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ABSTRACT

Direct Alignment Algorithms (DAAs) such as DPO have become a common way
to post-train and align LLMs with human preferences. However, DAAs have been
observed to over-optimize their implicit reward model and decrease the likeli-
hood of preferred responses. We provide evidence for a hypothesis that the over-
optimization stems in part from a mismatch in the partition function estimate of
the learned model and the optimal model. In particular, transformers return a nor-
malized distribution over tokens and therefore have a partition function of one,
suggesting that the true partition function should remain fixed throughout train-
ing. However, existing DAAs do not account for this as their objectives do not
include terms to optimize the partition function. To counteract this undesired
side-effect of DAAs, we examine using objectives that add a regularization term
to maintain the total length-normalized probabilities of the chosen and rejected
responses. To better understand over optimization, we investigate how response
likelihood changes are distributed over the tokens with and without regularization.
We find that a significant portion of the likelihood changes are due to a small set
of outlier tokens, which explains how DAAs improve generation quality despite
decreasing the likelihoods of chosen responses. We apply the proposed regular-
ization to reference-based (DPO) and reference-free (SimPO) methods and find
(1) improved trade-offs between generation quality and general benchmark capa-
bility and (2) improvements in reward modeling across datasets. For example, on
Llama-3.1-8B-Instruct, we see both a > 20% increase in AlpacaEval2 scores and
> 9% performance gains on general benchmarks. Additionally, we find that the
added regularization term effectively mitigates the amount of displacement within
preferred responses overall, and for the outlier tokens specifically, by utilizing
low-likelihood tokens.

1 INTRODUCTION

With the rise in interactions between large language models (LLMs) and humans, training LLMs to
produce responses that are considered desirable by human users has become a vital step. Such train-
ing is commonly performed with methods that learn what it means for a response to be desirable from
a dataset of paired preferred and non-preferred responses, such as Reinforcement Learning from Hu-
man Feedback (RLHF) Ouyang et al. (2022) and Direct Preference Optimization (DPO) Rafailov
et al. (2023). The main difference between the two approaches is RLHF relies on a two-step training
process while DPO uses only one. RLHF first learns a reward function that assigns more value to the
preferred versus non-preferred response, and then uses the reward function to train an LLM policy.
DPO directly updates the LLM by maximizing the likelihood of the preferred versus non-preferred
responses. Due to the simplicity and reduced computational cost of DPO, there has been a rise in the
use and development of Direct Alignment Algorithms (DAAs), which train directly on the preferred
and non-preferred paired dataset.

Despite their popularity, recent work has identified a critical limitation of DAAs: they can over-
optimize their implicit reward model and ultimately constrain improvements to the quality of the
LLM’s generations Razin et al. (2024); Huang et al. (2024). A common, concerning manifestation
of over-optimization is likelihood displacement Razin et al. (2024), a phenomenon whereby the
likelihoods of both the preferred and the non-preferred responses drop simultaneously, potentially
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resulting in harmful behavior. However, despite these documented issues, DAAs are nonetheless
still successfully used in post-training Dubey et al. (2024); Groeneveld et al. (2024).

Several hypotheses have been proposed to explain the causes of over-optimization in DAAs: high
embedding or textual similarity between preferred and non-preferred responses Pal et al. (2024);
Tajwar et al. (2024); Razin et al. (2024), or the insufficient regularization provided by the shape of
the implicit reward function Huang et al. (2024); Gupta et al. (2025). However, no single explanation
satisfactorily generalizes across all DAA objectives. For example, a common difference between
DAAs is the presence versus absence of a reference model in the reward computation (e.g., DPO uses
a reference model for its reward, while SimPO Meng et al. (2024) is reference-free), and hypotheses
that explain over optimization for a reference-free method do not hold or have not been applied
for methods without a reference model and vice versa. This is evidenced by the fact that existing
analyses on over-optimization Yoon et al. (2025); Huang et al. (2024); Razin et al. (2024) focus on
single instances of DAA, either reference-based or reference-free, and not both. The limitations of
the current hypotheses motivate our research question: how can we explain and mitigate reward
over-optimization for both reference-based and reference-free rewards?

In this work, we propose that reward over-optimization—particularly likelihood displacement—
stems from a lack of normalization of the implicit reward. To counteract this, we introduce a
regularization term designed to conserve the total response probability within preferred and non-
preferred response pairs. To test the validity of our regularization term, we evaluate its impact on
both reference-based (DPO) and reference-free (SimPO) methods. We find that its inclusion leads
to (1) improved trade-offs between generation quality and general capability benchmarks, and (2)
comparable or better reward modeling across datasets. Furthermore, our analysis reveals new in-
sights into the mechanics of likelihood displacement. We discover that this phenomenon is highly
concentrated, with a small subset of outlier tokens accounting for the majority of likelihood shift.
These findings further support the use of our regularization term, and shed more light on why DAAs,
like DPO and SimPO, improve generation despite causing likelihood displacement.

We provide a summary of the key results below:

1. We provide evidence that miscalibrated rewards in DAAs can be attributed to a poor esti-
mation of the partition functions.

2. We identify outlier tokens as a significant contributor to likelihood displacement and find
our regularization mitigates their outsized impact on response likelihood by utilizing low-
likelihood tokens.

3. We demonstrate that our modified objective improves trade-offs between generation quality
and benchmark performance Lin et al. (2023) for both DPO and SimPO.

2 BACKGROUND

In this section, we introduce how RLHF and DPO utilize preference data.

RLHF. The preference learning component of RLHF is composed of two stages. The first consists
of training a reward model rϕ(x, y) parameterized by ϕ on pairwise comparisons to assign scores
to generated responses y to a given prompt x. Given a pairwise preference yw ≻ yl, the reward
model rϕ(x, y) is trained to minimize the negative log-likelihood of the reward assignments under
the Bradley-Terry model

− log p(yw ≻ yl) = − log σ(r(x, yw)− r(x, yl)), (1)

where σ is the logistic function. Using this reward model in the second stage, the language model
πθ is then trained to maximize the expected reward of its responses under a KL constraint—added
to mitigate drifting too far from the original model. The objective can be written as

Ex∼D,y∼πθ(·|x)
[
r(x, y)− βKL[πθ(·|x)||πref(·|x)]

]
, (2)

where πθ is the current model, πref is the reference model, and β is a hyperparameter for the KL
constraint.
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Figure 1: To address the lack of optimization of the partition function in the implicit rewards of
DAAs which is necessary for reward normalization, we propose a regularization term to conserve
total response probabilities. We show how despite learning the same set of rewards, if the partition
function estimate is large, this results in a negative offset in likelihoods. When the partition function
is 1, the likelihoods for the preferred response increases and the likelihood of responses outside the
preference data is conserved.

DPO. DPO is a direct alignment algorithm derived from the RLHF objective which removes the
need for an external reward model and directly updates the language model using preference data.
This is done by utilizing the fact that the optimal policy π∗ under the RLHF objective can be written
as

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
r(x, y)

β

)
, (3)

where Z(x) is defined as

Z(x) =
∑
y

πref(y|x) exp
(
r(x, y)

β

)
, (4)

and denotes the partition function, which normalizes the output distribution of π∗(y|x), ensuring the
sum of response probabilities is 1. From this, we can write the reward r(x, y) in terms of the optimal
policy and the reference policy

r(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x). (5)

Then, by defining

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (6)

which corresponds to the reward model under which πθ is optimal. We note that the partition func-
tion acts as an offset that ensures the rewards are calibrated and only when the partition function is
1 do the rewards directly correspond to log-likelihood ratios. By maximizing the likelihood of the
policy under the Bradley-Terry model, the reward model and policy are simultaneously optimized,
and under mild conditions, should result in the same optimal policy as RLHF. Expanding the reward
terms, we have that the DPO objective is

LDPO(πθ) = E(x,yw,yl)∼D

[
− log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (7)

with the partition function term cancelling out and therefore missing due to using the difference of
rewards.
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SimPO. A variant of DPO introduced to further simplify alignment training is SimPO. This variant
removes the need for a reference model by using only the current model’s likelihood of a response as
the reward, and considers length-normalized probabilities. We can write the SimPO reward rθ(x, y)
for prompt x and response y as

rθ(x, y) = βπ̄θ(y|x) + Z(x), (8)

where π̄θ(y|x) = πθ(y|x)1/|y| is the length-normalized likelihood of a response for some model πθ

with |y| being the length of the response and Z(x) is the partition function defined as

Z(x) =
∑
y

πref(y|x) exp
(
rθ(x, y)

|y|

β

)
(9)

In addition, SimPO introduces the use of a margin term to further separate the likelihoods of the
preferred and non-preferred responses. Finally, the SimPO objective can be written as follows:

LSimPO = E(x,yw,yl)∼D [− log σ (β log π̄θ(yw|x)− β log π̄θ(yl|x)− βγ)] , (10)

where γ is a hyperparameter for the margin size.

Dangers of neglecting the partition function Crucially, neither the DPO nor the SimPO objec-
tives contain the partition function Z(x). Indeed, since they consider the differences in rewards for
each pair of responses, the Z(x) terms cancel out in the respective objective formulations for DPO
and SimPO, effectively rendering them invariant to changes in Z(x). While mathematically con-
venient, this simplification deprives the model of an important factor — it does not incentivize the
preservation of a good estimate of Z(x). This blindness to Z(x) provides a compelling explanation
for likelihood displacement: as the response probabilities for a given prompt are offset together by
changes in Z(x), a poor estimate of Z(x), in particular large estimates far from 1, result in a large
negative shift in likelihood for both responses being necessary to offset the logZ(x) term. We pro-
vide an illustration of how a large estimate of Z(x) can result in reduced likelihood for responses in
Figure 1. We expect estimates of the partition function that are unoptimized and based only on two
responses to be miscalibrated, also explaining the frequency of likelihood displacement. This points
towards the need to optimize the partition function towards a better estimate.

3 METHOD

We first consider what the partition function for the rewards should be. If we consider any parame-
terized language model πθ that applies softmax to its outputs, then the output distribution is always
normalized and the partition function for the model is 1. As a result, we have the key property that
the partition function should be fixed throughout training.

However, the implicit DPO reward does not account for this constraint as the objective does not con-
tain a term for the partition function resulting in phenomena such as likelihood displacement Razin
et al. (2024). Due to difficulties in effectively estimating the partition function for preference datasets
(each prompt has only a single pair of responses), we propose a regularization term motivated by the
insight of a fixed partition function. We enforce normalization in the rewards by adding a regular-
ization term that maintains the probability mass over the set of responses seen for a prompt. Given
a preference data point with prompt x and responses yw, yl, we start with a regularization penalty of

λ

(
log

πθ(yw|x) + πθ(yl|x)
πref(yw|x) + πref(yl|x)

)2

, (11)

where λ is a hyperparameter. The penalty aims to keep the ratio of the total response probability
close to 1. Notice that the regularization term is minimized when the ratio of the total response
probabilities is 1 and the total probability assigned to the two responses under the optimized model is
the same as that under the original model. By maintaining the total probability, we mitigate offsets in
likelihood that would occur given a poor estimate of the partition function and as a result, implicitly
improve the partition function estimate. However, response probabilities decrease exponentially
with length and as responses are often hundreds of tokens long, the ratio of response probabilities
may be sensitive to differences in length or small changes in per-token probabilities. To have a more
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stable penalty and to mitigate length bias, we use length-normalized probabilities. Using π̄θ, π̄ref to
denote length-normalized probabilities, we have the following regularization penalty:

R(πθ, πref, x, yw, yl) = λ

(
log

π̄θ(yw|x) + π̄θ(yl|x)
π̄ref(yw|x) + π̄ref(yl|x)

)2

. (12)

For consistency with the regularization, we modify the original objective with length-normalization
which, with the regularization, gives the following objective for DPO:

LN-DPO(θ) = LDPO(πθ) +R(πθ, πref, x, yw, yl). (13)

We refer to the modified version of DPO as N-DPO. We also modify SimPO with the same form of
regularization, but since SimPO is already length normalized, we simply add the regularization term
resulting in:

LN-SimPO(θ) = LSimPO(πθ) +R(πθ, πref, x, yw, yl), (14)
which we refer to as N-SimPO.

4 TOKEN-WISE ANALYSIS

In this section, we consider a finer-grained analysis of the reward distribution and likelihood dis-
placement. We explore how the reward for each token changes by studying empirically the distribu-
tion of token-wise rewards with and without regularization, and a theoretical gradient analysis. Our
analysis reveals how likelihood displacement is distributed across tokens and how our regularization
term uses low-likelihood tokens to reshape the reward distribution and response likelihoods.

4.1 TOKEN-WISE REWARD ANALYSIS

To understand how the reward model changes, we analyze the token-wise rewards for each of the
methods on UltraFeedback Cui et al. (2023). We do so by considering the overall token-wise reward
distribution for each model and method as well as the distribution of the minimum token-wise reward
per sample. To provide a clear comparison across settings, we use the change in log-likelihood
per token as a normalized reward. We provide the results for Llama-3.1-8B-Instruct Dubey et al.
(2024) in Figure 3. When using DPO the peak of the minimum reward distribution is around -
10 while the overall reward distribution lies mostly within -2.5 and 2.5, suggesting that for many
samples when using DPO, the minimum reward lies far outside the typical range. This suggests that
a significant part of likelihood displacement comes from outlier tokens significantly dropping the
response likelihood. We demonstrate that this change does in fact reduce likelihood displacement
by plotting the likelihood of responses over training in Figure 2. We also observe that while the
overall token distribution does not change much between DPO and N-DPO, we see that there is
a large shift in the minimum reward distribution. This suggests that N-DPO primarily mitigates
the effect of these outlier tokens while maintaining the reward otherwise. We demonstrate how
our regularization term mitigates these outlier tokens when total likelihood decreases as seen with
Llama-3.1-8B-Instruct.

4.2 TOKEN-WISE GRADIENT ANALYSIS

We consider the gradient of

R(πθ, πref, x, yw, yl) = λ

(
log

π̄θ(yw|x) + π̄θ(yl|x)
π̄ref(yw|x) + π̄ref(yl|x)

)2

(15)

with respect to θ. First, we define the necessary notation. Let Pθ(x), Pref(x) be the total
length-normalized response probabilities under the trained and reference model respectively and
let πθ(y

(i)
w/l) be the likelihood of the ith token in a response given the previous tokens. Then, we can

write the gradient of the regularization term with respect to the parameters θ as

∇θR =
2λ

Pθ(x)
log

(
Pθ(x)

Pref(x)

) π̄θ(yw|x)
|yw|

|yw|∑
i=1

∇θ(πθ(y
(i)
w ))

πθ(y
(i)
w )

+
π̄θ(yl|x)

|yl|

|yl|∑
i=1

∇θ(πθ(y
(i)
l ))

πθ(y
(i)
l )

 .

(16)
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Llama-3.1-8B-Instruct

(a) Response likelihood over training with DPO vs. N-DPO
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(b) Response likelihood over training with SimPO vs. N-SimPO
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Figure 2: Comparison of response likelihoods between DPO/SimPO and N-DPO/N-SimPO for
Llama-3.1-8B-Instruct. On the left is the chosen response likelihood and on the right is the re-
jected response likelihood.

Notice that all of the token-wise contributions to the gradient have the same sign. The sign of
the gradients are determined by log

(
Pθ(x)
Pref(x)

)
where if the total response probability has decreased,

the gradients will be negative increasing token probabilities. If the total probability increases, the
opposite will occur. Furthermore, looking at each token-wise gradient, we have ∇θ(πθ(y

(i)))
πθ(y(i))

which
is inversely proportional to the likelihood of each token. If a token has small likelihood (e.g., 1e− 7
smaller than other tokens) the low-likelihood token’s gradient will dominate. This has been observed
in the gradient analysis in the ConfPO paper Yoon et al. (2025). Then, if there is an outlier token
with small likelihood and the response probability has decreased as seen with models such as Llama-
3.1-8B-Instruct, the regularization term will strongly increase the likelihood of the outlier tokens.
More generally, if the response likelihood has decreased significantly, the regularization term will
prioritize updating the lowest likelihood tokens to increase the overall response likelihood. In this
way, when the response likelihood decreases, the regularization term primarily shifts large negative
rewards closer to 0.

We can also consider the case when the total response probability has increased. Now, the regular-
ization term has gradients that will result in a decrease in response probability, but similar to before,
these gradients will be dominated by the low likelihood tokens. Then, when total response probabil-
ity has increased compared to the original, the regularization corrects this primarily by decreasing
the likelihood of low likelihood tokens. In this way, the overall response probability is maintained
with minimal changes to the most likely tokens, which are also most relevant for generation. In this
way, the regularization term mitigates overly large likelihoods and does so with minimal distribution
shift.

The gradient analysis reveals that introducing the regularization term effectively mitigates shifts
in response likelihood and mitigates the presence of outlier tokens. Furthermore, we find that the
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regularization term does so primarily through low likelihood tokens which have a smaller effect
on the overall sampling distribution. In this way, our regularization term demonstrates that low
likelihood tokens not only provide an approximation of the gradient Yoon et al. (2025) but also can
be utilized to shape the reward and likelihood distribution.

Llama-3.1-8B-Instruct

(a) Minimum of token likelihood changes per sam-
ple for DPO
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(c) Minimum of token likelihood changes per sam-
ple for N-DPO
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(d) Overall distribution of token likelihood changes
for N-DPO

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
0

50000

100000

150000

200000

250000

300000

350000

400000

Token Score Distribution

Figure 3: Comparison of token-wise reward distributions between DPO and N-DPO for Llama-3.1-
8B-Instruct. On the left is the distribution of the minimum token reward per sample, and on the right
is the distribution of all token rewards.

5 EXPERIMENTS

We evaluate the impact of accounting for reward normalization on downstream performance on
instruction-following tasks, common sense and reasoning, and implicit reward modeling.

5.1 EVALUATION

We focus our evaluation on understanding the effect of our modifications by comparing DPO with
N-DPO and SimPO with N-SimPO. We expect that due to the more strongly enforced normalization
of rewards, likelihood displacement would be mitigated, and more generally, the model can learn
from the preference data with less of a distribution shift. As a result, we expect to see better trade-
offs between generation quality and benchmark performance when using N-DPO or N-SimPO. We
also expect that with better normalized rewards, we may see better generalization of the implicit
reward.

We train Mistral-7B-Instruct Jiang et al. (2023), Llama-3.1-8B-Instruct Dubey et al. (2024), and
OLMo-7B-SFT Groeneveld et al. (2024) on Ultrafeedback Cui et al. (2023) for using DPO, N-DPO,
SimPO, and N-SimPO. For all runs, we train for 1 epoch with a cosine learning rate scheduler.
We evaluate generation quality using AlpacaEval Dubois et al. (2024) and assess the model on
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common sense and reasoning benchmarks (ARC, MMLU, HellaSwag, PIQA, SciQ, WinoGrande).
We evaluate reward modeling for a range of datasets (Ultrafeedback, HH-RLHF Bai et al. (2022),
HelpSteer2 Wang et al. (2024)).

Instruction Following. AlpacaEval Dubois et al. (2024) is a benchmark that evaluates a model
based on its win-rate compared to GPT-3.5 OpenAI (2022) for AlpacaEval1 and GPT-4 Achiam
et al. (2023) for AlpacaEval2 using an LLM-as-a-judge in an instruction-following setting. For
AlpacaEval2 both a raw win-rate (WR) and a length-controlled win-rate (LC) are provided. Table 1
shows the win-rates of the models on AlpacaEval1 and AlpacaEval2, where we can see that N-
DPO and N-SimPO generally have improved performance over DPO and SimPO, respectively. In
particular, we see over a 20% increase for AlpacaEval2 (LC) for Llama-3.1-8B-Instruct between
DPO and N-DPO and a large increase in both AlpacaEval1 and AlpacaEval2 (WR) between SimPO
and N-SimPO for OLMo-7B-SFT with over a 75% increase for AlpacaEval2 (WR). While we see
a small decrease in instruction-following quality using N-SimPO for Llama-3.1-8B-Instruct, the
benchmark performance noticeably improves. We provide comparisons to adding an SFT term to
the DPO loss in Appendix A.

Table 1: AlpacaEval scores across methods. A1 corresponds to the AlpacaEval1 win-rate, WR cor-
responds to the raw AlpacaEval2 win-rate, and LC corresponds to the length-controlled AlpacaEval2
win-rate. Standard deviations are provided in Appendix A.

Mistral-7B-Instruct Llama-3.1-8B-Instruct OLMo-7B-SFT
A1 WR LC A1 WR LC A1 WR LC

Reference 93.17 13.97 16.84 90.00 24.93 19.67 58.15 3.32 5.06

DPO 94.66 16.80 21.2 91.67 27.70 24.46 79.63 6.53 7.07
N-DPO 94.28 18.16 22.10 91.28 31.84 29.41 81.24 9.21 8.02
SimPO 90.87 17.61 23.28 88.93 34.89 32.79 71.21 4.57 6.32

N-SimPO 92.72 18.87 23.67 85.45 32.90 31.01 79.63 8.07 7.17

Common Sense and Reasoning. In addition to instruction-following quality, we perform evalu-
ation on various benchmarks from LM Evaluation Harness Gao et al. (2024) to see how well the
model maintains its general common sense and reasoning capabilities. We expect reducing like-
lihood displacement to also reduce distribution shift allowing for better benchmark performance.
To quantify how well the model maintains benchmark performance, we consider the difference in
scores between the reference model and the fine-tuned model. The results for the evaluation are
shown in Table 2. We can see that for Llama-3.1-8B-Instruct, N-DPO and N-SimPO result not only
in better maintenance of benchmark performance, but also improve scores on average by over 3%.
For Mistral-7B-Instruct, we also see an improvement between DPO versus N-DPO along with a
small drop in benchmark performance that is accompanied by an increase in generation quality by
a larger margin than the drop in benchmark performance. For OLMo-7B-SFT, we find that N-DPO
improves benchmark performance while improving generation quality. We note that for N-SimPO,
there is a drop in benchmark performance, but the results suggest this is due to difficulties with
applying SimPO to OLMo as generation quality increased the most with the smallest learning rate,
margin, and beta. This suggests that larger updates using SimPO do not benefit OLMo-7B-SFT, and
that N-SimPO can allow for more dramatic changes in weaker base models that improve generation
quality. We provide the hyperparameter sweep range and final hyperparameters in Appendix B.

Implicit Reward. We further evaluate the trained models on their implicit reward modeling capa-
bilities on both UltraFeedback and datasets not seen during training (HH-RLHF, HelpSteer2). We
compute the reward accuracy on the eval splits for these datasets using a length-normalized reward.
Table 3 shows the results.

5.2 REGULARIZATION ABLATION

We perform an ablation on the regularization term by setting λ = 0 to demonstrate that maintaining
the probability mass helps improve performance beyond using only length-normalization (L-DPO).
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Table 2: Common sense and reasoning benchmarks performance across methods. Standard devia-
tions are provided in Appendix A.

Mistral-7B-Instruct

MMLU ARC Chal ARC Easy HellaSwag PiQA SciQ WinoG Avg
Reference 44.32 49.49 70.33 62.86 75.19 90.90 61.48 64.94

DPO -1.34 -3.41 -5.05 -1.45 -2.67 -3.00 -2.68 -2.80
N-DPO +0.17 -1.11 -1.90 -0.95 -1.96 -0.80 -0.31 -0.98
SimPO -0.70 -3.84 -3.12 -7.47 -5.06 -0.50 -2.21 -3.27

N-SimPO -0.84 -4.10 -3.62 -6.87 -4.79 -1.20 -2.44 -3.41

Llama-3.1-8B-Instruct

MMLU ARC Chal ARC Easy HellaSwag PiQA SciQ WinoG Avg
Reference 43.28 52.82 81.44 57.52 79.76 95.20 67.40 68.20

DPO +4.71 -4.78 -9.51 +6.43 -5.82 -4.20 -9.55 -3.25
N-DPO +4.24 +3.84 +0.80 +6.24 +0.82 +0.20 +5.13 +3.04
SimPO +1.69 +4.77 +0.17 -5.49 -0.54 +0.80 +6.55 +1.14

N-SimPO +8.49 +9.21 +2.27 -0.92 +1.36 +1.10 +4.33 +3.69

OLMo-7B-SFT

MMLU ARC Chal ARC Easy HellaSwag PiQA SciQ WinoG Avg
Reference 37.94 39.33 67.97 53.54 76.66 91.1 63.93 61.50

DPO -0.15 -0.85 -2.06 +0.27 -1.42 -4.80 -2.05 -1.58
N-DPO +0.47 +1.88 +2.11 +3.52 -0.82 -1.20 -0.95 +0.72
SimPO -0.04 -0.34 -0.25 -1.17 -1.09 -0.70 -1.50 -0.73

N-SimPO +0.10 -1.53 -14.01 -3.49 -4.79 -4.20 -5.76 -4.81

Table 3: Reward accuracy on UltraFeedback (UF), HH-RLHF (HH), and HelpSteer2 (HS) across
methods.

Mistral-7B-Instruct Llama-3.1-8B-Instruct OLMo-7B-SFT
UF HH HS UF HH HS UF HH HS

DPO 80.73 55.12 66.15 74.71 59.55 68.23 71.12 53.30 64.06
N-DPO 94.28 81.94 56.33 77.20 58.73 75.00 73.26 54.63 64.32
SimPO 82.12 57.17 64.32 76.22 57.03 67.19 60.19 55.47 53.65

N-SimPO 82.06 56.82 63.28 75.81 57.62 67.97 65.05 55.68 56.77

We provide the results on AlpacaEval in Table 4 where we can see that performance improves when
λ is a non-zero value.

6 RELATED WORKS

DAA Methods. A wide range of works have explored various approaches to improve existing
DAA methods like DPO Rafailov et al. (2023). One class of changes to DPO consider modifying
the function of the reward margin Azar et al. (2024); Zhao et al. (2023); Tang et al. (2024). A range
of works have approached the problem of over-optimization and likelihood displacement through
modifying the reward function based on alternatives to KL regularization Huang et al. (2024); Gupta
et al. (2025); Wang et al. (2023), focusing on select tokens Yoon et al. (2025), mitigating length-
normalization exploits Gupta et al. (b), or adding regularization Liu et al. (2024). Another line of
work has proposed modifications to the DPO objective for robustness such as rDPO Chowdhury
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Table 4: AlpacaEval scores for length-normalized DPO with and without regularization. WR corre-
sponds to the raw win-rate and LC corresponds to the length-controlled win-rate. Standard devia-
tions are provided in Appendix A.

Mistral-7B-Instruct

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
λ = 0 93.03 16.54 20.21

N-DPO 94.28 18.16 22.10

Llama-3.1-8B-Instruct

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
λ = 0 91.25 30.56 28.50

N-DPO 91.28 31.84 29.41
OLMo-7B-SFT

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
λ = 0 78.43 8.76 7.34

N-DPO 81.24 9.21 8.02

et al. (2024) and ROPO Liang et al. (2024), and other works have explored weighting samples Zhou
et al. (2024) or using rejection sampling Xiong et al. (2023); Zhao et al. (2024); Liu et al. (2023).
A range of works have considered various forms of data for aligning language models using reward
data Chen et al. (2024a) or data from self play Wu et al. (2024); Gupta et al. (a); Tang et al. (2025).
Other objectives include KTO Ethayarajh et al. (2024), which uses prospect theory to motivate an
objective which does use pairwise comparisons but rather considers a set of desirable responses and
undesirable responses, or ORPO Hong et al. (2024), which utilizes the log odds ratio between the
preferred and dispreferred response for optimization.

Reward over-optimization. Outside of proposing new DAAs to mitigate over-optimization,
works have also analyzed factors that may lead to over-optimization and likelihood displacement.
Razin et al. (2024) studies under an simplified model how the embedding geometry may lead to
likelihood displacement. Pal et al. (2024) provides an analysis of how likelihood displacement can
arise given preference pairs with small edit distance. Reward over-optimization is also a generally
observed phenomenon outside of DAAs with RLHF Chen et al. (2024b) and other reinforcement
learning settings Skalse et al. (2022); Ibarz et al. (2018).

7 DISCUSSION

Our results suggest that a common factor in reward over-optimization and likelihood displacement
across methods and, in particular, across both reference-based and reference-free methods is the
lack of reward normalization. The objectives modified to normalize rewards, N-DPO and N-SimPO,
demonstrate better trade-offs between generation quality and benchmark performance, sometimes
improving both while also maintaining reward modeling abilities. The improvement across various
axes suggests that reward normalization has a significant role in DAAs and that enforcing such con-
straints can be an effective addition to methods. Furthermore, our analysis of token-wise rewards
demonstrates that likelihood displacement does not affect the model broadly, but rather primarily on
a limited number of tokens, explaining why generation improves despite decreasing likelihood. A
token-wise analysis of the gradient of our proposed regularization term demonstrates that our regu-
larization term effectively mitigates such outlier tokens and more generally utilizes low likelihood
tokens to reshape the reward and likelihood distribution. These analyses provide insight into the role
of different tokens in preference optimization and demonstrate the need for finer-grained analyses
of reward model behavior.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang Su, and Jun Zhu. Noise contrastive align-
ment of language models with explicit rewards. Advances in Neural Information Processing
Systems, 37:117784–117812, 2024a.

Lichang Chen, Chen Zhu, Davit Soselia, Jiuhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang,
Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf.
arXiv preprint arXiv:2402.07319, 2024b.

Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust dpo: Aligning
language models with noisy feedback. arXiv preprint arXiv:2403.00409, 2024.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Aman Gupta, Shao Tang, Qingquan Song, Sirou Zhu, Jiwoo Hong, Ankan Saha, Viral Gupta, Noah
Lee, Eunki Kim, Siyu Zhu, et al. Alphapo: Reward shape matters for llm alignment. arXiv
preprint arXiv:2501.03884, 2025.

Taneesh Gupta, Rahul Madhavan, Xuchao Zhang, Chetan Bansal, and Saravan Rajmohan. Ampo:
Active multi preference optimization for self-play preference selection. In Forty-second Interna-
tional Conference on Machine Learning, a.

Taneesh Gupta, Rahul Madhavan, Xuchao Zhang, Chetan Bansal, and Saravan Rajmohan. Refa:
Reference free alignment with fine-grained length control. In Second Conference on Language
Modeling, b.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2024.

11

https://zenodo.org/records/12608602


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D Lee, Wen Sun, Akshay Krishnamurthy, and
Dylan J Foster. Correcting the mythos of kl-regularization: Direct alignment without overopti-
mization via chi-squared preference optimization. arXiv preprint arXiv:2407.13399, 2024.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Xize Liang, Chao Chen, Shuang Qiu, Jie Wang, Yue Wu, Zhihang Fu, Zhihao Shi, Feng Wu, and
Jieping Ye. Ropo: Robust preference optimization for large language models. arXiv preprint
arXiv:2404.04102, 2024.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
Wang, Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. arXiv preprint
arXiv:2309.06256, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet, and
Zhaoran Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an ad-
versarial regularizer. Advances in Neural Information Processing Systems, 37:138663–138697,
2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Information Processing Systems, 37:124198–124235,
2024.

OpenAI. Openai gpt-3.5 [text-davinci-003], 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin.
Unintentional unalignment: Likelihood displacement in direct preference optimization. arXiv
preprint arXiv:2410.08847, 2024.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage
suboptimal, on-policy data. arXiv preprint arXiv:2404.14367, 2024.

Xiaohang Tang, Sangwoong Yoon, Seongho Son, Huizhuo Yuan, Quanquan Gu, and Ilija Bo-
gunovic. Game-theoretic regularized self-play alignment of large language models. arXiv preprint
arXiv:2503.00030, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-
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A ADDITIONAL RESULTS

We provide AlpacaEval scores for the DPO+SFT method in Table 5.

Table 5: AlpacaEval scores across methods. A1 corresponds to the AlpacaEval1 win-rate.

Llama-3.1-8B-Instruct
A1

Reference 93.17

DPO 94.66
N-DPO 94.28

DPO+SFT 93.52

We provide the standard errors for AlpacaEval scores in Table 6, for AlpacaEval scores from the
ablation in Table 8, and for common sense and reasoning benchmarks in Table 7.

Mistral-7B-Instruct

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
Reference 0.890 1.082 0.745

DPO 0.793 1.157 0.814
N-DPO 0.820 1.188 0.832

SimPO 0.999 1.163 0.787
N-SimPO 0.910 1.192 0.814

Llama-3.1-8B-Instruct

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
Reference 1.061 1.293 0.630

DPO 0.974 1.335 0.703
N-DPO 0.996 1.403 0.712

SimPO 1.107 1.419 0.546
N-SimPO 1.244 1.403 0.660

OLMo-7B-SFT

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
Reference 1.733 0.558 0.325

DPO 1.415 0.762 0.416
N-DPO 1.371 0.871 0.436

SimPO 1.592 0.633 0.368
N-SimPO 1.418 0.838 0.383

Table 6: AlpacaEval standard error across methods. WR corresponds to the raw win-rate and LC
corresponds to the length-controlled win-rate.
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Mistral-7B-Instruct

ARC Challenge MMLU HellaSwag ARC Easy PiQA SciQ WinoGrande
Reference 1.461 0.409 0.482 0.937 1.008 0.910 1.368

DPO 1.457 0.408 0.486 0.977 1.042 1.032 1.383
N-DPO 1.460 0.409 0.485 0.954 1.033 0.945 1.370

SimPO 1.456 0.409 0.496 0.963 1.068 0.932 1.381
N-SimPO 1.455 0.408 0.495 0.967 1.065 0.962 1.382

Llama-3.1-8B-Instruct

ARC Challenge MMLU HellaSwag ARC Easy PiQA SciQ WinoGrande
Reference 1.459 0.406 0.493 0.798 0.937 0.676 1.317

DPO 1.460 0.409 0.479 0.922 1.024 0.905 1.388
N-DPO 1.448 0.409 0.480 0.784 0.923 0.663 1.254

SimPO 1.444 0.408 0.499 0.795 0.818 0.620 1.233
N-SimPO 1.418 0.408 0.495 0.758 0.913 0.597 1.265

OLMo-7B-SFT

ARC Challenge MMLU HellaSwag ARC Easy PiQA SciQ WinoGrande
Reference 1.428 0.400 0.498 0.957 0.987 0.901 1.350

DPO 1.422 0.400 0.498 0.973 1.007 1.088 1.365
N-DPO 1.438 0.401 0.494 0.940 0.999 0.953 1.357

SimPO 1.425 0.400 0.498 0.959 1.022 0.932 1.361
N-SimPO 1.417 0.401 0.499 0.982 1.049 1.067 1.386
Table 7: Common sense and reasoning benchmarks performance standard error across methods.

Mistral-7B-Instruct

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
L-DPO 0.899 1.138 0.793

Llama-3.1-8B-Instruct

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
L-DPO 1.000 1.381 0.692

OLMo-7B-SFT

AlpacaEval1 AlpacaEval2 (WR) AlpacaEval2 (LC)
L-DPO 1.445 0.865 0.365

Table 8: AlpacaEval standard error for length-normalized DPO without regularization. WR corre-
sponds to the raw win-rate and LC corresponds to the length-controlled win-rate.

B HYPERPARAMETERS

We provide the set of hyperparameters used to perform hyperparameter sweeps for each method and
model.
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Mistral-7B-Instruct Llama-3.1-8B-Instruct OLMo-7B-SFT
DPO [0.03, 0.1, 0.3] [0.01, 0.03, 0.1] [0.03, 0.1, 0.3]

N-DPO [0.3, 1.0, 3.0] [0.3, 1.0, 3.0] [0.3, 1.0, 3.0]
SimPO [0.3, 1.0, 3.0] [0.3, 1.0, 3.0] [0.3, 1.0, 3.0]

N-SimPO [3.0] [3.0] [0.3]

Table 9: Set of β used for hyperparameter sweep for each model/method

Mistral-7B-Instruct Llama-3.1-8B-Instruct OLMo-7B-SFT
SimPO [0.4, 0.8, 1.2, 1.6, 2.0] [0.4, 0.8, 1.2, 1.6, 2.0] [0.4, 0.8, 1.2, 1.6, 2.0]

N-SimPO [0.8, 1.2, 1.6, 2.0] [0.8, 1.2, 1.6, 2.0] [0.8, 1.2, 1.6, 2.0]

Table 10: Set of γ used for hyperparameter sweep for each model/method

Mistral-7B-Instruct Llama-3.1-8B-Instruct OLMo-7B-SFT
N-DPO [0.0, 0.025, 0.05, 0.075, 0.1] [0.0, 0.025, 0.05, 0.075, 0.1] [0.0, 0.025, 0.05, 0.075, 0.1]

N-SimPO [0.025, 0.05, 0.075, 0.1] [0.025, 0.05, 0.075, 0.1] [0.025, 0.05, 0.075, 0.1]

Table 11: Set of λ used for hyperparameter sweep for each model/method

Mistral-7B-Instruct Llama-3.1-8B-Instruct OLMo-7B-SFT
[3e− 8, 1e− 7, 3e− 7] [1e− 7, 3e− 7, 1e− 6] [1e− 7, 3e− 7, 1e− 6]

Table 12: Set of learning rates used for hyperparameter sweep for each model

Mistral-7B-Instruct Llama-3.1-8B-Instruct OLMo-7B-SFT
β (0.03/1.0/3.0/3.0) (0.01/3.0/3.0/3.0) (0.03/3.0/0.3/0.3)
γ (0/0/1.6/2.0) (0/0/0.8/2.0) (0/0/0.4/1.6)
λ (0/0.1/0/0.1) (0/0.025/0/0.025) (0/0.05/0/0.025)

Learning Rate (1e-7/3e-7/1e-7/1e-7) (3e-7/1e-6/3e-7/1e-6) (3e-7/1e-6/1e-7/3e-7)

Table 13: Hyperparameters used for model evaluation. (DPO/N-DPO/SimPO/N-SimPO)

C GRADIENT DERIVATION

We provide a derivation of the gradient of the regularization term

R(πθ, πref, x, yw, yl) = λ

(
log

π̄θ(yw|x) + π̄θ(yl|x)
π̄ref(yw|x) + π̄ref(yl|x)

)2

(17)

with respect to parameters θ. Letting g(πθ) =
(
log π̄θ(yw|x)+π̄θ(yl|x)

π̄ref(yw|x)+π̄ref(yl|x)

)
, we have that

∇θR = 2λg(πθ)∇θg(πθ) (18)

Now, defining h(πθ) = π̄θ(yw|x)+π̄θ(yl|x)
π̄ref(yw|x)+π̄ref(yl|x) and denoting the denominator of h(x) as Pref(x), we

have

∇θg(πθ) =
1

h(πθ)
∇θh(πθ) =

Pref(x)

π̄θ(yw|x) + π̄θ(yl|x)
1

Pref(x)
∇θ(π̄θ(yw|x) + π̄θ(yl|x)) (19)

Writing π̄θ(y|x) as πθ(y|x)1/|y| and decomposing πθ(y|x)1/|y| as

exp

 1

|y|

|y|∑
i=1

log πθ(y
(i))

 (20)

we have

∇θ(π̄θ(yw|x) + π̄θ(yl|x)) =

 π̄θ(yw|x)
|yw|

|yw|∑
i=1

∇θπθ(y
(i)
w )

πθ(y
(i)
w )

+
π̄θ(yl|x)

|yl|

|yl|∑
i=1

∇θπθ(y
(i)
l )

πθ(y
(i)
l )

 (21)
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Through the chain rule and letting Pθ(x) = π̄θ(yw|x) + π̄θ(yl|x), we have that

∇θR =
2λ

Pθ(x)
log

(
Pθ(x)

Pref(x)

) π̄θ(yw|x)
|yw|

|yw|∑
i=1

∇θ(πθ(y
(i)
w ))

πθ(y
(i)
w )

+
π̄θ(yl|x)

|yl|

|yl|∑
i=1

∇θ(πθ(y
(i)
l ))

πθ(y
(i)
l )

 .

(22)
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