on the TUSZ
Dataset. We choose the DCRNN as the model baseline, and compare several variants as follows: (1)
DCRNN+DRO: The model is optimized by the vanilla distributionally robust learning where the un-
certainty set is characterized by the Wasserstein distance; (2) DCRNN+DRO w/ spatiotemporal W:
The uncertainty set of DRO is only constructed by the spatiotemporal structure; (3) DCRNN+DRO
w/ stability-induced W: The uncertainty set is initialized by the Wasserstein distance and only opti-
mized by the stability objective.

Results in Table 6 show the effectiveness of DRO and each component in our STDRO, validating
the necessity of both the spatiotemporal structure of EEG data and the stability information. We
also analyze the influence of the environment number in the stability objective in Table 7 and other
hyerparameters N , α, β in Table 8, 9, 10, showing the robustness of our method.

4.5 VISUALIZATION OF COVARIATE WEIGHTS OF THE UNCERTAINTY SET

To illustrate the uncertainty set in our method, we visualize the covariate weight, which is utilized to
characterize the high-dimensional uncertainty set (Section 3.2.1), for the 60s seizure classification
task with DCRNN. As we split each EEG segment into four time periods (i.e., N = 4 in Section
3.2.1), we present the weight matrix for the first period and the difference from it for the remaining
three periods for better visualization. As shown in Figure 2 (A-D), the weights have incorporated
certain spatiotemporal structure in the data. Further, to characterize the stability-induced learning,
we visualize the difference in the covariate weight of each time period before and after training in
Figure 2 (E-H), demonstrating how the uncertainty set is influence by the stability objective.

4.6 ANALYSIS OF GROUPS AND CONFUSION MATRIX

We visualized the seizure clinical characteristics of different groups. As shown in Figure 3 (A), the
groups formed by EEG clustering has different seizure-type proportion, indicating that the grouping
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Figure 2: Learnable spatiotemporal covariate weight visualization. (A-D) The initial covariate
weight and the difference between time periods. (E-H) The spatiotemporal covariate weight dif-
ference between initialization and training.

Figure 3: (A) The seizure clinical characteristics difference among clustered patient groups. (B)
Confusion matrices for the DCRNN baseline without and with STDRO for 12-s seizure classifica-
tion.

partially capture some features. In addition, We provided the confusion matrices for DCRNN base-
line without and with STDRO for 12-s seizure classification in Figure 3 (B). As shown in the Figure,
STDRO can improve the accuracy of the worst class (GN, from 0.053 to 0.149), whose improvement
is larger than those of other classes.

5 CONCLUSION

In this work, we propose spatiotemporal distributionally robust optimization for cross-patient EEG-
based seizure analysis. We introduce robust optimization as a complementary approach to exist-
ing pretrain-finetune or architecture design methods for cross-patient generalization. The proposed
STDRO tackles the challenges of DRO for the inherent structure of EEG data by incorporating spa-
tiotemporal structures and stability-induced information into the critical uncertainty set. Extensive
experiments demonstrate the effectiveness of STDRO to further improve state-of-the-art methods
across various settings in both seizure detection and classification, and validate the effectiveness
of each component. Our work can advance robust seizure analysis toward practical cross-patient
scenarios, and hold the potential for future extension to other time series data.
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A MORE INTRODUCTION TO DRO AND SOLVING DRO

The objective function of a DRO problem is shown as the following:

min
θ∈Θ

sup
Q:dist(Q,P0)≤ρ

EX,Y∼Q[ℓ(θ;X, Y )].

In DRO, the uncertainty set {Q : dist(Q,P0) ≤ ρ} defines a neighborhood around the input with
perturbations. The objective is to optimize for the worst-case scenario within this neighborhood,
ensuring good performance not only at the training distribution but also across neighborhood regions
with shifts.

The inner optimization problem can be relaxed as

sup
Q
{EX∼Q[ℓ(θ;X, Y )]− λWcw(Q,P0)}

according to Largrangian relaxation. Given any data (X, y) in the training set P0, the data samples
of the worst distribution in the uncertainty set (X̃, y) can be found through adversarial training
(Sinha et al., 2018). Specifically, let X̃ denote the solution to maximizing ℓ(θ; X̃, Y )−λcw(X̃,X),
we adopt gradient descent to approximate X̃ in m iterations, i.e.

X̃i+1 = X̃i +∇X̃(ℓ(θ; X̃, Y )− λcw(X̃,X)), 1 ≤ i, i+ 1 ≤ m.

In experiments, we set m ∈ {5, 10, 15, 20}.

B CALCULATION OF ∂R(θ(W (M)))
∂M

∂R(θ(W (M)))
∂M can be approximated through chain rule as the following:

∂R (θ (W (M)))

∂M
=

∂A

∂θ

∂θ

∂X̃

∂X̃

∂W

∂W

∂M
+ β

∂
∑N−1

t=1 ∥WtMt −Wt+1Mt+1∥F
∂M

. (9)

Among these componments, ∂θ

∂X̃
of the first term can be approximated through the gradient descent

of θ:

θi+1 = θi − ϵθ∇θ ℓ̂(θ
i; X̃, Y ),

∂θi+1

∂X̃
=

∂θi

∂X̃
− ϵθ
∇θ ℓ̂(θ

i; X̃, Y )

∂X̃
,

∂θ

∂X̃
≈ −ϵθ

∑
i

∇θ ℓ̂(θ
i; X̃, Y )

∂X̃
, (10)

where i is the iteration index, ϵθ is the learning rate of θ, and ∇θ ℓ̂(θ
i;X̃,Y )

∂X̃
can be calculated through

training. The third term ∂X̃
∂W can be approximated during the adversarial process following the

derivation below:

X̃i+1 = X̃i + ϵx∇X̃i

{
ℓ(θ; X̃i, Y )− λcw(X̃

i,X)
}
,

∂X̃i+1

∂W
=

∂X̃i

∂W
− 2ϵxλDiag

(
X̃i −X

)
,

∂X̃

∂W
≈ −2ϵxλ

∑
i

Diag(X̃i −X). (11)
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Algorithm 1 Training procedure of spatiotemporal distributionally robust optimization
Input: Multi-environments EEG data De1 , De2 , . . . , Den , where De = (Xe, Y e), X represents
EEG signal, Y represents seizure label.
Hyperparameters: N,Nθ, Nw,m, ϵx, ϵθ, ϵM , α, β

Initialize: W =

[
I T

N

⊗
diag(W1M1,W2M2, · · · ,WNMN ) 0(C∗T )×1

01×(C∗T ) 1

]
, Mt = I

For iteration i from 1 to N
For iteration j from 1 to Nθ − 1

Initialize X̃0 as: X̃0 = X
For iteration k from 0 to m− 1
# Approximate the supreme of sλ(X) for Xe from all e ∈ ε

X̃e
k+1 = X̃e

k + ϵx
∂(l(θ,X̃e

k)−λcw(X̃e
k,X̃

e
0 ))

∂X .
End for
# Update θ

θj+1 ← θj − ϵθ
∂l(θj ;(X̃m,Y ))

∂θ .
End for
R(θ) =

∑
e∈E ℓe(θ)

|E| + αmaxp,q∈E(ℓ
p − ℓq) + β

∑
t ∥Wt+1Mt+1 −WtMt∥2F

M j+1 = M i − ϵM
∂R(θ)
∂M .

M j+1 = ProjM (M j+1)
End for.

C TRAINING PROCEDURE AND COMPUTATIONAL COST OF STDRO

The optimization process of STDRO is shown in Algorithm 1. In experiments, the time period
number N is set as 4, the attack iteration m ∈ {5, 10, 15, 20}. The product of N and Nθ is set to be
equal to the training epoch number of the baseline method.

In STDRO, the spatial-temporal graph is constructed in advance which hardly influences the training
time. In the bi-level optimization (W and θ) of our method, the total epoch number considering
optimizing parameters θ is the same as the baseline, i.e. the product of N and Nθ in Algorithm 1
equals the epoch number of the baseline. The additional costs primarily lie in the computation of
adversarial samples (which is proportional to the iteration number m) and approximating second-
order derivatives for stability-induced W within a single epoch. In practice, for finetuning the
DCRNN model, STDRO takes about 12 minutes per epoch (m = 10), while the baseline takes
around 3 minutes. Please note that such increase is only for the finetuning stage (50 epochs), while
pretraining methods typically have much larger computational costs (44 minutes per epoch for 350
epochs). So the increase of computational costs for STDRO is not large considering the whole
process.

D DATA PREPROCESSING DETAILS

The TUSZ V1.5.2 train dataset was randomly split into a training set and a validation set in a 90/10
ratio, consistent with previous studies (Tang et al., 2022; Afzal et al., 2024). The dataset split satisfies
the cross-patient setting, i.e., the training, validation, and testing sets have different patients. We
resample the EEGs into 200 Hz and split the EEG signals into 12s or 60s segments to evaluate the
method’s performance in both short and long-term scenarios. Other data preprocessing techniques,
including whether to apply the fast Fourier transform (FFT), are consistent with our comparison
baseline methods. We split each EEG segment into four time periods.

The CHB-MIT dataset was resampled from 256Hz to 64Hz. The EEG signals were split into 4-
second segments. We follow the data split in previous works (Afzal et al., 2024), which selected
80% of the data for training (18 patients), 10% for evaluation (3 patients), and 10% for testing (3
patients). We split each EEG segment into four time periods.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E HYPER-PARAMETERS SENSITIVITY ANALYSIS

We test the performance of STDRO under different environment (patient group) numbers for the
stability objective in Table 7. Experiments are the seizure detection task on the TUSZ dataset with
12s time window size. The results that our approach is robust to the number of patient groups.

Table 7: Performance under different patient group numbers.

PATIENT GROUP NUMBER AUROC F1-SCORE ACCURACY RECALL PRECISION

K=4 87.9 55.3 89.1 61.5 50.1
K=6 88.2 54.8 89.5 58.1 51.8

We have also conducted the sensitivity analysis of other hyperparameters, such as the number of
time periods N , the regularization term for stability α, and the regularization term for temporal
smoothness β .

Table 8: Performance under different values of N .

N AUROC F1-SCORE IOU ACCURACY RECALL PRECISION

2 87.8 54.4 37.3 89.4 57.6 51.5
4 88.2 54.8 37.7 89.5 58.1 51.8
6 87.8 53.9 36.9 88.1 63.7 46.8

Table 9: Performance under different values of α.

alpha AUROC F1-SCORE IOU ACCURACY RECALL PRECISION

0.2 87.6 54.0 37.0 88.7 60.5 48.8
0.5 88.2 54.8 37.7 89.5 58.1 51.8
1 87.0 50.9 34.1 89.9 47.7 54.6
2 87.1 52.6 35.7 89.6 52.8 52.4

Table 10: Performance under different values of β.

β AUROC F1-SCORE IOU ACCURACY RECALL PRECISION

2 87.3 53.3 36.3 90.0 52.3 54.3
0.2 87.7 54.5 37.5 90.0 55.0 54.1
2 ×10−2 87.6 53.9 36.8 89.5 56.3 51.6
2 ×10−4 88.2 54.8 37.7 89.5 58.1 51.8
2 ×10−5 87.5 53.3 36.4 88.8 58.4 49.0

F THEORETICAL ANALYSIS

In this section, we provide more theoretical analysis of the proposed method. The core idea is to
leverage the manifold assumption of the data and the potential spatio-temporal uncertainty set to
show that it may derive a tighter generalization bound on worst-case distributions than standard
DRO. According to fundamental observation in modern machine learning of manifold hypothesis
(Belkin & Niyogi, 2001; Fefferman et al., 2016), high-dimensional data tends to concentrate around
a lower-dimensional manifold in the ambient space. We assume the data distribution (x, y) ∼ P
where the inputs xi ∈ X = RD are assumed to lie on a smooth m-dimensional Riemannian manifold
M ⊂ RD with m ≪ D = C × T . For any x ∈ M, TxM denotes the m-dimensional tangent
space at x, and NxM = (TxM)⊥ denotes the (D −m)-dimensional normal space (the orthogonal
complement in RD). We first make the assumption that our distance metric captures such manifold.
Assumption F.1. There exist constants 0 < α ≤ β such that for every x ∈ M and any vector
v ∈ RD decomposed as v = v∥ + v⊥ with v∥ ∈ TxM and v⊥ ∈ NxM, the following inequalities
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hold:
N∑
t=1

v⊤t Wt vt ≥ α∥v⊥∥2,
N∑
t=1

v⊤t Wt vt ≤ β∥v∥∥2,

where Wt ⪰ 0 is a given spatial correlation matrix for segment t and Wt preserves the tan-
gent/normal decomposition, i.e., Wt(TxM) ⊆ TxM and Wt(NxM) ⊆ NxM, which means∑N

t=1(v
∥
t )

⊤Wt v
⊥
t = 0 for any v∥ ∈ TxM and v⊥ ∈ NxM.

Assumption F.1 means the metric induced by W = diag(W1, . . . ,WN ) strongly penalizes
off-manifold directions while treating on-manifold directions moderately, and that W is “block-
diagonal” with respect to the TxM⊕NxM decomposition.

In DRO, an adversarial uncertainty set is typically defined via a Wasserstein ball, which requires
specifying a transport cost. To simplify, we will omit ’y-part’ in transport cost in the following parts.
To incorporate the manifold structure, ideally, we will define a transportation cost that respects the
geometry ofM:

cM(x, x′) := ∥ProjTxM(x′ − x)∥2 + Λ ∥ProjNxM(x′ − x)∥2,
with a large Λ ≫ 1 so that off-manifold displacements are extremely expensive. In practice, we
approximate this with a surrogate cost cw defined using the matrices Wt:

cw(x, x
′) :=

N∑
t=1

(xt − x′
t)

⊤Wt (xt − x′
t).

cw is a Mahalanobis cost that captures the spatial correlation structure in each time segment xt,
where xt denotes the t-th period of EEG signals x. Then we will prove that cw heavily penalizes
off-manifold shifts and mildly penalizes on-manifold shifts, making it a tractable surrogate for cM.
Lemma F.2. Under Assumption F.1, for any x ∈M and any x′ /∈M, let x∗ = x+ProjTxM(x′−
x), i.e., the projection of x′ onto the manifold at x. Then

cw(x, x
∗) < cw(x, x

′).

Proof. Let x′ − x = v∥ + u with v∥ = ProjTxM(x′ − x) and u = ProjNxM(x′ − x), so x∗ =

x + v∥. If x′ /∈ M then u ̸= 0. By definition of cw and Assumption F.1, cw(x, x′) = ∥v∥ +
u∥2W = ∥v∥∥2W + ∥u∥2W , since ⟨v∥, u⟩W = 0. Meanwhile, cw(x, x∗) = ∥v∥∥2W , so cw(x, x

′) −
cw(x, x

∗) = ∥u∥2W . Assumption F.1 ensures ∥u∥2W ≥ α∥u∥2 > 0. Thus cw(x, x′)− cw(x, x
∗) >

0, i.e., cw(x, x′) > cw(x, x
∗).

This means moving x to the on-manifold point x∗ costs strictly less in cw than moving it the same
Euclidean distance in an off-manifold direction towards x′. This implies any optimal transport plan
under cost cw will never choose an off-manifold target if an on-manifold alternative exists.

Spatiotemporal Uncertainty Set. We define the STDRO adversarial uncertainty set as the
Wasserstein ball around P0 using cost cw:

HST := {Q : Wcw(Q,P0) ≤ ρ }.
Here Wcw(Q,P0) denotes the Wasserstein distance with transportation cost cw. In contrast, the
isotropic DRO would use Wasserstein distance with Euclidean cost c0(x, x′) = ∥x− x′∥2, defining

Hiso := {Q : Wc0(Q,P0) ≤ ρ }.

By Lemma F.2, any optimal transport plan for Wcw(P0, Q) can be adjusted to remain onM without
increasing cost. If in addition the loss function does not vary , then the adversary has little incentive
to leaveM. The next proposition makes this precise:
Proposition F.3 (Near-Manifold Worst-Case Distribution). Under Assumption 1 and assuming the
loss ℓ(θ;x, y) is L-Lipschitz continuous in x along normal directions, the worst-case risk over HST
can be approximated by a distribution supported on M with small errors. Specifically, for any
Q ∈ HST, there exists Q′ ∈ HST with supp(Q′) ⊂M such that

sup
θ∈Θ

∣∣∣E(x,y)∼Q[ℓ(θ;x, y)]− E(x,y)∼Q′ [ℓ(θ;x, y)]
∣∣∣ ≤ L

√
ρ

α
.
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Proof. For any Q ∈ HST, construct a new distribution Q′ by moving each point z = (x, y) in Q to
z∗ = (x∗, y) where x∗ = x + ProjTx0M

(x − x0) and x0 ∈ M is the source point in P0 matched
to z under Wcw(P0, Q) ≤ ρ. By Lemma F.2, the cost of Wcw(P0, Q) does not increase under this
modification, so Wcw(P0, Q

′) ≤ ρ (i.e., Q′ ∈ HST) and supp(Q′) ⊂M. For each hypothesis θ,∣∣∣E(x,y)∼Q[ℓ(θ;x, y)]− E(x,y)∼Q′ [ℓ(θ;x, y)]
∣∣∣ ≤ L E(x,y)∼Q

[
∥x− ProjM(x)∥

]
,

since the loss is L-lipchitz continuous in x along normal directions. Note that for each (x, y)
in supp(Q), cw((x0, y), (x, y)) ≥ α∥x − x∗∥2 by Assumption F.1. Thus ∥x − x∗∥2 ≤
1
αcw((x0, y), (x, y)). Taking expectation gives E(x,y)∼Q∥x − x∗∥2 ≤ 1

αWcw(P0, Q) ≤ ρ
α . By

Cauchy-Schwarz, E∥x − x∗∥ ≤
√

ρ
α . Therefore the loss difference above is bounded by L

√
ρ
α ,

uniformly in θ. Taking supremum over θ yields the claimed inequality.

Generalization Bound. Finally, we show that if the worst-case distribution is preliminarily con-
strained to a manifold, the distributionally robust generalization guarantee bound will be tighter
than the standard DRO. Let {xi, yi}ni=1 ∼ P0 constitute the empirical distribution Pn. Denote the
true worst-case risk as RST(θ) = supQ∈HST

E(x,y)∼Q[ℓ(θ;x, y)], and empirical worst-case risk as
Rn(θ) = supQ:Wcw (Q,Pn)≤ρ E(x,y)∼Q[ℓ(θ;x, y)]. Define θ̂ = argminθ Rn(θ).

Theorem F.4 (Generalization Bounds). Assume |ℓ(θ;x, y)| ≤ 1 for all (θ, x, y), ∥x∥ ≤ r, and
ℓ(θ;x, y) is L-lipschitz continuous in x for every θ ∈ Θ. For any 0 < δ < 1, with probability at
least 1− δ , we have

sup
Q∈HST

E(x,y)∼Q[ℓ(θ̂;x, y)] ≤ sup
Q:Wcw (Q,Pn)≤ρ

E(x,y)∼Q[ℓ(θ̂;x, y)] + Rn(Fadv) +

√
ln(1/δ)

2n
,

where Rn(Fadv) is the Rademacher complexity of the adversarial loss class

Fadv :=
{
(x, y) 7→ sup

Q∈HST

E(x′,y)∼Q[ℓ(θ;x
′, y)] : θ ∈ Θ

}
.

When the worst-case distributions are constrained on the manifold, we have

Rn(Fadv) = O
(√m

n

)
,

which is smaller than the standard DRO complexity bound O
(√

D
n

)
given m≪ D.

Proof. We apply a uniform convergence bound based on Rademacher complexity. Applying the
standard result of Bartlett & Mendelson (2002); Sinha et al. (2018); Wainwright (2019), for any
fixed θ and δ, with probability 1− δ:

sup
θ∈Θ
|RST(θ)−Rn(θ)| ≤ Rn(Fadv) +

√
ln(1/δ)

2n
.

Thus we get the stated generalization bound.

Then we estimate the order of Rn(Fadv). We use Dudley’s entropy integral:

Rn(Fadv) ≤
12√
n

∫ 1

0

√
lnN

(
ε,Fadv, L2(Pn)

)
dε ,

where N(ε,F , L2(Pn)) is the covering number of F at radius ε under the empirical L2 norm. Since
l(θ;x, y) is L-lipschitz, we have:

N(ε,F , L2(Pn)) ≤ N(ε,F , L∞(S)) ≤ N
( ε

L
,X , ∥·∥

)
, (12)

where L∞(S) is the norm for samples and N(ϵ,X , ∥·∥) is the ϵ-covering number for the input
space. When the worst-case distributions are constrained on the manifold, we have N

(
ε
L ,X , ∥·∥

)
≤(

cLr
ε

)m
, therefore:

Rn(Fadv) ≤
12√
n

∫ 1

0

√
lnN

(
ε,Fadv, L2(Pn)

)
dε ≤ O

(√
m

n

∫ 1

0

√
ln

1

ε
dε

)
= O

(√
m

n

)
,
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while for the standard DRO with input dimension as D, the complexity bound is correspondingly

O
(√

D
n

)
.
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