

# 000 SPATIOTEMPORAL DISTRIBUTIONALLY ROBUST OP- 001 TIMIZATION FOR IMPROVED CROSS-PATIENT EEG 002 SEIZURE ANALYSIS 003

004  
 005  
 006 **Anonymous authors**  
 007 Paper under double-blind review  
 008  
 009  
 010  
 011

## ABSTRACT

013 Automatic seizure detection and classification from electroencephalography  
 014 (EEG) hold significant potential to enhance epilepsy diagnosis and treatment.  
 015 However, deep learning approaches often suffer from limited generalization abil-  
 016 ity to unseen patients due to inter-patient variability in EEG. While existing studies  
 017 primarily focus on model architecture design or pre-training strategies to allevi-  
 018 ate the problem, the optimization framework for robust cross-patient generaliza-  
 019 tion, especially under the inherently spatiotemporal structure of EEG, remains  
 020 underexplored. In this work, we propose SpatioTemporal Distributionally Robust  
 021 Optimization (STDRO), a novel method to improve cross-patient seizure analy-  
 022 sis in parallel to existing architectural/pre-training solutions. STDRO constructs  
 023 and learns structured uncertainty sets that explicitly capture the spatial and tem-  
 024 poral characteristics of EEG signals, thereby inducing data-adaptive worst-case  
 025 distributions for robust optimization and improving cross-patient generalization.  
 026 Extensive experiments demonstrate the effectiveness of STDRO as a plug-and-  
 027 play approach to consistently enhance state-of-the-art seizure detection and clas-  
 028 sification models across diverse evaluation scenarios. Our work advances robust  
 029 EEG-based seizure analysis toward practical applications with cross-patient sce-  
 030 narios.

## 1 INTRODUCTION

031 Automatic seizure analysis is a critical task for assisting and accelerating clinical diagnosis and ef-  
 032 fective treatment, as epilepsy seizure is a chronic neurologic disorder affecting nearly 50 million  
 033 people worldwide (Mormann et al., 2007; World Health Organization, 2016). Currently, electroen-  
 034 cephalography (EEG) remains a primary tool for identifying and characterizing seizures in clinical  
 035 practice (Ahmad et al., 2016).

036 Recent progress in automatic EEG-based seizure analysis has been primarily driven by deep learning  
 037 approaches (Tang et al., 2023; Afzal et al., 2024; Gui et al., 2024). However, a major challenge lies  
 038 in the cross-patient setting, where the subjects in the training set differ from those in the test set  
 039 (Zhou et al., 2022; Tang et al., 2022; Zhang et al., 2024a). This scenario closely reflects real-world  
 040 clinical practice, where models should be able to generalize to new patients without retraining. The  
 041 difficulty arises from substantial inter-patient variability in EEG patterns, along with the complex  
 042 spatiotemporal structure of EEG signals. Achieving robust performance under these conditions  
 043 requires models to maintain strong generalization across diverse patient distributions.

044 To tackle the cross-patient challenge, existing works have explored several directions. The prevail-  
 045 ing paradigm follows a pretrain-finetune framework, e.g., DCRNN (Tang et al., 2022), VQMTM  
 046 (Gui et al., 2024), and NeuroLM (Jiang et al., 2025). They leverage self-supervised pretraining on  
 047 large data to encourage learning more generalizable representations, facilitating cross-patient gener-  
 048 alization in downstream tasks. Another line of research focuses on innovative network architectures  
 049 to enhance the performance or efficiency of EEG analysis (Peng et al., 2022; Tang et al., 2023; Afzal  
 050 et al., 2024; Hong et al., 2025). However, these works do not consider the fundamental optimiza-  
 051 tion process of models. Some works explore robust representation learning to improve cross-patient  
 052 generalization, such as through adversarial learning (Zhang et al., 2020; 2024a) or invariant repre-  
 053

054 presentation learning (Wu et al., 2024). Nevertheless, they often rely on strong assumptions (Rosenfeld  
 055 et al., 2021) and presuppose the existence of fully invariant representations across patients, which  
 056 may be unrealistic, and risk over-invariance with degraded performance (Jiaqi et al., 2025).

057 Distributionally Robust Optimization (DRO) is a promising optimization tool to improve the generalizability  
 058 of the model for unseen data (Kuhn et al., 2025; Chen et al., 2020; Sinha et al., 2018;  
 059 Rahimian & Mehrotra, 2019). Unlike invariance-based approaches, DRO optimizes performance  
 060 under the worst-case distribution within a defined uncertainty set that aims to cover possible distribution  
 061 shifts. A key problem of DRO is how to properly specify this uncertainty set. Many existing  
 062 methods manually instantiate it as a ball under a distributional distance metric (e.g., Wasserstein  
 063 distance (Sinha et al., 2018; Mohajerin Esfahani & Kuhn, 2018) or maximum mean discrepancy  
 064 (Staib & Jegelka, 2019)). While analytically convenient, such sets can be either overly conservative  
 065 for generalization or insufficiently protective for feasible learning under the worst case in real  
 066 applications (Frogner et al., 2021; Sagawa et al., 2020). This particularly brings challenges to EEG  
 067 seizure analysis with complex spatiotemporal data structures.

068 Specifically, the key challenge for DRO lies in constructing a practical uncertainty set that properly  
 069 adapts to the properties and structures of EEG data. Since EEG signals are composed of dynamic  
 070 time series across spatial channels, with spatial autocorrelation across brain regions and temporal  
 071 continuity (Gloor et al., 1990; Amor et al., 2009; Tang et al., 2023), the uncertainty set should reflect  
 072 such structures to better capture potentially plausible distributional shifts adaptive to data, which  
 073 is rarely studied in DRO. Apart from the spatiotemporal structure, the uncertainty set should also  
 074 consider the stability to characterize the significant variability, where components exhibiting higher  
 075 variance on the objective require larger perturbation ranges. Jointly accounting for the data structure  
 076 and stability is critical for constructing a practically better uncertainty set.

077 In this work, we propose the SpatioTemporal Distributionally Robust Optimization (STDRO) al-  
 078 gorithm to solve the cross-patient problem for EEG-based seizure analysis. The key is to build  
 079 and learn the uncertainty set with both the spatiotemporal structure of EEG and a surrogate stabil-  
 080 ity objective. First, we initially construct the uncertainty set for EEG data with spatial correlation  
 081 graphs and temporarily evolving properties, incorporating data structure into distribution modeling.  
 082 Second, we leverage a stability objective, mainly characterized by the gap between worst and best  
 083 performance across patient groups, to optimize the uncertainty set. Third, we further enforce the spa-  
 084 tiotemporal properties, i.e., the spatial connectivity and temporal continuity, during the optimization  
 085 of the uncertainty set. In this way, STDRO synergizes the spatiotemporal structure and stability of  
 086 EEG for data-adaptive distribution modeling, facilitating robust optimization for cross-patient gen-  
 087 eralization. Notably, our method is complementary to most existing methods such as pretrain-finetune  
 088 or architecture design. Extensive experiments on various datasets and settings demonstrate the ef-  
 089 fectiveness of STDRO as a plug-and-play approach to further improve state-of-the-art approaches’  
 090 performance in seizure detection and classification tasks, advancing robust EEG-based seizure anal-  
 091 ysis in cross-patient scenarios.

## 092 2 RELATED WORK

093 Automatic epileptic seizure analysis has been propelled by deep learning, with a large body of work  
 094 advancing network design and representation learning. For the network architecture, graph-based  
 095 models are popular for capturing the non-Euclidean structure of multichannel EEG (Chen et al.,  
 096 2025; Klepl et al., 2024; Tang et al., 2022). For example, Dist-DCRNN (Tang et al., 2022) com-  
 097 bines graph diffusion convolutional recurrent neural network with self-supervised pretraining, and  
 098 Graphs4former (Tang et al., 2023) introduces the combination of graph neural networks and Struc-  
 099 tured State Space models to capture long-range spatiotemporal dependencies, achieving remarkable  
 100 performance even for cross-patient settings. Other architectural directions include Tie-EEGNet with  
 101 a temporal information enhancement module (Peng et al., 2022), ConvLSTM for spatiotemporal  
 102 modeling (Yang et al., 2022), densely connected inception-style CNNs trained with weak labels  
 103 (Saab et al., 2020), neural memory networks with plasticity (Ahmedt-Aristizabal et al., 2020), spik-  
 104 ing neural networks tailored for efficiency (Shan et al., 2023; Zhang et al., 2024b), and KAleepNet  
 105 based on Kolmogorov–Arnold networks (Akbar et al., 2025). Along with network architectures,  
 106 self-supervised representation learning emerges as a powerful approach, with many works focusing  
 107 on jointly designing network structure and pre-training, such as VQMTM (Gui et al., 2024) with vec-

108 tor quantization masked time-series modeling and BERT-style self-supervised learning for the EEG  
 109 time series data analysis. NeuroLM (Jiang et al., 2025) further leverages the capabilities of pre-  
 110 trained Large Language Models (LLMs) by regarding EEG signals as a foreign language to enhance  
 111 the model’s multi-task and inference capabilities. These advances principally target architecture or  
 112 pretraining rather than the optimization approaches.

113 Besides architecture and pre-training, there are also other works to deal with the cross-patient prob-  
 114 lem. To mitigate inter-patient variability, domain generalization and adaptation techniques have  
 115 been explored, such as invariant representation learning (Wu et al., 2024; Zhang et al., 2023), ad-  
 116 versarial learning (Zhang et al., 2024a; Ayodele et al., 2020), feature disentanglement(Feng et al.,  
 117 2026; Zhao et al., 2022; Zhang et al., 2020), as well as domain adaptation across datasets (Fan et al.,  
 118 2024; Xia et al., 2022; Nasiri & Clifford, 2021; He & Wu, 2020). Meta-learning has also been  
 119 explored to simulate distribution shifts across episodes and facilitate rapid adaptation (Liu et al.,  
 120 2025; Zhu et al., 2020; Duan et al., 2020). As a parallel technique, some works also investigated  
 121 data augmentation methods (Shu et al., 2024; Wang et al., 2023; Peng et al., 2022; Gómez et al.,  
 122 2020; Wei et al., 2019). **In EEG decoding, there are also works exploring cross-subject problems**  
 123 **under the perspective of online continua learning (Duan et al., 2023a).** Among current approaches,  
 124 the self-supervised pre-training (Gui et al., 2024; Yuan et al., 2023; Tang et al., 2022) remains the  
 125 state-of-the-art method in large-scale settings. There is limited work to consider robust optimization  
 126 to improve the cross-patient generalization.

127 Distributionally robust optimization offers a principled optimization framework that targets  
 128 worst-case performance over an uncertainty set designed to capture potential train-to-test shifts  
 129 (Kuhn et al., 2025; Chen et al., 2020; Rahimian & Mehrotra, 2019; Sinha et al., 2018). Classical un-  
 130 certainty sets are often specified via moment constraints (Delage & Ye, 2010; Bertsimas et al., 2018),  
 131  $f$ -divergences (Sagawa et al., 2020; Namkoong & Duchi, 2016), or Wasserstein balls (Sinha et al.,  
 132 2018; Mohajerin Esfahani & Kuhn, 2018). While analytically convenient, such generic sets can  
 133 be overly conservative or misaligned with real-world shifts, limiting practical gains (Frogner et al.,  
 134 2021; Hu et al., 2018). Some works try to adapt uncertainty sets with data-driven approaches (Liu  
 135 et al., 2021; 2022), but they do not delve into the specific structures of data, such as the inherent  
 136 spatiotemporal structure of EEG signals. **Duan et al. (2023b) explored DRO in EEG decoding tasks**  
 137 **by introducing dynamically evolved data distributions via Wasserstein gradient flows, while their**  
 138 **approach does not exploit the intrinsic spatiotemporal structure of EEG signals as our method.** For  
 139 EEG seizure analysis, little work has explored optimization-centric, structure-aware DRO in this  
 140 domain.

### 141 3 METHOD

#### 142 3.1 PROBLEM FORMULATION

144 We first introduce the problem formulation of cross-patient seizure detection and classification tasks.  
 145

146 **Seizure detection and classification** Given a period of multivariate EEG signal  $\mathbf{X} \in \mathbb{R}^{C \times T}$  from  
 147 a patient with  $T$  time steps and  $C$  spatial channels (electrodes), we aim to construct a machine learn-  
 148 ing model  $f(\theta)$  to predict the seizure label  $y$  for  $\mathbf{X}$ . The seizure detection task aims to automatically  
 149 classify the seizure and non-seizure periods from the EEG of epilepsy patients, so  $y \in \{0, 1\}$  and it  
 150 is a binary classification problem. The seizure classification task aims to classify the seizure type of  
 151 the seizure EEG periods, therefore,  $y$  is the multiclass label in the seizure classification task.

152 **Cross-patient setting** We aim to build the robust model under the cross-patient setting, where  
 153 the patients  $N_{train}$  in the training dataset  $P_0$  are totally different from the testing patients  $N_{test}$ , i.e.  
 154  $N_{train} \cap N_{test} = \emptyset$ . The key difficulty of cross-patient seizure detection is the model’s generalization  
 155 ability challenge introduced by the variation of different individuals. Following a prior study (Tang  
 156 et al., 2022), we examine our model’s capability for fast detection and classification over EEG clips  
 157 with different time window sizes.

##### 158 3.1.1 FORMULATION AS DISTRIBUTIONALLY ROBUST OPTIMIZATION

160 Under the cross-patient setting, the model requires generalization to new populations with distri-  
 161 bution shift, so we formulate the problem as a distributionally robust optimization problem and  
 162 optimize the model for the worst-case performance. Specifically, the target generalized populations

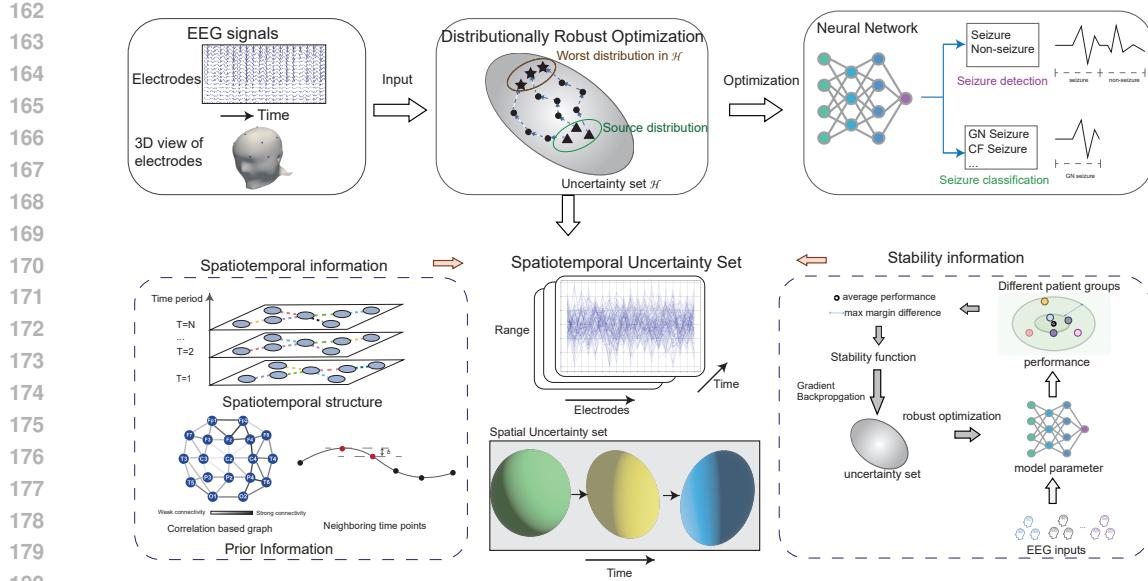


Figure 1: **Overview of the proposed spatiotemporal distributionally robust optimization.** DRO optimizes neural networks under the worst-case distribution within the defined uncertainty set. STDRO constructs and learns the critical uncertainty set by incorporating the spatiotemporal characteristics of EEG signals and the stability objective.

are represented as the uncertainty set  $\mathcal{H} = \{Q \mid \text{dist}(Q, P_0) < \rho\}$ , where  $\rho$  is a hyperparameter indicating the distribution shift strength and  $\text{dist}$  is a function to characterize the distribution distance. Then the optimization problem of our classification model can be formulated as:

$$\min_{\theta \in \Theta} \sup_{Q: \text{dist}(Q, P_0) \leq \rho} \mathbb{E}_{\mathbf{X}, Y \sim Q} [\ell(\theta; \mathbf{X}, Y)],$$

where  $P_0$  is the training distribution,  $\theta$  is the model parameter,  $\mathbf{X}$  is the EEG signals and  $Y$  is the seizure label. The Wasserstein distance function  $\text{dist}(Q, P_0) = W_c(Q, P_0) = \inf_{M \in \Pi(Q, P_0)} \mathbb{E}_{(z, z') \sim M} [c(z, z')]$ , where  $c : \mathcal{X} \times \mathcal{Y} \rightarrow [0, \infty)$  is the transportation cost function.  $\ell$  is the cross-entropy loss function for binary or multi-class classification. DRO leverages adversarial perturbation to get the worst-case distribution, i.e., solving the inner optimization problem to obtain data points for model optimization.

### 3.2 SPATIOTEMPORAL DISTRIBUTIONALLY ROBUST OPTIMIZATION (STDRO)

Figure 1 shows the schematic diagram of our proposed spatiotemporal distributionally robust optimization (STDRO) method. The core idea of our approach is to construct a more practical spatiotemporal uncertainty set for EEG signals by incorporating the structure and stability information of the data. Specifically, the uncertainty set will dynamically change over time while containing spatial correlation information and, meanwhile, will be optimized based on the stability information under the spatio-temporal constraints. We will elaborate on each part in Sections 3.2.1 and 3.2.2.

#### 3.2.1 SPATIOTEMPORALLY STRUCTURED UNCERTAINTY SET

EEG signals have spatial and temporal dimensions. Specifically, epileptic brain activity is not confined to a single brain region, instead, it involves different brain regions that are spatially distributed and have functional connectivity (Tang et al., 2023). The EEG signals of different electrodes and their underlying connectivity are changing dynamically over time (Gloor et al., 1990; Amor et al., 2009).

To better capture the dynamic structure into the uncertainty set, we first split the EEG signals into  $N$  short time periods, and each time period has  $L = \frac{T}{N}$  time steps. During each period  $t$ , we character-

ize the uncertainty set through the current non-Euclidean spatial structure among different EEG electrodes, and we represent the uncertainty set through the correlation graph  $\mathbf{W}_t$ , where  $\mathbf{W}_t^{jk}$  is the absolute value of the normalized cross-correlation between the preprocessed signals in electrode  $v_j$  and electrode  $v_k$  among all EEG signals at the  $t$ -th period, i.e.  $\mathbf{W}_t^{jk} = |\mathbf{X}_{j, \frac{(t-1)*T}{N} : \frac{t*T}{N}} * \mathbf{X}_{k, \frac{(t-1)*T}{N} : \frac{t*T}{N}}|$ ,  $1 \leq t \leq N, 1 \leq j \leq C, 1 \leq k \leq C$ .  $\mathbf{W}_t$  controls the shape of the uncertainty set in  $t$ -th period.

Then the initial spatiotemporal uncertainty set can be represented by the dynamic graphs  $\{\mathbf{W}_t\}_{t=1}^N$ , where the  $t$ -th time period of EEG signals' perturbation level are controlled by  $\mathbf{W}_t$ . Thus the covariate weight  $\mathbf{W} \in \mathbb{R}^{(C \times T+1) \times (C \times T+1)}$  of the initial spatiotemporal uncertainty set can be formulated as

$$\mathbf{W} = \begin{bmatrix} \mathbf{I}_{\frac{T}{N}} \otimes \text{diag}(\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_N) & \mathbf{0}_{(C \times T) \times 1} \\ \mathbf{0}_{1 \times (C \times T)} & 1 \end{bmatrix},$$

where  $\otimes$  represents the element-wise tensor product. Based on it, the initial spatiotemporal uncertainty set can be formulated as  $H = \{Q : W_{c_w}(Q, P_0) \leq \rho\}$ , where  $W_{c_w}$  denotes the Wasserstein distance with the transportation cost function  $c_w$  defined as

$$c_w(z, z') = (z - z')^T \mathbf{W} (z - z'). \quad (1)$$

We further provide a theoretical analysis of the proposed spatiotemporal uncertainty set in Appendix F to show that when the spatiotemporal structure captures the intrinsic low-dimensional manifold of EEG data, the distributionally robust generalization bound can be tightened compared to standard DRO with Wasserstein balls. Complete details are given in Appendix F.

During training, the spatiotemporal uncertainty set will be learnable so that it can incorporate stability information as will be introduced below. To ensure that the ever-changing uncertainty set still contains the spatiotemporal information, we restrict the shape of the covariate weight in the uncertainty set as

$$\mathbf{W} = \begin{bmatrix} \mathbf{I}_{\frac{T}{N}} \otimes \text{diag}(\mathbf{W}_1 \mathbf{M}_1, \mathbf{W}_2 \mathbf{M}_2, \dots, \mathbf{W}_N \mathbf{M}_N) & \mathbf{0}_{(C \times T) \times 1} \\ \mathbf{0}_{1 \times (C \times T)} & 1 \end{bmatrix}$$

where  $\mathbf{W}_i$  is fixed while  $\mathbf{M}_i$  is learnable and initialized as  $\mathbf{I}$ . Then the spatial information embedded in the covariate weight can ensure a similar distribution of correlated channels in the uncertainty set. In addition, to incorporate the prior that neighboring temporal distributions are similar, we design a loss to constrain the weights of neighboring times  $\mathcal{H} = \|\mathbf{W}_t \mathbf{M}_t - \mathbf{W}_{t+1} \mathbf{M}_{t+1}\|_F$  to be close, as will be introduced below.

### 3.2.2 STABILITY-INDUCED UNCERTAINTY SET

As mentioned above, the constructed uncertainty set in our method not only has a dynamic spatiotemporal structure but also incorporates stability information that can be learned from data automatically. We will introduce the learning process of the EEG uncertainty set in this section.

In the uncertainty set of our method, the transportation cost function can be formulated as

$$c_w(z, z') = (\mathbf{X} - \mathbf{X}')^T \mathbf{I}_{\frac{T}{N}} \otimes \text{diag}(\mathbf{W}_1 \mathbf{M}_1, \mathbf{W}_2 \mathbf{M}_2, \dots, \mathbf{W}_N \mathbf{M}_N) (\mathbf{X} - \mathbf{X}') + \infty \times \mathbb{I}_{y \neq y'} \\ = \sum_{t=1}^N (\mathbf{X}_{:, (t-1) \times L : t \times L} - \mathbf{X}'_{:, (t-1) \times L : t \times L})^T \mathbf{W}_t \mathbf{M}_t (\mathbf{X}_{:, (t-1) \times L : t \times L} - \mathbf{X}'_{:, (t-1) \times L : t \times L}) + \infty \times \mathbb{I}_{y \neq y'}, \quad (2)$$

where the covariate weight  $\mathbf{A}_t = \mathbf{W}_t \mathbf{M}_t$  controls the perturbation level of each dimension in the EEG uncertainty set of the  $t$ -th period. The higher the weight element value is, the lower perturbation will be imposed in this dimension.

Ideally, we hope the range of different data dimensions (i.e. channels multiplied by time) in EEG uncertainty set is heterogeneous, and the dimension with higher “variance” has a larger range in the uncertainty set for EEG signals. To better capture the dimensional “variance”, we leverage the idea of feature stability across environments as a surrogate objective. We first group the training patients

270 into different environments (patient groups)  $\mathcal{E}_{tr}$  according to the EEG signals. Specifically, we  
 271 average the EEG signals of each single patient, and conduct clustering algorithms on these averaged  
 272 EEG signals. Then, since the features that minimally affect the performance difference among  
 273 environments are stable with low variability, the maximum margin among different patient groups  
 274  $\max_{e_p, e_q \in \mathcal{E}_{tr}} (\ell^{e_p}(\theta(\mathbf{W})) - \ell^{e_q}(\theta(\mathbf{W}))$  can reflect the stability, where the model parameter  $\theta$  is the  
 275 function of uncertainty set's covariate weight  $\mathbf{W}$  under the DRO framework. So we design the loss  
 276 function  $\max_{e_p, e_q \in \mathcal{E}_{tr}} (\ell^{e_p}(\theta(\mathbf{W})) - \ell^{e_q}(\theta(\mathbf{W}))$  to adapt  $\mathbf{W}$ . Additionally, we expect the model  
 277 learned from the constructed uncertainty set has good performance across all patient groups, so we  
 278 come up with another objective function  $\frac{1}{|\mathcal{E}_{tr}|} \sum_{e \in \mathcal{E}_{tr}} \ell^e(\theta(\mathbf{W}))$  to adapt  $\mathbf{W}$ .

279 Overall, the objective function of our STDRO method can be summarized as:

$$\begin{aligned} & \min_{\theta \in \Theta} \sup_{Q: W_{c_w}(Q, P_0) \leq \rho} \mathbb{E}_{\mathbf{X}, Y \sim Q} [\ell(\theta; \mathbf{X}, Y)], \\ & \text{s.t. } \mathbf{M} \in \arg \min_{\mathbf{M} \in \mathcal{M}} \frac{\sum_{e \in \mathcal{E}_{tr}} \ell^e(\theta)}{|\mathcal{E}_{tr}|} + \alpha \max_{e_p, e_q \in \mathcal{E}_{tr}} (\ell^{e_p} - \ell^{e_q}) + \beta \sum_t \|\mathbf{W}_{t+1} \mathbf{M}_{t+1} - \mathbf{W}_t \mathbf{M}_t\|_F^2 \end{aligned} \quad (3)$$

286 where  $W_{c_w}$  denotes the Wasserstein distance with transportation cost function  $c_w$  defined as

$$288 c_w(z, z') = (z - z')^T \begin{bmatrix} \mathbf{I}_{\frac{T}{N}} \otimes \text{diag}(\mathbf{W}_1 \mathbf{M}_1, \mathbf{W}_2 \mathbf{M}_2, \dots, \mathbf{W}_N \mathbf{M}_N) & \mathbf{0}_{(C \times T) \times 1} \\ \mathbf{0}_{1 \times (C \times T)} & 1 \end{bmatrix} (z - z').$$

$$290 \mathcal{M} = \{\{\mathbf{M}_1, \mathbf{M}_2, \dots, \mathbf{M}_N\} : \text{diag}(\mathbf{W}_t \mathbf{M}_t) \succeq 0, 1 \leq t \leq N\}.$$

291  $\|\mathbf{W}_{t+1} \mathbf{M}_{t+1} - \mathbf{W}_t \mathbf{M}_t\|_F^2$  denotes the similar distribution restriction between adjacent time periods  
 292 in EEG signals, where  $\|\cdot\|_F$  denotes the Frobenius norm.  $\frac{\sum_{e \in \mathcal{E}_{tr}} \ell^e(\theta)}{|\mathcal{E}_{tr}|}$  are the average loss across  
 293 environments  $\mathcal{E}_{tr}$ .  $\max_{e_p, e_q \in \mathcal{E}_{tr}} (\ell^{e_p} - \ell^{e_q})$  measures the feature stability.  $\alpha$  and  $\beta$  are the hyperpa-  
 294 rameters that adjust the tradeoff among average performance, feature stability, and time continuity.  
 295 The architecture of the model parameterized by  $\theta$  is arbitrary and can be any type of neural network.  
 296 During the learning process,  $\mathbf{W}_t$  is fixed while  $\mathbf{M}_t$  is learnable.  $\mathbf{M}$  refers to any  $\mathbf{M}_t$ ,  $1 \leq t \leq N$ .

### 298 3.3 OVERALL OPTIMIZATION PROCEDURE

300 The whole objective function is a bi-level optimization problem, and the optimization of model  
 301 parameter  $\theta$  and weight  $\mathbf{M}$  is performed alternately. Given the current  $\mathbf{M}$ , the objective function of  
 302 model parameter  $\theta$  is  $\min_{\theta \in \Theta} \sup_{Q: W_{c_w}(Q, P_0) \leq \rho} \mathbb{E}_{\mathbf{X}, Y \sim Q} [\ell(\theta; \mathbf{X}, Y)]$ , which can be reformulated  
 303 as below through the Lagrangian relaxation (Sinha et al., 2018):

$$304 \min_{\theta \in \Theta} \sup_Q \{\mathbb{E}_{\mathbf{X} \sim Q} [\ell(\theta; \mathbf{X}, Y)] - \lambda W_{c_w}(Q, P_0)\}. \quad (4)$$

306 For simplicity in notation, we denote  $S_\lambda(\theta; (\mathbf{X}, y)) = \sup_{\varepsilon \in Z} (\ell(\theta, \varepsilon) - \lambda c_w(\varepsilon, (\mathbf{X}, y)))$ . This  
 307 problem can be solved through adversarial optimization, and we denote the approximation  
 308 maximizer solution of  $S_\lambda(\theta, \mathbf{X}, Y)$  as  $\widetilde{\mathbf{X}}$ . Then we can optimize the model parameter  $\theta$  using  $(\widetilde{\mathbf{X}}, Y)$ .

309 During the optimization of weight  $\mathbf{M}$ , the objective function is a multi-environment objective  $R(\theta)$ .

$$311 R(\theta) = \frac{\sum_{e \in \mathcal{E}_{tr}} \ell^e(\theta)}{|\mathcal{E}_{tr}|} + \alpha \max_{e_p, e_q \in \mathcal{E}_{tr}} (\ell^{e_p} - \ell^{e_q}) + \beta \sum_{t=1}^{N-1} \|\mathbf{W}_t \mathbf{M}_t - \mathbf{W}_{t+1} \mathbf{M}_{t+1}\|_F. \quad (5)$$

314 We denote  $A(\theta) = \frac{\sum_{e \in \mathcal{E}_{tr}} \ell^e(\theta)}{|\mathcal{E}_{tr}|} + \alpha \max_{e_p, e_q \in \mathcal{E}_{tr}} (\ell^{e_p} - \ell^{e_q})$ . The weight  $\mathbf{M}$  is updated through  
 315 gradient descent, and  $\frac{\partial R(\theta(\mathbf{W}(\mathbf{M})))}{\partial \mathbf{M}}$  is approximated as following:

$$317 \frac{\partial R(\theta(\mathbf{W}(\mathbf{M})))}{\partial \mathbf{M}} = \frac{\partial A}{\partial \theta} \frac{\partial \theta}{\partial \widetilde{\mathbf{X}}} \frac{\partial \widetilde{\mathbf{X}}}{\partial \mathbf{W}} \frac{\partial \mathbf{W}}{\partial \mathbf{M}} + \beta \frac{\partial \sum_{t=1}^{N-1} \|\mathbf{W}_t \mathbf{M}_t - \mathbf{W}_{t+1} \mathbf{M}_{t+1}\|_F}{\partial \mathbf{M}}. \quad (6)$$

319 Among these components,  $\frac{\partial A}{\partial \theta}$  and  $\frac{\partial \mathbf{W}}{\partial \mathbf{M}}$  of the first term and the second term can be calculated easily.  
 320  $\frac{\partial \theta}{\partial \widetilde{\mathbf{X}}}$  of the first term can be approximated through the gradient descent of  $\theta$  as

$$322 \frac{\partial \theta}{\partial \widetilde{\mathbf{X}}} \approx -\epsilon_\theta \sum_i \frac{\nabla_\theta \hat{\ell}(\theta^i; \widetilde{\mathbf{X}}, Y)}{\partial \widetilde{\mathbf{X}}}, \quad (7)$$

324  
 325 Table 1: Comparisons results of different methods for 12s EEG-based cross-patient seizure detection  
 326 on the TUSZ dataset.

| 327 Method                 | 328 AUROC (%) | 329 F1-score (%) | 330 Accuracy (%) | 331 Recall (%) | 332 Precision (%) |
|----------------------------|---------------|------------------|------------------|----------------|-------------------|
| TieEEG Net                 | 68.7          | 30.3             | 73.5             | 52.8           | 21.3              |
| CNN-LSTM                   | 70.5          | 29.3             | 75.7             | 46.2           | 21.5              |
| LSTM                       | 77.6          | 36.5             | 81.3             | 49.2           | 29.0              |
| Dense-CNN                  | 78.0          | 32.6             | 85.8             | 40.1           | 36.6              |
| VQ-MTM                     | 79.2          | 42.0             | 88.5             | 41.0           | 43.1              |
| VQ-MTM+STDRO (ours)        | <b>80.0</b>   | 40.6             | 90.6             | 31.9           | 55.9              |
| GraphS4former              | 85.7          | 50.5             | 85.8             | 66.1           | 40.8              |
| GraphS4former+STDRO (ours) | <b>87.1</b>   | <b>52.2</b>      | 87.4             | 63.0           | 44.5              |
| DCRNN                      | 86.7          | 50.8             | 87.8             | 57.6           | 45.4              |
| DCRNN+STDRO (ours)         | <b>88.2</b>   | <b>54.8</b>      | 89.5             | 58.1           | 51.8              |

333  
 334 where  $i$  is the iteration index,  $\epsilon_\theta$  is the learning rate of  $\theta$ . And  $\frac{\nabla_\theta \hat{\ell}(\theta^i; \tilde{\mathbf{X}}, Y)}{\partial \tilde{\mathbf{X}}}$  can be calculated through  
 335 training. The third term  $\frac{\partial \tilde{\mathbf{X}}}{\partial \mathbf{W}}$  can be approximated during the adversarial process as  
 336

$$337 \frac{\partial \tilde{\mathbf{X}}}{\partial \mathbf{W}} \approx -2\epsilon_x \lambda \sum_i \text{Diag}(\tilde{\mathbf{X}}^i - \mathbf{X}). \quad (8)$$

338 The details can be found in the Appendix, and the whole optimization process is illustrated in Algo-  
 339 rithm 1.

## 340 4 EXPERIMENT

### 341 4.1 DATASET AND PREPROCESSING

342 We use several publicly available datasets: the Temple University Hospital EEG Seizure Corpus  
 343 (TUSZ) V1.5.2 dataset (Obeid & Picone, 2016; Shah et al., 2018) and the CHB-MIT dataset (Gold-  
 344 berger et al., 2000) for seizure detection and classification. [Meanwhile, we also evaluate the ex-  
 345 tension to the Dreem Open Dataset-Healthy \(DOD-H\) dataset \(Guillot et al., 2020\) for EEG-based  
 346 sleep stage classification.](#)

347 TUSZ dataset is the largest EEG database, which includes more than 5000 EEG files recorded by 19  
 348 electrodes in the traditional 10-20 systems. The dataset has both detection and seizure classification  
 349 labels. It contains more than 900 hours of seizure duration. And there are four seizure classes in  
 350 total: combined focal (CF), generalized non-specific (GN), absence (AB), and CT seizures. CHB-  
 351 MIT dataset was collected by the Children’s Hospital Boston focusing on the annotation of seizure  
 352 detection. It is recorded by the traditional 10-20 systems. For our study, we analysed 21-channel  
 353 EEGs of 23 patients in CHB-MIT. It contains more than 3 hours of seizure duration. [DOD-H dataset  
 354 has 16 polysomnographic \(PSG\) sensors. The sampling rate is 250 Hz. Each 30s-signal has 7500  
 355 time steps. And there are five sleep stages: wake, rapid eye movement \(REM\), non-REM sleep  
 356 stages, N1, N2, and N3.](#) The data preprocessing details can be found in the Appendix.

### 357 4.2 BASELINES AND EVALUATION METRICS

358 The baseline methods mainly include (1) pre-training finetune approaches: DCRNN (Tang et al.,  
 359 2022) and VQ-MTM (Gu et al., 2024); and (2) architecture-based methods: Dense-CNN (Saab  
 360 et al., 2020), LSTM (Graves, 2012), CNN-LSTM (Ahmedt-Aristizabal et al., 2020), TieEEG Net  
 361 (Peng et al., 2022), and graphs4former (Tang et al., 2023). Additionally, we also evaluate and  
 362 compare with the adversarial learning method PANN (Zhang et al., 2024a) for invariant feature  
 363 learning and further show that our method is complementary to it as well. For all these baseline  
 364 methods, we utilize their officially released code and adopt the suggested training strategies and  
 365 hyperparameter settings in their original papers.

366 We first evaluate the baselines on the datasets and then apply our method to the three approaches  
 367 with the highest performance. For the methods that follow the pretrain-finetune paradigm (Tang

378  
 379 Table 2: Comparisons results of different methods for 60s EEG-based cross-patient seizure detection  
 380 on the TUSZ dataset.

| Method                     | AUROC (%)   | F1-score (%) | Accuracy (%) | Recall (%) | Precision (%) |
|----------------------------|-------------|--------------|--------------|------------|---------------|
| TieEEG Net                 | 59.4        | 28.8         | 62.6         | 51.5       | 20.0          |
| CNN-LSTM                   | 62.5        | 28.0         | 71.8         | 37.4       | 22.4          |
| LSTM                       | 70.8        | 35.8         | 69.8         | 57.2       | 26.0          |
| Dense-CNN                  | 81.7        | 50.5         | 84.8         | 52.9       | 48.3          |
| VQ-MTM                     | 81.8        | 51.7         | 87.6         | 46.5       | 58.2          |
| VQ-MTM+STDRO (ours)        | <b>81.9</b> | <b>52.1</b>  | 87.8         | 46.5       | 59.3          |
| DCRNN                      | 87.8        | 56.4         | 84.4         | 68.6       | 47.9          |
| DCRNN+STDRO (ours)         | <b>88.3</b> | <b>61.7</b>  | 88.1         | 65.6       | 58.3          |
| GraphS4former              | 89.5        | 58.2         | 91.6         | 82.1       | 45.1          |
| GraphS4former+STDRO (ours) | <b>90.1</b> | <b>69.7</b>  | 91.6         | 66.1       | 73.8          |

392  
 393  
 394 Table 3: Results of EEG-based cross-patient seizure classification on TUSZ dataset under 12s and  
 395 60s settings.

| Method                   | 12s          |              | 60s          |              |
|--------------------------|--------------|--------------|--------------|--------------|
|                          | F1-score (%) | Accuracy (%) | F1-score (%) | Accuracy (%) |
| GraphS4former            | 53.4         | 64.3         | 63.8         | 69.1         |
| TieEEG Net               | 56.1         | 65.1         | 63.7         | 67.2         |
| LSTM                     | 65.1         | 71.6         | 66.2         | 71.2         |
| Dense-CNN                | 66.6         | 72.6         | 60.0         | 68.9         |
| Dense-CNN + STDRO (Ours) | <b>68.2</b>  | <b>73.1</b>  | <b>61.5</b>  | <b>70.2</b>  |
| DCRNN                    | 67.4         | 74.7         | 66.8         | 68.9         |
| DCRNN+STDRO (Ours)       | <b>70.8</b>  | <b>75.4</b>  | <b>68.8</b>  | <b>72.2</b>  |
| VQ-MTM                   | 69.4         | 73.0         | 55.3         | 65.3         |
| VQ-MTM+STDRO (Ours)      | <b>70.2</b>  | <b>74.1</b>  | <b>65.5</b>  | <b>71.0</b>  |

408  
 409  
 410 et al., 2022; Gui et al., 2024), we combine them with our method during the fine-tuning of models.  
 411 For other models, we combine them with our method during the training of models. The covariate  
 412 weight in our method is trained using the Adam optimizer (Kingma, 2015).

413  
 414 Following the common practice, we adopt weighted F1-score as the main evaluation metrics for  
 415 seizure classification while we also report accuracy, and we leverage AUROC and F1-score as the  
 416 main evaluation metrics for seizure detection while we also report accuracy, recall and precision.

#### 4.3 MAIN RESULTS

420  
 421 The seizure detection results of different methods on the TUSZ dataset with 12s-EEG clips and  
 422 60s-EEG clips are presented in Table 1 and Table 2, respectively, and the seizure classification  
 423 results on the TUSZ dataset is shown in Table 3. Table 4 shows the seizure detection results on the  
 424 CHB-MIT dataset with 4s-EEG clips. [Further, Table 5 shows the extended results to the sleep stage](#)  
 425 [classification on the DOD-H dataset.](#)

426 The results show that among various settings, tasks, and datasets, STDRO consistently boosts the  
 427 performance of the state-of-the-art methods, demonstrating the effectiveness of our STDRO method.  
 428 Particularly, STDRO significantly enhances the F1-score for the cross-patient seizure detection, and  
 429 is complementary not only to pre-training/architecture approaches but also to other optimized-based  
 430 methods such as adversarial learning for invariance. [Meanwhile, STDRO can be successfully ex-](#)  
 431 [tended to other EEG-based BCI tasks.](#) This validates the advantages of STDRO with incorporated  
 432 spatiotemporal characteristics and stability of EEG signals for improved cross-patient generaliza-  
 433 tion.

432 Table 4: Results of 4s EEG-based cross-patient seizure detection on CHB-MIT dataset.

| Method                  | AUROC (%)   | F1-score (%) | Accuracy (%) | Recall (%) | Precision (%) |
|-------------------------|-------------|--------------|--------------|------------|---------------|
| CNN-LSTM                | 90.9        | 55.2         | 87.5         | 68.9       | 46.1          |
| DenseCNN                | 93.5        | 65.4         | 90.6         | 79.6       | 55.4          |
| DCRNN                   | 94.0        | 69.3         | 93.7         | 63.9       | 75.7          |
| DCRNN+STDRO (ours)      | <b>95.4</b> | <b>69.5</b>  | 93.2         | 69.9       | 69.2          |
| DCRNN+PANN              | 95.4        | 71.6         | 94.2         | 66.1       | 78.1          |
| DCRNN+PANN+STDRO (ours) | <b>96.2</b> | <b>71.9</b>  | 93.9         | 70.0       | 73.8          |

441 Table 5: Results of cross-subject sleeping stage classification on the DOD-H dataset.

| Method                     | Macro-F1                            | Kappa                               |
|----------------------------|-------------------------------------|-------------------------------------|
| LSTM                       | $0.609 \pm 0.034$                   | $0.539 \pm 0.046$                   |
| SimpleSleepNet             | $0.720 \pm 0.001$                   | $0.703 \pm 0.013$                   |
| RobustSleepNet             | $0.777 \pm 0.007$                   | $0.758 \pm 0.008$                   |
| DeepSleepNet               | $0.716 \pm 0.025$                   | $0.711 \pm 0.032$                   |
| GraphS4former              | $0.810 \pm 0.015$                   | $0.790 \pm 0.020$                   |
| GraphS4former+STDRO (ours) | <b><math>0.822 \pm 0.011</math></b> | <b><math>0.807 \pm 0.010</math></b> |

450 Table 6: Ablation study on 12s cross-patient seizure detection on the TUSZ dataset. Results are  
451 based on three runs of experiments.

| Method                      | AUROC             | F1-score          | Accuracy          | Recall            | Precision         |
|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| DCRNN                       | $0.865 \pm 0.010$ | $0.495 \pm 0.013$ | $0.868 \pm 0.013$ | $0.589 \pm 0.030$ | $0.429 \pm 0.031$ |
| +DRO                        | $0.868 \pm 0.006$ | $0.514 \pm 0.001$ | $0.883 \pm 0.003$ | $0.564 \pm 0.009$ | $0.472 \pm 0.010$ |
| +DRO w/ spatiotemporal W    | $0.874 \pm 0.005$ | $0.524 \pm 0.007$ | $0.878 \pm 0.001$ | $0.612 \pm 0.050$ | $0.462 \pm 0.036$ |
| +DRO w/ stability-induced W | $0.875 \pm 0.013$ | $0.521 \pm 0.034$ | $0.881 \pm 0.026$ | $0.585 \pm 0.077$ | $0.486 \pm 0.101$ |
| +STDRO (ours)               | $0.876 \pm 0.008$ | $0.542 \pm 0.007$ | $0.893 \pm 0.002$ | $0.570 \pm 0.008$ | $0.510 \pm 0.008$ |

## 460 4.4 ABLATION STUDY

461 To verify the effect of each part of our method, we conduct an ablation study on the TUSZ  
462 Dataset. We choose the DCRNN as the model baseline, and compare several variants as follows: (1)  
463 DCRNN+DRO: The model is optimized by the vanilla distributionally robust learning where the un-  
464 certainty set is characterized by the Wasserstein distance; (2) DCRNN+DRO w/ spatiotemporal W:  
465 The uncertainty set of DRO is only constructed by the spatiotemporal structure; (3) DCRNN+DRO  
466 w/ stability-induced W: The uncertainty set is initialized by the Wasserstein distance and only opti-  
467 mized by the stability objective.

468 Results in Table 6 show the effectiveness of DRO and each component in our STDRO, validating  
469 the necessity of both the spatiotemporal structure of EEG data and the stability information. We  
470 also analyze the influence of the environment number in the stability objective in Table 7 and other  
471 hyperparameters  $N$ ,  $\alpha$ ,  $\beta$  in Table 8, 9, 10, showing the robustness of our method.

## 473 4.5 VISUALIZATION OF COVARIATE WEIGHTS OF THE UNCERTAINTY SET

475 To illustrate the uncertainty set in our method, we visualize the covariate weight, which is utilized to  
476 characterize the high-dimensional uncertainty set (Section 3.2.1), for the 60s seizure classification  
477 task with DCRNN. As we split each EEG segment into four time periods (i.e.,  $N = 4$  in Section  
478 3.2.1), we present the weight matrix for the first period and the difference from it for the remaining  
479 three periods for better visualization. As shown in Figure 2 (A-D), the weights have incorporated  
480 certain spatiotemporal structure in the data. Further, to characterize the stability-induced learning,  
481 we visualize the difference in the covariate weight of each time period before and after training in  
482 Figure 2 (E-H), demonstrating how the uncertainty set is influence by the stability objective.

## 483 4.6 ANALYSIS OF GROUPS AND CONFUSION MATRIX

484 We visualized the seizure clinical characteristics of different groups. As shown in Figure 3 (A), the  
485 groups formed by EEG clustering has different seizure-type proportion, indicating that the grouping

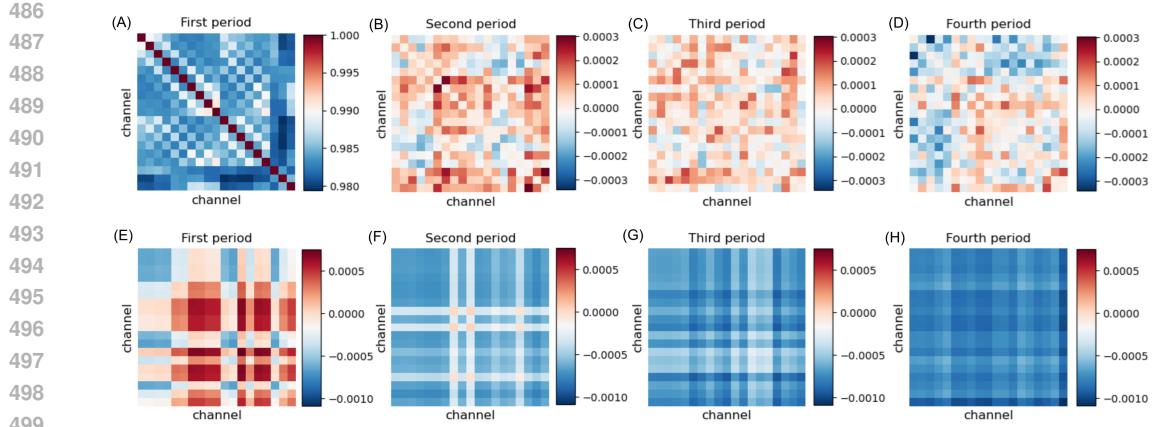


Figure 2: Learnable spatiotemporal covariate weight visualization. (A-D) The initial covariate weight and the difference between time periods. (E-H) The spatiotemporal covariate weight difference between initialization and training.

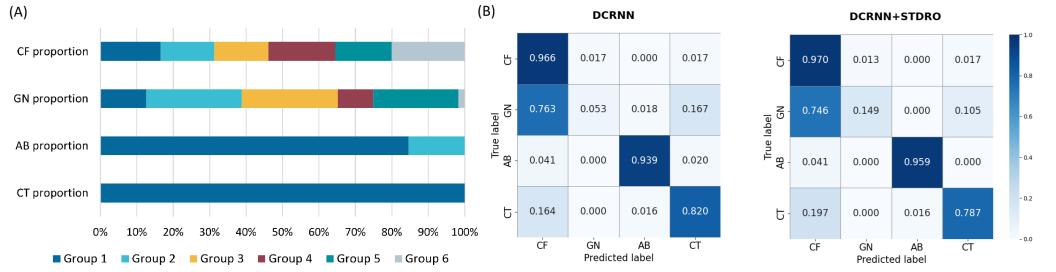


Figure 3: (A) The seizure clinical characteristics difference among clustered patient groups. (B) Confusion matrices for the DCRNN baseline without and with STDRO for 12-s seizure classification.

517 partially capture some features. In addition, We provided the confusion matrices for DCRNN 518 baseline without and with STDRO for 12-s seizure classification in Figure 3 (B). As shown in the Figure, 519 STDRO can improve the accuracy of the worst class (GN, from 0.053 to 0.149), whose improvement 520 is larger than those of other classes. 521

## 5 CONCLUSION

524 In this work, we propose spatiotemporal distributionally robust optimization for cross-patient EEG- 525 based seizure analysis. We introduce robust optimization as a complementary approach to existing 526 pretrain-finetune or architecture design methods for cross-patient generalization. The proposed 527 STDRO tackles the challenges of DRO for the inherent structure of EEG data by incorporating 528 spatiotemporal structures and stability-induced information into the critical uncertainty set. Extensive 529 experiments demonstrate the effectiveness of STDRO to further improve state-of-the-art methods 530 across various settings in both seizure detection and classification, and validate the effectiveness 531 of each component. Our work can advance robust seizure analysis toward practical cross-patient 532 scenarios, and hold the potential for future extension to other time series data.

## 533 REFERENCES

535 Arshia Afzal, Grigorios Chrysos, Volkan Cevher, and Mahsa Shoaran. Rest: efficient and accelerated 536 eeg seizure analysis through residual state updates. In *Proceedings of the 41st International* 537 *Conference on Machine Learning*, pp. 271–290, 2024.

538 MZ Ahmad, Maryam Saeed, Sajid Saleem, and Awais M Kamboh. Seizure detection using EEG: 539 A survey of different techniques. In *2016 International Conference on Emerging Technologies*

540 (ICET), pp. 1–6. IEEE, 2016.  
 541

542 David Ahmedt-Aristizabal, Tharindu Fernando, Simon Denman, Lars Petersson, Matthew J Aburn,  
 543 and Clinton Fookes. Neural memory networks for seizure type classification. In *2020 42nd Annual*  
 544 *International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp.  
 545 569–575. IEEE, 2020.

546 Zubair Akbar, Farhad Hassan, Jingzhen Li, Ubaidullah alias Kashif, Yuhang Liu, Jia Gu, Kaixin  
 547 Zhou, and Zedong Nie. Kaleep-net: A kolmogorov-arnold flash attention network for sleep stage  
 548 classification using single-channel eeg with explainability. *IEEE Transactions on Neural Systems*  
 549 and *Rehabilitation Engineering*, 2025.

550 Frédérique Amor, Sylvain Baillet, Vincent Navarro, Claude Adam, Jacques Martinerie, and Michel  
 551 Le Van Quyen. Cortical local and long-range synchronization interplay in human absence seizure  
 552 initiation. *Neuroimage*, 45(3):950–962, 2009.

553

554 Kayode Peter Ayodele, Wisdom O Ikezogwo, Morenikeji A Komolafe, and Philip Ogunbona. Super-  
 555 vised domain generalization for integration of disparate scalp EEG datasets for automatic epileptic  
 556 seizure detection. *Computers in Biology and Medicine*, 120:103757, 2020.

557 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and  
 558 structural results. *Journal of machine learning research*, 3(Nov):463–482, 2002.

559

560 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and  
 561 clustering. *Advances in neural information processing systems*, 14, 2001.

562 Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization. *Mathematical Programming*, 167(2):235–292, 2018.

563

564 Ruidi Chen, Ioannis Ch Paschalidis, et al. Distributionally robust learning. *Foundations and Trends®*  
 565 in *Optimization*, 4(1-2):1–243, 2020.

566

567 Zheng Chen, Yasuko Matsubara, Yasushi Sakurai, and Jimeng Sun. Long-term eeg partitioning  
 568 for seizure onset detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
 569 volume 39, pp. 14221–14229, 2025.

570

571 Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty with  
 572 application to data-driven problems. *Operations research*, 58(3):595–612, 2010.

573

574 Tiehang Duan, Mohammad Abuzar Shaikh, Mihir Chauhan, Jun Chu, Rohini K Srihari, Archita  
 575 Pathak, and Sargur N Srihari. Meta learn on constrained transfer learning for low resource cross  
 576 subject eeg classification. *IEEE Access*, 8:224791–224802, 2020.

577

578 Tiehang Duan, Zhenyi Wang, Gianfranco Doretto, Fang Li, Cui Tao, and Donald Adjeroh. Replay  
 579 with stochastic neural transformation for online continual eeg classification. In *2023 IEEE international conference on bioinformatics and biomedicine (BIBM)*, pp. 1874–1879. IEEE, 2023a.

580

581 Tiehang Duan, Zhenyi Wang, Gianfranco Doretto, Fang Li, Cui Tao, and Donald A Adjeroh. Dis-  
 582 tributionally robust cross subject eeg decoding. In *ECAI*, 2023b.

583

584 Xiaoya Fan, Pengzhi Xu, Qi Zhao, Chenru Hao, Zheng Zhao, and Zhong Wang. A domain adaption  
 585 approach for eeg-based automated seizure classification with temporal-spatial-spectral attention.  
 586 In *International Conference on Medical Image Computing and Computer-Assisted Intervention*,  
 587 pp. 14–24. Springer, 2024.

588

589 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.  
 590 *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.

591

592 Hailing Feng, Shuai Wang, Hongbin Lv, Chenxi Nie, Wenqian Feng, Hao Peng, and Yanna Zhao.  
 593 Cross-subject seizure detection with vision transformer and unsupervised domain adaptation.  
 594 *Biomedical Signal Processing and Control*, 111:108341, 2026.

595

596 Charlie Frogner, Sebastian Claici, Edward Chien, and Justin Solomon. Incorporating unlabeled data  
 597 into distributionally robust learning. *Journal of Machine Learning Research*, 22(56):1–46, 2021.

594 P Gloor, M Avoli, and G Kostopoulos. Thalamocortical relationships in generalized epilepsy with  
 595 bilaterally synchronous spike-and-wave discharge. In *Generalized epilepsy: neurobiological ap-*  
 596 *proaches*, pp. 190–212. Springer, 1990.

597

598 Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G  
 599 Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,  
 600 physiotoolkit, and physionet: components of a new research resource for complex physiologic  
 601 signals. *Circulation*, 101(23):e215–e220, 2000.

602 Catalina Gómez, Pablo Arbeláez, Miguel Navarrete, Catalina Alvarado-Rojas, Michel  
 603 Le Van Quyen, and Mario Valderrama. Automatic seizure detection based on imaged-EEG signals  
 604 through fully convolutional networks. *Scientific Reports*, 10(1):1–13, 2020.

605 Alex Graves. Long short-term memory. *Supervised sequence labelling with recurrent neural net-*  
 606 *works*, pp. 37–45, 2012.

607

608 Haokun Gui, Xiucheng Li, and Xinyang Chen. Vector quantization pretraining for eeg time series  
 609 with random projection and phase alignment. In *International Conference on Machine Learning*,  
 610 pp. 16731–16750. PMLR, 2024.

611 Antoine Guillot, Fabien Sauvet, Emmanuel H During, and Valentin Thorey. Dreem open datasets:  
 612 Multi-scored sleep datasets to compare human and automated sleep staging. *IEEE transactions*  
 613 *on neural systems and rehabilitation engineering*, 28(9):1955–1965, 2020.

614

615 He He and Dongrui Wu. Different set domain adaptation for brain-computer interfaces: A label  
 616 alignment approach. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 28  
 617 (5):1091–1108, 2020.

618 Tingxuan Hong, Desheng Li, Yuan Chang, Xiangqing Wang, Ziliang Cai, Rongfei Wang, Xi-  
 619 aochen Zhang, Xiaoya Liu, Chunxiao Yang, Shengyuan Yu, et al. Mcan: Cross-domain self-  
 620 supervised attention network based on multiscale eeg feature learning for epileptic seizure detec-  
 621 *tion*. *Knowledge-Based Systems*, pp. 114199, 2025.

622

623 Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust supervised  
 624 learning give robust classifiers? In *International Conference on Machine Learning*, pp. 2029–  
 625 2037. PMLR, 2018.

626

627 Weibang Jiang, Yansen Wang, Bao-liang Lu, and Dongsheng Li. Neurolm: A universal multi-task  
 628 foundation model for bridging the gap between language and eeg signals. In *The Thirteenth*  
*629 International Conference on Learning Representations*, 2025.

630

631 WANG Jiaqi, Yuhang Zhou, Zhixiong Zhang, Qiguang Chen, Yongqiang Chen, and James Cheng.  
 632 Divil: Unveiling and addressing over-invariance for out-of-distribution generalization. *Transac-  
 633 tions on Machine Learning Research*, 2025.

634

635 Diederik P Kingma. Adam: A method for stochastic optimization. 2015.

636

637 Dominik Klepl, Min Wu, and Fei He. Graph neural network-based eeg classification: A survey.  
 638 *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 32:493–503, 2024.

639

640 Daniel Kuhn, Soroosh Shafee, and Wolfram Wiesemann. Distributionally robust optimization. *Acta  
 641 Numerica*, 34:579–804, 2025.

642

643 Jiashuo Liu, Zheyuan Shen, Peng Cui, Linjun Zhou, Kun Kuang, Bo Li, and Yishi Lin. Stable ad-  
 644 versarial learning under distributional shifts. In *Proceedings of the AAAI Conference on Artificial  
 645 Intelligence*, volume 35, pp. 8662–8670, 2021.

646

647 Jiashuo Liu, Zheyuan Shen, Peng Cui, Linjun Zhou, Kun Kuang, and Bo Li. Distributionally robust  
 648 learning with stable adversarial training. *IEEE Transactions on Knowledge and Data Engineer-  
 649 ing*, 35(11):11288–11300, 2022.

650

651 Junxiu Liu, Xuanyu Zhao, Yuling Luo, Sheng Qin, Qiang Fu, and Hongxiao Tan. Memory-  
 652 augmented-based meta-learning framework for cross-subject motor imagery classification.  
 653 *Biomedical Signal Processing and Control*, 110:108246, 2025.

648 Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization  
 649 using the wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical*  
 650 *Programming*, 171(1):115–166, 2018.

651

652 Florian Mormann, Ralph G Andrzejak, Christian E Elger, and Klaus Lehnertz. Seizure prediction:  
 653 the long and winding road. *Brain*, 130(2):314–333, 2007.

654 Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust  
 655 optimization with f-divergences. *Advances in neural information processing systems*, 29, 2016.

656

657 Samaneh Nasiri and Gari D Clifford. Generalizable seizure detection model using generating trans-  
 658 ferable adversarial features. *IEEE Signal Processing Letters*, 28:568–572, 2021.

659

660 Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. *Frontiers in neuro-  
 661 science*, 10:196, 2016.

662

663 Ruimin Peng, Changming Zhao, Jun Jiang, Guangtao Kuang, Yuqi Cui, Yifan Xu, Hao Du, Jianbo  
 664 Shao, and Dongrui Wu. TIE-EEGNet: Temporal information enhanced eegnet for seizure subtype  
 665 classification. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 30:2567–  
 2576, 2022.

666

667 Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. *arXiv  
 preprint arXiv:1908.05659*, 2019.

668

669 Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. The risks of invariant risk mini-  
 670 mization. In *International Conference on Learning Representations*, 2021.

671

672 Khaled Saab, Jared Dunnmon, Christopher Ré, Daniel Rubin, and Christopher Lee-Messer. Weak  
 673 supervision as an efficient approach for automated seizure detection in electroencephalography.  
*NPJ digital medicine*, 3(1):59, 2020.

674

675 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust  
 676 neural networks. In *International Conference on Learning Representations*, 2020.

677

678 Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Maysam Gol-  
 679 mohammadi, Iyad Obeid, and Joseph Picone. The temple university hospital seizure detection  
 corpus. *Frontiers in neuroinformatics*, 12:83, 2018.

680

681 Hongwei Shan, Lichen Feng, Yueqi Zhang, Liying Yang, and Zhangming Zhu. Compact seizure  
 682 detection based on spiking neural network and support vector machine for efficient neuromorphic  
 683 implementation. *Biomedical Signal Processing and Control*, 86:105268, 2023.

684

685 Kai Shu, Le Wu, Yuchang Zhao, Aiping Liu, Ruobing Qian, and Xun Chen. Data augmentation  
 686 for seizure prediction with generative diffusion model. *IEEE Transactions on Cognitive and  
 Developmental Systems*, 2024.

687

688 Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness with  
 689 principled adversarial training. In *International Conference on Learning Representations*, 2018.

690

691 Matthew Staib and Stefanie Jegelka. Distributionally robust optimization and generalization in ker-  
 nel methods. *Advances in Neural Information Processing Systems*, 32, 2019.

692

693 Siyi Tang, Jared Dunnmon, Khaled Kamal Saab, Xuan Zhang, Qianying Huang, Florian Dubost,  
 694 Daniel Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved  
 695 electroencephalographic seizure analysis. In *International Conference on Learning Representa-  
 tions*, 2022.

696

697 Siyi Tang, Jared A Dunnmon, Qu Liangqiong, Khaled K Saab, Tina Baykaner, Christopher Lee-  
 698 Messer, and Daniel L Rubin. Modeling multivariate biosignals with graph neural networks and  
 699 structured state space models. In *Conference on health, inference, and learning*, pp. 50–71.  
 PMLR, 2023.

700

701 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-  
 bridge university press, 2019.

702 Chenlong Wang, Lei Liu, Wenhai Zhuo, and Yun Xie. An epileptic eeg detection method based on  
 703 data augmentation and lightweight neural network. *IEEE Journal of Translational Engineering*  
 704 *in Health and Medicine*, 12:22–31, 2023.

705 Zuochen Wei, Junzhong Zou, Jian Zhang, and Jianqiang Xu. Automatic epileptic EEG detection  
 706 using convolutional neural network with improvements in time-domain. *Biomedical Signal Pro-*  
 707 *cessing and Control*, 53:101551, 2019.

708 World Health Organization. A report about epilepsy. <https://www.who.int/news-room/fact-sheets/detail/epilepsy>, 2016.

709 Yuntian Wu, Yuntian Yang, Jiabao Sean Xiao, Chuan Zhou, Haochen Sui, and Haoxuan Li. Invariant  
 710 spatiotemporal representation learning for cross-patient seizure classification. 2024.

711 Kun Xia, Lingfei Deng, Włodzisław Duch, and Dongrui Wu. Privacy-preserving domain adaptation  
 712 for motor imagery-based brain-computer interfaces. *IEEE Transactions on Biomedical Engineer-*  
 713 *ing*, 69(11):3365–3376, 2022.

714 Yikai Yang, Nhan Duy Truong, Christina Maher, Armin Nikpour, and Omid Kavehei. Continental  
 715 generalization of a human-in-the-loop ai system for clinical seizure recognition. *Expert Systems*  
 716 *with Applications*, 207:118083, 2022.

717 Zhizhang Yuan, Daoze Zhang, Yang Yang, Junru Chen, and Yafeng Li. Ppi: Pretraining brain signal  
 718 model for patient-independent seizure detection. *Advances in Neural Information Processing*  
 719 *Systems*, 36:69586–69604, 2023.

720 Xiang Zhang, Lina Yao, Manqing Dong, Zhe Liu, Yu Zhang, and Yong Li. Adversarial repre-  
 721 *722* sentation learning for robust patient-independent epileptic seizure detection. *IEEE Journal of*  
 723 *Biomedical and Health Informatics*, 24(10):2852–2859, 2020.

724 Ziye Zhang, Aiping Liu, Yikai Gao, Xinrui Cui, Ruobing Qian, and Xun Chen. Distilling invariant  
 725 representations with domain adversarial learning for cross-subject children seizure prediction.  
 726 *IEEE transactions on cognitive and developmental systems*, 16(1):202–211, 2023.

727 Zongpeng Zhang, Taoyun Ji, Mingqing Xiao, Wen Wang, Guojing Yu, Tong Lin, Yuwu Jiang, Xiao-  
 728 *729*hua Zhou, and Zhouchen Lin. Cross-patient automatic epileptic seizure detection using patient-  
 730 adversarial neural networks with spatio-temporal eeg augmentation. *Biomedical Signal Process-*  
 731 *ing and Control*, 89:105664, 2024a.

732 Zongpeng Zhang, Mingqing Xiao, Taoyun Ji, Yuwu Jiang, Tong Lin, Xiaohua Zhou, and Zhouchen  
 733 *734* Lin. Efficient and generalizable cross-patient epileptic seizure detection through a spiking neural  
 735 network. *Frontiers in Neuroscience*, 17:1303564, 2024b.

736 Yanna Zhao, Gaobo Zhang, Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Fangzhou Xu, and Yuan-  
 737 *738* jie Zheng. Multi-view cross-subject seizure detection with information bottleneck attribution.  
 739 *Journal of Neural Engineering*, 19(4):046011, 2022.

740 Jiazhen Zhou, Li Liu, Yan Leng, Yuying Yang, Bin Gao, Zonghong Jiang, Weiwei Nie, and  
 741 *742* Qi Yuan. Both cross-patient and patient-specific seizure detection based on self-organizing fuzzy  
 742 logic. *International journal of neural systems*, 32(06):2250017, 2022.

743 Yuanda Zhu, Mohammed Saqib, Elizabeth Ham, Sami Belhareth, Ryan Hoffman, and May Dong-  
 744 *745* mei Wang. Mitigating patient-to-patient variation in EEG seizure detection using meta transfer  
 746 learning. In *2020 IEEE 20th International Conference on Bioinformatics and Bioengineering*  
 747 *(BIBE)*, pp. 548–555. IEEE, 2020.

748  
 749  
 750  
 751  
 752  
 753  
 754  
 755

756 A MORE INTRODUCTION TO DRO AND SOLVING DRO  
757758 The objective function of a DRO problem is shown as the following:  
759

760  
761 
$$\min_{\theta \in \Theta} \sup_{Q: \text{dist}(Q, P_0) \leq \rho} \mathbb{E}_{\mathbf{X}, Y \sim Q} [\ell(\theta; \mathbf{X}, Y)].$$
  
762

763  
764 In DRO, the uncertainty set  $\{Q : \text{dist}(Q, P_0) \leq \rho\}$  defines a neighborhood around the input with  
765 perturbations. The objective is to optimize for the worst-case scenario within this neighborhood,  
766 ensuring good performance not only at the training distribution but also across neighborhood regions  
767 with shifts.768 The inner optimization problem can be relaxed as  
769

770 
$$\sup_Q \{\mathbb{E}_{\mathbf{X} \sim Q} [\ell(\theta; \mathbf{X}, Y)] - \lambda W_{c_w}(Q, P_0)\}$$
  
771

772 according to Lagrangian relaxation. Given any data  $(\mathbf{X}, y)$  in the training set  $P_0$ , the data samples  
773 of the worst distribution in the uncertainty set  $(\widetilde{\mathbf{X}}, y)$  can be found through adversarial training  
774 (Sinha et al., 2018). Specifically, let  $\widetilde{\mathbf{X}}$  denote the solution to maximizing  $\ell(\theta; \widetilde{\mathbf{X}}, Y) - \lambda c_w(\widetilde{\mathbf{X}}, \mathbf{X})$ ,  
775 we adopt gradient descent to approximate  $\widetilde{\mathbf{X}}$  in  $m$  iterations, i.e.  
776

777 
$$\widetilde{\mathbf{X}}_{i+1} = \widetilde{\mathbf{X}}_i + \nabla_{\widetilde{\mathbf{X}}} (\ell(\theta; \widetilde{\mathbf{X}}, Y) - \lambda c_w(\widetilde{\mathbf{X}}, \mathbf{X})), 1 \leq i, i+1 \leq m.$$
  
778

779 In experiments, we set  $m \in \{5, 10, 15, 20\}$ .  
780781 B CALCULATION OF  $\frac{\partial R(\theta(W(M)))}{\partial M}$   
782783  $\frac{\partial R(\theta(W(M)))}{\partial M}$  can be approximated through chain rule as the following:  
784

785 
$$\frac{\partial R(\theta(W(M)))}{\partial M} = \frac{\partial A}{\partial \theta} \frac{\partial \theta}{\partial \widetilde{\mathbf{X}}} \frac{\partial \widetilde{\mathbf{X}}}{\partial \mathbf{W}} \frac{\partial \mathbf{W}}{\partial M} + \beta \frac{\partial \sum_{t=1}^{N-1} \|W_t M_t - W_{t+1} M_{t+1}\|_F}{\partial M}. \quad (9)$$
  
786

787 Among these components,  $\frac{\partial \theta}{\partial \widetilde{\mathbf{X}}}$  of the first term can be approximated through the gradient descent  
788 of  $\theta$ :  
789

790 
$$\begin{aligned} \theta^{i+1} &= \theta^i - \epsilon_\theta \nabla_\theta \hat{\ell}(\theta^i; \widetilde{\mathbf{X}}, Y), \\ \frac{\partial \theta^{i+1}}{\partial \widetilde{\mathbf{X}}} &= \frac{\partial \theta^i}{\partial \widetilde{\mathbf{X}}} - \epsilon_\theta \frac{\nabla_\theta \hat{\ell}(\theta^i; \widetilde{\mathbf{X}}, Y)}{\partial \widetilde{\mathbf{X}}}, \\ \frac{\partial \theta}{\partial \widetilde{\mathbf{X}}} &\approx -\epsilon_\theta \sum_i \frac{\nabla_\theta \hat{\ell}(\theta^i; \widetilde{\mathbf{X}}, Y)}{\partial \widetilde{\mathbf{X}}}, \end{aligned} \quad (10)$$
  
791

792 where  $i$  is the iteration index,  $\epsilon_\theta$  is the learning rate of  $\theta$ , and  $\frac{\nabla_\theta \hat{\ell}(\theta^i; \widetilde{\mathbf{X}}, Y)}{\partial \widetilde{\mathbf{X}}}$  can be calculated through  
793 training. The third term  $\frac{\partial \widetilde{\mathbf{X}}}{\partial \mathbf{W}}$  can be approximated during the adversarial process following the  
794 derivation below:  
795

803  
804 
$$\begin{aligned} \widetilde{\mathbf{X}}^{i+1} &= \widetilde{\mathbf{X}}^i + \epsilon_x \nabla_{\widetilde{\mathbf{X}}^i} \left\{ \ell(\theta; \widetilde{\mathbf{X}}^i, Y) - \lambda c_w(\widetilde{\mathbf{X}}^i, \mathbf{X}) \right\}, \\ \frac{\partial \widetilde{\mathbf{X}}^{i+1}}{\partial \mathbf{W}} &= \frac{\partial \widetilde{\mathbf{X}}^i}{\partial \mathbf{W}} - 2\epsilon_x \lambda \text{Diag}(\widetilde{\mathbf{X}}^i - \mathbf{X}), \\ \frac{\partial \widetilde{\mathbf{X}}}{\partial \mathbf{W}} &\approx -2\epsilon_x \lambda \sum_i \text{Diag}(\widetilde{\mathbf{X}}^i - \mathbf{X}). \end{aligned} \quad (11)$$
  
805  
806  
807  
808  
809

---

810           **Algorithm 1** Training procedure of spatiotemporal distributionally robust optimization

---

811           **Input:** Multi-environments EEG data  $D^{e_1}, D^{e_2}, \dots, D^{e_n}$ , where  $D^e = (\mathbf{X}^e, Y^e)$ ,  $\mathbf{X}$  represents  
812           EEG signal,  $Y$  represents seizure label.

813           **Hyperparameters:**  $N, N_\theta, N_w, m, \epsilon_x, \epsilon_\theta, \epsilon_M, \alpha, \beta$

814           **Initialize:**  $\mathbf{W} = \begin{bmatrix} \mathbf{I}_{\frac{T}{N}} \otimes \text{diag}(\mathbf{W}_1 \mathbf{M}_1, \mathbf{W}_2 \mathbf{M}_2, \dots, \mathbf{W}_N \mathbf{M}_N) & \mathbf{0}_{(C*T) \times 1} \\ \mathbf{0}_{1 \times (C*T)} & 1 \end{bmatrix}, \mathbf{M}_t = \mathbf{I}$

815           **For iteration  $i$  from 1 to  $N$**

816            **For iteration  $j$  from 1 to  $N_\theta - 1$**

817            **Initialize  $\tilde{\mathbf{X}}_0$  as:  $\tilde{\mathbf{X}}_0 = \mathbf{X}$**

818            **For iteration  $k$  from 0 to  $m - 1$**

819            # Approximate the supreme of  $s_\lambda(\mathbf{X})$  for  $\mathbf{X}^e$  from all  $e \in \mathcal{E}$

820             $\tilde{\mathbf{X}}_{k+1}^e = \tilde{\mathbf{X}}_k^e + \epsilon_x \frac{\partial(l(\theta, \tilde{\mathbf{X}}_k^e) - \lambda c_w(\tilde{\mathbf{X}}_k^e, \tilde{\mathbf{X}}_0^e))}{\partial \mathbf{X}}$ .

821            **End for**

822            # Update  $\theta$

823             $\theta^{j+1} \leftarrow \theta^j - \epsilon_\theta \frac{\partial l(\theta_j; (\tilde{\mathbf{X}}_m, Y))}{\partial \theta}$ .

824            **End for**

825             $R(\theta) = \frac{\sum_{e \in \mathcal{E}} \ell^e(\theta)}{|\mathcal{E}|} + \alpha \max_{p, q \in \mathcal{E}} (\ell^p - \ell^q) + \beta \sum_t \|\mathbf{W}_{t+1} \mathbf{M}_{t+1} - \mathbf{W}_t \mathbf{M}_t\|_F^2$

826             $\mathbf{M}^{j+1} = \mathbf{M}^j - \epsilon_M \frac{\partial R(\theta)}{\partial \mathbf{M}}$ .

827             $\mathbf{M}^{j+1} = \text{Proj}_M(\mathbf{M}^{j+1})$

828           **End for.**

---

829

830

831

832

## C TRAINING PROCEDURE AND COMPUTATIONAL COST OF STDRO

833           The optimization process of STDRO is shown in Algorithm 1. In experiments, the time period  
834           number  $N$  is set as 4, the attack iteration  $m \in \{5, 10, 15, 20\}$ . The product of  $N$  and  $N_\theta$  is set to be  
835           equal to the training epoch number of the baseline method.

836           In STDRO, the spatial-temporal graph is constructed in advance which hardly influences the training  
837           time. In the bi-level optimization ( $\mathbf{W}$  and  $\theta$ ) of our method, the total epoch number considering  
838           optimizing parameters  $\theta$  is the same as the baseline, i.e. the product of  $N$  and  $N_\theta$  in Algorithm 1  
839           equals the epoch number of the baseline. The additional costs primarily lie in the computation of  
840           adversarial samples (which is proportional to the iteration number  $m$ ) and approximating second-  
841           order derivatives for stability-induced  $\mathbf{W}$  within a single epoch. In practice, for finetuning the  
842           DCRNN model, STDRO takes about 12 minutes per epoch ( $m = 10$ ), while the baseline takes  
843           around 3 minutes. Please note that such increase is only for the finetuning stage (50 epochs), while  
844           pretraining methods typically have much larger computational costs (44 minutes per epoch for 350  
845           epochs). So the increase of computational costs for STDRO is not large considering the whole  
846           process.

## D DATA PREPROCESSING DETAILS

851           The TUSZ [V1.5.2](#) train dataset was randomly split into a training set and a validation set in a 90/10  
852           ratio, consistent with previous studies (Tang et al., 2022; Afzal et al., 2024). The dataset split satisfies  
853           the cross-patient setting, i.e., the training, validation, and testing sets have different patients. We  
854           resample the EEGs into 200 Hz and split the EEG signals into 12s or 60s segments to evaluate the  
855           method's performance in both short and long-term scenarios. Other data preprocessing techniques,  
856           including whether to apply the fast Fourier transform (FFT), are consistent with our comparison  
857           baseline methods. We split each EEG segment into four time periods.

861           The CHB-MIT dataset was resampled from 256Hz to 64Hz. The EEG signals were split into 4-  
862           second segments. We follow the data split in previous works (Afzal et al., 2024), which selected  
863           80% of the data for training (18 patients), 10% for evaluation (3 patients), and 10% for testing (3  
864           patients). We split each EEG segment into four time periods.

864 **E HYPER-PARAMETERS SENSITIVITY ANALYSIS**  
865866 We test the performance of STDRO under different environment (patient group) numbers for the  
867 stability objective in Table 7. Experiments are the seizure detection task on the TUSZ dataset with  
868 12s time window size. The results that our approach is robust to the number of patient groups.  
869870 Table 7: Performance under different patient group numbers.  
871872 

| PATIENT GROUP NUMBER | AUROC | F1-SCORE | ACCURACY | RECALL | PRECISION |
|----------------------|-------|----------|----------|--------|-----------|
| K=4                  | 87.9  | 55.3     | 89.1     | 61.5   | 50.1      |
| K=6                  | 88.2  | 54.8     | 89.5     | 58.1   | 51.8      |

876 We have also conducted the sensitivity analysis of other hyperparameters, such as the number of  
877 time periods  $N$ , the regularization term for stability  $\alpha$ , and the regularization term for temporal  
878 smoothness  $\beta$ .  
879880 Table 8: Performance under different values of  $N$ .  
881882 

| N | AUROC | F1-SCORE | IoU  | ACCURACY | RECALL | PRECISION |
|---|-------|----------|------|----------|--------|-----------|
| 2 | 87.8  | 54.4     | 37.3 | 89.4     | 57.6   | 51.5      |
| 4 | 88.2  | 54.8     | 37.7 | 89.5     | 58.1   | 51.8      |
| 6 | 87.8  | 53.9     | 36.9 | 88.1     | 63.7   | 46.8      |

887 Table 9: Performance under different values of  $\alpha$ .  
888889 

| alpha | AUROC | F1-SCORE | IoU  | ACCURACY | RECALL | PRECISION |
|-------|-------|----------|------|----------|--------|-----------|
| 0.2   | 87.6  | 54.0     | 37.0 | 88.7     | 60.5   | 48.8      |
| 0.5   | 88.2  | 54.8     | 37.7 | 89.5     | 58.1   | 51.8      |
| 1     | 87.0  | 50.9     | 34.1 | 89.9     | 47.7   | 54.6      |
| 2     | 87.1  | 52.6     | 35.7 | 89.6     | 52.8   | 52.4      |

895 Table 10: Performance under different values of  $\beta$ .  
896897 

| $\beta$            | AUROC | F1-SCORE | IoU  | ACCURACY | RECALL | PRECISION |
|--------------------|-------|----------|------|----------|--------|-----------|
| 2                  | 87.3  | 53.3     | 36.3 | 90.0     | 52.3   | 54.3      |
| 0.2                | 87.7  | 54.5     | 37.5 | 90.0     | 55.0   | 54.1      |
| $2 \times 10^{-2}$ | 87.6  | 53.9     | 36.8 | 89.5     | 56.3   | 51.6      |
| $2 \times 10^{-4}$ | 88.2  | 54.8     | 37.7 | 89.5     | 58.1   | 51.8      |
| $2 \times 10^{-5}$ | 87.5  | 53.3     | 36.4 | 88.8     | 58.4   | 49.0      |

905 **F THEORETICAL ANALYSIS**  
906907 In this section, we provide more theoretical analysis of the proposed method. The core idea is to  
908 leverage the manifold assumption of the data and the potential spatio-temporal uncertainty set to  
909 show that it may derive a tighter generalization bound on worst-case distributions than standard  
910 DRO. According to fundamental observation in modern machine learning of manifold hypothesis  
911 (Belkin & Niyogi, 2001; Fefferman et al., 2016), high-dimensional data tends to concentrate around  
912 a lower-dimensional manifold in the ambient space. We assume the data distribution  $(x, y) \sim P$   
913 where the inputs  $x_i \in \mathcal{X} = \mathbb{R}^D$  are assumed to lie on a smooth  $m$ -dimensional Riemannian manifold  
914  $\mathcal{M} \subset \mathbb{R}^D$  with  $m \ll D = C \times T$ . For any  $x \in \mathcal{M}$ ,  $T_x \mathcal{M}$  denotes the  $m$ -dimensional tangent  
915 space at  $x$ , and  $N_x \mathcal{M} = (T_x \mathcal{M})^\perp$  denotes the  $(D - m)$ -dimensional normal space (the orthogonal  
916 complement in  $\mathbb{R}^D$ ). We first make the assumption that our distance metric captures such manifold.  
917918 **Assumption F.1.** There exist constants  $0 < \alpha \leq \beta$  such that for every  $x \in \mathcal{M}$  and any vector  
919  $v \in \mathbb{R}^D$  decomposed as  $v = v^\parallel + v^\perp$  with  $v^\parallel \in T_x \mathcal{M}$  and  $v^\perp \in N_x \mathcal{M}$ , the following inequalities

918 hold:

$$\sum_{t=1}^N v_t^\top \mathbf{W}_t v_t \geq \alpha \|v^\perp\|^2, \quad \sum_{t=1}^N v_t^\top \mathbf{W}_t v_t \leq \beta \|v^\parallel\|^2,$$

922 where  $\mathbf{W}_t \succeq 0$  is a given spatial correlation matrix for segment  $t$  and  $\mathbf{W}_t$  preserves the tangent/normal decomposition, i.e.,  $\mathbf{W}_t(T_x \mathcal{M}) \subseteq T_x \mathcal{M}$  and  $\mathbf{W}_t(N_x \mathcal{M}) \subseteq N_x \mathcal{M}$ , which means  $\sum_{t=1}^N (v_t^\parallel)^\top \mathbf{W}_t v_t^\perp = 0$  for any  $v^\parallel \in T_x \mathcal{M}$  and  $v^\perp \in N_x \mathcal{M}$ .

925 Assumption F.1 means the metric induced by  $\mathbf{W} = \text{diag}(\mathbf{W}_1, \dots, \mathbf{W}_N)$  strongly penalizes 926 off-manifold directions while treating on-manifold directions moderately, and that  $\mathbf{W}$  is “block- 927 diagonal” with respect to the  $T_x \mathcal{M} \oplus N_x \mathcal{M}$  decomposition.

929 In DRO, an adversarial uncertainty set is typically defined via a Wasserstein ball, which requires 930 specifying a transport cost. To simplify, we will omit ‘y-part’ in transport cost in the following parts. 931 To incorporate the manifold structure, ideally, we will define a transportation cost that respects the 932 geometry of  $\mathcal{M}$ :

$$c_{\mathcal{M}}(x, x') := \|\text{Proj}_{T_x \mathcal{M}}(x' - x)\|^2 + \Lambda \|\text{Proj}_{N_x \mathcal{M}}(x' - x)\|^2,$$

934 with a large  $\Lambda \gg 1$  so that off-manifold displacements are extremely expensive. In practice, we 935 approximate this with a surrogate cost  $c_w$  defined using the matrices  $\mathbf{W}_t$ :

$$c_w(x, x') := \sum_{t=1}^N (x_t - x'_t)^\top \mathbf{W}_t (x_t - x'_t).$$

939  $c_w$  is a Mahalanobis cost that captures the spatial correlation structure in each time segment  $x_t$ , 940 where  $x_t$  denotes the  $t$ -th period of EEG signals  $x$ . Then we will prove that  $c_w$  heavily penalizes 941 off-manifold shifts and mildly penalizes on-manifold shifts, making it a tractable surrogate for  $c_{\mathcal{M}}$ .

942 **Lemma F.2.** *Under Assumption F.1, for any  $x \in \mathcal{M}$  and any  $x' \notin \mathcal{M}$ , let  $x^* = x + \text{Proj}_{T_x \mathcal{M}}(x' - x)$ , i.e., the projection of  $x'$  onto the manifold at  $x$ . Then*

$$c_w(x, x^*) < c_w(x, x').$$

946 *Proof.* Let  $x' - x = v^\parallel + u$  with  $v^\parallel = \text{Proj}_{T_x \mathcal{M}}(x' - x)$  and  $u = \text{Proj}_{N_x \mathcal{M}}(x' - x)$ , so  $x^* = 947 x + v^\parallel$ . If  $x' \notin \mathcal{M}$  then  $u \neq 0$ . By definition of  $c_w$  and Assumption F.1,  $c_w(x, x') = \|v^\parallel + 948 u\|_W^2 = \|v^\parallel\|_W^2 + \|u\|_W^2$ , since  $\langle v^\parallel, u \rangle_W = 0$ . Meanwhile,  $c_w(x, x^*) = \|v^\parallel\|_W^2$ , so  $c_w(x, x') - 949 c_w(x, x^*) = \|u\|_W^2$ . Assumption F.1 ensures  $\|u\|_W^2 \geq \alpha \|u\|^2 > 0$ . Thus  $c_w(x, x') - c_w(x, x^*) > 950 0$ , i.e.,  $c_w(x, x') > c_w(x, x^*)$ .  $\square$

952 This means moving  $x$  to the on-manifold point  $x^*$  costs strictly less in  $c_w$  than moving it the same 953 Euclidean distance in an off-manifold direction towards  $x'$ . This implies any optimal transport plan 954 under cost  $c_w$  will never choose an off-manifold target if an on-manifold alternative exists.

956 **Spatiotemporal Uncertainty Set.** We define the STDRO adversarial uncertainty set as the 957 Wasserstein ball around  $P_0$  using cost  $c_w$ :

$$\mathcal{H}_{\text{ST}} := \{Q : W_{c_w}(Q, P_0) \leq \rho\}.$$

959 Here  $W_{c_w}(Q, P_0)$  denotes the Wasserstein distance with transportation cost  $c_w$ . In contrast, the 960 isotropic DRO would use Wasserstein distance with Euclidean cost  $c_0(x, x') = \|x - x'\|^2$ , defining 961

$$\mathcal{H}_{\text{iso}} := \{Q : W_{c_0}(Q, P_0) \leq \rho\}.$$

963 By Lemma F.2, any optimal transport plan for  $W_{c_w}(P_0, Q)$  can be adjusted to remain on  $\mathcal{M}$  without 964 increasing cost. If in addition the loss function does not vary, then the adversary has little incentive 965 to leave  $\mathcal{M}$ . The next proposition makes this precise:

966 **Proposition F.3** (Near-Manifold Worst-Case Distribution). *Under Assumption 1 and assuming the 967 loss  $\ell(\theta; x, y)$  is  $L$ -Lipschitz continuous in  $x$  along normal directions, the worst-case risk over  $\mathcal{H}_{\text{ST}}$  968 can be approximated by a distribution supported on  $\mathcal{M}$  with small errors. Specifically, for any 969  $Q \in \mathcal{H}_{\text{ST}}$ , there exists  $Q' \in \mathcal{H}_{\text{ST}}$  with  $\text{supp}(Q') \subset \mathcal{M}$  such that*

$$\sup_{\theta \in \Theta} \left| \mathbb{E}_{(x, y) \sim Q} [\ell(\theta; x, y)] - \mathbb{E}_{(x, y) \sim Q'} [\ell(\theta; x, y)] \right| \leq L \sqrt{\frac{\rho}{\alpha}}.$$

972 *Proof.* For any  $Q \in \mathcal{H}_{\text{ST}}$ , construct a new distribution  $Q'$  by moving each point  $z = (x, y)$  in  $Q$  to  $z^* = (x^*, y)$  where  $x^* = x + \text{Proj}_{T_{x_0} \mathcal{M}}(x - x_0)$  and  $x_0 \in \mathcal{M}$  is the source point in  $P_0$  matched to  $z$  under  $W_{c_w}(P_0, Q) \leq \rho$ . By Lemma F.2, the cost of  $W_{c_w}(P_0, Q)$  does not increase under this modification, so  $W_{c_w}(P_0, Q') \leq \rho$  (i.e.,  $Q' \in \mathcal{H}_{\text{ST}}$ ) and  $\text{supp}(Q') \subset \mathcal{M}$ . For each hypothesis  $\theta$ ,

$$977 \quad \left| \mathbb{E}_{(x,y) \sim Q} [\ell(\theta; x, y)] - \mathbb{E}_{(x,y) \sim Q'} [\ell(\theta; x, y)] \right| \leq L \mathbb{E}_{(x,y) \sim Q} [\|x - \text{Proj}_{\mathcal{M}}(x)\|],$$

978 since the loss is  $L$ -lipchitz continuous in  $x$  along normal directions. Note that for each  $(x, y)$  in  $\text{supp}(Q)$ ,  $c_w((x_0, y), (x, y)) \geq \alpha \|x - x^*\|^2$  by Assumption F.1. Thus  $\|x - x^*\|^2 \leq \frac{1}{\alpha} c_w((x_0, y), (x, y))$ . Taking expectation gives  $\mathbb{E}_{(x,y) \sim Q} \|x - x^*\|^2 \leq \frac{1}{\alpha} W_{c_w}(P_0, Q) \leq \frac{\rho}{\alpha}$ . By 979 Cauchy-Schwarz,  $\mathbb{E} \|x - x^*\| \leq \sqrt{\frac{\rho}{\alpha}}$ . Therefore the loss difference above is bounded by  $L \sqrt{\frac{\rho}{\alpha}}$ , 980 uniformly in  $\theta$ . Taking supremum over  $\theta$  yields the claimed inequality.  $\square$

981 **Generalization Bound.** Finally, we show that if the worst-case distribution is preliminarily 982 constrained to a manifold, the distributionally robust generalization guarantee bound will be tighter 983 than the standard DRO. Let  $\{x_i, y_i\}_{i=1}^n \sim P_0$  constitute the empirical distribution  $P_n$ . Denote the 984 true worst-case risk as  $R_{\text{ST}}(\theta) = \sup_{Q \in \mathcal{H}_{\text{ST}}} \mathbb{E}_{(x,y) \sim Q} [\ell(\theta; x, y)]$ , and empirical worst-case risk as 985  $R_n(\theta) = \sup_{Q: W_{c_w}(Q, P_n) \leq \rho} \mathbb{E}_{(x,y) \sim Q} [\ell(\theta; x, y)]$ . Define  $\hat{\theta} = \arg \min_{\theta} R_n(\theta)$ .

986 **Theorem F.4** (Generalization Bounds). *Assume  $|\ell(\theta; x, y)| \leq 1$  for all  $(\theta, x, y)$ ,  $\|x\| \leq r$ , and 987  $\ell(\theta; x, y)$  is  $L$ -lipschitz continuous in  $x$  for every  $\theta \in \Theta$ . For any  $0 < \delta < 1$ , with probability at 988 least  $1 - \delta$ , we have*

$$989 \quad \sup_{Q \in \mathcal{H}_{\text{ST}}} \mathbb{E}_{(x,y) \sim Q} [\ell(\hat{\theta}; x, y)] \leq \sup_{Q: W_{c_w}(Q, P_n) \leq \rho} \mathbb{E}_{(x,y) \sim Q} [\ell(\hat{\theta}; x, y)] + \mathfrak{R}_n(\mathcal{F}_{\text{adv}}) + \sqrt{\frac{\ln(1/\delta)}{2n}},$$

990 where  $\mathfrak{R}_n(\mathcal{F}_{\text{adv}})$  is the Rademacher complexity of the adversarial loss class

$$991 \quad \mathcal{F}_{\text{adv}} := \left\{ (x, y) \mapsto \sup_{Q \in \mathcal{H}_{\text{ST}}} \mathbb{E}_{(x',y) \sim Q} [\ell(\theta; x', y)] : \theta \in \Theta \right\}.$$

992 When the worst-case distributions are constrained on the manifold, we have

$$993 \quad \mathfrak{R}_n(\mathcal{F}_{\text{adv}}) = \mathcal{O}\left(\sqrt{\frac{m}{n}}\right),$$

994 which is smaller than the standard DRO complexity bound  $\mathcal{O}\left(\sqrt{\frac{D}{n}}\right)$  given  $m \ll D$ .

995 *Proof.* We apply a uniform convergence bound based on Rademacher complexity. Applying the 996 standard result of Bartlett & Mendelson (2002); Sinha et al. (2018); Wainwright (2019), for any 997 fixed  $\theta$  and  $\delta$ , with probability  $1 - \delta$ :

$$998 \quad \sup_{\theta \in \Theta} |R_{\text{ST}}(\theta) - R_n(\theta)| \leq \mathfrak{R}_n(\mathcal{F}_{\text{adv}}) + \sqrt{\frac{\ln(1/\delta)}{2n}}.$$

1000 Thus we get the stated generalization bound.

1001 Then we estimate the order of  $\mathfrak{R}_n(\mathcal{F}_{\text{adv}})$ . We use Dudley's entropy integral:

$$1002 \quad \mathfrak{R}_n(\mathcal{F}_{\text{adv}}) \leq \frac{12}{\sqrt{n}} \int_0^1 \sqrt{\ln N(\varepsilon, \mathcal{F}_{\text{adv}}, L_2(P_n))} d\varepsilon,$$

1003 where  $N(\varepsilon, \mathcal{F}, L_2(P_n))$  is the covering number of  $\mathcal{F}$  at radius  $\varepsilon$  under the empirical  $L_2$  norm. Since 1004  $\ell(\theta; x, y)$  is  $L$ -lipschitz, we have:

$$1005 \quad N(\varepsilon, \mathcal{F}, L_2(P_n)) \leq N(\varepsilon, \mathcal{F}, L_\infty(S)) \leq N\left(\frac{\varepsilon}{L}, \mathcal{X}, \|\cdot\|\right), \quad (12)$$

1006 where  $L_\infty(S)$  is the norm for samples and  $N(\varepsilon, \mathcal{X}, \|\cdot\|)$  is the  $\varepsilon$ -covering number for the 1007 input space. When the worst-case distributions are constrained on the manifold, we have  $N\left(\frac{\varepsilon}{L}, \mathcal{X}, \|\cdot\|\right) \leq 1008 \left(\frac{cLr}{\varepsilon}\right)^m$ , therefore:

$$1009 \quad \mathfrak{R}_n(\mathcal{F}_{\text{adv}}) \leq \frac{12}{\sqrt{n}} \int_0^1 \sqrt{\ln N(\varepsilon, \mathcal{F}_{\text{adv}}, L_2(P_n))} d\varepsilon \leq \mathcal{O}\left(\sqrt{\frac{m}{n}} \int_0^1 \sqrt{\ln \frac{1}{\varepsilon}} d\varepsilon\right) = \mathcal{O}\left(\sqrt{\frac{m}{n}}\right),$$

1026 while for the standard DRO with input dimension as  $D$ , the complexity bound is correspondingly  
1027  $\mathcal{O}\left(\sqrt{\frac{D}{n}}\right)$ .  
1028

□

1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079