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Abstract001

While large language models (LLMs) have002
shown great potential across various domains,003
their applications in robotics remain largely lim-004
ited to static, prompt-based behaviors and still005
face challenges in handling complex tasks un-006
der zero-shot or few-shot settings. Inspired007
by human metacognitive learning and creative008
problem-solving, we address this limitation009
by exploring a fundamental research ques-010
tion: Can LLMs be empowered with metacog-011
nitive capabilities to reason, reflect, and cre-012
ate, thereby enhancing their ability to perform013
robotic tasks with minimal demonstrations? In014
this paper, we present an early-stage frame-015
work that integrates metacognitive learning into016
LLM-powered multi-robot collaboration. The017
proposed framework equips the LLM-powered018
robotic agents with a skill decomposition and019
self-reflection mechanism that identifies modu-020
lar skills from prior tasks, reflects on failures in021
unseen task scenarios, and synthesizes effective022
new solutions. Experimental results show that023
our metacognitive-learning-empowered LLM024
framework significantly outperforms existing025
baselines. Moreover, we observe that the frame-026
work is capable of generating solutions that dif-027
fer from the ground truth yet still successfully028
complete the tasks. These exciting findings sup-029
port our hypothesis that metacognitive learning030
can foster creativity in robotic planning.031

1 Introduction032

In recent years, large language models (LLMs)033

have emerged as powerful reasoning engines ca-034

pable of performing complex planning, decision-035

making, and knowledge-intensive tasks across vari-036

ous application domains. These successes have037

sparked growing interest in applying LLMs to038

robotic operations, enabling robots to understand039

instructions, generate executable action sequences,040

and generalize across diverse and novel scenar-041

ios (Wang et al., 2024; Liu et al., 2024; Jin et al.,042

2024; Tan et al., 2024; Cheng et al., 2024; Chen 043

et al., 2025). Recent research on LLM-powered 044

robotic operations can be broadly categorized into 045

three main directions: 1) generating robot plans 046

by prompting LLMs with task instructions (Mandi 047

et al., 2024), 2) enabling embodied reasoning 048

by integrating LLMs with multimodal perception 049

systems (Aissi et al., 2025), and 3) synthesizing 050

robot control codes from natural language com- 051

mands (Liang et al., 2023). While these approaches 052

demonstrate the potential of LLMs to advance 053

robotic operations, most remain limited to static 054

prompting, which restricts their performance in 055

complex tasks in zero-shot or few-shot settings. 056

Inspired by human metacognitive learning and 057

its impact on enabling creative skills (Hargrove, 058

2013; Schuster et al., 2020), we address this limi- 059

tation by exploring a fundamental question: Can 060

LLMs be endowed with metacognitive capabilities 061

to reason, reflect, and create, thereby enhancing 062

their ability to perform robotic tasks with mini- 063

mal demonstrations? In this paper, we present an 064

early-stage framework that integrates metacogni- 065

tive learning into LLM-powered multi-robot col- 066

laboration. The proposed system equips the LLM 067

with a skill decomposition and self-reflection mech- 068

anism that identifies modular skills from prior tasks, 069

reflects on failures in novel scenarios, and synthe- 070

sizes effective new solutions. Our work in this pa- 071

per has three key contributions: (1) To the best of 072

our knowledge, this is the first work to explore inte- 073

grating metacognitive learning into LLM-equipped 074

robot operations, to support both reliable perfor- 075

mance and creative problem-solving; (2) We pro- 076

pose a metacognitive learning framework that en- 077

ables the LLM-powered robotic agents decompose 078

modular skills, reflect on task failures, and synthe- 079

size effective new solutions; and (3) We validate 080

our framework on the RoCo benchmark, where it 081

significantly outperforms baselines and sometimes 082

generates successful solutions that deviate from 083
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Figure 1: Overview of our proposed metacognitive learning module.

the ground truth, which supports the hypothesis084

that metacognitive learning can foster reliable and085

creative robotic planning.086

The rest of the paper is organized as follows. In087

Section 2, we will present the problem formula-088

tion. In Section 3, we will introduce our proposed089

metacognitive learning module. In Section 4, we090

will show the experiment results, followed by con-091

clusions with discussion on limitations in Section 5.092

2 Problem Formulation093

We consider a cooperative multi-agent manipula-094

tion setting, where multiple LLM-powered robot095

agents collaborate to complete tasks over a finite096

time horizon. Each agent operates within its own097

observation space and needs to coordinate with098

other agents to achieve a shared task objective. At099

each time step, each agent n receives a prompt100

pnt = fn(gn, o
n
t , r

n
t ) and outputs πn, where πn de-101

notes the resulting arm motion plan, gn represents102

the agent-specific task description that includes103

goals and constraints, ont ∈ Ωn is its current ob-104

servation, and rnt is the metacognition-informed105

input.106

The generation of effective rnt is guided by our107

proposed metacognitive learning module, which108

empowers the LLM to decompose prior task com-109

pletions into modular skills, synthesize arm motion110

plans {πn}Nn=1 for unseen task scenarios, reflect111

on planning generation failures, and iteratively pro-112

duce effective and potentially creative solutions. In113

our current implementation, we adopted the vali-114

dation mechanism in (Mandi et al., 2024) to detect115

planning generation failures and trigger the self-116

reflection process.117

3 Methodology 118

The proposed metacognitive learning module is il- 119

lustrated in Fig. 1. As shown in the figure, the mod- 120

ule comprises three key components: (1) modular 121

skill set construction, (2) metacognitive inference, 122

and (3) self-reflection. 123

In the modular skill set construction component, 124

the LLM is guided by the metacognition-informed 125

input rnt to construct a library of exemplars from 126

previously completed tasks. Each exemplar maps 127

identified robot manipulation skills to a successful 128

task execution and includes a representative scene 129

along with a one-shot demonstration of an effective 130

action plan. The LLM then extracts fine-grained 131

modular skills from each exemplar, clusters similar 132

skills to reduce redundancy, and organizes them 133

into a reusable library of transferable modular robot 134

manipulation skills and their associated exemplars. 135

In the metacognitive inference component, based 136

on the library of modular robot manipulation skills 137

and associated exemplars, the task description gn, 138

and the current observation ont , the LLM is guided 139

by rnt to reason about the necessary modular skills 140

for the new task. Using the identified skills and 141

their associated exemplars, the LLM synthesizes 142

arm motion plans πn for the robot agent n. 143

The self-reflection component is activated when 144

the arm motion plans synthesized during metacog- 145

nitive inference do not pass the validation check. 146

It guides the LLM to reflect on failure feedback 147

to identify modular skills that are missing or need 148

refinement. Based on these insights, the LLM re- 149

trieves the corresponding exemplars and synthe- 150

sizes revised arm motion plans. 151

Equipped with the proposed metacognitive learn- 152

ing module, the LLM adaptively generates reliable 153
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Table 1: Performance Comparison between Our Framework and Baselines.

Move Rope Arrange Cabinet Make Sandwich

Central Plan
Task Success Rate 0.50 ± 0.11 0.90 ± 0.07 0.96 ± 0.04

Environment Steps, Replan Attempts 2.3, 3.9 4.0, 2.7 8.8, 1.2

RoCo+GPT-4
Task Success Rate 0.65 ± 0.11 0.75 ± 0.10 0.80 ± 0.08

Environment Steps, Replan Attempts 2.5, 3.1 4.7, 2.0 10.2, 1.7

Our framework
Task Success Rate 0.76 ± 0.10 0.95 ± 0.05 0.95 ± 0.05

Environment Steps, Replan Attempts 2.0, 2.4 4.0, 1.7 9.4, 1.8

and potentially creative arm motion plans, which154

are subsequently used to update the library of prior155

task exemplars.156

4 Experiments157

We validate the performance of the proposed158

metacognitive learning module in enabling LLM-159

enabled robotic agents to complete complex multi-160

robot collaboration tasks under zero-shot settings.161

In this initial stage of work, we conduct experi-162

ments using the RoCo benchmark (Mandi et al.,163

2024), focusing on three challenging tasks: Move164

Rope, Arrange Cabinet, and Make Sandwich. In165

each task, LLM-powered robot agents coordi-166

nate via structured textual prompts that include167

metacognition-informed inputs and execute actions168

in environments with obstacles and spatial con-169

straints. An embedded validation mechanism de-170

tects planning failures, such as those caused by171

collisions or inverse kinematics (IK) infeasibility,172

and triggers the self-reflection process. All experi-173

ments are conducted on a machine with an NVIDIA174

A100 GPU to support efficient inference using the175

LLaMA 3.1-70B model. We note that LLaMA is176

adopted instead of GPT-4 in our framework to align177

with our long-term objective of developing an open-178

source LLM framework that can be widely adopted179

by the robotics and AI research communities.180

Baselines and Performance Metrics181

We compare our framework against two baselines.182

(1) Central Plan: an oracle LLM-based planner183

with access to the full environment state, task de-184

scription, and capabilities of all robots. It generates185

a joint centralized plan without accounting for in-186

formation asymmetry. (2) RoCo+GPT-4: the state-187

of-the-art multi-robot collaboration framework pro-188

posed in (Mandi et al., 2024), which uses GPT-4189

but does not incorporate metacognition-informed190

input. To ensure a fair performance comparison,191

we follow RoCoBench (Mandi et al., 2024) and use 192

the same evaluation metrics: (1) Task Success Rate, 193

which measures the percentage of successful task 194

completions within a fixed number of rounds (we 195

also use over 20 rounds in our experiements); (2) 196

Environment Steps, defined as the average number 197

of steps taken in successful runs; and (3) Replan 198

Attempts, which refers to the average number of 199

replan attempts across all runs. 200

Experiment Findings 201

Reliability Enhancement: The evaluation results 202

comparing our proposed framework with the two 203

baselines across the three tasks are shown in Ta- 204

ble 1. In the Move Rope task, which is the most 205

challenging task in the experiments, our frame- 206

work achieves a success rate of 0.76, represent- 207

ing a 17% improvement over RoCo+GPT-4 and a 208

26% gain over Central Plan. It also reduces en- 209

vironment steps in successful runs to 2.0, com- 210

pared to 2.5 for RoCo+GPT-4 and 2.3 for Central 211

Plan, and lowers replan attempts to 2.4, compared 212

to 3.1 for RoCo+GPT-4 and 3.9 for Central Plan. 213

These results indicate more effective coordination 214

and faster convergence under challenging spatial 215

constraints. For the Arrange Cabinet task, our 216

framework achieves a success rate of 0.95, out- 217

performing RoCo by 20% and the Central Plan 218

by 5%. Additionally, it requires the same number 219

of environment steps as the Central Plan while re- 220

quiring fewer replan attempts than both baselines, 221

suggesting improved planning robustness and re- 222

duced reliance on corrective execution. For the 223

Make Sandwich task, which involves long-horizon 224

planning and strict stacking constraints, our frame- 225

work achieves performance comparable to Central 226

Plan. In comparison to the RoCo+GPT-4 baseline, 227

it achieves a 15% higher success rate and reduces 228

the required environment steps, highlighting its 229

ability to generalize to structurally complex tasks 230

with minimal planning overhead, despite a slight 231
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increase in replan attempts. These results validate232

the effectiveness of our framework in advancing233

the capabilities of LLM-powered robot agents for234

completing complex tasks under zero-shot settings.235

They suggest that the proposed metacognitive learn-236

ing module enables LLM-equipped robot agents to237

adaptively and proactively reason about and reflect238

on spatial, temporal, and structural challenges.239

Creativity Cultivation: In the experiments, we240

observe that our framework is capable of generat-241

ing solutions that differ from the ground truth yet242

still successfully complete the tasks. These exciting243

findings support our hypothesis that metacognitive244

learning can cultivate creativity in robotic planning.245

Due to space limitations, we describe one represen-246

tative case. In the Move Rope task, two robot agents247

collaboratively grasp the ends of a rope, maneuver248

it over an obstacle wall, and place it into a desig-249

nated groove. In the ground-truth plan, the robots250

grasp the two ends of the rope to complete the task.251

In contrast, after initial plan generation failures252

due to collision or IK infeasibility, our framework253

generates an alternative motion plan in which one254

robot grasps the rope slightly inward instead of at255

the end. Although this alternative plan deviates256

from the ground truth, it effectively shortens the257

trajectory, improves the spatial separation between258

the robot arms, and significantly reduces the risk259

of collision and IK errors.

Table 2: Reflection success results by our framework.

Move Rope Arrange Cabinet Make Sandwich

Reflection Success Rate 0.44 1.00 0.70

260

Metacognitive Self-Reflection Analysis: As261

shown in Fig. 1, the self-reflection component is262

one of the three key elements of our proposed263

metacognitive learning module. To evaluate264

its practical impact, we introduce an additional265

metric in our experiments, the reflection success266

rate, defined as the proportion of successful plan267

regenerations among all reflection attempts within268

task rounds that ultimately succeeded. The results,269

summarized in Table 2. As shown in the table, in270

the Arrange Cabinet task, the framework achieves271

a perfect reflection success rate of 100%, indicating272

that every initial failure was successfully recovered273

through self-reflection. In the Make Sandwich274

task, which involves long-horizon dependencies275

and stacking constraints, the framework recovers276

from 70% of failed plans via self-reflection.277

Even in the most challenging Move Rope task,278

characterized by tight spatial coordination, the 279

framework achieves a 44% reflection success 280

rate, underscoring the role of self-reflection in 281

enabling meaningful plan recovery under physical 282

constraints. These findings highlight the critical 283

role of the self-reflection component within our 284

metacognitive learning module. They also show 285

that the proposed framework not only supports 286

LLM-powered agents in initial plan generation 287

but also enables them to proactively reason about 288

and reflect on execution failures, providing the 289

essential capability of reliable recovery and 290

adaptation in zero-shot settings. 291

5 Conclusions 292

In this paper, we introduced an early-stage frame- 293

work to explore the research question: Can LLMs 294

be empowered with metacognitive capabilities 295

to reason, reflect, and create, thereby enhancing 296

their ability to perform robotic tasks with minimal 297

demonstrations? Our proposed framework inte- 298

grates metacognitive learning into LLM-powered 299

multi-robot collaboration, inspired by human re- 300

flective problem-solving processes. By equipping 301

LLM-driven robotic agents with a metacognitive 302

learning module, our framework enables effective 303

reasoning, self-reflection on failures, and creative 304

synthesis of novel solutions in zero-shot robotic 305

planning scenarios. Experimental results demon- 306

strate that our framework outperforms state-of-the- 307

art methods and can generate innovative task so- 308

lutions that differ from the provided ground-truth 309

plans. These findings highlight the potential of 310

metacognitive strategies to significantly enhance 311

the adaptability, reliability, and creativity of robotic 312

systems powered by LLMs. 313

Limitations 314

While this early-stage work shows exciting results 315

on exploiting metacognitive learning methodol- 316

ogy to advance LLM-based robot operations. Sev- 317

eral limitations remain. For example, the current 318

metacognitive self-reflection focuses primarily on 319

identifying missing or misapplied skills but does 320

not yet support finer-grained failure modes such as 321

multi-agent coordination errors and long-horizon 322

dependency mistakes. Extending the system to rea- 323

son hierarchically about such failures remains an 324

open challenge. 325
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