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Abstract

While large language models (LLMs) have
shown great potential across various domains,
their applications in robotics remain largely lim-
ited to static, prompt-based behaviors and still
face challenges in handling complex tasks un-
der zero-shot or few-shot settings. Inspired
by human metacognitive learning and creative
problem-solving, we address this limitation
by exploring a fundamental research ques-
tion: Can LLMs be empowered with metacog-
nitive capabilities to reason, reflect, and cre-
ate, thereby enhancing their ability to perform
robotic tasks with minimal demonstrations? In
this paper, we present an early-stage frame-
work that integrates metacognitive learning into
LLM-powered multi-robot collaboration. The
proposed framework equips the LLM-powered
robotic agents with a skill decomposition and
self-reflection mechanism that identifies modu-
lar skills from prior tasks, reflects on failures in
unseen task scenarios, and synthesizes effective
new solutions. Experimental results show that
our metacognitive-learning-empowered LLM
framework significantly outperforms existing
baselines. Moreover, we observe that the frame-
work is capable of generating solutions that dif-
fer from the ground truth yet still successfully
complete the tasks. These exciting findings sup-
port our hypothesis that metacognitive learning
can foster creativity in robotic planning.

1 Introduction

In recent years, large language models (LLMs)
have emerged as powerful reasoning engines ca-
pable of performing complex planning, decision-
making, and knowledge-intensive tasks across vari-
ous application domains. These successes have
sparked growing interest in applying LLMs to
robotic operations, enabling robots to understand
instructions, generate executable action sequences,
and generalize across diverse and novel scenar-
ios (Wang et al., 2024; Liu et al., 2024; Jin et al.,

2024; Tan et al., 2024; Cheng et al., 2024; Chen
et al., 2025). Recent research on LLM-powered
robotic operations can be broadly categorized into
three main directions: 1) generating robot plans
by prompting LLMs with task instructions (Mandi
et al., 2024), 2) enabling embodied reasoning
by integrating LLMs with multimodal perception
systems (Aissi et al., 2025), and 3) synthesizing
robot control codes from natural language com-
mands (Liang et al., 2023). While these approaches
demonstrate the potential of LLMs to advance
robotic operations, most remain limited to static
prompting, which restricts their performance in
complex tasks in zero-shot or few-shot settings.
Inspired by human metacognitive learning and
its impact on enabling creative skills (Hargrove,
2013; Schuster et al., 2020), we address this limi-
tation by exploring a fundamental question: Can
LLMs be endowed with metacognitive capabilities
to reason, reflect, and create, thereby enhancing
their ability to perform robotic tasks with mini-
mal demonstrations? In this paper, we present an
early-stage framework that integrates metacogni-
tive learning into LLM-powered multi-robot col-
laboration. The proposed system equips the LLM
with a skill decomposition and self-reflection mech-
anism that identifies modular skills from prior tasks,
reflects on failures in novel scenarios, and synthe-
sizes effective new solutions. Our work in this pa-
per has three key contributions: (1) To the best of
our knowledge, this is the first work to explore inte-
grating metacognitive learning into LLM-equipped
robot operations, to support both reliable perfor-
mance and creative problem-solving; (2) We pro-
pose a metacognitive learning framework that en-
ables the LLM-powered robotic agents decompose
modular skills, reflect on task failures, and synthe-
size effective new solutions; and (3) We validate
our framework on the RoCo benchmark, where it
significantly outperforms baselines and sometimes
generates successful solutions that deviate from



e mE e ——————————————

/Modular Skill Set Construction

_______

——————— N e e e e e

7’
I

Metacognitive Inference

\ \
1 \ 1
! Libraryof [ 1 | I
1 Cluster y ! |
L - modular robot-| ; ! [ Reason about . ]
I[Exemplars) | pogyiar Skil modular skills manipulation | 1 1| the necessary Synthesize arm | ,
of i and remove P p motion plans for 1
\| of previous Decomposition skills and "I modular skills for P 1
1\ task P redundancy Yo individual robots
1 25KS associated | | 1| unseen tasks :
| exemplars | 1 |\ )

___________________________

Retrieving the
exemplars linked to
the identified modular
skills

Synthesize
alternative arm
motion plans

Reflect on failure
feedback to identify
missing or misapplied
modular skills

Failure Deol
feedback Pass the\ Yes fin:Ipa??,n
validation "
check? plans

Self-Reflection

__________________

Figure 1: Overview of our proposed metacognitive learning module.

the ground truth, which supports the hypothesis
that metacognitive learning can foster reliable and
creative robotic planning.

The rest of the paper is organized as follows. In
Section 2, we will present the problem formula-
tion. In Section 3, we will introduce our proposed
metacognitive learning module. In Section 4, we
will show the experiment results, followed by con-
clusions with discussion on limitations in Section 5.

2 Problem Formulation

We consider a cooperative multi-agent manipula-
tion setting, where multiple LLM-powered robot
agents collaborate to complete tasks over a finite
time horizon. Each agent operates within its own
observation space and needs to coordinate with
other agents to achieve a shared task objective. At
each time step, each agent n receives a prompt
Py = fn(gn, 0}, r}) and outputs 7, where 7, de-
notes the resulting arm motion plan, g,, represents
the agent-specific task description that includes
goals and constraints, o] € (2, is its current ob-
servation, and r} is the metacognition-informed
input.

The generation of effective r} is guided by our
proposed metacognitive learning module, which
empowers the LLM to decompose prior task com-
pletions into modular skills, synthesize arm motion
plans {7, }"_| for unseen task scenarios, reflect
on planning generation failures, and iteratively pro-
duce effective and potentially creative solutions. In
our current implementation, we adopted the vali-
dation mechanism in (Mandi et al., 2024) to detect
planning generation failures and trigger the self-
reflection process.

3 Methodology

The proposed metacognitive learning module is il-
lustrated in Fig. 1. As shown in the figure, the mod-
ule comprises three key components: (1) modular
skill set construction, (2) metacognitive inference,
and (3) self-reflection.

In the modular skill set construction component,
the LLM is guided by the metacognition-informed
input 77 to construct a library of exemplars from
previously completed tasks. Each exemplar maps
identified robot manipulation skills to a successful
task execution and includes a representative scene
along with a one-shot demonstration of an effective
action plan. The LLM then extracts fine-grained
modular skills from each exemplar, clusters similar
skills to reduce redundancy, and organizes them
into a reusable library of transferable modular robot
manipulation skills and their associated exemplars.

In the metacognitive inference component, based
on the library of modular robot manipulation skills
and associated exemplars, the task description gy,
and the current observation o}, the LLM is guided
by r}* to reason about the necessary modular skills
for the new task. Using the identified skills and
their associated exemplars, the LLM synthesizes
arm motion plans 7, for the robot agent n.

The self-reflection component is activated when
the arm motion plans synthesized during metacog-
nitive inference do not pass the validation check.
It guides the LLM to reflect on failure feedback
to identify modular skills that are missing or need
refinement. Based on these insights, the LLM re-
trieves the corresponding exemplars and synthe-
sizes revised arm motion plans.

Equipped with the proposed metacognitive learn-
ing module, the LLM adaptively generates reliable



Table 1: Performance Comparison between Our Framework and Baselines.

Move Rope Arrange Cabinet Make Sandwich
Central Plan Task Success Rate 0.50 £0.11 0.90 + 0.07 0.96 + 0.04
Environment Steps, Replan Attempts 2.3,39 4.0,2.7 8.8,1.2
Task Success Rate 0.65 £0.11 0.75 £0.10 0.80 £ 0.08
RoCo+GPT-4 Environment Steps, Replan Attempts 2.5,3.1 4.7,2.0 10.2, 1.7
Our framework Task Success Rate 0.76 = 0.10 0.95 + 0.05 0.95 + 0.05
Environment Steps, Replan Attempts 20,24 4.0, 1.7 94,1.8

and potentially creative arm motion plans, which
are subsequently used to update the library of prior
task exemplars.

4 Experiments

We validate the performance of the proposed
metacognitive learning module in enabling LLM-
enabled robotic agents to complete complex multi-
robot collaboration tasks under zero-shot settings.
In this initial stage of work, we conduct experi-
ments using the RoCo benchmark (Mandi et al.,
2024), focusing on three challenging tasks: Move
Rope, Arrange Cabinet, and Make Sandwich. In
each task, LLM-powered robot agents coordi-
nate via structured textual prompts that include
metacognition-informed inputs and execute actions
in environments with obstacles and spatial con-
straints. An embedded validation mechanism de-
tects planning failures, such as those caused by
collisions or inverse kinematics (IK) infeasibility,
and triggers the self-reflection process. All experi-
ments are conducted on a machine with an NVIDIA
A100 GPU to support efficient inference using the
LLaMA 3.1-70B model. We note that LLaMA is
adopted instead of GPT-4 in our framework to align
with our long-term objective of developing an open-
source LLM framework that can be widely adopted
by the robotics and Al research communities.

Baselines and Performance Metrics

We compare our framework against two baselines.
(1) Central Plan: an oracle LLM-based planner
with access to the full environment state, task de-
scription, and capabilities of all robots. It generates
a joint centralized plan without accounting for in-
formation asymmetry. (2) RoCo+GPT-4: the state-
of-the-art multi-robot collaboration framework pro-
posed in (Mandi et al., 2024), which uses GPT-4
but does not incorporate metacognition-informed
input. To ensure a fair performance comparison,

we follow RoCoBench (Mandi et al., 2024) and use
the same evaluation metrics: (1) Task Success Rate,
which measures the percentage of successful task
completions within a fixed number of rounds (we
also use over 20 rounds in our experiements); (2)
Environment Steps, defined as the average number
of steps taken in successful runs; and (3) Replan
Attempts, which refers to the average number of
replan attempts across all runs.

Experiment Findings

Reliability Enhancement: The evaluation results
comparing our proposed framework with the two
baselines across the three tasks are shown in Ta-
ble 1. In the Move Rope task, which is the most
challenging task in the experiments, our frame-
work achieves a success rate of 0.76, represent-
ing a 17% improvement over RoCo+GPT-4 and a
26% gain over Central Plan. It also reduces en-
vironment steps in successful runs to 2.0, com-
pared to 2.5 for RoCo+GPT-4 and 2.3 for Central
Plan, and lowers replan attempts to 2.4, compared
to 3.1 for RoCo+GPT-4 and 3.9 for Central Plan.
These results indicate more effective coordination
and faster convergence under challenging spatial
constraints. For the Arrange Cabinet task, our
framework achieves a success rate of 0.95, out-
performing RoCo by 20% and the Central Plan
by 5%. Additionally, it requires the same number
of environment steps as the Central Plan while re-
quiring fewer replan attempts than both baselines,
suggesting improved planning robustness and re-
duced reliance on corrective execution. For the
Make Sandwich task, which involves long-horizon
planning and strict stacking constraints, our frame-
work achieves performance comparable to Central
Plan. In comparison to the RoCo+GPT-4 baseline,
it achieves a 15% higher success rate and reduces
the required environment steps, highlighting its
ability to generalize to structurally complex tasks
with minimal planning overhead, despite a slight




increase in replan attempts. These results validate
the effectiveness of our framework in advancing
the capabilities of LLM-powered robot agents for
completing complex tasks under zero-shot settings.
They suggest that the proposed metacognitive learn-
ing module enables LL.M-equipped robot agents to
adaptively and proactively reason about and reflect
on spatial, temporal, and structural challenges.

Creativity Cultivation: In the experiments, we
observe that our framework is capable of generat-
ing solutions that differ from the ground truth yet
still successfully complete the tasks. These exciting
findings support our hypothesis that metacognitive
learning can cultivate creativity in robotic planning.
Due to space limitations, we describe one represen-
tative case. In the Move Rope task, two robot agents
collaboratively grasp the ends of a rope, maneuver
it over an obstacle wall, and place it into a desig-
nated groove. In the ground-truth plan, the robots
grasp the two ends of the rope to complete the task.
In contrast, after initial plan generation failures
due to collision or IK infeasibility, our framework
generates an alternative motion plan in which one
robot grasps the rope slightly inward instead of at
the end. Although this alternative plan deviates
from the ground truth, it effectively shortens the
trajectory, improves the spatial separation between
the robot arms, and significantly reduces the risk
of collision and IK errors.

Table 2: Reflection success results by our framework.

Move Rope Arrange Cabinet Make Sandwich
Reflection Success Rate 0.44 1.00 0.70

Metacognitive Self-Reflection Analysis: As
shown in Fig. 1, the self-reflection component is
one of the three key elements of our proposed
metacognitive learning module. To evaluate
its practical impact, we introduce an additional
metric in our experiments, the reflection success
rate, defined as the proportion of successful plan
regenerations among all reflection attempts within
task rounds that ultimately succeeded. The results,
summarized in Table 2. As shown in the table, in
the Arrange Cabinet task, the framework achieves
a perfect reflection success rate of 100%, indicating
that every initial failure was successfully recovered
through self-reflection. In the Make Sandwich
task, which involves long-horizon dependencies
and stacking constraints, the framework recovers
from 70% of failed plans via self-reflection.
Even in the most challenging Move Rope task,

characterized by tight spatial coordination, the
framework achieves a 44% reflection success
rate, underscoring the role of self-reflection in
enabling meaningful plan recovery under physical
constraints. These findings highlight the critical
role of the self-reflection component within our
metacognitive learning module. They also show
that the proposed framework not only supports
LLM-powered agents in initial plan generation
but also enables them to proactively reason about
and reflect on execution failures, providing the
essential capability of reliable recovery and
adaptation in zero-shot settings.

5 Conclusions

In this paper, we introduced an early-stage frame-
work to explore the research question: Can LLMs
be empowered with metacognitive capabilities
to reason, reflect, and create, thereby enhancing
their ability to perform robotic tasks with minimal
demonstrations? Our proposed framework inte-
grates metacognitive learning into LLM-powered
multi-robot collaboration, inspired by human re-
flective problem-solving processes. By equipping
LLM-driven robotic agents with a metacognitive
learning module, our framework enables effective
reasoning, self-reflection on failures, and creative
synthesis of novel solutions in zero-shot robotic
planning scenarios. Experimental results demon-
strate that our framework outperforms state-of-the-
art methods and can generate innovative task so-
lutions that differ from the provided ground-truth
plans. These findings highlight the potential of
metacognitive strategies to significantly enhance
the adaptability, reliability, and creativity of robotic
systems powered by LLMs.

Limitations

While this early-stage work shows exciting results
on exploiting metacognitive learning methodol-
ogy to advance LLLM-based robot operations. Sev-
eral limitations remain. For example, the current
metacognitive self-reflection focuses primarily on
identifying missing or misapplied skills but does
not yet support finer-grained failure modes such as
multi-agent coordination errors and long-horizon
dependency mistakes. Extending the system to rea-
son hierarchically about such failures remains an
open challenge.
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