
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMPLIFIED MAMBA WITH DISENTANGLED DEPEN-
DENCY ENCODING FOR LONG-TERM TIME SERIES
FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in deep learning have led to the development of numerous models
for Long-term Time Series Forecasting (LTSF). However, most approaches still
struggle to comprehensively capture reliable and informative dependencies inherent
in time series data. In this paper, we identify and formally define three critical
dependencies essential for improving forecasting accuracy: the order dependency
and semantic dependency in the time dimension as well as cross-variate dependency
in the variate dimension. Despite their significance, these dependencies are rarely
considered holistically in existing models. Moreover, improper handling of these
dependencies can introduce harmful noise that significantly impairs forecasting
performance. To address these challenges, we explore the potential of Mamba
for LTSF, highlighting its three key advantages to capture three dependencies, re-
spectively. We further empirically observe that nonlinear activation functions used
in vanilla Mamba are redundant for semantically sparse time series data. There-
fore, we propose SAMBA, a Simplified Mamba with disentangled dependency
encoding. Specifically, we first eliminate the nonlinearity of vanilla Mamba to
make it more suitable for LTSF. Along this line, we propose a disentangled depen-
dency encoding strategy to endow Mamba with efficient cross-variate dependency
modeling capability while minimizing the interference between time and variate
dimensions. We also provide rigorous theory as a justification for our design.
Extensive experiments on nine real-world datasets demonstrate the effectiveness of
SAMBA over state-of-the-art forecasting models.

1 INTRODUCTION

Long-term Time Series Forecasting (LTSF) plays a critical role in various real-world applications,
such as early disaster warning and long-term energy scheduling (Zhou et al. (2021); Wu et al. (2021)).
Accurate LTSF often relies on extracting reliable dependencies from longer historical time horizons.
For example, periodic and trend patterns are frequently leveraged in existing literature to guide
model design and interpret results (Wu et al. (2021)). However, the success of simple linear model
(Zeng et al. (2023)) and patching strategy in Transformer (Nie et al. (2022)) suggests that only
capturing periodic and trend patterns may be insufficient for accurate forecasting. In this paper,
we explore the predictability of time series by decomposing dependencies into three key aspects:
the order dependency and semantic dependency in time dimension, as well as the cross-variate
dependency. Specifically, order dependency represents the sequential nature among time points,
semantic dependency captures the high-level temporal variation beyond surface numerical values,
and cross-variate dependency refers to the inter-variate relationships in multi-variate time series data.
This decomposition offers a new perspective for model design in LTSF.

In fact, most existing LTSF models fail to comprehensively consider both order and semantic
dependencies. For example, linear models (e.g., DLinear (Zeng et al. (2023))) rely on point-wise
mappings to preserve order dependency but are too simplistic to capture complex semantic dependency.
In contrast, Transformer-based models are effective in learning semantic dependency through the
self-attention mechanism (Vaswani et al. (2017)) and show improved performance when local
temporal semantics is enriched using patching strategies(Nie et al. (2022)). However, they struggle
with perceiving temporal order due to the permutation-invariant nature of self-attention, even with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

positional encodings (Zeng et al. (2023)). Therefore, capturing both order and semantic dependencies
simultaneously remains an underexplored problem in LTSF.

Besides the order and semantic dependencies, cross-variate dependency is also crucial in many
real-world scenarios, such as traffic flow, where significant correlations among variates have been
observed (Han et al. (2024); Liu et al. (2020)). However, existing approaches that utilize cross-variate
dependency (Channel Dependent, CD) frequently underperform compared to methods that treat
each variate independently (Channel-Independent, CI) (Nie et al. (2022)). This phenomenon arises
because previous CD approaches often encounter issues with over-smoothing and difficulty in fitting
individual variate series (Chen et al. (2024)). Although a recent method proposes to perform CI
modeling first before CD modeling to alleviate the issues (Liu et al. (2023)), our findings, from both
empirical and theoretical, indicate that the less relevant temporal dependencies extracted from other
variates can still harm the informativeness of the embedding produced for the target variate sequence.
Consequently, effectively leveraging cross-variate dependency while maintaining the unique temporal
dynamics and characteristics of each variate continues to be a challenging problem.

Recently, Mamba (Gu & Dao (2023)) has emerged as a strong contender to the transformer architec-
ture in the field of natural language processing (NLP) (Park et al. (2024)). Given the similar sequential
structure of time series and text data, Mamba also demonstrates great potential in solving LTSF
task. Through extensive experiments, we identify that Mamba presents three major advantages over
Transformer for LTSF: (i) Mamba uses State Space Models (SSMs) to process sequences recursively,
inherently capturing order dependency(Gu et al. (2021b)). (ii) Its selection mechanism, similar to
self-attention, enables it to focus on or ignore particular inputs, making it well-suited for learning
semantic dependency. (iii) Mamba’s near-linear complexity provides an efficiency advantage in
encoding cross-variate dependency, which are typically computationally expensive when dealing
with large amounts of variates.

Despite these advantages, directly adapting Mamba for LTSF is still non-trivial due to two key
challenges: (i) Mamba was initially designed for NLP tasks, where semantic dependency is of
primary importance. In contrast, LTSF typically emphasizes order dependency due to the sparsity of
information in time series as opposed to natural language (Zeng et al. (2023)). (ii) Although Mamba
can effectively capture both order and semantic dependencies, it lacks mechanisms for modeling cross-
variate dependency, which is crucial for multivariate forecasting. Simply incorporating cross-variate
dependency into Mamba using a CD strategy may exacerbate the issue by introducing irrelevant
correlations, undermining the model’s effectiveness to handle individual variate series properly.

To overcome these challenges, we propose SAMBA, a Simplified Mamba with disentangled depen-
dency encoding specifically tailored for LTSF. First, we remove the nonlinearities in vanilla Mamba,
which we find to be redundant and prone to overfitting in the context of semantically sparse time series
data, thereby improving its generalization ability. Furthermore, we introduce a theoretically sound
disentangled encoding strategy that explicitly separates cross-time and cross-variate dependencies to
avoid mutual interference between the two dimensions. We conduct extensive experiments on real-
world forecasting benchmarks, demonstrating the superiority of SAMBA over the state-of-the-art
methods. In particular, SAMBA proves universally effective across datasets with varying degrees of
cross-variate dependency. Our contributions are summarized as follows.

• We identify and formally define three critical dependencies in time series data to guide the
design of the LTSF models.

• Our comprehensive analysis reveals two insights: (i) Compared to Linear model and Trans-
formers, Mamba can effectively capture both order and semantic dependencies. (ii) Directly
applying MLP, Transformer, and Mamba to LTSF can lead to overfitting issues due to the
presence of nonlinearities. To mitigate this, we propose a simplified Mamba by removing
nonlinearities and incorporating a theoretically sound disentangled encoding strategy that
appropriately integrates cross-variate dependency to the model, enhancing the model’s
global representation and predictive capabilities.

• We empirically demonstrate that SAMBA achieves state-of-the-art performance across
mainstream benchmarks. Our analysis also highlights the general utility of disentangled
encoding, offering a universal strategy for developing future LTSF models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Deep learning has made significant advances in the field of natural language processing (Devlin et al.
(2018)) and speech recognition (Dong et al. (2018)), inspiring researchers to repurpose these models
for time series forecasting (Zhou et al. (2021); Wu et al. (2021)). The mainstream methods for LTSF
currently include linear models and Transformer-based models. In particular, because of the strong
modeling capability of the transformer, numerous works have utilized transformers to achieve superior
performance. However, applying Transformers to long sequence forecasting presents two major
challenges: 1) computational overhead due to quadratic space-time complexity and 2) the difficulty
of capturing long-term dependencies. Early approaches concentrated on modifying the architectural
design to reduce complexity. For example, LogTrans (Li et al. (2019)) introduced convolutional
self-attention to capture local information while utilizing LogSparse techniques to reduce complexity.
Informer (Zhou et al. (2021)) leveraged a self-attention distillation mechanism to extend the input
length and proposed ProbSparse self-attention to optimize computation efficiency. Furthermore,
Autoformer (Wu et al. (2021)) selected a decomposed structural framework to disintegrate time and
replaced traditional self-attention mechanisms with autocorrelation mechanisms to reduce complexity.

Recently, linear models have demonstrated superior performance with fewer parameters and higher
efficiency, prompting researchers to question whether transformers are suitable for long sequence
forecasting (Zeng et al. (2023)). Researchers have begun exploring how to let transformers exhibit
their powerful performance in scenarios like natural language processing and speech based on the
inherent properties of time series. For example, considering the distribution shift problem inherent in
time series, methods like Non-stationary transformers (Liu et al. (2022b)) have applied techniques to
stabilize and reduce the inherent distribution shift of time series. Given the insufficiency of semantic
information at individual time points, the PatchTST (Nie et al. (2022)) model, by patching to extract
local information, addresses the issue of insufficient short-time series semantic content, thus enriching
the semantic content of each token.

Recent research shows that utilizing the CI strategy to achieve promising results (Nie et al. (2022)),
inspiring researchers to explore a new encoding method that can consider both intra-variate and
inter-variate interactions (Chen et al. (2023)). Crossformer (Zhang & Yan (2022)) adopted a cross-
variate encoding method and a two-stage attention mechanism that considers both time and variate
relationships. iTransformer (Liu et al. (2023)) applied a data inversion method, considering the time
series corresponding to each variate as a token and then capturing the relationships between variates
using self-attention mechanisms. CARD (Wang et al. (2024)) explicitly models both cross-time
dependency and cross-variate dependency, where the latter directly mixes these dependencies at each
model layer. As a result, CARD still suffers from the issue mentioned in the introduction, which is
the inappropriate mixing of cross-time and cross-variate dependencies.

Unlike previous work, we explore a new architecture more suitable for LTSF—Mamba (Gu & Dao
(2023)), with modifications to better fit the LTSF scenarios. Moreover, different from previous
approaches to serially encoding time and variate relationships, we propose a parallel encoding method
that decouples cross-time and cross-variate dependencies. This disentanglement ensures that the
encoding process of each dependency does not adversely affect each other, leading to state-of-the-art
(SOTA) performance on datasets with varying degrees of variate relationships.

3 PROBLEM FORMULATION

The LTSF aims to learn a mapping function F(·) that forecasts the temporal evolution of N variates
in the future S time steps based on the observations in the past T time steps, i.e.,

F : RN×T → RN×S , X = (x1, . . . ,xT) ↦→ Y = (xT+1, . . . ,xT+S), (1)

where xt = (c1t , . . . , c
N
t) ∈ RN denotes the states of N variates at time step t.

Accurate LTSF depends on effectively capturing the following three types of dependencies:

(1) Order dependency: It refers to the temporal ordering relationships among sequentially observed
data points of a variate. Formally, given observations ct and cs where t < s, we omit the superscript
i of ct for brevity. The order dependency is significant for prediction if

I(ct; cs | t, s) > I(ct; cs), (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where I(·; ·) (I(·; · | ·)) denotes the (conditional) mutual information (Cover (1999)). For example,
the increasing trend of daily temperatures in the past week helps predict that the trend will likely
continue in the future.

(2) Semantic dependency: It refers to the latent semantic relationships between historical and future
data points of a variate. It goes beyond the superficial temporal ordering information, which is
more stable across temporal contexts, and requires more expressive models to extract. Formally, the
semantic dependency is significant for prediction if there exists a permutation-invariant (nonlinear)
function S(·) that maps inputs to semantic space, s.t.,

H(cT+1:T+S |O(c1:T),S(c1:T)) < H(cT+1:T+S |O(c1:T)). (3)

where H(·|X) denotes the conditional entropy of a random variate given variate X andO(·) includes
additional order dependencies w.r.t. numerical inputs. For instance, periodic patterns facilitate more
precise forecasting of seasonal temperature patterns on top of the potential temporal trends.

(3) Cross-variate dependency: It refers to the complex relationships between variate i and j. The
cross-variate dependency is significant for predicting variate i if

I(ci1:T ; c
i
T+1:T+S | c

j
1:T) > I(ci1:T ; c

i
T+1:T+S). (4)

For instance, exploiting co-evolving temperature patterns between the target region and adjacent
regions could improve the prediction in the target region.

4 EMPIRICAL EXPLORATION OF MAMBA FOR LTSF

An effective LTSF model should be able to take advantage of the three types of dependencies defined
in Section 3. We first conduct in-depth ablation experiments to evaluate three models: two classical
LTSF models, Linear model and Transformer, and the third, Mamba, in capturing these dependencies.
The details of the implementation of the following experiments are provided in Appendix B.4.

4.1 WHY MAMBA? A DEEP DIVE INTO ITS SUITABILITY FOR LTSF

To validate Mamba’s suitablity for LTSF, we evaluate its capability to capture both order dependency
and semantic dependency. The evaluation of Mamba’s performance in capturing cross-variate
dependency is provided in Appendix C. To assess the models’ ability to capture order dependency,
we first make the following assumption.

Assumption 1. The performance of an effective order dependency learner is significantly influenced
by the order of the input sequence (Zeng et al. (2023)).

According to Assumption 1, a greater performance variation indicates a greater reliance on order
dependency. Our results in Table 1 show that both the Linear model and Mamba surpass the
Transformer in terms of capturing order dependency. This is because the Linear model and Mamba
that use the SSM-based approach are permutation-variant, i.e., regarding the order. Their sensitivity
to sequence order is stronger than that of the Transformer, which relies on the permutation-invariant
self-attention mechanism. This increased sensitivity accounts for the greater performance decrease
observed for the linear model and Mamba, as illustrated in Table 1.

Table 1: Order dependency analysis on ETTm1 dataset (Zhou et al. (2021)). Based on Assumption 1,
we compare each model’s performance variation before and after randomly shuffling the temporal
order of testing data points. O.MSE and O.MAE are evaluated in the original test set. S.MSE and
S.MAE are evaluated in the shuffling test set.

Models Linear Model Mamba Transformer

Metrics O.MSE S.MSE O.MAE S.MAE O.MSE S.MSE O.MAE S.MAE O.MSE S.MSE O.MAE S.MAE
96 0.383 0.988 0.400 0.697 0.517 0.922 0.508 0.688 0.643 0.884 0.575 0.643

192 0.413 0.986 0.415 0.697 0.575 0.931 0.546 0.699 0.805 1.01 0.664 0.730
336 0.441 0.987 0.435 0.698 0.730 0.957 0.634 0.703 0.882 1.12 0.737 0.817
720 0.497 0.992 0.469 0.704 0.873 0.973 0.704 0.723 0.928 1.12 0.752 0.80

Avg. Drop - 127.97% - 62.55% - 40.37% - 17.60% - 22.40% - 6.55%

To assess the model’s ability to capture semantic dependency, we introduce the second assumption.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Results of the linear model, Mamba, and Transformer w/ or w/o patching on ETTm1 dataset.

Models Linear Model Mamba Transformer

w/o patching w/ patching w/o patching w/ patching w/o patching w/ patching

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.383 0.400 0.366 0.388 0.517 0.508 0.341 0.377 0.643 0.575 0.364 0.394

192 0.413 0.415 0.400 0.404 0.575 0.546 0.378 0.399 0.805 0.664 0.394 0.404

336 0.441 0.435 0.429 0.425 0.730 0.634 0.413 0.421 0.882 0.737 0.429 0.430

720 0.497 0.469 0.485 0.460 0.873 0.704 0.474 0.465 0.928 0.752 0.468 0.4600

Avg. 0.434 0.469 0.420 0.419 0.674 0.598 0.402 0.416 0.815 0.682 0.414 0.422

Assumption 2. Patching enhances the semantic dependency of a sequence (Nie et al. (2022)).

For example, a single temperature data point is insufficient to illustrate a time pattern, but a continuous
set of temperature data over a morning period can reveal valuable insights into the day’s climate
conditions. Based on Assumption 2, we compare each model’s performance variation before and
after applying the patching strategy to the input sequence. A more pronounced performance shift
post-patching suggests a stronger reliance on semantic dependency.

The experimental results in Table 2 show a significant improvement in the Transformer after patching
compared to the linear model after patching, demonstrating its stronger semantic learning capability.
The Linear model, due to its limited expressive power, struggles to effectively capture semantic
dependency, further validating the rationale behind our experimental approach. In addition, compared
to the Linear model, Mamba with the patching strategy also exhibits notable improvements and
achieves the best performance, which verifies its strength in capturing semantic dependency.

In summary, our evaluation results above indicate that Mamba is the only model capable of simul-
taneously capturing order and semantic dependencies, making it particularly well-suited for LTSF,
where both order and semantic dependencies are critical.

4.2 THE PITFALLS OF NONLINEARITY: OVERFITTING IN DEEP LTSF MODELS

The success of Linear models has prompted researchers to reconsider the utility of more complex
architectures, such as Transformers (Zeng et al. (2023)). Initially designed for NLP tasks, these
models emphasize semantic dependency over order dependency and incorporate multiple nonlinear
activation functions. Consequently, we hypothesize that these nonlinear activation functions may
increase the risk of overfitting in time series data, which possess lower information density compared
to natural language.

To test this hypothesis, we carry out ablation studies using nonlinear activation functions across
multiple backbone models: MLP, Transformer, and Mamba, along with their respective variants
that incorporate a patching strategy. As shown in Table 3, including nonlinear activation functions
negatively impacts the model’s performance. Interestingly, removing these functions results in notable
performance improvements. Figure 1 further illustrates this trend, showing that MLP, Mamba, and
Transformer exhibit varying levels of overfitting, with the nonlinear versions overfitting more than
their linear counterparts. This observation implies that while nonlinear activation functions enhance a
model’s capacity for semantic dependency learning, they may simultaneously impair its ability to
generalize from temporal patterns in time series data.

Our analysis further reveals that the adverse effects of nonlinear activation functions are most
pronounced in Transformer architectures, with Mamba and MLP following. Notably, this order is
inversely related to the model’s ability to capture order dependency. This suggests that a model’s

Table 3: Ablation study on nonlinear activation function on ETTm1 dataset, we report the average
performance. ’Original’ means vanilla model, ’-n’ means removing the nonlinear activation function
and ’Patch+’ means using patching.

Models MLP Mamba Patch+Mamba Transformer Patch+Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Original 0.415 0.421 0.674 0.598 0.402 0.412 0.815 0.682 0.414 0.422

Original-n 0.406 0.411 0.635 0.585 0.399 0.414 0.653 0.600 0.406 0.417

Improvement 2.17% 2.37% 5.79% 2.17% 0.75% -0.48% 19.88% 12.02% 1.93% 1.18%

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Training curves of three models and their variants with nonlinear activation removed.

ability to capture order dependency can partially mitigate the overfitting introduced by nonlinear
activation functions, thereby enhancing its capacity to generalize temporal patterns.

Furthermore, after applying the patching strategy, we observe that removing nonlinear activation
functions results in fewer performance variability in Mamba and Transformer models. The patching
strategy increases the semantic density of the time series data, allowing nonlinear models to better
utilize their capacity without overfitting to sparse information. However, despite the ability of
patching to mitigate overfitting to some extent, removing nonlinear activation functions remains
overall beneficial, leading to more stable and generalizable models.

5 SAMBA

As aforementioned, adapting Mamba to LTSF presents two non-trivial challenges: over-reliance on
semantic dependency and the difficulty in leveraging cross-variate dependency without compromising
the individual characteristics of each variate. To address these challenges, we analyze the training
dynamic of Mamba in Section 4.2 and identify an overfitting issue caused by nonlinear activation
function. Inspired by this, we proposed SAMBA, illustrated in Figure 2, with a disentangled
dependency encoding strategy to avoid mutual interference between time and variate dimensions.

5.1 SIMPLIFYING MAMBA FOR LTSF

Although attention mechanism excel in learning semantic dependency, its inherent permutation
invariance constrains its ability to accurately capture order dependency, despite the use of opsitional
encoding (Zeng et al. (2023)). Compared to Transformer, Mamba’s strength in LTSF lies in its
use of selective SSM that is similar to self-attention but processes time series recursively. This
approach enables Mamba to capture order dependency and semantic dependency simultaneously, as

Patching

Samba

Va
ri
at
e	
(N
)
Em
be
d	(
𝑫) Patch	(𝑱)

Position	Encoding	
𝑊!"# ∈ ℝ𝑱×𝑫

Tokens

Samba

Samba

Bidirection

To
ke
ns

Cross-Time	Dependency	Encoding

Cross-Variate	Dependency	Encoding

Samba

Feed-forw
ard

Time

Va
lu
e

Va
lu
e

Time

PredictionsFeed-forw
ard

LN
LN

Figure 2: The overall framework of SAMBA.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

demonstrated in Section 4.1. Formally, selective SSM can be described as:

ht = Aht−1 +Bxt, yt = Cht.

where A ∈ RN×N , and B,C ∈ RN×D are learnable parameters that map input sequence xt ∈ RD

to output sequence yt ∈ RD through an hidden state ht ∈ RN . In particular, A and B are the
discretized forms of A and B using ∆ for seamless intergration deep learning. The discretization
functions for the input time series are defined as:

A = exp (∆A), B = (∆A)−1(exp (∆A)− I) ·∆B.

Based on discrete SSM that has been theoretically proven to capture long-range order dependency
(Gu et al. (2021a)), Mamba introduces a selection mechanism that makes B, C and ∆ data dependent,
allowing it to capture semantic dependency as well:

B = LinearN (xt), C = LinearN (xt), ∆ = softplus(LinearN (xt)).

In addition to the slective SSM, each Mamba layer consists of two branches. The left branch show in
Figure 3 is expressed as:

x′
t = SelectiveSSM(σ(Conv1D(Linear(xt)))).

This branch is designed to efficiently capture both order and semantic dependencies. Based on our
analysis in Section 4.2, we propose a SAMBA block that removes the nonlinear activation function
between the Conv1D and SSM layers to mitigate the overfitting issue. Our rationale is that 1D
convolution, similar to a linear layer, is sufficient to learn a powerful time series representation.

The remaining part is the implementation of a gating mechanism and residual operation, which can
be written as:

y = LayerNorm(x′
t ⊗ (σ(Linear(xt))) + xt).

Notice that we retain the nonlinear activation within the gating mechanism (right in Figure 3) to
ensure the stability and robustness of the learning process (Gu & Dao (2023); Chung et al. (2014)).
5.2 DISENTANGLED DEPENDENCY ENCODING

Figure 3: The framework of a
SAMBA block.

Previous CD approaches encode cross-time dependency (order and
semantic dependencies) and cross-variate dependency sequentially.
However, this can introduce less relevant cross-time dependency
from other variates, which negatively impact the informativeness of
the embedding for the target variate. To address this, we propose
a theoretically sound disentangled encoding strategy that processes
cross-time and cross-variate dependencies in parallel. By aggre-
gating information from both dimensions and mapping them into a
unified space, our strategy ensures that these dependencies are fully
leveraged while minimizing the negative interference between them.

Dependency-specific Embedding. The intricate interactions within
multivariate time series make disentangling cross-time and cross-
variate dependencies a complex challenge. Analyzing the inputs of
Figure 2, we observe that different variates exhibit various period-
icities and value ranges but show evident regularity in local changes.
This insight motivated us to consider dependencies from the sub-
series level. Consequently, we divide the i-th variate time series ci
into several patches Ci

p ∈ RJ×P , where J is the number of patches and P refers to the length of
each patch. Subsequently, we use a linear projection Wp ∈ RP×D to map each patch into the D
dimensional embedding space as Ei ∈ RJ×D. Thereafter, we concatenate the embeddings of the
patch into a tensor E ∈ RN×J×D, where N denotes the number of variates. To separately capture the
cross-time and cross-variate dependencies, we disentangle the tensor along the temporal dimension
as Ei

time ∈ RJ×D and along the variate dimension as Ei
var ∈ RN×D.

Cross-time Dependency Modeling. To accurately capture cross-time dependency, we independently
model each variate. First, we introduce the learnable additive position encoding Wpos ∈ RJ×D to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

enhance the order information of the patches, modifying the embedding as Ei
time ← Ei

time +Wpos,
where Ei

time ∈ RJ×D. Subsequently, we process each channel independently through a single
SAMBA block, equipped with residual connections and Layer Normalization (LN) (Ba et al. (2016)):
Ei

time = LN(SAMBA(Ei
time)+Ei

time). This process effectively extracts the order dependency and
semantic dependency of each channel, producing a patch representation Etime ∈ RN×J×D enriched
with temporal information.

Cross-variate Dependency Modeling. Existing methods that introduce cross-variate dependency
often conflate temporal and variate information, reducing the distinguishability of each channel (Liu
et al. (2023)). This can negatively impact model performance. To overcome this limitation, we
design an adjustable bidirectional SAMBA module to capture complex cross-variate dependency in
a disentangled way without blurring the distinction between the time and variate dimensions. The
input sequence is Ei

var ∈ RN×D. Each input sequence through the module will generate a forward
result Ei

fo and a backward result Ei
ba, maintaining the disorder of time series in variate dimensions.

Thereafter, we employ a flexible aggregation operation to integrate the forward and backward
information from the variate dimensions of time series sequences and use layer normalization to
increase the convergence: Ei

var = LN(αEi
fo + βEi

ba +Ei
var) where α and β are hyperparameters.

This strategy produces patch representations Evar ∈ RJ×N×D that encompass complex cross-variate
dependency.

Unified Representation for Forecasting. After disentangling and separately capturing cross-time
and cross-variate dependencies, we concatenate the corresponding representations and utilize a Feed-
Forward Network (FFN) to aggregate and map them into a unified space: Eo = FFN(Etime||Evar) ∈
RN×J×D. In this way, we obtain patch representations that capture three key dependencies without
introducing harmful interference. Finally, we use a flatten layer with a linear head to map these patch
representations Eo to the final prediction result Z ∈ RN×S .

Theoretical Discussions. Finally, we theoretically analyze the sufficient expressiveness of our
disentanglement strategy compared to LSTF models that alternatively encode cross-time and cross-
variate dependencies. To begin with, let Φ : RJ×D → RJ×D and Ψ : RN×D → RN×D denote
a cross-time encoder and a cross-variate encoder, respectively. With a little abuse of notation, a
broadcasting mechanism will be applied when encoding 3D tensor inputs. Then our disentangled
model can be denoted as Fd(·) = FFN(Φ(·)||Ψ(·)), which encodes the two types of dependencies in
parallel. Based on Theorem 3.5 in Gao & Ribeiro (2022) and the evidence from Liu et al. (2023),
we focus on comparing our model with time-then-variate LSTF models, which can be defined as
Fttv(·) = FFN(Ψ(Φ(·))). Without loss of generality, we only consider the single-layer setting. We
further assume that the cross-time encoder Φ(·) can be decomposed into Φ(·) = ϕ(O(·),S(·))+Z(·),
whereO(·) and S(·) extract order and semantic dependency respectively,Z(·) is the noisy component,
and ϕ(·) is a mapping. Let ci := ciT+1:T+S for simplicity. Our main theorem is as follows.

Theorem 1. For any variate i, 1 ≤ i ≤ N, if (1) I(ci;Z(E)j |O(E)j ,S(E)j) = 0,∀j, 1 ≤ j ≤ N
and (2) the dependencies of different variates satisfy I(ci;S(E)−i|Φ(E)i,O(E)−i) ≤ ϵ for some
ϵ ≥ 0, where O(E)−i(S(E)−i) denotes the order(semantic) dependencies of variates except from
the i-th one, then the informativeness of the representations output by the disentangled model and the
time-then-variate model satisfy H(ci|Fd(E)i) ≤ H(ci|Fttv(E)i) + ϵ.

Please refer to Appendix A for detailed proof. Intuitively, given the assumption that cross-time
encoding cannot extract more informative semantic dependencies from the embeddings of other
variates for forecasting the future of the target variate, our disentanglement strategy can extract
sufficient dependencies while reducing interference between cross-time and cross-variate encoding
processes. More discussions on the rationality of the assumption can be found in Appendix A.2

6 EXPERIMENTS

We comprehensively evaluate the performance and efficiency of the proposed SAMBA in LTSF and
analyze the effectiveness of each component. Meanwhile, we also extend our disentangled strategy to
other models, validating the universality of the proposed framework. We briefly list the datasets and
baselines below. More details are provided in Appendix B.

Datasets. We conduct experiments on nine real-world datasets following Liu et al. (2023): (1)
ECL, (2) ETTh1, (3) ETTh2, (4) ETTm1, (5) ETTm2, (6) Exchange, (7) Traffic, (8) Weather, (9)
Solar-Energy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Baselines. We carefully use 13 popular LTSF forecasting models as our baselines and we cite their
performance from Liu et al. (2023) if applicable. Our baselines include (1) Pretrained Language
model-based model: FTP (Zhou et al. (2023)); (2) Transformer-based models: Autoformer (Wu et al.
(2021)), FEDformer (Zhou et al. (2022)), Stationary (Liu et al. (2022b)), Crossformer (Zhang & Yan
(2022)), PatchTST (Nie et al. (2022)), iTransformer (Liu et al. (2023)), CARD (Wang et al. (2024));
(3) Linear-based models: DLinear (Zeng et al. (2023)), TiDE (Das et al. (2023)), RLinear (Li et al.
(2023)); and (4) TCN-based models: SCINet (Liu et al. (2022a)), TimesNet (Wu et al. (2022)).

6.1 LONG-TERM TIME SERIES FORECASTING

Table 4 presents the multivariate long-term forecasting results. In general, SAMBA outperforms all
baseline methods. Specifically, for the ETT dataset, which exhibits weak cross-variate dependency,
models using the CD strategy, such as iTransformer and Crossformer, underperform the models that
use the CI strategy (e.g. PatchTST). However, SAMBA, which introduces cross-variate dependency
through a disentangled encoding strategy, demonstrates superior performance over all models that
use the CI strategy. For datasets with significant cross-variate dependency, such as Weather, ECL,
and Traffic, SAMBA also performs comparable to or superior to the SOTA iTransformer.

Table 4: Multivariate forecasting results with prediction lengths S ∈ {96, 192, 336, 720} and fixed
lookback length T = 96. Results are averaged from all prediction lengths. Full results are listed in
Appendix N.2.

Models SAMBA CARD FTP iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) (2024) (2023) (2023) (2023) (2022) (2022) (2023) (2022) (2023) (2022a) (2022) (2022b) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.172 0.268 0.204 0.291 0.210 0.291 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

ETTh1 0.443 0.432 0.500 0.474 0.450 0.439 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

ETTh2 0.363 0.392 0.398 0.416 0.385 0.411 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

ETTm1 0.378 0.394 0.409 0.407 0.392 0.401 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

ETTm2 0.276 0.322 0.288 0.332 0.285 0.331 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

Exchange 0.356 0.401 0.395 0.421 0.368 0.406 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Traffic 0.422 0.276 0.481 0.321 0.511 0.334 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

Weather 0.249 0.278 0.249 0.276 0.267 0.287 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

Solar-Energy 0.229 0.253 0.245 0.277 0.269 0.304 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

6.2 ABLATION EXPERIMENT

To verify the rationale for removing the non-linear activation function and the disentangled encoding
strategy, we choose our proposed SAMBA as the SOTA benchmark and develop three variant models.
Figure 4 shows that SAMBA consistently outperforms other variants. Excluding either the nonlinear
activation function or any branch of the disentangled encoding strategy results in a performance
decline, demonstrating the effectiveness of our architecture and strategy. After incorporating the
patch technique, the impact of the nonlinear activation function decreased. This occurs because the
patch technique enriches the information available for each token, thereby enhancing the capture of
semantic dependency. Additionally, our analysis shows that removing the cross-variate dependency
encoding branch leads to a more significant performance degradation on the Traffic dataset compared
to other datasets. This result is intuitive, as variates in traffic scenarios typically exhibit strong
interdependencies (Han et al. (2024)).

6.3 EVALUATING THE UNIVERSALITY OF DISENTANGLED ENCODING STRATEGY

We utilize Transformer and their variants, including Informer (Zhou et al. (2021))and PatchTST (Nie
et al. (2022)), to validate the universality of our proposed disentangled encoding strategy. Table 5 has
demonstrated our strategy is effective not only for Mamba but also for Transformer-based models (
Full results can be found in Appendix N.1.). The significant improvements indicate that these models
have not properly modeled and introduced cross-variate dependency, whereas our strategy effectively
mitigates these issues. Therefore, this disentangled encoding strategy is a model-agnostic method
and could potentially be integrated with other models.

6.4 EFFICIENCY ANALYSIS OF SAMBA

In general, the time complexity of SAMBA is O(D2 · NJ + D · NJ log(NJ)) where D is the
dimension of token embedding, T is the length of tokens, N is the number of variates, J is the number

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Ablation study of removing nonlinear activation function and disentangled encoding strategy
in SAMBA. 4 cases are include: 1) SAMBA; 2) SAMBA without time encoding; 3) SAMBA
without variate encoding; 4) Mamba with disentangled encoding.

of patches (The detailed analysis process is given in Appendix D). This validates that SAMBA
maintains the near linear time complexity w.r.t. of the patch number and the variate number, a key
merit of Mamba, while also inheriting the efficiency of the patching strategy.

In addition, we provide a detailed efficiency comparison between SAMBA and the baseline models.
As shown in Table 6 and , SAMBA achieves both a faster training speed and a smaller memory usage
compared to many SOTA transformer-based models, such as PatchTST and Crossformer, which
also employ attention mechanisms in temporal dimensions. Furthermore, SAMBA exhibits a much
smaller increase in memory consumption and training time as input lengths grow, underscoring its
superior overall efficiency.

Table 5: Performance gains of our disentangled encoding strategy
on MAE and MSE.

Models Transformer PatchTST Informer

Metric MSE MAE MSE MAE MSE MAE

ETTh1
Original 0.997 0.797 0.469 0.454 1.060 0.791

+disentangled 0.481 0.477 0.450 0.439 0.489 0.485

Promotion 51.8% 42.2% 4.05% 3.31% 53.9% 38.7%

ETTm1
Original 0.773 0.656 0.387 0.400 0.870 0.696

+disentangled 0.454 0.461 0.383 0.396 0.470 0.459

Promotion 41.3% 29.7% 1.03% 1.00% 46.0% 34.1%

Weather
Original 0.657 0.572 0.259 0.281 0.634 0.548

+disentangled 0.258 0.279 0.248 0.278 0.271 0.330

Promotion 60.7% 51.2% 4.25% 1.08% 57.3% 39.8%

Table 6: Efficiency Analysis: The GPU memory (MiB) and speed
(running time, s/iter) of each model on ETTm1 dataset. Mem
means memory footprint.

Input Length 96 336 720

Models Mem Speed Mem Speed Mem Speed

SAMBA 448 0.0096 684 0.0145 1028 0.0268

PatchTST 790 0.0095 1980 0.0222 3264 0.0398

iTransformer 630 0.0113 632 0.0116 634 0.0121

DLinear 338 0.0043 342 0.0049 344 0.0055

TimesNet 930 0.0653 1446 0.1099 2212 0.243

Crossformer 1736 0.0502 2304 0.0664 3322 0.1031

FEDFormer 2336 0.2021 2772 0.2262 3616 0.2365

Autoformer 2502 0.0517 4408 0.0982 7922 0.1716

7 CONCLUSIONS AND FUTURE WORK

In this paper, we identify and rigorously define three crucial dependencies in time series: order
dependency, semantic dependency, and cross-variate dependency. Based on these dependencies, we
examine the three limitations of existing time series forecasting models: (1) The inability to capture
order and semantic dependencies simultaneously. (2) The presence of overfitting issues. (3) The
improper introduction of cross-variate dependency. We further empirically verify the superiority of
Mamba as an alternative to linear and Transformer models, despite its redundant nonlinear activation
functions. Building on these insights, we introduce SAMBA, a model derived from a simplified
Mamba with a theoretically guaranteed disentangled encoding strategy. Experimentally, SAMBA
achieves SOTA performance, validating the rationality and efficacy of our method design grounded
in rich empirical findings. Our efforts further demonstrate the great potential of Mamba in time series
modeling. In the future, we aim to delve deeper into diverse time series tasks, pushing the boundaries
of analysis with Mamba.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jialin Chen, Jan Eric Lenssen, Aosong Feng, Weihua Hu, Matthias Fey, Leandros Tassiulas, Jure
Leskovec, and Rex Ying. From similarity to superiority: Channel clustering for time series
forecasting. arXiv preprint arXiv:2404.01340, 2024.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 5884–5888. IEEE, 2018.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph
representations. In International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 7052–7076, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, and Hui Xiong. Bigst: Linear com-
plexity spatio-temporal graph neural network for traffic forecasting on large-scale road networks.
Proceedings of the VLDB Endowment, 17(5):1081–1090, 2024.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

Hao Liu, Ying Li, Yanjie Fu, Huaibo Mei, Jingbo Zhou, Xu Ma, and Hui Xiong. Polestar: An
intelligent, efficient and national-wide public transportation routing engine. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2321–2329, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
time series modeling and forecasting with sample convolution and interaction. NeurIPS, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:
9881–9893, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel aligned
robust blend transformer for time series forecasting. In The Twelfth International Conference on
Learning Representations, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The eleventh international
conference on learning representations, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. ICML, 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information processing systems, 36:43322–43355, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A THEORETICAL DISCUSSIONS

A.1 PROOF FOR THEOREM 1

Without loss of generality, we only consider the setting with two variates, i.e., N = 2, and treat the 1st
variate as the target variable. For simplicity, we introduce the notation Ψ

(︂
(A,B)

T
)︂
:= Ψ(A,B).

Then, we can express the outputs of Fd(·) and Fttv(·) w.r.t. the target variate as follows:

Fd(E)1 = FFN
(︂
Φ(E1)||Ψ

(︁
E1,E2

)︁1)︂
, (5)

Fttv(E)1 = FFN
(︂
Ψ
(︁
Φ(E1),Φ(E2)

)︁1)︂
. (6)

Next, we prove the informativeness of output representation from Fd compared to that of Fttv. Based
on the information loss property of data processing, we have

H(c1|Fttv(E)1) = H
(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),Φ(E2)

)︁1)︂)︂
≥ H

(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),Φ(E2)

)︁1)︂)︂
= H

(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1), ϕ(O(E2),S(E2)) + Z(E2)

)︁1)︂)︂
≥ H

(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),O(E2)

)︁1)︂
,S(E2),Z(E2)

)︂
.

(7)

Given the assumption (1) on the noisy components, we have

H(c1|Fttv(E)1) ≥ H
(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),O(E2)

)︁1)︂
,S(E2)

)︂
. (8)

Furthermore, by combining assumption (2) on the semantic dependencies, we have

H(c1|Fttv(E)1) ≥ H
(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),O(E2)

)︁1)︂
,S(E2)

)︂
= H

(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),O(E2)

)︁1)︂)︂
− I

(︂
c1;S(E2)|FFN

(︂
Ψ
(︁
Φ(E1),O(E2)

)︁1)︂)︂
= H

(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),O(E2)

)︁1)︂)︂− I(c1;S(E2)|Φ(E1),O(E2))

≥ H
(︂
c1|FFN

(︂
Ψ
(︁
Φ(E1),O(E2)

)︁1)︂)︂− ϵ

≥ H
(︂
c1|FFN

(︂
Φ(E1)||Ψ

(︁
Φ(E1),O(E2)

)︁1)︂)︂− ϵ

≥ H
(︁
c1|FFN

(︁
Φ(E1)||O(E2)

)︁)︁
− ϵ.

(9)

For Fd, though the cross-variate dependency encoding Ψ(·) does not explicitly model the order
dependencies in E2, it aggregates the patch embedding of the 2nd variate to the target variate at each
time step. This enables the FFN(·) layer, which transforms the input with linear mapping, to further
capture the order dependencies. Moreover, according to the empirical findings in Table 1 as well as
previous works Zeng et al. (2023); Li et al. (2023), we assume that linear mapping is not worse than
other complex cross-time encoders such as Transformers and Mamba in terms of order dependency
modeling. Therefore, combining inequality (9), we have

H(Y1|Fd(E)1) = H(Y1|FFN
(︂
Φ(E1)||Ψ

(︁
E1,E2

)︁1)︂
) (10)

= H
(︂
Y1|FFN

(︁
Φ(E1)

)︁
||FFN

(︂
Ψ
(︁
E1,E2

)︁1)︂)︂
(11)

≤ H(Y1|FFN
(︁
Φ(E1)

)︁
||O(E2)) (12)

≤ H(Y1|FFN
(︁
Φ(E1)||O(E2)

)︁
) (13)

≤ H(Y1|Fttv(E)1) + ϵ. (14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 RATIONALITY OF THE ASSUMPTION (2) IN THEOREM 1

We interpret the rationality of the assumption from two perspectives: (1) When the lookback window
is short, like the often used 1-hour window in traffic prediction task Wu et al. (2021), there exist
low-density semantic dependencies within each variate’s observations, while the order dependencies
from other variates could lead to a direct impact on the future of the target variate due to continuity
in physical laws, e.g., the increasing traffic volume spreads to neighboring road segments; (2) Even
when the lookback window becomes longer, the widely adopted patching strategy compresses the
most useful local semantics into a D-dim feature vector, which is attached to each time step of
embedding E. Consequently, the semantic dependencies extracted along the temporal dimension of
E usually become less informative.

B IMPLEMENTATION DETAILS

B.1 DATASET DESCRIPTIONS

We perform tests on seven actual-world datasets to assess the capabilities of our new SAMBA model.
The datasets we use are:

Electricity Transformer Time Series (ETT) This dataset, as reported by Zhou et al. (2021), spans
from July 2016 to July 2018 and monitors seven aspects of an electricity transformer’s operation. It is
divided into four subsets, with ETTh1 and ETTh2 offering hourly readings and ETTm1 and ETTm2
providing data every quarter of an hour.

Weather This dataset encompasses 21 different weather parameters. It draws information from
the Max Planck Biogeochemistry Institute’s Weather Station, with readings taken every ten minutes
throughout 2020.

Electricity Consumption Log (ECL) This dataset catalogs hourly electricity usage for 321 differ-
ent clients.

Traffic This dataset gathers information on road occupancy rates. It uses data from 862 sensors
positioned on freeways in the San Francisco Bay area, with hourly updates from January 2015 to
December 2016.

Exchange This dataset collects daily exchange rate panel data from 8 countries between 1990 and
2016 and covers a long time span of foreign exchange market data across multiple countries. These
datasets provide a diverse and comprehensive set of data to thoroughly evaluate the performance of
our proposed SAMBA model across various real-world scenarios.

Solar-Energy This dataset records the solar power production data from 137 photovoltaic (PV)
plants in 2006. The data is sampled every 10 minutes, capturing detailed variations in power
generation at each plant.

B.2 BASELINE METHODS AND IMPLEMENTATIONS

We briefly describe the selected baselines:

CARD (Wang et al. (2024)) use a patching strategy and two transformer encoders to encode cross-
time and cross-variate dependencies. Later, directly mixes cross-time and cross-variate information at
each model layer. In this paper, we directly utilize the model from their GitHub repository and apply
the same training loss function as in the Time Series Library GitHub repository to ensure fairness.

FTP (Zhou et al. (2023)) uses GPT2 to forecast time series and is implemented by their provided
GitHub repository. .

iTransformer (Liu et al. (2023)) only inverts the time series and, without making any modifications to
the transformer architecture, uses the Feed-Forward Network layer to capture cross-time dependency

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Detailed dataset descriptions. Dim refers to the number of variates present within each
dataset.Dataset Size is indicative of the overall count of time points that are categorized into three
segments: training, validation, and testing. Prediction Length denotes the future time points to be
predicted and four prediction settings are included in each dataset. Frequency represents the rate at
which time points are sampled, essentially detailing the time interval between successive data points.

Task Dataset Dim Prediction Length Dataset Size Frequency Information

Low-dim

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

High-dim
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

Solar-Energy 137 {96, 192, 336, 720} (366001, 5161, 10417) 10min Energy
ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

and employs the transformer to capture cross-variate dependency. In this paper, we implement it by
using the Time Series Library GitHub repository.

RLinear (Li et al. (2023)) uses a single-layer linear model with RevIN has been added for time series
forecasting. In this paper, we implement it by using the Time Series Library GitHub repository.

PatchTST (Nie et al. (2022)) employs of patches and channel-independent strategy without altering
the transformer architecture. In this paper, we implement it by using the Time Series Library GitHub
repository.

Crossformer (Zhang & Yan (2022)) is a Transformer-based model designed to enhance multivariate
time series forecasting by leveraging cross-variate dependency. In this paper, we implement it by
using the Time Series Library GitHub repository.

TiDE (Das et al. (2023)) is an MLP-based encoder-decoder architecture for long-term time-series
forecasting that excels in efficiency and performance by incorporating dense MLPs for encoding
past time-series data and decoding future predictions, while also managing covariates and nonlinear
relationships. In this paper, we implement it by using the Time Series Library GitHub repository.

TimesNet (Wu et al. (2022)) is a task-general foundation model for time series analysis that excels
in capturing complex temporal variations by transforming 1D time series data into 2D tensors and
utilizing a parameter-efficient inception block within its TimesBlock architecture. In this paper, we
implement it by using the Time Series Library GitHub repository.

DLinear (Zeng et al. (2023)) uses a single-layer linear model with The seasonal term and trend term
decoupled has been added for time series forecasting. In this paper, we implement it by using the
Time Series Library GitHub repository.

SCINet (Liu et al. (2022a)) is a novel neural network architecture for time series modeling and
forecasting that employs a hierarchical downsample-convolve-interact structure. In this paper, we
implement it by using the Time Series Library GitHub repository.

FEDformer (Zhou et al. (2022)) is a Transformer-based architecture that employs seasonal-trend
decomposition integrated with frequency-enhanced blocks to seize cross-time dependencies for
forecasting. In this paper, we implement it by using the Time Series Library GitHub repository.

Stationary (Liu et al. (2022b)) is a Transformer-based model that uses De-stationary Attention
mechanism to recover the intrinsic non-stationary information into temporal dependencies by approx-
imating distinguishable attentions learned from unstationarized series. In this paper, we implement it
by using the Time Series Library GitHub repository.

Autoformer (Wu et al. (2021)) is a Transformer-based model that utilizes a decomposition architecture
coupled with an Auto-Correlation mechanism to effectively capture cross-time dependencies, thereby
enhancing forecasting capabilities. In this paper, we implement it by using the Time Series Library
GitHub repository.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 EXPERIMENT DETAILS

All experiments are implemented using PyTorch on a single NVIDIA A40 GPU. We optimize the
model using ADAM with an initial learning rate in the set {10−3, 5× 10−4, 10−4} and L2 loss. The
batch size is uniformly set to {32 − 128}, depending on the maximum GPU capacity. To ensure
that all models can be fitted effectively, the number of training epochs is fixed at 10 with an early
stopping mechanism. By default, our SAMBA encodes both the time and variate dimensions using a
single-layer SAMBA encoding, with a patch length of 16 and a stride of 8.

The baseline models we use for comparison are implemented based on the Time Series Library
(Wu et al. (2022)) repository, and they are run with the hyperparameter settings they recommend.
For CARD, we download the model from https://github.com/wxie9/CARD/tree/main, but utilize
the same training loss as the other models (i.e. the the Time Series Library GitHub repository
recommend) for a fair comparison. Additionally, the full results of the predictions come from the
outcomes reported by the iTransformer (Liu et al. (2023)), ensuring fairness.

B.4 IMPLEMENTATION DETAILS OF SECTION 4

For all experiments in Section 4, we fixed the lookback length to 96, adhering to the configuration
recommended by TimesNet(Wu et al. (2022)). The Linear, MLP, Transformer, Mamba, and PatchTST
models are all implemented based on the TimesNet repository. For the Linear model, we base it on
the DLinear model, removing the decomposition module to achieve the simplest linear forecasting
model and applying the recommended parameters of DLinear. For the MLP, we add an extra linear
layer and a ReLU activation function to the linear model, placing the activation function between the
two linear layers and setting the hidden layer dimension uniformly to 128. The Transformer model is
fully implemented based on the TimesNet repository, with the number of layers set to three to better
highlight the impact of the nonlinear activation function, using the recommended hyperparameters.
We utilize the Mamba model as implemented by (Gu & Dao (2023)), setting the dimension expansion
factor to 2, the convolution kernel size to 4, the state expansion factor to 16 by default, and the expand
factor to 4 by default. For PatchMamba, we incorporate a patch strategy akin to PatchTST on top of
the aforementioned Mamba. PatchLinear, after patching the time series, averages all values within
the patch to reduce dimensionality.

For the implementation that removes the nonlinear activation function, as the Linear model does not
contain a nonlinear activation function, we opt to replace it with an MLP and eliminate the nonlinear
activation function between the two linear layers. For the simplified variant of the Transformer, we
remove the nonlinear activation function within the FFN of the Encoder, which facilitates comparison
with PatchTST, given that PatchTST is a model based on the Transformer’s encoder. For Mamba, we
remove the nonlinear activation function between the 1D convolutional layer and the SSM.

C WHY CHOOSE MAMBA TO ENCODE CROSS-VARIATE DEPENDENCY?

C.1 THE RATIONALE OF USING MAMBA TO ENCODE UNORDER VARIATES SEQUENCE

Using recursive models (e.g., RNN, Mamba) to process unordered sequences is feasible. For instance,
GraphSAGE (Hamilton et al. (2017)) uses LSTM to aggregate unordered node neighbors. To
comprehensively consider the interactions between variates, we adopt a bidirectional Mamba to
model cross-variate dependency.

C.2 ADVANTAGE OF USING MAMBA TO ENCODE CROSS-VARIATE DEPENDENCY

Compared to the Transformer, Mamba models cross-variate dependency more efficiently. To compare
the efficiency of Transformer and Mamba in modeling cross-variate dependency, we implement
the branch of our proposed disentangled encoding strategy that models variate relationships using
PatchTST (PatchTSTv) and SAMBA (SAMBAv) respectively. To better demonstrate the efficiency
differences in encoding variates, we evaluate two models on the Traffic and ECL datasets, which have
the highest number of variates in our experiments. Table 8 shows that, compared to the Transformer,
Mamba has a faster training speed and a smaller GPU memory footprint. As a result, Mamba is able
to encode cross-variate dependency more efficiently.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: The GPU memory (MiB) and speed (s/iter) of each model

Models SAMBAv PatchTSTv

Metric MiB s/iter MiB s/iter

Traffic 4900 0.1245 9784 0.1658

ECL 3786 0.0981 5118 0.1264

C.3 REPLACING MAMBA WITH TRANSFORMER TO ENCODE CROSS-VARIATE DEPENDENCY

To better evaluate the superiority of Mamba encoding in capturing cross-variate dependencies, we
conducted the following experiment. We design a variant, SAMBAt, where we keep the other
modules of SAMBA unchanged and replace the SAMBA implementation with the Transformer
implementation in the branch of our proposed disentangled encoding strategy that encodes cross-
variate dependency. Then, we select two representative datasets: ETTm1 (with fewer variates) and
Traffic (with more variates) to evaluate the performance of SAMBA and SAMBAt. Table 9 shows
that SAMBA performed better.

Table 9: Performance Comparison

Models SAMBA SAMBAt

Metric MSE MAE MSE MAE

ETTm1 0.315 0.357 0.324 0.365

Traffic 0.388 0.261 0.411 0.277

D COMPUTATIONAL COMPLEXITY ANALYSIS

First, the time complexity of each Mamba block is O(D2T + DT log T) when adopting the
convolution-based implementation (Fu et al. (2022); Gu & Dao (2023)), where D is the dimension
of token embeddings and T is the length of tokens. As a SAMBA block only removes the nonlinear
activation before the selection mechanism, it possesses the same time complexity.

Next, we consider the time complexity of the disentangled modeling. (i) The linear projection in the
tokenization process takes time O(NJPD). (ii) In the CI learning, the token length is the variate
number N, thereby taking time O(N(D2J +DJ log J)). (iii) In the CD learning, the dimension
of token embeddings becomes the patch number J, while the token length becomes the hidden
dimension D. Considering the bidirectional design, it takes time O(2J(D2N +DN logN)). (iv)
The FFN-based aggregation operation and the final prediction head take time O(NJD2 +NJDS).

In general, the time complexity of SAMBA is O(NJPD + N(D2J + DJ log J) + 2J(D2N +
DN logN)+ (NJD2+NJDS)) = O(D2 ·NJ +D ·NJ log(NJ)). This validates that SAMBA
maintains the near linear time complexity w.r.t. of the patch number and the variate number, a key
merit of Mamba, while also inheriting the efficiency of the patching strategy.

E ADDITIONAL ABLATIONAL EXPERIMENT

To evaluate the effectiveness of our proposed simplified architecture and disentangled encoding
strategy, we introduce three variants and use SAMBA as the baseline. In Figure 4, we demonstrate
the effectiveness of removing the nonlinear activation function and the disentangled encoding strategy
on the Traffic, ECL, and Weather datasets. However, due to page limitations, we provide additional
dataset results and detailed analysis. Figure 5 shows the results in Solar-Energy, ETTm1, and ETTm2
datasets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

In Figures 4 and 5, SAMBA consistently shows better performance compared to other variants,
mainly due to the removal of the nonlinear activation function, which mitigates overfitting, and
the disentangled encoding strategy, which effectively captures both cross-time and cross-variate
dependencies. Although the influence of the nonlinear activation function decreased after introducing
the patch technique, this is because the patch technique increases the information available for
each token, enhancing semantic dependency. Nonlinear activation functions typically capture this
enhanced dependency.

In datasets with a smaller number of variates, such as ETTm1 and ETTm2, the performance impact of
removing cross-time dependency encoding (-w/o time) is greater than that of removing cross-variate
dependency encoding (-w/o variate), indicating that cross-time dependency plays a more important
role in these datasets. However, as the number of variates increases (e.g., 21 variables in Weather,
137 in Solar-Energy, 321 in ECL, and 862 in Traffic), the -w/o variate variant performs noticeably
worse than -w/o time, suggesting that cross-variate dependency has a more significant impact in
larger datasets.

Further evidence supporting this conclusion is seen in the ETTm1 and ETTm2 datasets, where
SAMBA shows only marginal improvements over the -w/o variate variant, indicating weaker cross-
variate dependency, consistent with previous studies supporting CI strategies (Nie et al. (2022)). In
contrast, on datasets like Weather, Solar-Energy, ECL, and Traffic, SAMBA significantly outperforms
the -w/o variate variant, highlighting the crucial role of cross-variate dependency in multivariate time
series forecasting. Previous studies(Liu et al. (2023); Zhang & Yan (2022)), which jointly encoded
cross-time and cross-variate dependencies, mistakenly mixed information from the time and variate
dimensions, compromising the unique physical meaning of each channel. Our proposed SAMBA, by
adopting a disentangled encoding strategy, effectively captures both types of dependencies, leading
to enhanced performance on complex multivariate datasets.

Figure 5: Ablation study of removing nonlinear activation function and disentangled encoding strategy
in SAMBA. 4 cases are include: 1) SAMBA; 2) SAMBA without time encoding; 3) SAMBA
without variate encoding; 4) Mamba with disentangled encoding.

F ADDITIONAL EXPERIMENTS TO VERIFY MAMBA’S ADVANTAGES

In the empirical exploration of Section 4, we arrive at two conclusions:

• Compared to the Linear Model and Transformer, Mamba effectively captures both order
dependency and semantic dependency simultaneously.

• Removing the nonlinear activation function in Mamba is beneficial.

To further validate these conclusions comprehensively, we conducted experiments on additional
datasets.

F.1 ORDER DEPENDENCY

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We additionally included the SOTA LTSF model, iTransformer, as one of our baselines. It is worth
noting that iTransformer encodes temporal relationships using a Linear Model and then uses a
Transformer encoder to capture cross-variate dependencies. Ideally, it is expected to be sensitive
to order as well. The supplementary results align with the conclusions drawn in Section 4 and the
expectations of iTransformer.

Linear Model, Mamba, and iTransformer effectively capture order dependency, exhibiting perfor-
mance degradation on shuffled ETTm1 and Exchange datasets. In contrast, Transformer shows no
performance degradation on Exchange and even achieves improvements, a phenomenon consistent
with observations in DLinear, indicating that the self-attention mechanism in Transformer fails to
capture order dependency.

Additionally, we further validated our conclusions on multivariate datasets Traffic. Significant
performance degradation is observed for all models on these datasets, which can be attributed to the
strong cross-variate dependencies present. Shuffling disrupts not only order dependency but also
cross-variate dependency.This results in Mamba’s performance degradation being greater than that
of the Linear Model, as the Linear Model does not account for cross-variate dependency. On the
other hand, despite being affected by cross-variate dependency, the performance degradation of the
transformer is still less than that of the Linear Model, indicating its weaker ability to capture order
dependency.

Overall, the additional experimental results support our conclusion that Mamba can effectively capture
order dependency, whereas the transformer, due to the permutation invariance of self-attention, cannot
achieve this effectively.

Table 10: Additional experiments for analyzing order dependency.The input sequence length is 96 for
all baselines. Avg.Drop means the average performance degradation.

Models Linear Model Mamba Transformer iTransformer

Metric O.MSE S.MSE O.MAE S.MAE O.MSE S.MSE O.MAE S.MAE O.MSE S.MSE O.MAE S.MAE O.MSE S.MSE O.MAE S.MAE

E
T

T
m

1 96 0.383 0.988 0.400 0.697 0.517 0.922 0.508 0.688 0.643 0.884 0.575 0.643 0.345 0.892 0.378 0.610
192 0.413 0.986 0.415 0.697 0.575 0.931 0.546 0.699 0.805 1.01 0.664 0.730 0.383 0.903 0.395 0.617
336 0.441 0.987 0.435 0.698 0.730 0.957 0.634 0.703 0.882 1.12 0.737 0.817 0.423 0.923 0.420 0.630
720 0.497 0.992 0.469 0.704 0.873 0.973 0.704 0.723 0.928 1.12 0.752 0.800 0.489 0.932 0.456 0.641

Avg. Drop - 127.97% - 62.55% - 40.37% - 17.60% - 22.40% - 6.55% - 122.56% - 51.5%

E
xc

ha
ng

e 96 0.0832 0.210 0.201 0.332 1.260 1.401 0.915 0.943 0.730 0.738 0.782 0.722 0.0869 0.242 0.207 0.358
192 0.179 0.325 0.299 0.414 1.398 1.626 1.040 1.060 1.304 1.284 0.913 0.949 0.179 0.374 0.301 0.450
336 0.338 0.521 0.418 0.534 1.835 1.921 1.111 1.141 1.860 1.862 1.090 1.085 0.331 0.555 0.417 0.557
720 0.903 1.167 0.714 0.822 3.940 4.023 1.687 1.697 3.860 3.865 1.684 1.685 0.856 1.202 0.698 0.841

Avg. Drop - 47.89% - 28.80% - 6.38% - 1.85% - -0.06% - -0.63% - 63.33% - 35.89%

Tr
af

fic

96 0.656 1.679 0.403 0.882 0.634 1.859 0.363 0.967 0.788 1.846 0.467 0.918 0.396 1.945 0.271 0.976
192 0.609 1.665 0.382 0.876 0.637 2.387 0.375 1.120 0.850 1.715 0.483 0.878 0.416 1.751 0.279 0.916
336 0.615 1.671 0.385 0.880 0.674 2.428 0.386 1.127 0.836 1.676 0.480 0.861 0.430 1.801 0.287 0.938
720 0.656 1.697 0.405 0.882 0.732 1.751 0.414 0.916 0.859 1.746 0.490 0.880 0.559 1.978 0.375 0.971

Avg. Drop - 164.67% - 123.49% - 214.72% - 168.53% - 109.51% - 84.22% - 315.05% - 213.61%

F.2 SEMANTIC DEPENDENCY

Benefiting from the approach of aggregating time steps into subseries-level patches, where patches in
time series data enhance locality and capture comprehensive semantic information that cannot be
achieved at the point level, patching has been widely adopted as a method to enhance the semantics
of time series (Nie et al. (2022); Zhang & Yan (2022); Liu et al. (2023)). As shown in Tabel 11,
on datasets like Exchange and Traffic, which exhibit underlying dynamics and shifting multivariate
effects, patching demonstrates significant performance improvements, consistent with observations
from PatchTST (Nie et al. (2022)). However, we observe a performance drop when applying patching
on the Solar-Energy dataset, which might be attributed to the excessive presence of zero values in
Solar-Energy, disrupting the continuity and stationarity of the sequence.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Results of the linear model, Mamba, and Transformer w/ or w/o patching.

Models Linear Model Patch+Linear Model Mamba Patch+Mamba Transformer Patch+Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.0832 0.201 0.0823 0.207 1.260 0.915 0.0871 0.207 0.989 0.782 0.0861 0.204
192 0.179 0.299 0.165 0.302 1.398 1.040 0.176 0.298 1.265 0.913 0.183 0.303
336 0.338 0.418 0.285 0.401 1.835 1.111 0.327 0.413 1.860 1.090 0.332 0.417
720 0.903 0.714 0.799 0.685 3.940 1.687 0.853 0.694 3.860 1.684 0.854 0.697

Avg 0.376 0.408 0.333 0.399 2.254 1.188 0.361 0.403 1.993 1.117 0.364 0.405

Tr
af

fic

96 0.656 0.403 0.867 0.523 0.634 0.363 0.430 0.275 0.788 0.467 0.469 0.305
192 0.609 0.382 0.827 0.511 0.637 0.375 0.443 0.281 0.850 0.483 0.476 0.309
336 0.615 0.385 0.839 0.515 0.674 0.386 0.457 0.288 0.836 0.480 0.491 0.314
720 0.656 0.405 0.867 0.523 0.732 0.414 0.493 0.306 0.859 0.490 0.526 0.332

Avg 0.634 0.394 0.850 0.518 0.669 0.385 0.456 0.288 0.833 0.480 0.491 0.315

So
la

r-
E

ne
rg

y 96 0.326 0.346 0.357 0.439 0.190 0.248 0.204 0.243 0.201 0.269 0.218 0.264
192 0.363 0.364 0.373 0.446 0.224 0.292 0.237 0.265 0.233 0.289 0.250 0.284
336 0.402 0.378 0.395 0.454 0.229 0.315 0.254 0.277 0.232 0.294 0.271 0.300
720 0.402 0.368 0.393 0.445 0.223 0.295 0.254 0.278 0.216 0.280 0.271 0.295

Avg 0.373 0.364 0.380 0.446 0.217 0.288 0.237 0.266 0.220 0.283 0.252 0.286

F.3 NONLINEAR ACTIVATION FUNCTION

We tested the impact of nonlinear activation functions on the Exchange and Traffic datasets. As
shown in Table 12:

1. For Mamba, removing the nonlinear activation function is always beneficial, regardless of
whether patching is applied. This supports the design of our proposed SAMBA block.

2. For Transformer, removing the nonlinear activation function significantly improves perfor-
mance on datasets with relatively limited semantics. Additionally, even on datasets with
relatively strong semantics, such as Traffic, removing the activation function consistently
proves advantageous. This indicates that the Transformer architecture includes excessive,
unnecessary nonlinearity. The use of patches mitigates this issue, aligning with our observa-
tions in Section. 4, as patching enhances the semantics of time series, thereby allowing the
nonlinear activation function to contribute more effectively.

3. For MLP, removing the nonlinear activation function also yields significant improvements on
datasets with limited semantics. However, the expected performance drop on semantically
strong datasets like Traffic aligns with expectations. Without the activation function, MLP
behaves more like a linear model, lacking the capacity to capture semantic dependencies.

In summary, the above results suggest that appropriately leveraging nonlinearity is beneficial for
handling semantic dependencies. However, existing complex models (e.g., Transformer and Mamba)
are prone to overfitting. In particular, for Mamba, removing nonlinear activation functions is
consistently advantageous.

To further analyze the role of activation functions, we evaluated the training curves of models on
the Exchange and Traffic datasets. Consistent with the analysis in Section 4, removing nonlinear
activation functions alleviates the overfitting issues observed during training.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Ablation study on nonlinear activation function, we report the average performance.
’Original’ means vanilla model, ’-n’ means removing the nonlinear activation function and ’Patch+’
means using patching.

Models MLP Patch+MLP Mamba Patch+Mamba Transformer Patch+Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 Original 0.415 0.421 0.424 0.427 0.674 0.598 0.402 0.412 0.815 0.682 0.414 0.422
Original-n 0.406 0.411 0.411 0.412 0.635 0.585 0.399 0.414 0.653 0.600 0.406 0.417

Improvement 2.17% 2.37% 3.07% 3.39% 5.79% 2.17% 0.75% -0.48% 19.88% 12.02% 1.93% 1.18%

E
xc

ha
ng

e Original 0.398 0.419 0.403 0.448 2.255 1.189 0.361 0.403 1.994 1.117 0.364 0.405
Original-n 0.374 0.407 0.321 0.399 2.122 1.143 0.357 0.400 1.194 0.895 0.362 0.404

Improvement 6.03% 2.86% 20.19% 10.93% 5.90% 3.79% 1.02% 0.74% 40.13% 19.87% 0.58% 0.25%

Tr
af

fic Original 0.554 0.366 0.718 0.384 0.669 0.385 0.456 0.288 0.833 0.480 0.491 0.315
Original-n 0.621 0.400 0.652 0.413 0.658 0.381 0.453 0.285 0.829 0.479 0.499 0.322

Improvement -12.27% -9.28% 9.16% -7.68% 1.57% 0.98% 0.55% 0.87% 0.42% 0.16% -1.78% -2.30%

Transformer MLP Mamba Transformer-n MLP-n Mamba-n

2 4 6 8 10
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

 L
os

s

Training Loss on Traffic

(a) Training Loss on Traffic

2 4 6 8 10
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Te
st

 L
os

s

Test Loss on Traffic

(b) Test Loss on Traffic

Transformer MLP Mamba Transformer-n MLP-n Mamba-n

2 4 6 8 10
Epoch

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

Training Loss on Exchange

(a) Training Loss on Exchange

2 4 6 8 10
Epoch

0.5

1.0

1.5

2.0

2.5

Te
st

 L
os

s

Test Loss on Exchange

(b) Test Loss on Exchange

G ADDITIONAL EFFICIENCY ANALYSIS

In the main text, we provide a detailed efficiency comparison between SAMBA and the baseline
models on the ETTm1 dataset. Here we provide the quantitive results on Traffic dataset in Table 13. It

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

should be noted that that SAMBA achieves both a faster training speed and a smaller memory usage
compared to many SOTA transformer-based models, such as PatchTST and Crossformer, which
also employ attention mechanisms in temporal dimensions. Furthermore, SAMBA exhibits a much
smaller increase in memory consumption and training time as input lengths grow, underscoring its
superior overall efficiency.

Table 13: Efficiency Analysis: The GPU memory (MiB) and speed (running time, s/iter) of each
model on Traffic dataset. Mem means memory footprint.

Input Length 96 336 720

Models Mem Speed Mem Speed Mem Speed

SAMBA 2235 0.0403 2275 0.0711 2311 0.1232
PatchTST 3065 0.0658 12299 0.2382 25023 0.4845
iTransformer 3367 0.0456 3389 0.0465 3411 0.0482
DLinear 579 0.0057 619 0.0082 681 0.0139
TimesNet 6891 0.2492 7493 0.4059 8091 0.6289
Crossformer 21899 0.1356 40895 0.1369 69711 0.1643
FEDFormer 1951 0.1356 1957 0.1369 2339 0.1643
Autoformer 1489 0.0309 1817 0.0362 2799 0.0457

H HYPERPARAMETER SENSITIVITY

To verify the robustness of SAMBA, we evaluate three important hyper-parameters of SAMBA:
the hidden dimension dmodel that determines the model’s capacity to learn complex representations
from the set {64, 128, 256, 512, 1024}, the state expansion factor dstate that controls the internal
expansion of state representations from the set {2, 4, 8, 16, 32, 64, 128}, and the convolutional kernel
sizedconv that influences how much information is aggregated across time steps in {2, 4}.

• Based on Figure 8, we can observe that the optimal hidden dimension varies across different
datasets. For the Weather dataset, the best hidden dimension is 512, while for ETTm1 and
ETTh1, it is 128. This indicates that datasets with higher dimensionality tend to require
larger hidden dimensions to capture more complex information in the time series. Notably,
the performance was relatively stable across all values, suggesting that SAMBA is robust to
variations in the hidden dimension.

• Figure 8 shows that the MSE score does not significantly vary with different choices of state
expansion factor dstate, indicating the robustness of our model to the state expansion factor
dstate hyperparameter.

• Figure 8 shows that SAMBA maintains similar MSE values regardless of kernel size,
pointing to the robustness of the model when varying this parameter. This stability implies
that SAMBA’s time-series dependency ability are not heavily dependent on kernel size.

• Figure 8 demonstrates that the MSE does not vary significantly with changes in patch size,
indicating that our model is robust to the patch size hyperparameter. Experimental results
suggest that the optimal patch size depends on the specific dataset, but 8, 16 generally yield
favorable results.

I INCREASING LOOKBACK LENGTH

It is intuitive to expect that using a longer lookback window would enhance forecasting performance.
However, previous research has shown that most transformer-based models cannot leverage the
increased receptive field to improve predictive accuracy effectively (Nie et al. (2022)). As a result,
SOTA transformer-based models, such as iTransformer and PatchTST, have improved their design to
more effectively utilize a longer lookback window, leading to improved forecasting performance. In
evaluating SAMBA, we explore two key questions: (1) Can SAMBA effectively take advantage of a

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 8: Hyperparameter sensitivity with respect to the hidden dimension, the state expansion factor,
the convolutional kernel,and the patch size. The lookback window length T = 96 and the forecast
window length S = 96

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

longer lookback window to achieve more accurate forecasting? (2) If so, how does its performance
compare to other models that can also utilize a longer lookback window?

We conduct experiments to evaluate SAMBA’s ability to leverage a longer lookback window. For
comparison, we select four baseline models—DLinear, PatchTST, and iTransformer. These models
have been proven to utilize extended a lookback window effectively (Liu et al. (2023); Nie et al.
(2022)). As shown in Figure 9, we observe a steady decrease in MSE as the lookback window
increases, confirming SAMBA’s capacity to learn from longer temporal contexts. Moreover, while
both SAMBA and the baseline models can effectively take advantage of a longer look-back window,
SAMBA consistently demonstrates superior overall performance.

Figure 9: Forecasting results on simulated time series to Verify SAMBA’s ability to capture cyclical
dependency,

J ABLATION STUDY ON SAMBA’S ENCODING COMPONENT AND ITS
SUPERIORITY OVER SELF-ATTENTION

To demonstrate that SAMBA’s superior performance is not solely due to its disentangled encoding
strategy but also because Samba (Simplified Mamba) outperforms the self-attention mechanism, we
provide detailed ablations experimental results by replacing the cross-time encoder and cross-variate
encoder.

Table 14 shows the experimental results. SAMBA, which utilizes Samba to capture both temporal
and cross-variate dependencies, consistently exhibits the best performance across different datasets.
For example, replacing the variate encoder with self-attention leads to an increase in the average MSE
from 0.378 to 0.390 for ETTm1 and similar performance degradation is observed for other datasets.
This highlights the limitations of self-attention in handling temporal dependency and cross-variate
dependency and reinforces the effectiveness of SAMBA’s architecture.

These findings underscore Samba’s superiority in encoding both cross-time and cross-variate depen-
dencies. The performance decline when replacing Samba with self-attention reveals the limitations of
self-attention in these contexts. Furthermore, these results are consistent with our earlier observations
in Section 4.1 and Appendix C, which demonstrated SAMBA’s ability to effectively model order
dependency, semantic dependency, and cross-variate dependency, making it particularly well-suited
for LTSF applications that require handing of complex temporal and variate dependency.

K ITRANSFORMER AND FTP WITH DISENTANGLED ENCODING STRATEGY

We apply our proposed disentangled encoding strategy to both iTransformer and FTP, two SOTA
LTSF baselines. The results shown in the table 15 indicate the effectiveness of our strategy on both
iTransformer and FTP, demonstrating its universality. Specifically, FTP achieves an approximately

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 14: Results of ablation study on SAMBA’s encoding component. We apply different components
on the respective dimension to learn temporal dependency (Temporal) and cross-variate dependency
(Variate).

Design Temporal Variate Prediction ETTm1 ECL Weather Solar-Energy

Lengths MSE MAE MSE MAE MSE MAE MSE MAE

SAMBA Samba Samba

96 0.315 0.357 0.146 0.244 0.165 0.214 0.186 0.217
192 0.360 0.383 0.162 0.258 0.214 0.255 0.230 0.251
336 0.389 0.405 0.177 0.274 0.271 0.297 0.253 0.270
720 0.448 0.440 0.202 0.297 0.346 0.347 0.247 0.274

Avg 0.378 0.394 0.172 0.268 0.249 0.278 0.229 0.253

Replace

Samba Attention

96 0.323 0.364 0.151 0.246 0.172 0.216 0.205 0.247
192 0.375 0.391 0.167 0.259 0.218 0.257 0.250 0.264
336 0.398 0.410 0.183 0.278 0.278 0.303 0.261 0.278
720 0.462 0.448 0.212 0.304 0.354 0.351 0.257 0.278

Avg 0.390 0.403 0.178 0.272 0.256 0.282 0.243 0.267

Attention Samba

96 0.320 0.361 0.148 0.245 0.165 0.212 0.191 0.224
192 0.364 0.386 0.165 0.260 0.217 0.261 0.240 0.259
336 0.394 0.408 0.180 0.277 0.279 0.305 0.252 0.270
720 0.461 0.450 0.204 0.299 0.358 0.356 0.253 0.277

Avg 0.385 0.401 0.174 0.270 0.255 0.284 0.234 0.258

Attention Attention

96 0.323 0.362 0.154 0.248 0.169 0.212 0.203 0.244
192 0.362 0.383 0.165 0.258 0.222 0.260 0.239 0.264
336 0.394 0.403 0.178 0.272 0.281 0.303 0.249 0.277
720 0.454 0.438 0.211 0.302 0.353 0.350 0.251 0.279

Avg 0.383 0.396 0.177 0.270 0.256 0.281 0.236 0.266

Table 15: Forecasting of input-96-predict-96 re-
sults. Here, the iTransformer results are repro-
duced on our own, which is a little different from
its officially reported results.

Models
SAMBA FTP FTP w/D iTransformer iTransformer w/D

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.146 0.244 0.190 0.273 0.173 0.260 0.150 0.242 0.148 0.239

ETTh1 0.376 0.400 0.380 0.396 0.377 0.395 0.391 0.407 0.385 0.404

ETTh2 0.288 0.340 0.305 0.354 0.304 0.453 0.299 0.349 0.294 0.345

ETTm1 0.315 0.357 0.335 0.367 0.320 0.361 0.345 0.379 0.344 0.375

ETTm2 0.172 0.259 0.176 0.262 0.174 0.258 0.184 0.270 0.179 0.265

Traffic 0.388 0.261 0.498 0.330 0.457 0.300 0.398 0.272 0.397 0.271

Weather 0.165 0.211 0.186 0.227 0.177 0.217 0.178 0.218 0.173 0.214

Figure 10: Forecasting results on simulated time
series to Verify SAMBA’s ability to capture cycli-
cal dependency.

7% improvement in datasets with a larger number of variables, such as weather, ECL, and traffic.
However, SAMBA still achieves the overall optimal performance, indicating the superiority of the
proposed SAMBA block.

L HANDLE COMPLEX PERIODIC SIGNAL

The ability to handle complex cyclical signals is an important capability of the model. We create
cyclical signals and train SAMBA on them. Figure 10 demonstrates that SAMBA can effectively
capture the periodicity of the signals, leading to accurate predictions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

M ERROR BARS

We evaluate the robustness of SAMBA with 5 different sets of random seeds. For each seed, we
compute the MSE and MAE scores presented in Table 16. The small variances observed indicate that
our model is robust to the choice of random seeds.

Table 16: Robustness of SAMBA performance. The results are obtained from five random seeds.

Dataset ETTh1 ETTm1 Weather

Horizon MSE MAE MSE MAE MSE MAE

96 0.376±0.001 0.400±0.002 0.315±0.000 0.357±0.001 0.165±0.003 0.211±0.002
192 0.432±0.003 0.429±0.001 0.360±0.000 0.383±0.001 0.271±0.002 0.297±0.000
336 0.477±0.001 0.447±0.002 0.389±0.005 0.371±0.003 0.271±0.007 0.297±0.008
720 0.488±0.003 0.471±0.002 0.448±0.005 0.440±0.004 0.346±0.010 0.347±0.007

N FULL RESULTS

N.1 FULL RESULTS OF EVALUATING THE UNIVERSALITY OF DISENTANGLED ENCODING

We utilize Transformer and their variants, including Informer (Zhou et al. (2021))and PatchTST (Nie
et al. (2022)), to validate the universality of our proposed disentangled encoding strategy. Table 5
shows the average results due to the limited pages. Hence, we provide the full results in Table 17. It
demonstrates that our strategy is effective not only for Mamba but also for Transformer-based models.
Significant improvements indicate that these models did not properly model and introduce cross-
variate dependency, while our strategy effectively alleviates these issues. Therefore, this disentangled
encoding strategy is a model-agnostic method and has the potential to be adopted by other models.

N.2 FULL FORECASTING RESULTS

In section 6.1, we provide the average forecasting results due to the limited pages. Table 18 shows
the full forecasting results. It demonstrates that our proposed SAMBA achieves SOTA performance
(e.g., ETT, Traffic, Solar-Energy) or comparable performance (e.g., Weather, Exchange) overall.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 17: Full results of Transformer with our proposed disentangled encoding strategy.

Models Transformer PatchTST Informer
(2017) (2022) (2021)

Metric MSE MAE MSE MAE MSE MAE

ETTh1

Original

96 0.863 0.721 0.414 0.419 0.924 0.719
192 0.883 0.750 0.460 0.445 1.051 0.786
336 1.081 0.855 0.501 0.466 1.132 0.827
720 1.163 0.861 0.500 0.488 1.132 0.832

Avg 0.997 0.797 0.469 0.454 1.060 0.791

+Disentangled

96 0.393 0.415 0.376 0.394 0.395 0.412
192 0.459 0.464 0.449 0.437 0.463 0.465
336 0.507 0.493 0.486 0.452 0.518 0.502
720 0.568 0.537 0.488 0.471 0.578 0.559

Avg 0.481 0.477 0.450 0.439 0.489 0.485

ETTm1

Original

96 0.548 0.524 0.329 0.367 0.618 0.556
192 0.631 0.587 0.367 0.385 0.738 0.630
336 0.804 0.691 0.399 0.410 1.012 0.776
720 1.110 0.832 0.454 0.439 1.113 0.820

Avg 0.773 0.656 0.387 0.400 0.870 0.696

+Disentangled

96 0.408 0.434 0.323 0.362 0.456 0.469
192 0.419 0.435 0.362 0.383 0.448 0.442
336 0.470 0.476 0.394 0.403 0.467 0.450
720 0.518 0.499 0.454 0.438 0.509 0.475

Avg 0.454 0.461 0.383 0.396 0.470 0.459

Weather

Original

96 0.395 0.427 0.177 0.218 0.300 0.384
192 0.619 0.560 0.225 0.259 0.598 0.544
336 0.689 0.594 0.278 0.297 0.578 0.523
720 0.926 0.710 0.354 0.348 1.059 0.741

Avg 0.657 0.572 0.259 0.281 0.634 0.548

+Disentangled

96 0.174 0.214 0.169 0.215 0.180 0.251
192 0.221 0.254 0.213 0.256 0.244 0.318
336 0.278 0.296 0.268 0.295 0.282 0.343
720 0.358 0.349 0.340 0.345 0.377 0.409

Avg 0.258 0.279 0.248 0.278 0.271 0.330

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 18: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of TimesNet (2022). The input sequence
length is 96 for all baselines. Avg means the average results from all four prediction lengths.

Models SAMBA CARD FTP iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
Ours (2024) (2023) (2023) (2023) (2022) (2022) (2023) (2022) (2023) (2022a) (2022) (2022b) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.315 0.357 0.351 0.379 0.335 0.367 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.360 0.383 0.386 0.393 0.366 0.385 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.389 0.405 0.419 0.412 0.398 0.407 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.448 0.440 0.479 0.445 0.461 0.443 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.378 0.394 0.409 0.407 0.392 0.401 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2 96 0.172 0.259 0.185 0.270 0.176 0.262 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.238 0.301 0.248 0.308 0.244 0.306 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.300 0.340 0.309 0.348 0.309 0.348 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.394 0.394 0.411 0.402 0.412 0.410 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.276 0.322 0.288 0.332 0.285 0.331 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.376 0.400 0.444 0.439 0.380 0.396 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.432 0.429 0.501 0.471 0.432 0.427 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.477 0.437 0.529 0.485 0.480 0.437 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.488 0.471 0.524 0.501 0.504 0.485 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.443 0.432 0.500 0.474 0.450 0.439 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.288 0.340 0.318 0.361 0.305 0.354 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.373 0.390 0.399 0.409 0.389 0.408 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.380 0.406 0.435 0.441 0.415 0.432 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.412 0.432 0.438 0.451 0.432 0.451 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.363 0.392 0.398 0.416 0.385 0.411 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
C

L

96 0.146 0.244 0.181 0.271 0.190 0.273 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.162 0.258 0.188 0.277 0.191 0.274 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.177 0.274 0.204 0.292 0.208 0.294 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.202 0.297 0.244 0.322 0.251 0.326 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.172 0.268 0.204 0.291 0.210 0.291 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

E
xc

ha
ng

e 96 0.083 0.202 0.086 0.205 0.084 0.201 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.176 0.298 0.182 0.303 0.174 0.295 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.327 0.413 0.342 0.432 0.349 0.427 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.839 0.689 0.970 0.745 0.864 0.700 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.356 0.401 0.395 0.421 0.368 0.406 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
af

fic

96 0.388 0.261 0.455 0.313 0.498 0.330 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.411 0.271 0.469 0.315 0.500 0.332 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.428 0.278 0.482 0.319 0.512 0.332 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.461 0.297 0.518 0.338 0.534 0.342 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.422 0.276 0.481 0.321 0.511 0.334 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea

th
er 96 0.165 0.214 0.164 0.212 0.186 0.227 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336

192 0.214 0.255 0.212 0.253 0.232 0.264 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.271 0.297 0.269 0.294 0.288 0.304 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.346 0.347 0.349 0.346 0.361 0.351 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.249 0.278 0.249 0.276 0.267 0.287 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

So
la

r-
E

ne
rg

y 96 0.186 0.217 0.210 0.249 0.244 0.293 0.203 0.237 0.322 0.339 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249 0.884 0.711
192 0.230 0.251 0.242 0.274 0.265 0.298 0.233 0.261 0.359 0.356 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272 0.834 0.692
336 0.253 0.270 0.260 0.287 0.284 0.312 0.248 0.273 0.397 0.369 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296 0.941 0.723
720 0.247 0.274 0.268 0.296 0.281 0.312 0.249 0.275 0.397 0.356 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.295 0.882 0.717

Avg 0.229 0.253 0.245 0.277 0.269 0.304 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

1st Count 34 29 4 5 1 3 2 3 2 5 1 3 0 0 0 0 0 0 2 0 0 0 4 0 0 0 0 0

Table 19: Results of the linear model, Mamba, and Transformer w/ or w/o patching on ETTm1
dataset.

Models Linear Model Mamba Transformer

w/o patching w/ patching w/o patching w/ patching w/o patching w/ patching

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.383 0.400 0.366 0.388 0.517 0.508 0.341 0.377 0.643 0.575 0.364 0.394

192 0.413 0.415 0.400 0.404 0.575 0.546 0.378 0.399 0.805 0.664 0.394 0.404

336 0.441 0.435 0.429 0.425 0.730 0.634 0.413 0.421 0.882 0.737 0.429 0.430

720 0.497 0.469 0.485 0.460 0.873 0.704 0.474 0.465 0.928 0.752 0.468 0.4600

Avg. 0.434 0.469 0.420 0.419 0.674 0.598 0.402 0.416 0.815 0.682 0.414 0.422

O DISCUSSION ON THE DISENTANGLED ENCODING STRATEGY

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

We use x layers of SAMBA and y layers of bi-SAMBA (where x and y can be different values) to
separately encode temporal dependencies and cross-variable dependencies.

Then, the aggregation formula can be expressed mathematically as follows:

Eo = FFN(Etime∥Evar)

FFN is a fully connected feed-forward neural network, which can be expressed as:

FFN(x) = W2σ(W1x+ b1) + b2

where x = Etime∥Evar represents the concatenated input vector, W1,W2 are weight matrices, b1,b2

are bias vectors, σ is a non-linear activation function (e.g., ReLU).

Since backpropagation involves the derivatives of the output with respect to the inputs, we analyze
the derivatives of Eo with respect to Etime and Evar.

Derivative with Respect to Etime

For the concatenated input:

x =

[︃
Etime
Evar

]︃
The derivative of Eo with respect to Etime is:

∂Eo

∂Etime
=

∂Eo

∂x
· ∂x

∂Etime

Since x contains Etime as its first part:
∂x

∂Etime
= I

where I is the identity matrix.

The derivative of the FFN with respect to the input x is:

∂Eo

∂x
= W2 · diag(σ′(W1x+ b1)) ·W1

Thus:
∂Eo

∂Etime
= W2 · diag(σ′(W1x+ b1)) ·W1 ·Ptime

where Ptime is the projection matrix that selects the Etime part from the concatenated vector.

Derivative with Respect to Evar

Similarly, the derivative with respect to Evar is:

∂Eo

∂Evar
= W2 · diag(σ′(W1x+ b1)) ·W1 ·Pvar

where Pvar is the projection matrix that selects the Evar part from the concatenated vector.

Summary

∂Eo

∂Etime
= W2 · diag(σ′(W1x+ b1)) ·W1 ·Ptime

∂Eo

∂Evar
= W2 · diag(σ′(W1x+ b1)) ·W1 ·Pvar

We can observe that the derivative of Eo with respect to Etime involves only Ptime, while the derivative
with respect to Evar involves only Pvar. Therefore, even during backpropagation, the aggregation
operation avoids any entanglement.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

P FURTHER DISCUSSION BETWEEN ORDER AND SEMANTIC DEPENDENCIES

In this section, we provide a detailed discussion on the differences and connections between order
and semantic dependencies. As previously mentioned, order dependency is tied to the direct input
sequence and emphasizes local temporal ordering relationships, while semantic dependency abstracts
over these sequences to uncover more global or stable latent patterns in time series data. Below is a
tangible example illustrating order and semantic dependencies.

Example 1. Suppose we have a sequence of electricity consumption values,
[2, 8, 10, 5, 2, 2, 7, 12, 8, 2], exhibiting a clear daily periodic pattern: electricity consumption
increases in the morning, peaks during midday, and decreases at night. When considering order
dependency, the model observing [2, 8] might predict 10 as the next value, assuming the upward
trend continues. However, if we examine another part of the sequence, [2, 8, 10, 5, 2, 2, 7, 12], order
dependency might incorrectly predict the trend will continue upward, while semantic dependency
captures the cyclic nature of the data and recognizes this as part of the descending phase of the cycle,
predicting that the sequence will likely decrease to 8 or a lower value.

Beyond periodicity, semantic dependency can also be explained through shape patterns or structural
motifs in a time series. Specifically, semantic dependency identifies higher-level, invariant patterns
in the data that enable the inference of the sequence’s full structure from partial observations,
transcending the explicit order of individual values. The following example provides an intuitive
illustration.

Example 2. Consider a time series, [0.1, 0.3, 1.0, 0.5, 0.2, 0.1], representing the electrical activity of
a heartbeat (ECG signal). A typical heartbeat exhibits a distinctive shape: it begins with a small
upward bump (P wave), followed by a sharp spike (QRS complex), and ends with a smaller bump (T
wave). Semantic dependency enables the model to interpret the observed segment [0.1, 0.3, 1.0] as
part of this larger heartbeat structure. The model recognizes the segment as an incomplete heartbeat
signal and predicts that it will likely be followed by [0.5, 0.2, 0.1] to complete the full pattern.

Finally, in our formulation, semantic dependency is designed to focus on intra-variable patterns, i.e.,
patterns within a single variable’s time series. Interactions between different variables are captured
through cross-variate dependency. Such a definition considers the intrinsic properties of each variable
independently, enabling a more effective analysis of their distinct contributions.

Q DISCUSSION ON THE MAMBA AND ITS ADVANTAGE OF MAMBA OVER
TRANSFORMER IN LTSF

Q.1 MAMBA: FROM CLASSICAL THEORY TO MODERN INNOVATIONS

State Space Model (SSM) originates from control theory and is a mathematical tool used to describe
the dynamics of systems. It has been widely applied in computational neuroscience, signal processing,
and engineering control. The core idea is to use the state vector to represent the internal dynamics
of a system and model the relationship between input and output through input vectors and output
matrices.

The continuous-time dynamic system of SSM is represented as:

ḣ(t) = A(t)h(t) +B(t)x(t),

y(t) = C(t)h(t) +D(t)U(t),

where h(t) is the state vector, representing the internal state of the system at time t, ḣ(t) = d
dth(t),

x(t) is the input signal, y(t) is the output signal, A(t),B(t),C(t),D(t) are the state matrix, input
matrix, output matrix, and direct feedthrough matrix, respectively.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

In many practical systems, the direct feedthrough matrix D(t) is often zero, meaning the input signal
does not directly influence the output but instead affects the output indirectly through the state vector.
This assumption simplifies the equations to:

ḣ(t) = A(t)h(t) +B(t)x(t),

y(t) = C(t)h(t).

This simplification makes the equations more concise and easier to work with, providing a strong
foundation for further mathematical analysis and engineering applications.

Modern deep learning and computational frameworks are built around discrete-time data, while the
original SSM is a continuous-time model. To make it compatible with these frameworks, discretization
is required to convert continuous-time equations into discrete-time ones while preserving their
dynamic properties.

The discretized SSM equations are:

ht = Āht−1 + B̄xt,

yt = Cxt,

where A ∈ RN×N , and B,C ∈ RN×D are learnable parameters that map input sequence xt ∈ RD

to output sequence yt ∈ RD through an hidden state ht ∈ RN . In particular, A and B are the
discretized forms of A and B using ∆ for seamless intergration deep learning. They are computed
using the Zero-Order Hold (ZOH) method:

A = exp (∆A), B = (∆A)−1(exp (∆A)− I) ·∆B.

The discretization provides the following advantages:

• Compatibility with discrete data: The discretized equations align with how computers
handle sequential data.

• Parallel computation: Discretized models can utilize matrix operations and convolutional
techniques for parallel processing, significantly improving computational efficiency.

• Long-sequence modeling: The discrete model retains the ability to model dynamic systems
effectively, even in long-sequence tasks.

Through discretization, SSM adapts to modern computing requirements and becomes a viable tool
for deep learning applications.

While Transformer models excel in sequence modeling tasks, their global attention mechanism incurs
O(N2) computational complexity, making it computationally expensive for long sequences. Modern
SSM addresses this limitation through the following advancements:

• Parallelized computation: To overcome the challenge of parallelizing computations in
recursive models, modern SSMs achieve parallelization by reformulating recursive equations
into convolutional forms:

y = x ∗K,

where the convolution kernel K represents the dynamics over multiple time steps:

K = (CB̄,CĀB̄,CĀ
2
B̄, . . .).

• Hardware-friendly optimization: Models like S4 and S4nd leverage hardware-aware
designs, combining parallel scanning and kernel fusion for efficiency.

• Learnable parameterization: Modern SSM incorporates learnable parameters for Ā, B̄,C,
enabling better adaptation to data during training.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

However, a significant challenge must be addressed for SSMs to become a strong alternative to
Transformers. In the Transformer architecture, contextual information is stored in the attention
matrix. In contrast, SSMs lack a similar mechanism, making them less effective in learning context.
The emergence of Mamba offers a solution to this critical issue. Mamba introduces the following
innovations to tackle this problem:

• Dynamic selection mechanism: Mamba introduces data-dependent mechanisms for adjust-
ing input and output matrices and step size dynamically:

B = LinearN (xt), C = LinearN (xt), ∆ = softplus(LinearN (xt)).

• Multi-branch structure: Each Mamba layer includes two branches:
– A Selective SSM branch to capture sequential and semantic dependencies.

x′
t = SelectiveSSM(σ(Conv1D(Linear(xt)))).

– A residual branch to enhance stability and mitigate overfitting using gating mechanisms.

y = LayerNorm(x′
t ⊗ (σ(Linear(xt))) + xt).

• Hardware efficiency: Mamba integrates Hardware-aware Algorithm that allows efficient
storage of (intermediate) results through parallel scanning, kernel fusion, and recalculation,
making it well-suited for long-sequence tasks.

State Space Model has evolved from a control theory tool to a robust framework for deep learning
tasks. Its simplifications and discretization adapt it to modern computing needs, while recent advance-
ments like Mamba extend its capabilities for long-sequence modeling, addressing the computational
challenges of Transformer models. These developments establish SSM as a powerful and efficient
tool for dynamic system representation in deep learning.

Q.2 THE ADVANTAGE OF MAMBA OVER TRANSFORMER OVER LTSF

Mamba, based on modern State Space Models (SSMs), offers significant advantages over Transformer
models in time series forecasting. This document elaborates on three key aspects that highlight
Mamba’s superior performance: (i) its ability to inherently capture order dependency through
SSMs, (ii) a selection mechanism that enables semantic dependency modeling, and (iii) near-linear
complexity for efficient cross-variate dependency encoding.

Mamba leverages SSMs to process sequential data recursively, inherently capturing the order depen-
dency in time series:

• Recursive Dynamics: The core of SSM lies in its recursive computation mechanism. Using
the state update formula:

Xt = ĀXt−1 + B̄Ut,

Mamba updates the state vector step by step, effectively modeling the temporal relationships
between different time steps. This is particularly well-suited for capturing the dynamic
nature of time series data.

• Comparison with Transformer: Transformers rely on self-attention mechanisms to capture
global dependencies but lack inherent order modeling capabilities. Positional encodings
must be added to compensate for this limitation. In contrast, Mamba’s SSM-based recursive
framework naturally incorporates order information, making it better equipped for time
series forecasting tasks that require long-term dependency modeling.

Mamba incorporates a selection mechanism, similar to self-attention, which allows it to dynamically
focus on or ignore specific inputs, thereby improving semantic dependency learning:

• Mechanism Details:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

– Mamba dynamically adjusts input weights through linear transformations (e.g., B =
LinearN (xt)) and nonlinear activation functions such as Softplus.

– This enables the model to assign different levels of importance to input signals at
different time steps, filtering out irrelevant features while retaining significant ones.

• Semantic Modeling: In time series forecasting, inputs at different time steps can have
varying levels of relevance. Mamba’s selection mechanism efficiently learns these semantic
dependencies, improving its understanding of complex temporal patterns.

Mamba’s near-linear complexity offers a significant efficiency advantage in encoding cross-variate
dependencies, which are typically computationally expensive in large-scale time series:

• Efficient Cross-Variate Modeling:
– Time series forecasting often involves modeling interactions among multiple variables.

Mamba achieves this efficiently using the recursive structure of SSMs, where the state
update matrix Ā and input matrix B̄ encode these dependencies.

– Unlike Transformers, Mamba does not require explicit computation of all pairwise
interactions, reducing computational overhead.

• Comparison with Transformer:
– Transformer’s self-attention mechanism computes interactions across all input dimen-

sions, leading to O(N2) complexity. This becomes a bottleneck for large-scale time
series with many variables.

– Mamba’s near-linear complexity enables it to handle large amounts of variates effi-
ciently while maintaining competitive performance in cross-variate dependency model-
ing.

Mamba outperforms Transformer in time series forecasting through three key advantages:

1. Recursive Processing: SSMs inherently capture order dependency, making Mamba well-
suited for LTSF.

2. Selection Mechanism: Similar to self-attention, this mechanism enables dynamic focus on
relevant inputs, enhancing semantic understanding.

3. Near-Linear Complexity: Mamba efficiently models cross-variate dependencies, offering
a computational advantage in handling large-scale time series.

R DISCUSSION ON THE DIFFERENCE BETWEEN ORDER AND SEMANTIC
DEPENDENCY WITH SEASONAL AND TREND PATTERNS

Order dependency describes the sequential link between consecutive observations in a time series,
where each data point is affected by its preceding value(s). On the other hand, semantic dependency
refers to the underlying factors that influence time series behavior over extended periods, like
high-level semantic in the field of CV and NLP.

In past time series forecasting, researchers consider time seires data from the perspective of seasonal
and trend components. However, this view can be considered as a specific example of our proposed
dependency view. Trend information in particular represents a type of order dependency, illustrating
the sequential progression and causal relationships inherent in time series data. For example, a gradual
increase in temperature over time shows how current values are influenced by past observations,
establishing a long-term directional trend in the data.

Seasonal patterns can be regards as a type of semantic dependency, encapsulating more abstract
and hidden relationships that extend across non-consecutive intervals. For example, repeated cycles

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

in electricity consumption during the summer are influenced by external latent factors such as
temperature and user behavior. These factors are not directly correlated with adjacent time points, but
indicate deeper contextual impacts. Although models like RLinear that capture order dependency
effectively have demonstrated that straightforward linear models can competently capture cyclical
signals (Li et al. (2023)), this is mainly because these strict cyclical patterns are a kind of linear
semantic. But the core of model to forecast is to utilize the periodic semantics.

S DISCUSSION ON LINEAR MODEL ORDER DEPENDENCY

Regarding the statement "linear models can effectively model order dependency," it is because they
inherently preserve the temporal order by linearly regressing historical data points to forecast future
values. If the temporal order of the input data points is altered, the trained linear model will perform
poorly, which we refer to as’sensitivity.’ This argument has been empirically demonstrated in Zeng
et al. (2023).

T DISCUSSION ON IMPACT OF PROPOSED METHOD

The impact of real-life applications Our model can effectively provide accurate predictions for
long-term time series, which is pivotal for making informed decisions and exerts multifaceted impacts
on society:

• Economic Planning: Governments and enterprises can utilize long-term forecasting out-
comes for more efficacious economic strategizing and budget allocation, thereby fostering
economic growth and stability.

• Resource Management: Long-term time series forecasting aids in the sustainable steward-
ship of resources, such as in the realms of energy, agriculture, and environmental conserva-
tion, where future demands and supplies can be anticipated to prevent resource depletion.
As demonstrated in our ETT and ECL dataset, accurate predictions of electricity-related
data can assist relevant enterprises and governments in formulating policies to conserve
resources.

Academic Community Impact This paper presents three contributions with far-reaching impact.

• We have summarized and, for the first time, formally defined the three types of dependencies
present within time series, which will aid the academic community in designing more
efficacious models based on these dependencies.

• Furthermore, we have adopted a novel architecture, Mamba, and elucidated its suitability
for time series forecasting. We have also highlighted the prevalent overfitting tendencies of
past architectures and provided a convenient and efficacious modification approach. These
contributions can facilitate the research community in exploring the use of Mamba as a
backbone for time series tasks or in seeking other novel architectures that are better suited,
thus fostering the flourishing development of time series research.

• We have also proposed a decoupled strategy for simultaneously encoding temporal and
variate relationships, thereby reliably introducing cross-variate dependencies and achieving
state-of-the-art performance in both low and high-dimensional datasets. This generalizability
effectively ensures the effectiveness of our proposed method and its capability for widespread
application in real-life scenarios.

U DISCUSSION ON THE DIFFERENCE BETWEEN MAMBA AND SAMBA

Figure 11 shows the difference between Mamba and SAMBA. The primary difference between
Mamba and SAMBA lies in the removal of the nonlinear activation function between the SSM

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

and Conv1D layers in SAMBA. This design choice aims to reduce unnecessary nonlinearity while
preserving essential semantic dependencies in the time series data.

(a) MAMBA

LayerNorm

Conv

σ

S
S

M

X

Linear

Linear Linear

σ

(b) SAMBA

Figure 11: Comparison between MAMBA and SAMBA architectures.

V DISCUSSION ON FUTURE WORK

Although our work has made three significant contributions, we have also identified some limitations
in our study.

• Limitations of the Work Scope. We have only demonstrated the significant negative impact
of nonlinear activation functions on long-term time series forecasting tasks, where their
removal leads to noticeable improvements, as well as the effectiveness of the decoupling
strategy. However, we have not yet proven that these findings hold true for other tasks such
as short-term time series forecasting, classification, etc.

• Exploration of Scaling Laws. A promising direction for current Transformer-based long-
term time series forecasting models is to utilize pre-trained language models to verify the
scaling laws that have been widely validated in natural language processing and computer
vision. Mamba, as a potential alternative model to Transformer, has also been preliminarily
proven to conform to scaling laws in the fields of NLP and CV in the current work. However,
this paper lacks an exploration of whether Mamba also follows scaling laws in time series,
which would affect its potential for continued exploration in the future. Additionally, the
decoupling strategy also enables researchers to explore whether scaling laws are satisfied
individually in the temporal and variate dimensions.

W SHOWCASES

To facilitate a clear comparison between different models, we present additional prediction examples
from five key datasets in Figures 12 through 16. These examples are provided by the following
models: SAMBA, CARD (Wang et al., 2024), FTP (Zhou et al., 2023), iTransformer (Liu et al.,
2023), PatchTST (Nie et al., 2022), and DLinear (Zeng et al., 2023). Among these models, SAMBA
demonstrates the most accurate predictions of future series variations, demonstrating superior perfor-
mance.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

SAMBA CARD

FTP iTransformer

PatchTST DLinear

Figure 12: Visualization of input-96-predict-96 results on the Traffic dataset.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

SAMBA CARD

FTP iTransformer

PatchTST DLinear

Figure 13: Visualization of input-96-predict-96 results on the ECL dataset.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

SAMBA CARD

FTP iTransformer

PatchTST DLinear

Figure 14: Visualization of input-96-predict-96 results on the Weather dataset.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

SAMBA CARD

FTP iTransformer

PatchTST DLinear

Figure 15: Visualization of input-96-predict-96 results on the Solar-Energy dataset.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

SAMBA CARD

FTP iTransformer

PatchTST DLinear

Figure 16: Visualization of input-96-predict-96 results on the Exchange dataset.

40

	Introduction
	Related works
	Problem Formulation
	Empirical Exploration of Mamba for LTSF
	Why Mamba? A Deep Dive into Its Suitability for LTSF
	The Pitfalls of Nonlinearity: Overfitting in Deep LTSF Models

	SAMBA
	Simplifying Mamba for LTSF
	Disentangled Dependency Encoding

	Experiments
	Long-Term Time Series Forecasting
	Ablation Experiment
	Evaluating the Universality of Disentangled Encoding Strategy
	Efficiency Analysis of SAMBA

	Conclusions and Future Work
	Theoretical Discussions
	Proof for Theorem 1
	Rationality of the Assumption (2) in Theorem 1

	Implementation Details
	Dataset Descriptions
	Baseline Methods and Implementations
	Experiment Details
	Implementation Details of Section 4

	Why Choose Mamba to Encode Cross-Variate Dependency?
	The rationale of using mamba to encode unorder variates sequence
	Advantage of Using Mamba to Encode Cross-variate Dependency
	Replacing Mamba with Transformer to Encode Cross-Variate Dependency

	Computational Complexity Analysis
	Additional Ablational Experiment
	Additional experiments to verify mamba's advantages
	Order Dependency
	Semantic Dependency
	Nonlinear activation function

	Additional Efficiency Analysis
	Hyperparameter Sensitivity
	Increasing Lookback Length
	Ablation Study on SAMBA's Encoding Component and Its Superiority over Self-Attention
	iTransformer and FTP with Disentangled Encoding strategy
	Handle Complex Periodic Signal
	Error Bars
	Full Results
	Full Results of Evaluating the Universality of Disentangled Encoding
	Full Forecasting Results

	Discussion on the Disentangled Encoding Strategy
	Further Discussion Between Order and Semantic Dependencies
	Discussion on the Mamba and Its Advantage of Mamba over Transformer in LTSF
	Mamba: From Classical Theory to Modern Innovations
	The Advantage of Mamba over Transformer over LTSF

	Discussion on the Difference Between Order and Semantic Dependency with Seasonal and Trend Patterns
	Discussion on Linear Model Order Dependency
	Discussion on Impact of Proposed Method
	Discussion on the Difference between Mamba and SAMBA
	Discussion on Future Work
	Showcases

