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ABSTRACT

Using a mean-field theory of signal propagation, we analyze the evolution of cor-
relations between two signals propagating forward through a deep ReLU network
with correlated weights. Signals become highly correlated in deep ReLU networks
with uncorrelated weights. We show that ReLU networks with anti-correlated
weights can avoid this fate and have a chaotic phase where the signal correla-
tions saturate below unity. Consistent with this analysis, we find that networks
initialized with anti-correlated weights can train faster by taking advantage of the
increased expressivity in the chaotic phase. An intiialization scheme combining
this with a previously proposed strategy of using an asymmetric initialization to
reduce dead node probability shows consistently lower training times compared to
various other initializations on synthetic and real-world datasets. Our study sug-
gests that use of initial distributions with correlations in them can help in reducing
training time.

1 INTRODUCTION

Rectified Linear Unit (ReLU) Fukushima (1969); Fukushima & Miyake (1982) is the most widely
used non-linear activation function in Deep Neural Networks (DNNs) LeCun et al. (2015); Ra-
machandran et al. (2018); Nair & Hinton (2010), applied to various tasks like computer vision Glorot
et al. (2011b); Krizhevsky et al. (2012); He et al. (2015), speech recognition Maas et al. (2013); Tóth
(2013); Hinton et al. (2012), intelligent gaming Silver et al. (2016), and solving scientific problems
Seif et al. (2019). ReLU, φ(x) = max(0, x), outperforms most of the other activation functions
proposed Glorot et al. (2011a). It has several advantages over other activations. ReLU activation
function is computationally simple as it essentially involves only a comparison operation. ReLU
suffers less from the vanishing gradients, a major problem in training networks with sigmoid-type
activations that saturate at both ends Glorot et al. (2011b). They generalize well even in the overly
parameterized regime Maennel et al. (2018).

Despite its success, ReLU also has a few drawbacks, one of which is the dying ReLU problem He
et al. (2015); Trottier et al. (2017). The dying ReLU is a type of vanishing gradient problem in
which the network outputs zero for all inputs and is dead. There is no gradient flow in this state.
ReLU also suffers from exploding gradient problem, which occurs when backpropagating gradients
become large Hanin (2018).

Several methods are proposed to overcome the vanishing/exploding gradient problem; these can
be classified into three categories Lu et al. (2020). The first approach modifies the architecture,
which includes using modified activation functions Ramachandran et al. (2018); He et al. (2015);
Trottier et al. (2017); Clevert et al. (2016); Klambauer et al. (2017); Hendrycks & Gimpel (2016),
adding connections between non-consecutive layers (residual connections)He et al. (2016), and op-
timizing network depth and width. The proposed activations are often computationally less efficient
and require a fine-tuned parameter Lu et al. (2020). The second approach relies on normalization
techniques Ba et al. (2016); Ioffe & Szegedy (2015); Salimans & Kingma (2016); Ulyanov et al.
(2016); Wu & He (2018), the most popular one being batch normalization Ioffe & Szegedy (2015).
Batch normalization prevents the vanishing and exploding gradients by normalizing the output at
each layer but with an additional computational cost of up to 30% Mishkin & Matas (2016). A re-
lated strategy involves using the self-normalizing activation (SeLU), which by construction ensures
output with zero mean and unit variance Klambauer et al. (2017). The third approach focuses on the
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initialization of the weights and biases. As local (gradient-based) algorithms are used for optimiza-
tion Kingma & Ba (2015); Zeiler (2012); Duchi et al. (2011), it is challenging to train deep networks
with millions of parameters Du et al. (2019); Srivastava et al. (2015), and optimal initialization is
essential for efficient training Nesterov (2014). He-initialization He et al. (2015) is a commonly
used strategy that uses uncorrelated Gaussian weights with variance 2

N , where N is the width of
the network. Recently, Lu et al. (2020) proposed Random asymmetric initialization (RAI), which
reduces the probability of dead ReLU at the initialization. In this paper, we aim to further improve
the initialization scheme for ReLU networks.

A growing body of work has analyzed signal propagation in infinitely wide networks to understand
the phase diagram of forward-propagation in DNNs Saxe et al. (2014); Poole et al. (2016); Raghu
et al. (2017); Schoenholz et al. (2017); Lee et al. (2018); Hayou et al. (2019a); Li & Saad (2018;
2020); Bahri et al. (2020). We mention a few results for ReLU networks. Hayou et al. (2019a)
showed that correlations in input signals propagating through a ReLU network always converge to
one. Many other works found that ReLU networks are in general biased towards computing simpler
functions De Palma et al. (2019); Rahaman et al. (2019); He et al. (2020); Valle-Perez et al. (2019);
Hanin & Rolnick (2019), which may account for their better generalization properties even in the
overly parameterized regime. However, from their successful application in different domains, one
may guess that they should be capable of computing more complex functions. There might be a
subspace of the parameters where the network can represent complex functions.

Li & Saad (2018; 2020) applied weight and input perturbations to analyze the function space of
ReLU networks. They found that ReLU networks with anti-correlated weights compute richer func-
tions than uncorrelated/positively correlated weights. Consistent with this, Shang et al. (2016) found
that ReLU CNN’s produce anti-correlated feature matrices after training. These studies motivated us
to analyze the phase diagram of signal propagation in ReLU networks with anti-correlated weights.

Following the mean-field theory of signal propagation proposed by Poole et al. (2016), we found that
ReLU networks with anti-correlated weights have a chaotic phase, which implies higher expressivity.
In contrast, ReLU networks with uncorrelated weights do not have a chaotic phase. Furthermore,
we find that initializing ReLU networks with anti-correlated weights results in faster training. We
call it Anti-correlated initialization (ACI). Additional improvement in performance is achieved by
incorporating RAI, which reduces the dead node probability. This combined scheme, which we
call Random asymmetric anti-correlated initialization (RAAI), is the main result of this work and is
defined as follows. We pick weights and bias incoming to each node from anti-correlated Gaussian
distribution and replace one randomly picked weight/bias with a random variable drawn from a beta
distribution. The code to generate weights drawn from the RAAI distribution is given in Appendix G.
We analyze the correlation properties of RAAI and show that it performs better than the best-known
initialization schemes on tasks of varying complexity. It may be of concern that initialization in an
expressive space may lead to overfitting, and we do observe the same for ACI for deeper networks
and complex tasks. In contrast, RAAI shows no signs of overfitting and performs consistently better
than all other initialization schemes.

We organize the article as follows. First, we contrast the mean-field analysis of ReLU networks with
correlated weights with uncorrelated in Section 2. Next, Section 3 analyzes the critical properties of
correlations in input signals for RAI and RAAI. Then, in Section 4, we describe the various tasks
used to validate the performance of different initialization schemes in Section 5. Lastly, Section 6
concludes the article.

2 MEAN-FIELD ANALYSIS OF SIGNAL PROPAGATION WITH CORRELATED
WEIGHTS

This section presents the mean-field theory of signal propagation (proposed by Ref. Poole et al.
(2016)) in ReLU networks with correlated weights and compares it with uncorrelated weights. Un-
like Ref. Li & Saad (2018; 2020), which study perturbation to a ReLU network, we aim to under-
stand the phase diagram of the signal propagation. Furthermore, we provide numerical results to
corroborate the mean-field results.

Consider a fully connected neural network with L layers (in addition to the input layer) and Nl
nodes in layer l. The layer index ranges between 0 and L. For an input signal s0 = x, we denote
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the pre-activation at node i in layer l by hli(x) and activation by sli(x). A signal (sl−11 , . . , sl−1Nl
) at

layer l − 1 propagates to layer l by the rule

hli(x) =

Nl−1∑

j=1

wlijs
l−1
j (x) + bli where l ∈ {1, L}

sli(x) = φ(hli(x)),

where φ is the non-linear activation function and wlij , b
l
i are the weights and biases. We consider

correlations within the set of weights (wl
i) incoming to each node i. The correlated Gaussian distri-

bution is

P (wl
1,w

l
2,w

l
3 . . . ) =

Nl∏

i

e(−
1
2 (w

l
i)
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i)
√
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)
, (1)

where I is the identity matrix, J is an all-ones matrix, and k parameterizes the correlation strength.
Positively correlated and anti-correlated regimes correspond to the regions −1 < k < 0 and k > 0,
respectively, whereas k = 0 generates uncorrelated weights. The overall scaling by 1/Nl−1 in the
covariance matrix ensures that the input contribution from the last layer to each node is O(1). The
bias is drawn from a Gaussian distribution bli ∼ N (0, σ2

b ). Note that weights reaching two different
nodes are uncorrelated, and also the bias is uncorrelated with the weights.

To track the layer-wise information flow, consider the squared length and overlap of the pre-
activations for two input signals, s0 = x1 and s0 = x2, after propagating to layer l

qlh(xa) =
1

Nl

Nl∑

i=1

(
hli(xa)

)2
where a ∈ {1, 2} and 1 ≤ l ≤ L

qlh(x1, x2) =
1

Nl

Nl∑

i=1

hli(x1)hli(x2).

Assuming self averaging, consider an average over the weights and the bias incoming to layer l. For
simplicity of notations later, we use the same symbol for averaged qlh.

qlh(xa) =
σ2
w

Nl−1
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(
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b ,

For large width, each hl−1i is a weighted sum of a large number of zero-mean random variables.
Thus, we expect the joint distribution of hl−1i (x1) and hl−1i (x2) to converge to a zero-mean Gaus-
sian with a covariance matrix with diagonal entries ql−1h (x1), ql−1h (x2) and off-diagonal entries
ql−1h (x1, x2). On replacing the average over hl−1i (this is equivalent to considering an average
over all previous layers) in the last layer with an average over this Gaussian distribution, we obtain
iterative maps for the length and overlap. Specializing to ReLU activation yeilds the equations
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(2)
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where clh =
qlh(x1,x2)√
qlh(x1)qlh(x2)

is the correlation coefficient between the two signals reaching layer l (for

details of the derivation, see Appendix A).

Poole et al. (2016) found that the signal’s length reaches its fixed point within a few layers, and the
fixed point of the correlation coefficient, c∗h, can be estimated with the assumption that qlh(x) has
reached its fixed point q∗h. We can check that c∗h = 1 is always a fixed point of the recursive map
(Eqn. 2) under this assumption. The stability of the fixed point c∗h = 1 is determined by

χ1 ≡
∂clh
∂cl−1h

∣∣∣
cl−1
h =1

,

which evaluates to σ2
w

2 . χ1 separates the parameter space into two phases —first, an ordered phase
with χ1 < 1, where the c∗h = 1 fixed point is stable; and second, a chaotic phase with χ1 > 1,
where the c∗h = 1 fixed point is unstable. χ1 = 1 defines the phase boundary line. In the ordered
phase, two distinct signals will become perfectly correlated asymptotically. In the chaotic phase, the
correlations converge to a stable fixed point below unity. Two closely related signals will eventually
lose correlations in this phase. This suggests that initializing the network with parameters (σ2

w, σ
2
b )

at the phase transition boundary (corresponding to an infinite depth of correlations) allows for an
optimal information flow through the network Poole et al. (2016); Schoenholz et al. (2017)
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Figure 1: Phase diagram for ReLU networks with uncorrelated and anti-correlated Gaussian dis-
tributed weights. (a) ReLU networks with uncorrelated weights have two phases. First, a bounded
phase where q∗h is finite and second in which it diverges. The two phases are separated by σ2

w = 2.
In both phases, any two signals will eventually become correlated. (b) ReLU networks with anti-
correlated weights have three phases. In addition to the transition between the bounded and un-
bounded phases (at σ2

w = gk) there is an order to chaos transition at σ2
w = 2. The results are shown

for k = 100.

ReLU networks with uncorrelated weights (k = 0) The above analysis is applied assuming q∗h
is finite shows that ReLU networks with uncorrelated weights do not have a chaotic phase, and any
two signals propagating through a ReLU network become asymptotically correlated for all values of
(σ2
w, σ

2
b ). In other words, c∗h = 1 is always a stable fixed point. However, the parameter space can

be classified into two phases based on the boundedness of the fixed point q∗h of the length map (Eqn.
2) - first, a bounded phase where q∗h is finite and non-zero; second, an unbounded phase, where q∗h
is either zero or infinite Lee et al. (2018); Hayou et al. (2019b). The two phases are separated by
the boundary σ2

w = 2. Figure 1a depicts the phase diagram for ReLU networks with uncorrelated
weights. Note that the analysis of the stability of c∗h = 1 fixed point in ReLU networks is valid only
in the bounded phase. However, numerical results presented in Fig. 2 indicate that the fixed point
remains stable even in the unbounded phase.

ReLU networks with correlated weights The phase diagram for ReLU networks with correlated
weights can be analyzed similarly. The length is bounded if σ2

w < gk = 2

(1− k
1+k

1
π )

. Thus, for anti-
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Figure 2: The above plots show the signal’s length and correlation coefficient after propagating
through l layers in a ReLU network with uncorrelated weights. We estimate the length and corre-
lation coefficient averaged over M = 1024 input signals, and 40 networks with a constant width
N = 2048. The shaded regions denotes the standard deviation. In the first panel, the vertical dashed
line indicates the theoretical phase boundary σ2

w = 2, and the solid black line denotes the theoretical
prediction for the length’s fixed point. As the critical boundaries do not depend on the variance of
the bias, we show results for σ2

b = 0.1 only. We find that clh → 1 for all values of σ2
w and σ2

b .
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Figure 3: The above plots show the signal’s length and correlation coefficient after propagating
through l layers in a ReLU network with anti-correlated weights with a correlation strength k = 100.
We estimate the length and correlation coefficient averaged over M = 1024 input signals, and 40
networks with a constant width N = 2048. The shaded regions denotes the standard deviation. The
vertical dashed lines indicate the theoretical phase boundaries at σ2

w = 2.92 and σ2
w = 2.0 for qlh(x)

and clh(x). The solid black line in the first panel denotes the theoretical prediction for the length’s
fixed point. As the critical boundaries do not depend on the variance of bias, we show results for
σ2
b = 0.1. Unlike the case of uncorrelated weights, we find a chaotic region.

correlated weights (k > 0), the boundary gk moves upwards relative to the k = 0 case (see Fig. 1a).
The c∗h = 1 fixed point of the correlations is unstable in this region of the bounded phase.

In summary, anti-correlations induce a bounded chaotic phase in 2 < σ2
w < gk (see Fig. 1b). We

demonstrate these results numerically in Fig. 3 for a correlation strength of k = 100. As predicted
by the above equations, the stability of the fixed point c∗h = 1 changes at σ2

w = 2, and the length
diverges at gk=100 = 2.92. In contrast, for positively correlated weights, the length’s fixed point
boundary shifts downward resulting in a similar phase diagram as uncorrelated weights.

As a result, a ReLU network with anti-correlated weights can be more expressive by taking ad-
vantage of a chaotic phase, and it may be beneficial for a ReLU network to remain in this sub-
space. Thus, we propose initializing ReLU networks with anti-correlated weights at the order to
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chaos boundary (σ2
w, σ

2
b ) = (2, 0). We call it Anti-Correlated Initialization (ACI). Appendix B

demonstrates that ReLU networks initialized with anti-correlated weights give an advantage over
He initializations for a range of tasks.

Many alternatives are proposed to improve ReLU networks Trottier et al. (2017); Lu et al. (2020);
Clevert et al. (2016). Of particular interest is Random asymmetric initialization (RAI), which aims to
increase expressivity through an independent strategy of reducing the dead node probability. In the
next section, we analyze the correlation properties of RAI and then combine it with ACI to propose
a new initialization scheme RAAI, which has both a chaotic phase and low dead node probability.

3 RANDOM ASYMMETRIC ANTI-CORRELATED INITIALIZATION

We begin by analyzing critical properties of Random asymmetric initialization (RAI) proposed in
Lu et al. (2020) to reduce the dead node probability. For ReLU networks with symmetric distribu-
tions for weights and biases, the dead node probability is half. RAI reduces it by initializing one of
the weights/the bias incoming to each node from a distribution with positive support (like the beta
distribution), resulting in a positive mean for the pre-activations. Lu et al. (2020) proposes initializ-
ing RAI with a variance σ2

w = 0.36 to ensure that the signal’s length is bounded. We analyzed the
correlation properties of RAI and found that c∗h = 1 is always a fixed point of the recursive maps
(see Appendix C). Deriving the stability condition for the fixed point c∗h = 1 even with the mean-
field assumptions is difficult. However, numerical results presented in Figure 4 show that c∗h = 1 is
always a stable fixed point (right panel), and the length remains finite for σ2

w up to 0.72 (left panel).
A qualitative picture of the phase diagram can be captured with additional assumptions over the
mean-field approximation (see Appendix D).
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Figure 4: The above plots show the signal’s length and correlation coefficient after propagating
through l layers in a ReLU network with RAI. We estimate the length and correlation coefficient
averaged over M = 1024 input signals, and 40 networks with a constant width N = 2048. The
shaded regions denotes the standard deviation. Similar to Fig. 2, the chaotic region is absent.

RAI focuses on decreasing the dead node probability to increase expressive power, whereas ACI
uses anti-correlated weights to improve the expressivity. As RAI and ACI increase the expressivity
using different mechanisms, we explore the possibility of combining the two. We call it Random
asymmetric anti-correlated initialization (RAAI). To prepare weights drawn from RAAI, we con-
sider anti-correlated Gaussian weights and bias incoming to each node (like Eqn. 3) and replace one
randomly picked weight/bias with a random number drawn from a beta distribution. Note that the
weights and biases reaching different nodes are uncorrelated. Like ACI, we observe three phases
for RAAI. Numerical results presented in Fig. 5 suggest that the order to chaos boundary is around
σ2
w = 0.9, and the length diverges for σ2

w > 1.2. Again, a qualitative picture of the phase diagram
can be captured with additional assumptions over the mean-field approximation (see Appendix E).

In summary, RAAI has a chaotic phase like ACI, and a lower dead node probability like RAI, as
can be checked numerically. As RAAI inherits the advantages of both strategies, we expect it to
be a strong candidate for initializing ReLU networks. Table 1 summarizes and compares different
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Figure 5: The above plots show the signal’s length and correlation coefficient after propagating
through l layers in a ReLU network with RAAI. We estimate the length and correlation coefficient
averaged over M = 1024 input signals, and 40 networks with a constant width N = 2048. The
shaded regions denotes the standard deviation. Similar to ACI, we find a chaotic region. However,
the correlations do not converge to zero even for large σ2

w.

Table 1: A comparison of different initialization schemes for ReLU networks. The dead node prob-
abilities are calculated numerically for input signals drawn from the standard normal distribution.

Initialization σ2
w k Chaotic Dead node

scheme phase probability
He 2.0 0.0 No 0.5
ACI 2.0 100.0 Yes 0.5
RAI 0.36 0.0 No 0.36
RAAI 0.92 100.0 Yes 0.36

initialization schemes. In the following sections, we analyze the training dynamics and performance
of RAAI and compare it with other initialization schemes.

4 TRAINING TASKS

This section describes various tasks used to analyze the dynamics and performance of different
initialization schemes. We consider a variant of teacher-student setup Seung et al. (1992), in which
a student ReLU network is trained with examples generated by an untrained teacher network. We
consider three different tasks with varying complexities.

1. First, a standard teacher task, in which the training data is generated by a ReLU network of the
same size as the student network, initialized with He initialization.

2. Next, we consider a simple teacher task in which the capacity of the teacher network is much
lower than the student network. In many real data sets, the high-dimensional inputs lie in a low-
dimensional manifold Goldt et al. (2020), which motivates us to consider a simple teacher task. We
consider a single-layer ReLU network with N = 10 nodes, initialized with He initialization.

3. Lastly, we consider a complex teacher task, in which the complexity of the teacher network is
more than the student network. We consider a teacher network with tanh activation of the same size
as the student network initialized in the chaotic regime, (σ2

w, σ
2
b ) = (1.5, 0) Poole et al. (2016). A

ReLU network initialized with symmetric distributions has half of the nodes dead. Therefore, it has
a lower capacity than a tanh network of the same size.

We consider an L = 10 layered (in addition to input layer) student network with a constant width
N = 100, trained using SGD and Adam algorithms (for further details, see 6).
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5 COMPARISON OF LEARNING DYNAMICS FOR DIFFERENT INITIALIZATION
SCHEMES

This section compares the performance of RAAI with other initialization schemes listed in Table 1
on tasks described in Section 4.

Standard teacher task Figure 6 shows the average validation loss for the standard tasks trained
with SGD and Adam algorithms. We observe that RAAI performs better than all other schemes.
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Figure 6: Average validation loss for ReLU networks trained on the standard teacher task with SGD
(left) and Adam optimizer (right) for different initialization schemes. The shaded region shows the
standard deviation around the average loss.

Simple teacher task Figure 7 shows the average validation loss for the simple teacher task. Sim-
ilar to the standard teacher task, RAAI performs better than or on par with other initialization
schemes.
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Figure 7: Average validation loss for ReLU networks trained on the simple teacher task with SGD
(left) and Adam optimizer (right) for different initialization schemes. The shaded region shows the
standard deviation around the average loss.

Complex teacher task Figure 8 shows the average validation loss for the complex teacher task.
We observe that for a complex teacher, ACI starts to perform worse when trained with SGD algo-
rithm, whereas, RAAI faces no such problem and performs better or on par with other initializations.

In various scenarios, RAI performs comparable to RAAI, however, we find that RAAI performs
better RAI on real-world datasets. We present different intitialization schemes on three different
real-world datasets —MNIST, Fashion-MNIST and CIFAR-10. We find that RAAI outperforms all
other intialization schemes at early training steps and all initialization schemes perform equally well
after a few epochs. For further details, see Appendix F.
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Figure 8: Average validation loss for ReLU networks trained on the complex teacher task with SGD
(left) and Adam optimizer (right) for different initialization schemes. The shaded region shows the
standard deviation around the average loss.

6 DISCUSSION AND CONCLUSION

In this article, we analyzed the evolution of correlation between signals propagating through a ReLU
network with correlated weights using the mean-field theory of signal propagation. Multiple studies
show that ReLU networks with uncorrelated weights are biased towards computing simpler func-
tions, but ReLU networks do perform complex tasks in practice. Unlike ReLU networks with uncor-
related weights, ReLU networks with anti-correlated weights reaching a node have a chaotic phase
where correlation saturates below unity. This suggests that such networks can exhibit higher expres-
sivity. Although we have focused on the ReLU networks in this study, anti-correlation in weights
may be useful in general. Networks with other non-linear activation functions like tanh, SELU, and
sigmoid have a chaotic phase even with uncorrelated weights. In these cases, the weight correlations
may still help to tune the phase boundaries and expressivity of the networks.

We further investigated the possibility that ReLU networks with the enhanced expressivity may
prove beneficial in faster learning. Comparison of training and test performance of networks in
a range of teacher-student setups clearly showed that networks with anti-correlated weights learn
faster. While ACI shows better learning performance in general, it shows poor performance with
SGD during an intermediate learning stage when the teacher network has a relatively higher capacity.
We believe that this may be due to the system getting stuck in local minima. This is consistent with
the absence of a similar regime on training with Adam optimizer. On training deeper networks with
ACI, we found that it overfits, but this can be avoided by fine-tuning correlation strength k. We also
investigated a possible improvement in training time from adding a regularization term in the loss
function that favors anti-correlated weights, but our attempts did not show any systematic results.

We compared ACI with a recently proposed initialization scheme called RAI, which introduces a
systematic asymmetry (around 0) in the weights to decrease dead node probability. We find that
the relative performance between RAI and ACI depends on the task and the optimization algorithm.
RAI improves expressivity by reducing the dead node probability, whereas ACI achieves the same
by inducing a chaotic phase. As RAI and ACI rely on different mechanisms, we explored a strategy
of combining the two initialization schemes. We analyzed the correlation properties of the combined
scheme, which we call RAAI and found that it has a chaotic phase like ACI. We demonstrated that
RAAI leads to faster training and learning than commonly-used methods on various teacher tasks
of a range of complexity. For different initialization schemes, the behavior of the training dynamics
at large epochs may depend on the optimizer and training data, however RAAI shows a definite
advantage over other schemes when using the SGD optimizer, especially in early training epochs. In
addition to faster training, RAAI also shows no sign of overfitting and thus improves on the simpler
strategy that relies only on anti-correlations. Our study has focused on adding simple two point
correlation in the initial distributions motivated by a richer phase space for ReLU networks with
anti-correlated weights. This simplest deviation from the uncorrelated Gaussian distribution showed
a consistent advantage in terms of training time, suggesting that initialization with more complex
and tailored correlations may lead to better performance.
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A DERIVATION OF THE LENGTH AND CORRELATION MAPS FOR
CORRELATED WEIGHTS

This section derives the length and covariance maps for ReLU networks with correlated weights
given by

P (wl
1,w

l
2,w

l
3 . . . ) =

Nl∏

i
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(
− 1

2 (wl
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TA−1wl

i

)
√

(2π)Nl−1 |A|
, (3)

where the covariance matrix given by
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w

Nl−1

(
I− k

1 + k

J
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)
.

Here I is the identity matrix, J is an all-ones matrix, and k parameterizes the correlation strength.
Positively correlated and anti-correlated regimes correspond to the regions −1 < k < 0 and k > 0,
respectively, whereas, k = 0 generates uncorrelated weights. For simplicity, we consider Nl = N
in all layers, but the results hold for all Nl, as long as it is large.

A.1 DERIVATION OF LENGTH MAP

To derive the length map, we follow the approach introduced by 36. Assuming self-averaging, we
obtain the average value of the squared length of a signal, s0 = x, after propagating to layer l by
considering an average over weights and biases between layer l and l − 1
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where we have used
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2
〉

= σ2
b . For large N , each

hl−1i (x) is a weighted sum of a large number of correlated random variables, which converges to
a zero-mean Gaussian with a variance ql−1h (x). Replacing the average over hli at layer l − 1 by
a Gaussian distribution to get the general form of the recursive map. This average corresponds to
averaging over all the weights and biases upto layer l − 1.
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where Dz is the standard normal distribution. For the second term in the Eqn. 4, we have used the
fact that for different nodesm 6= j, hlj(x) and hlm(x) are uncorrelated random variables and ignored
O(1/N) terms. Note that the weights and biases reaching two different nodes are uncorrelated. For a
ReLU activation, we can perform the integrals to get the exact form of the recursive relation between
qlh(x) and ql−1h (x)
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.
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A.2 DERIVATION OF THE COVARIANCE MAP

The covariance map can be derived similarly by considering an average over the weights and biases
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and then replacing the sum over neurons in the previous layer with an integral with a Gaussian mea-
sure. For large N , the joint distribution of hlj(x1) and hlm(x2) will converge to a two-dimensional
Gaussian distribution with a covariance matrix

Σl−1 =

[
ql−1h (x1) ql−1h (x1, x2)

ql−1h (x1, x2) ql−1h (x2)

]
.

The correlations among hlj(x1) and hlm(x2) are induced as the two signals are propagating through
the same network. Propagating this joint distribution across one layer, we obtain the iterative map
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is the correlation coefficient, andDz1, Dz2 are standard normal Gaussian

distributions. Again, in the second part of the above equation, we have used the fact that for j 6= m,
hlj(x1) and hlm(x2) are uncorrelated random variables and have ignored O(1/N) terms. Further,
we can perform the integrals for ReLU networks to get the exact recursive map
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B TRAINING WITH ANTI-CORRELATED VS. POSITIVELY CORRELATED
INITIALIZATION

This section compares the training dynamics and performance of ReLU networks initialized with
different weight correlation strengths on tasks described in Section 4. We utilize the increased ex-
pressivity in ReLU networks with anti-correlated weights (ACI) at the initial training phase and
compare its training dynamics with He initialization and positively correlated weight initialization.
We observe that ACI provides a definite advantage over the other two initialization schemes. We also
find that positively correlated weight ReLU networks train slower than He initialization, suggesting
that anti-correlation may develop in weights during training. We choose three different correla-
tion strengths; k = 100 induces anti-correlated weights, k = −0.5 produces positively correlated
weights, and lastly, k = 0 corresponds to uncorrelated weights (He initialization). We train networks
with two different optimization algorithms, SGD and Adam. For SGD, we train for 104 epochs, and
for Adam, we train for 103 epochs.

Standard teacher task Figure 9 shows the average validation loss for different correlation
strengths trained using SGD and Adam algorithms. We observe that ReLU networks initialized
with ACI train faster than He initialization. In contrast, ReLU networks with positively correlated
weights train slower than He initialization.
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Figure 9: Average validation loss for ReLU networks trained on the standard teacher task with SGD
(left) and Adam optimizer (right) for different weight correlations strengths.

Simple teacher task Figure 10 shows the average validation loss for the simple teacher task. We
observe similar qualitative results as in the standard teacher task. For SGD, we observe an initial
linear region in which all initialization schemes perform equally; however, at large epochs, ACI
shows a definite advantage over other initializations.
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Figure 10: Average validation loss for ReLU networks trained on the simple teacher task with SGD
(left) and Adam (right) optimizer for different weight correlations strengths.

Complex teacher task Figure 11 shows the average validation loss for a complex teacher task.
For some intermediate regions, ACI performs worse than other initializations on training with SGD.
The regions where ACI performs poorly shift depending on the complexity of the task.

C DERIVATION OF THE LENGTH AND COVARIANCE MAP FOR RAI

To draw weights from the RAI distribution, we first initialize the weights and bias incoming to each
node with a Gaussian distribution N (0,

σ2
w

N ). Next, we replace one weight or the bias incoming to
each neuron by a random variable from beta distribution (see 18 for details). The weights and bias
are treated on an equal footing. Thus, to simplify the notations, we incorporate the bias in the weight
matrix by introducing a fictitious additional node with a constant value of one, i.e.,

sl(x) = [φ(hl(x)), 1].
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Figure 11: Average validation loss for ReLU networks trained on the complex teacher task with
SGD (left) and Adam (right) optimizer for different weight correlations strengths.

The evolution equation is now given by

hl(x) = Wl · sl−1(x).

It is easier to track the evolution using the activation instead of the pre-activations. So we define a
few covariance matrices which will come in handy

qls(x1, x2) =
1

N + 1

N∑

i=0

sli(x1)sli(x2)

ql−klj
(x1, x2) =

1

N

N∑

t 6=klj

slt(x1)slt(x2) ,

where klj tags variables associated with the special weight. We will use the notations qls(x) =

qls(x, x) and ql−k(x) = ql−k(x, x). The corresponding correlation coefficients are given by,

cls =
qls(x1, x2)√
qls(x1) qls(x2)

cl−klj
=

ql−klj
(x1, x2)

√
ql−klj

(x1) ql−klt
(x2)

C.1 DERIVATION OF THE LENGTH MAP FOR RAI

Given hl−1(x) and considering weights between layers l and l− 1, we can view hlj(x) as a random
variable

hlj(x) = σw

√
ql−1
−kl−1

j

(x) z + sl−1
kl−1
j

(x) u,

where z ∼ N (0, 1) and u ∼ β(2, 1). By applying the activation function and squaring it, we obtain

φ(hlj(x))2 = φ

(
σw

√
ql−1
−kl−1

j

(x) z + sl−1
kl−1
j

(x) u

)2

.
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Next, we take an average over the weights and the special weight ( average denoted by < . >) to get

〈
φ(hlj(x))2|hl−1(x)

〉
=

N∑

kl−1
j =0

1

N + 1

∫
dz du f(z) g(u) φ

(
σw

√
ql−1
−kl−1

j

(x) z + sl−1
kl−1
j

(x) u

)2

,

where g(u) ∼ β(2, 1) distribution, and f(z) ∼ N (0, 1). We can take a sum over all nodes and
re-write the equation in terms of the overlap

〈
qls(x)|hl−1(x)

〉
=

1

N + 1


1 +

N∑

j=1

N∑

kl−1
j =0

1

N + 1

∫
dzdu f(z)g(u) φ

(
σw

√
ql−1
−kl−1

j

(x) z + sl−1
kl−1
j

(x) u

)2


 .

(8)

C.2 DERIVATION OF THE COVARIANCE MAP FOR RAI

The covariance map can be derived similarly, with a key difference of covariance between the pre-
activations. For two input signals s0 = x1 and s0 = x2, the covariance map reads

〈
qls(x1, x2)|hl−1(x1), hl−1(x2)

〉
=

1

N + 1


1 +

N∑

j=1

N∑

kl−1
j =0

1

N + 1

∫
dy1dy2du f(y1, y2) g(u) ×

× φ

(
σw

√
ql−1
−kl−1

j

(x1) y1 + sl−1
kl−1
j

(x1) u

)
φ

(
σw

√
ql−1
−kl−1

j

(x2) y2 + sl−1
kl−1
j

(x2) u

)]
,

(9)

where f(y1, y2) is the joint Gaussian distribution of y1 and y2, with a covariance matrix given by

Σl−1
klj

=




ql−1
−kl−1

j

(x1) ql−1
−kl−1

j

(x1, x2)

ql−1
−kl−1

j

(x1, x2) ql−1
−kl−1

j

(x2)


 .

We can re-write Eqn. 9 in terms of cl−klj

〈
qls(x1, x2)|hl−1(x1), hl−1(x2)

〉
=

1

N + 1


1 +

∑

j

∑

kl−1
j

1

N + 1

∫
dz1 dz2 du f(z1)f(z2) g(u) ×

× φ

(
σw

√
ql−1
−kl−1

j

(x1) z1 + sl−1
kl−1
j

(x1) u

)
×

× φ

(
σw

√
ql−1
−kl−1

j

(x2)

[
cl−klj

z1 +
√

1− (cl−klj
)2 z2

]
+ sl−1

kl−1
j

(x2) u

)]
,

where f(z1) ∼ f(z2) ∼ N (0, 1) are standard Gaussian distributions. As suggested by 36, we can
find the fixed point of the correlation map under the assumption that the length qlh(x) has reached
its fixed point. It can be checked that clh = 1 is a fixed point of the correlation map.
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D STABILITY OF THE FIXED POINTS FOR THE LENGTH AND CORRELATION
MAPS FOR RAI

D.1 STABILITY OF THE FIXED POINT FOR THE LENGTH MAP FOR RAI

The derivation of the analytical form of the length map (Eqn. 8) is difficult, and only bounds to
the map have been derived (see 18). Inspired by the analytical form of the length map for the anti-
correlated initialization and the analysis done by 18, we assume that the length map has a linear
dependence on ql−1s (x). Under this assumption, we can find the stability of the fixed point of the
length map by taking a derivative with respect to ql−1s (x). Yet another problem exists. While taking
a derivative, we have to encounter derivatives of the form

∂sl−1
−kl−1

j

(x)

∂ql−1h (x)
.

To simplify the calculations further, we employ a mean-field type approach by approximating
ql−1−klj

(x) and sl−1
kl−1
j

by ql−1s (x). Note that we can also approximate sl−1
klj

by its mean value, giv-

ing the same qualitative results. This simplifies Eqn. 8 to

〈
qls(x)|hl−1(x)

〉
=

1

N + 1

[
1 + (N + 1)

∫
dz du f(z) g(u) φ

(√
ql−1s (x)(σwz + u)

)2
]
.

To find the fixed point of the length map, we take a derivative wrt ql−1s (x) to get the condition for
stability of the fixed point q∗. We denote this derivative by ζq∗ . It separates the dynamics into two
phases —a bounded phase when ζq∗ < 1, and an unbounded phase when ζq∗ > 1.

ζq∗ =
∂qls(x)

∂ql−1s (x)

∣∣∣
ql−1
s (x)=q∗

ζq∗ =
∂

∂ql−1s (x)

∫
dz du f(z) g(u) φ

(√
ql−1s (x)(σwz + u)

)2

ζq∗ =
1√

ql−1s (x)

∫
dz du f(z) g(u) (σwz + u)φ′

(√
ql−1s (x)(σwz + u)

)
φ

(√
ql−1s (x)(σwz + u)

)

ζq∗ = σ2
w

∫
dz du f(z) g(u) [φ′ (σwz + u)]

2
+ σw

∫
dz du f(z) g(u)φ′ (σwz + u)φ (σwz + u)

(10)
where we have used the fact that for a > 0, φ(ax) = a φ(x). On evaluating the integral, we find
that ζq∗ = 1 when σ2

w = 0.56. This critical value underestimates the numerical value obtained in
Fig. 4.

D.2 STABILITY OF THE FIXED POINT FOR THE CORRELATION MAP FOR RAI

Under the assumption, qls(x) → q∗, the correlation map has a fixed point c∗s = 1, and its stability

is given by χ1 =
∂cls
∂cl−1
s

evaluated at cl−1s = 1. But again, we get into the difficulties mentioned in
the previous section, and we employ the same assumptions to arrive at a tractable equation for the
correlation map

〈
cls|hl−1(x1), hl−1(x2)

〉
=

1

q∗s (x)

1

N + 1

[
1 +N

∫
dz1 dz2 du f(z1)f(z2) g(u) ×

× φ
(√

q∗s (x)(σw z1 + u)
)
φ

(√
q∗s (x)

[
cl−1s σw z1 +

√
1− (cl−1s )2 σw z2 + u

])]
,
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Next, we take a derivative to get the condition for the stability of the fixed point c∗h = 1

χ1 =
∂clh
∂cl−1h

∣∣∣
cl−1
h =1

χ1 =
1

q∗h(x)

∂

∂cl−1h

∫
dz1dz2duf(z1)f(z2)g(u)φ

(√
q∗s (x)(σw z1 + u)

)
×

× φ
(√

q∗s (x)

[
cl−1s σw z1 +

√
1− (cl−1s )2 σw z2 + u

])∣∣∣
cl−1
h =1

χ1 = σ2
w

∫
dz du f(z) g(u) [φ′(σwz + u)]

2
. (11)

The above equation is the same as the first term we obtained in the condition for the stability of the
length map (Eqn. 10). We obtain a critical value of σ2

w = 1.41 by solving for χ1 = 1. We observe
that the critical point for the length is smaller than the critical point of the correlation coefficient,
and from our experience with ReLU networks calculations, we expect RAI to have an ordered phase
only, which is confirmed by numerical results shown in Fig. 4.

E DERIVATION OF LENGTH AND CORRELATION MAP FOR RAAI AND
STABILITY CONDITIONS

E.1 DERIVATION FOR THE LENGTH MAP FOR RAAI AND THE STABILITY CONDITION

Similar to the previous section, we can view hlj(x) as a random variable

hlj(x) = σw

√
q̃l−1(x) z + sl−1

−kl−1
j

(x) u,

where q̃l−1(x) = ql−1
−kl−1

j

(x)
(

1− k
1+k

1
π

)
. Then, we can re-define σw as

σ̃2 = σ2
w

(
1− k

1 + k

1

π

)
,

which yields,

hlj(x) = σ̃

√
ql−1
−kl−1

j

(x) z + sl−1
−kl−1

j

(x) u,

Now, the entire analysis goes through as Appendix C.1, just with a re-definition of the variance.
Now, we can read off the stability condition for the fixed point of the length map

ζq∗ = σ̃2
w

∫
dz du f(z) g(u) [φ′ (σ̃z + u)]

2
+ σ̃

∫
dz du f(z) g(u)φ′ (σ̃z + u)φ (σ̃z + u) (12)

On solving the equations numerically, we observe that the length is bounded when σ2
w < 1.75,

which overestimates the numerical value observed in Fig. 5.

E.2 DERIVATION FOR THE CORRELATION MAP FOR RAAI AND THE STABILITY CONDITION

The correlation map for RAAI can be derived similar to RAI (Appendix C.2), with a key difference
being the covariance matrix. The covariance matrix, in this case, is
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Σl−1
klj

(x1, x2) =




ql−1
−kl−1

j

(x1)− k
1+k

(
ml
−kl−1

j

(x1)

)2

ql−1
−kl−1

j

(x1, x2)− k
1+km

l
−kl−1

j

(x1)ml
−kl−1

j

(x2)

ql−1
−kl−1

j

(x1, x2)− k
1+km

l
−kl−1

j

(x1)ml
−kl−1

j

(x2) ql−1
−kl−1

j

(x2)− k
1+k

(
ml
−kl−1

j

(x2)

)2


 .

Again, we can check that c∗s = 1 is a fixed point of the dynamics. The stability of the fixed point
under the assumptions considered in Appendix D.2 determines the order to chaos boundary at σ2

w =
1.41. The critical value overestimates the numerical results presented in Fig. 5.

Note that instead of approximating sl−1
kl−1
j

by its RMS value ql−1s (x), we can also approximate it

by its mean value. In this case, we observe similar qualitative results. In Table 2, we compare the
boundaries predicted by the RMS and mean approximations.

Table 2: A comparison between the decision boundaries obtained by approximating sl−1
kl−1
j

by its

RMS and mean value. The RMS approximation underestimates the length boundary for RAI,
whereas it overestimates both the phase boundaries for RAAI. On the other hand, the mean ap-
proximation overestimates the phase boundaries for RAI and RAAI both.

Approximation (σ2
w)q(RAI) (σ2

w)c(RAAI) (σ2
w)q(RAAI)

RMS 0.57 1.41 1.75
Mean 0.85 1.46 1.89

F COMPARISON OF THE PERFORMANCE OF DIFFERENT INITIALIZATION
SCHEMES ON REAL-WORLD DATASETS

In this section, we compare the performance of different initializiation schemes on three different
real-world datasets. We consider MNIST, Fashion-MNIST and CIFAR-10 datasets, and train them
with feedforward networks with depth L = 10 (in addition to input layer) and a constant width of
N = 100 for all hidden layers. We implemented feedforward networks in Tensorflow and train
them using the complete training set with a cross entropy loss, a mini-batch size of 32, and default
parameters for the optimizers. As high performance for these datasets is achieved quickly (in terms
of epochs), we observe the training accuracy as a function of the number of steps (and not epochs).
It is noteworthy that we used training accuracy for demonstration purposes and validation accuracy
shows similar behaviour for the trends.

F.1 MNIST TASK

Figure 12 shows the average training accuracy for the MNIST task trained with SGD. We observe
that RAAI performs better than all other schemes, however, the advantage is only observed at early
time steps.

F.2 FASHION-MNIST TASK

Figure 13 shows the average training accuracy for the MNIST task trained with SGD. We observe
that RAAI performs better than all other schemes, however, the advantage is only observed at early
time steps.

F.3 CIFAR-10

Figure 14 shows the average training accuracy for the CIFAR-10 task trained with SGD. We observe
that RAAI performs better than all other schemes, however, the advantage is only observed at early
time steps.
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Figure 12: Average training accuracy for ReLU networks trained on the MNIST task with SGD
optimizer for different initialization schemes.
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Figure 13: Average training accuracy for ReLU networks trained on the Fashion-MNIST task with
SGD optimizer for different initialization schemes.
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Figure 14: Average training accuracy for ReLU networks trained on the CIFAR-10 task with SGD
optimizer for different initialization schemes.
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G CODE TO GENERATE WEIGHTS DRAWN FROM RAAI DISTRIBUTION

1 import numpy as np
2

3 def RAAI(fan_in, fan_out, k = 100, variance_weights = 0.9):
4 """Randomized Asymmetric Anti-correlated Initializer (RAAI)
5 Arguments:
6 fan_in -- the number of neurons in the previous layer
7 fan_out -- the number of neurons in the next layer
8 corr -- correlation strength for the Gaussian weights
9 variance_weights -- variance of the weights

10 Returns:
11 W, b -- weight and bias matrices with shape(fan_in, fan_out), and (

fan_out, )
12 """
13 corr = k/(1+k)
14 mean = np.zeros(fan_in + 1)
15 J = np.ones((fan_in + 1, fan_in + 1))
16 cov = (np.identity(fan_in + 1) - J*(corr/(fan_in +1)) )*

variance_weights/fan_in
17 P = np.random.multivariate_normal(mean = mean, cov = cov, size = (

fan_out))
18 for j in range(P.shape[0]):
19 k = np.random.randint(0, high = fan_in + 1)
20 P[j, k] = np.random.beta(2, 1)
21 W = P[:, :-1].T
22 b = P[:, -1]
23 return W.astype(np.float32), b.astype(np.float32)
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