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Abstract

Deep Neural Networks (DNNs) are known to be vulnerable to various adversarial
perturbations. To address the safety concerns arising from these vulnerabilities,
adversarial training (AT) has emerged as one of the most effective paradigms for
enhancing the robustness of DNNs. However, existing AT frameworks primarily
focus on a single or a limited set of attack types, leaving DNNss still exposed to
newly considered attack types that have not been addressed during training. In this
paper, we explore a new robust generalization paradigm that fine-tunes robust DNNs
to cope with unforeseen attacks. To this end, we propose Calibrated Adversarial
Sampling (CAS), a method that dynamically adjusts sampling probabilities during
fine-tuning to balance robustness across various adversarial attacks. CAS operates
in three key phases: sample-wise robustness testing, warm-up fine-tuning, and
dynamic fine-tuning. Experiments on benchmark datasets show that CAS achieves
superior overall robustness, maintains clean accuracy, and effectively balances
robustness across different types of attacks, providing a new paradigm for robust
generalization of DNNSs.

1 Introduction

Deep Neural Networks (DNNs) are known to be vulnerable against adversarial attacks [1], where
attackers can add imperceptible [29, 9] or semantic [11, 12] perturbations to craft adversarial examples
that lead the target DNN to make incorrect predictions. So far, the existence of adversarial examples
has raised significant concerns about DNNs [19, 17, 20], compromising their trustworthiness in their
deployments.

To address these concerns, numerous defense tactics have been proposed, such as adversarial training
(AT) [23, 36, 33], robustness repair [28, 21, 4], and adversarial noise purification [35, 25, 3]. Despite
their success in different deployment stages of DNNs, most of the existing defenses only focus on
a particular robustness metric. However, in this context, the metrics of DNN robustness can be
diverse. Generally, adversarial perturbations can be categorized into (i) {,-norm perturbations,
and (ii) semantic perturbations. The /,-norm perturbation ¢ is commonly optimized through
the classification loss (e.g., cross-entropy) and constrained by an ¢, ball ||0]|, < €, where popular
p € {1, 2, co}. They are more imperceptible due to the £,-norm constraint, yet are difficult to directly
inject into real-world vision models. By contrast, semantic perturbation is crafted by adding preset
transformation rules, e.g., snow, geometric transformation, etc.. Examples of these two kinds of
perturbations are illustrated in Figure 1.

The current adversarially robust generalization literature primarily focuses on the £,,-norm robustness
of DNNs. For example, various AT techniques are designed toward a single worst-case £, or {3-norm
adversarial robustness [23, 27, 8, 31]. Though a few preliminary works focus on multiple robustness
metrics, they are either limited to multiple £,,-norm robustness [6] or require training the model from
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Figure 1: Illustration of adversarial perturbations by different attack types from [12].
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Figure 2: An overview of CAS. CAS operates in three sequential phases. It first evaluates model
performance: accuracy and robustness across various adversarial attacks. CAS then warms up multi-
robustness fine-tuning by sampling attacks with smoothed probability weights. Finally, it dynamically
updates the sampling probabilities via synthesizing previously measured metrics.

scratch [24]. In this paper, we explore a new robust generalization paradigm through fine-tuning
£,-norm robust DNNG. Specifically, we aim to fine-tune robust DNNs against unforeseen attacks (i.e.,
adversarial attacks that are not employed during the initial training phase).

The motivation behind this paradigm is illustrated as follows. First, existing AT techniques designed
for multiple robustness metrics primarily focus on the £,-norm perturbations. However, novel and
unforeseen attacks, particularly those involving semantic perturbations, remain largely unexplored.
Additionally, while these techniques can be directly adapted to defend both £, and semantic pertur-
bations, they necessitate training from scratch and struggle to generalize to newly identified threats
continuously. Furthermore, since numerous pre-trained £,-norm robust models are available online
for commonly used datasets like RobustBench [18], it is feasible to leverage and fine-tune these
models against new attacks rather than training from scratch, as conducting AT on DNNs requires
expensive computational cost.

To this end, we introduce a technique called Calibrated Adversarial Sampling (CAS), which aims
to balance the trade-offs in sampling among various adversarial attacks during fine-tuning robust
DNNs. Specifically, CAS employs dynamic probability weights during fine-tuning to holistically
optimize resource allocation by integrating trade-off considerations regarding different adversarial
perturbations. This procedure includes three phases: (i) sample-wise robustness testing to obtain the
calibrated probability weights for adversarial attacks sampling, (ii) warm-up fine-tuning to facilitate
the model with basic robustness of newly introduced attacks, and (iii) dynamic fine-tuning to balance
better trade-offs between different robustness metrics. Additionally, given the notable success of the
Exponential Moving Average (EMA) mechanism in improving adversarial robustness [30, 33], we
design an EMA variant tailored for multiple robustness trade-offs to enhance overall accuracy further.

To validate the effectiveness of CAS, we conduct extensive experiments on pre-trained robust
models trained on popular benchmark datasets that are available from RobustBench [18]. For
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adversarial attacks, we consider three common /¢, attacks and 18 semantic attacks (e.g., snow, fog,
blur). Experimental results show CAS achieves superior overall robustness and maintains the clean
accuracy, and also balances robustness against different types of attacks, contributing to a novel and
practical paradigm of DNN robust generalization. Overall, our contribution in this paper can be
summarized as follows:

* We explore a new DNN robust generalization paradigm that fine-tunes ¢,-robust DNNs
for unforeseen semantic adversarial attacks and propose Calibrated Adversarial Sampling
(CAS) to address this issue.

* CAS extends and innovates upon the dynamic probability weighting methodology from
£,-robustness fine-tuning baselines, achieving a dual breakthrough in both methodological
depth and breadth by comprehensively addressing both £,, and semantic adversarial attacks.

» Extensive experiments demonstrate that CAS achieves superior effectiveness and efficiency
towards this goal compared to conventional methods, offering a novel technique in real-world
robust deployments of DNNs.

2 Related Work

2.1 Adversarial Examples

Adversarial examples are firstly discovered as deceptive samples crafted by applying subtle (often
imperceptible) perturbations to clean inputs [29], which can mislead DNNs into making erroneous
predictions. In practice, such perturbations are typically constrained within specific norm balls (e.g.,
¢p-norm constraints). To deal with this threat, adversarial training has emerged as the primary
defense paradigm [34, 2, 27], which enhances model robustness by explicitly injecting adversarial
examples during training.

Notably, beyond £,,-bounded “pixel-level” perturbations, there exists a challenging class of semantic
adversarial examples. These leverage natural, semantically meaningful transformations (e.g., rota-
tions, translations, lighting changes, fog, and blur) to deceive models, operating in larger perturbation
spaces that better reflect real-world variations [11]. Correspondingly, semantic adversarial training
has emerged as a critical research direction to enhance robustness against such semantically valid
perturbations [12].

2.2 Multi-Robustness of DNNs

While single-type adversarial training targets specific attack models, comprehensive adversarial
training for multi-robustness is more effective in evaluating and enhancing a model’s defenses
against a broader range of attacks, providing stronger and more practical protection in real-world
scenarios [7]. Moreover, fine-tuning techniques can further improve multi-robustness by building on
existing models, making them highly applicable in practice.

Adversarial Training. Adversarial training (AT) methods share a common limitation: training
a model from scratch requires substantial computational resources and disregards progress made
through prior model development. Stochastic adversarial training (SAT) [22] injects random noise
during adversarial example generation to enhance robustness against /1, /5, and /., on AutoAttack
benchmarks. This approach generalizes well to unforeseen attacks. Similarly, Multi-perturbation
adversarial training (MPAT) [24] achieves strong multi-norm robustness by jointly optimizing against
41, 05, and ., perturbations using a multi-steepest descent method.

Fine-Tuning. Fine-tuning methods offer a more computationally efficient alternative to full retraining
for enhancing robustness across multiple threat models. E-AT [6], a fast fine-tuning method for robust
classifiers, significantly boosts robustness across £, norms with minimal training cost. It achieves this
by: (1) utilizing extreme norms ({1, ;) to implicitly cover intermediate (¢,, p > 1) perturbations;
(2) and applying dynamic probability weighting based on average error rates. RAMP [14] introduces
a regularization-based fine-tuning framework that uses a logit pairing loss function to account for the
effects of different £,, attacks. It achieves a union accuracy of up to 53.3% on CIFAR-10 and 29.1%
on ImageNet.
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However, both E-AT and RAMP fine-tuning focus solely on £,-norm adversarial attacks. In contrast,
our proposed CAS framework integrates defenses against both £,, perturbations and semantic adversar-
ial attacks, providing a more comprehensive and unified approach to fine-tuning for multi-robustness.

3 Preliminaries

3.1 Unforeseen Adversarial Attacks

While significant breakthroughs have currently been achieved in research on £, robustness, such as
AutoAttack [5], systematic investigations into semantic adversarial attacks remain comparably under-
explored [5, 20]. Moreover, current robustness evaluations are often confined to single attack types,
lacking a holistic framework that jointly considers diverse threat models. This narrow focus poses
significant limitations for real-world Al deployments (e.g., autonomous driving, image processing
systems), where robustness against physically plausible and naturalistic corruptions is critical for
safety-critical applications [11, 32].

To enhance the versatility and comprehensiveness of robust fine-tuning methods in real-world
applications, this work investigates multi-robustness under a broad and diverse set of adversarial
attacks. From the framework proposed by [15], we select 17 representative semantic attacks for
evaluation, including Wood, Elastic, Pixel, Snow, Gabor, JPEG, Glitch, Kaleidoscope, Blur, Edge,
Fog, Texture, Prison, Whirlpool, Polkadot, Klotski, and Hsv. These cover a wide range of both
environmental and digital perturbations that commonly arise in real-world settings. In addition, we
incorporate the PerceptivePGD (PPGD) attack [37], a human-perception-guided method that explicitly
models semantically meaningful visual changes, along with three standard ¢,-norm attacks: ¢,
{5, and ¢;. Together, this suite comprises 21 distinct adversarial attacks, enabling a comprehensive
evaluation of model robustness against both semantic and norm-constrained perturbations.

3.2 Mutually Exclusive Perturbations

Since our research comprehensively considers 21 adversarial attacks to transcend the limitations of
prior studies that were predominantly confined to ¢, perturbations, integrating diverse adversarial
attacks into a unified adversarial training framework introduces significant challenges. In particular,
the Mutually Exclusive Perturbations (MEPs) [15] theory represents a fundamental limitation. MEPs
occur when the constraint sets of two perturbation types are inherently incompatible, such that
improving robustness against one attack inevitably degrades robustness against the other under
fixed optimization conditions. Classic examples of this contradiction include the ¢, attack and the
rotation-translation transformation as discussed in [15].

While the concept of MEPs qualitatively captures the inherent conflicts in achieving multi-attack
robustness, it currently lacks a rigorous definition and quantitative characterization. In the following,
we aim to formalize and extend this concept through guantitative analysis.

3.3 Quantifying Multi-Robustness Trade-Off

To systematically quantify these phenomena, we conduct a large-scale empirical study based on
the online pre-trained ¢.,-robust model (called pretr_Linf) [6] on the CIFAR-10 dataset [16], since
pretr_Linf exhibits inherent robustness against many adversarial attacks compared to a completely
non-robust pre-trained model. In this experiment, we choose 11 perturbation types — ¢, {2, {1, and
8 semantic attacks. For each attack type, we perform individual adversarial fine-tuning for 10 epochs
and measure the robust accuracy against all 11 attacks before/after fine-tuning. As illustrated in
Figure 3, we observe several notable patterns:

Semantic-¢,, Conflicts. As shown in the figure, semantic attacks often degrade /,, robustness because
most natural corruptions are incompatible with £, perturbation constraints.

Transfer Asymmetry. The tradeoff matrix shows no symmetric pattern with respect to the diagonal.
For instance, ¢, adversarial training enhances robustness against most semantic attacks, while
adversarial training using most semantic attacks tends to impair ¢, robustness.

Robustness Interference. When summing all values in the tradeoff matrix, it yields a notably
negative total of —3.123, indicating that sequential training against individual attack types tends to
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Figure 3: Trade-off matrix visualization. In the figure, each bar represents the change in robust
accuracy for its corresponding attack type after AT against designated types.

decrease overall robustness. This mutual interference of robustness presents a fundamental challenge
for improving multi-robustness. Interestingly, probability-weighted training methods such as SAT
demonstrate improved average robust accuracy by random sampling adversarial attacks during
training. This highlights the critical role of training sample order in multi-robustness optimization.

These findings underscore that the mutual interference dilemma for MEPs cannot be freely solved.
Based on this matrix, we propose the Calibrated Adversarial Sampling (CAS) method, which leverages
empirical data from a trade-off matrix to quantify the “externality” of each adversarial attack—defined
as its cross-impact on other robustness types—thereby enabling systematic optimization of robustness
allocation across diverse threat categories.

4 Methodology

This section details our CAS framework. We begin with a brief overview, followed by a detailed
description of its three key phases.

4.1 Framework Overview

As illustrated in Figure 2, the CAS framework operates in three phases. First, it evaluates the accuracy,
loss, and trade-off for each batch of data under various adversarial attacks to provide a prior for the
subsequent probability calibration. Next, CAS selects adversarial attacks randomly with calibrated
probability weights to warm up the Multi-Robustness fine-tuning. Finally, CAS synthesizes the
previously evaluated accuracy, loss, and trade-off to dynamically update the probability weights.

4.2 Phase I: Sample-Wise Testing

Since quantitative balancing across different attack types is required for CAS, (e.g., using the
aforementioned trade-off matrix), the weighting parameters must be derived from testing data. This
initial phase establishes a granular vulnerability assessment framework, designed to quantify the
DNN’s robustness at the individual sample level. Unlike conventional model-wide evaluations, our
sample-wise approach enables sample-wise precise identification of vulnerabilities, forming the
foundation for targeted fine-tuning in subsequent phases.

For each adversarial attack type A;, we compute per-batch metrics including mean robust accuracy
acc[j] and cross-entropy loss loss|z][;].

x,ij = Aj(xi, Gj) subject to D](xlm — Ii) < €; (1)
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acelj] = = X(N(a})) = i) )
i=1

loss[i][j] = CrossEntropy(N(az:;j)7 Yij) 3)

where D;(z}; — ;) denotes the distance between z;; and x; under the perturbation constraints of

A;. Concurrently, we record robust accuracy across alf attack types before training (acc_b,) and after
training (acc_a;) against A; attack. The pairwise trade-off matrix is then derived as:

TR[j][k] = acc_a,;[k] — acc_b;[k] “

However, substantial computational overhead emerges when handling numerous adversarial attack
types, with the tradeoff matrix summation »_, , T'R[j][k] typically being slightly negative. This
indicates that sample-wise testing is computationally intensive and suboptimal for model performance.
To mitigate computational costs, Phase I executes just one epoch where attack A; is exclusively
evaluated on batches satisfying ¢ mod len(.A) = j (A being the attack set). This partial evaluation
creates incomplete loss data loss[i][j], so we initialize all loss[i][j] = 2.0 (rather than 0.0) and
excludes loss metrics from probability weight calculations during warm-up phase to minimize the
impact of missing values.

4.3 Phase II: Warm-Up Fine-Tuning with Accuracy-Driven Optimization

This phase initiates model adaptation using accuracy-based probabilistic weighting. The selection
probability for attack A; follows:

plj] = exp (1 —acc[j]) )
with categorical reweighting for £,, attacks:
m

pli] = plj] x 7Tmp, Vj s.t. A; is an £, attack (6)

This scaling preserves relative selection frequency for ¢, attack families despite varying m,,/m ratios,
preventing optimization bias toward more numerous attack types. The effectiveness of £,/semantic
reweighting is validated through ablation studies in the next section.

Meanwhile, since research has found that EMA (Exponential Moving Average) substantially enhances
adversarial robustness [13, 30, 33], we explore adapting the EMA techniques specialized for the
multiple robustness setting. The vanilla EMA update during training can be formulated as:

0=af+(1-a) ©)

where « is the decay rate, @ is the parameter of the model at the current epoch, and 6 is the parameter
of the EMA model.

Conventionally, « is a fixed hyper-parameter. While in this setting, we propose a Multi-robustness-
oriented Dynamic EMA (MDE) method, where the decay rate is adapted to trade-off magnitude:

a = min (T, 1- % Z(acc_a[k} - acc_b[k:])) (8)

k=1

where ds is a hyper-parameter and 7 denotes a fixed threshold. Selecting a threshold marginally
below 1 is to prevent the model from converging to local optima during MDE.

Moreover, the adversarial loss matrix loss[i][j] and robustness accuracy vector acc[j] are dynamically
updated after per-batch training.

4.4 Phase III: Dynamic Fine-Tuning for Balancing Robustness Trade-Offs

After the warm-up phase, we proceed to conduct finer-grained and better-calibrated targeted fine-
tuning.

The core optimization phase employs a multi-criteria weighting scheme:

plj] = exp (w1 (1 — acclj]) + walossli][j] + wsVirr) 9)
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where w1, wa, ws are hyper-parameters and Vg denotes the trade-off based vulnerability matrix (i.e.
sum(T R][j])). This phase features a significantly steeper probability weight distribution than during
warm-up.

In this phase, MDE maintenance continues with decay rate scaled for diminishing returns:

d3
= mi 1—— k] — blk 10
a = min (’7’, - ;(acc_a[ ] — acc_b]| ])) (10)
where d3 is a hyper-parameter much larger than d2. Because during the fine-tuning phase, robustness
improvements are generally smaller than those achieved in the warm-up phase.

4.5 Summary and Discussion

The complete algorithm of our method can be summarized in appendix. Collectively, the CAS
methodology demonstrates qualitative superiority by holistically considering and balancing ¢, and
semantic attacks, outperforming both E-AT and RAMP in semantic attack robustness. Its dynamic
probability weighting mechanism proves more effective than static-weight SAT when facing non-
uniform perturbation intensity distributions across different attacks. Furthermore, CAS’s integrated
consideration of accuracy, loss, and trade-off in probability weighting fundamentally distinguishes it
from E-AT-all extensions that solely rely on accuracy metrics. The Multi-robustness-oriented Dynamic
EMA (MDE) variant further enhances CAS’s efficacy beyond conventional EMA integrations. We
will quantitatively validate these advantages in the subsequent experimental section.

S Experiment

In this section, we demonstrate the effectiveness of our proposed CAS framework to improve overall
robustness and address the Multi-Robust Trade-off.

5.1 Experimental Setup

We conduct our experiments on the benchmark dataset CIFAR-10 and CIFAR-100 [16] using the
pre-trained PreActResNet-18 [10] models (pretr_Linf, pretr_L2, and pretr_L1) provided by [6]. We
consider the 21 different adversarial attacks during fine-tuning presented in the Preliminary section.

Baselines. We select E-AT [6], RAMP [14], and SAT [22] as our baselines, which are introduced
in the Related Work section. While E-AT solely considers ¢, robustness, we also consider its
extension form, which is an expanded baseline incorporating 21 adversarial attacks, called E-AT-all.
Additionally, since our CAS method is a variant of the weight average method with EMA, we add
the EMA method to our baselines to ensure a fair comparison. In particular, since RAMP inherently
incorporates the innovation of model fusion, we refrain from augmenting it with additional attack
types or EMA methodology.

Training Settings. Following the common practice of AT [26, 30, 33], we fine-tune a pre-trained PRN-
18 model using SGD with momentum 0.9, weight decay 5 x 10~%, and initial learning rate 0.1 for 20
epochs. All /,, attacks are conducted by the default perturbation margin €., = %, €s = 0.5, = 12.
For semantic attacks, we We employ an iteratively computed calibrated margin to ensure that most
adversarial perturbations maintain accuracy between 20% and 60% on the pre-trained ¢.,-robust
model on CIFAR-10:

e = Ak + accaanlk]) * € (11
Where ¢, is the original perturbation margin, Ag is a hyper-parameter to ensure that the robust
accuracy accqqy k] is between 20% and 60%.

Evaluation Metrics. We evaluate the clean and robust accuracy in the average case against different
attacks. The £, robustness is evaluated by AutoAttack [5], a popular reliable robustness evaluation
benchmark. The robustness against other attacks is evaluated on the testing dataset against the same
attack algorithms during fine-tuning.

5.2 Main Results

In this section, we present comprehensive experimental results to validate
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Superior Holistic Robustness. On CIFAR-10, pretr_Linf model, CAS achieves the highest overall
robustness (average = 52.54%), outperforming all baselines by at least 1.2 percentage points (vs. SAT
+ EMA 51.34%) while maintaining the highest clean precision (85.8%). Moreover, CAS establishes a
new state-of-the-art for semantic robustness (52.52%), delivering at least 2.1% improvement over
multi-attack baselines (E-AT-all+EMA: 50.42%).

Cross-Model and Cross-Dataset Generalization. While primarily tuning hyperparameters on
CIFAR-10 with pretr_Linf models, we achieved competitive results using identical code on both
pretr_L2, CIFAR-10 and pretr_Linf, CIFAR-100. Although individual metrics may not reach peak
performance, our method consistently outperforms baselines in comprehensive evaluations. This
demonstrates both the overall efficacy and transferability of our approach.

MDE outperforms EMA in terms of multi-robustness. Table 1 quantitatively demonstrates that
integrating MDE with CAS yields a significant +0.69% improvement in average robustness (52.54%
vs 51.85%) compared to CAS+EMA. This stems from MDE’s organic integration of multidimensional
characteristics and the dynamic nature of our CAS framework, which optimizes update weights for
favorable training outcomes through dynamic decay rate selection and threshold-based filtering.

Method Clean Avg. avg./, avg. Sem. Method Clean Avg. avg./, avg. Sem.
pretr_Linf 83.7 39.71 38.13 41.29 pretr_L2 88.2 3943 41.53 37.32
E-AT 83.1 50.66 54.70 46.62 E-AT 85.4 5044 55.23 45.66
E-AT+EMA | 834 50.43 5390 46.96 E-AT
E-AT-all 841 5113 5207 5018 +EMA 849 5099 3550 4649
E-AT-all 845 5129 52.17 50.42 E-AT-all 85.7 51.76 5293 50.58
+EMA E-AT-all 86.6 52.16 53.17 51.15
RAMP 84.2 50.68 54.93 46.43 +EMA ’ ’ ’ ’
SAT 85.0 50.83 51.87 49.79 RAMP 85.9 48.29 53.17 43.42
SAT+EMA 84.1 51.34 5393 48.74 SAT 86.4 51.66 52.83 50.49
CAS 85.0 51.81 51.90 51.72 SAT+EMA | 86.5 52.04 53.00 51.07
CAS+EMA 85.9 51.85 51.9 51.81 CAS 87.4 51.56  51.90 51.21
CAS+MDE | 85.8 52.54 5257 52.52 CAS+MDE | 86.3 5245 52.73 52.17
Table 1: Overall camparison of our Table 2: Overall camparison of our

CAS+MDE method with baselines on
CIFAR-10, pretr_Linf model.

CAS+MDE method with baselines on CIFAR-
10, pretr_L2 model.

Method | Clean Avg. avg. {, avg. Sem. Method | Clean  Avg.  avg./, avg. Sem.
pretr_Linf | 685  28.88 28.67  29.08 AC 847 5151 5227  50.75
E-AT 67.0 2992 33.67 26.17 AC+MDE 85.4 52.14 52.17 52.12
E-AT+EMA | 62.5  31.07 3533 26581 AC+LO 83.8 5205 5320  50.90
g-g-aﬂ 69.0 3133 31.83 3083 +A1\C/E)Ifso 847 5236 5187 5285
- -a
+EMA 645 3325 3467  31.83 AC+TR 855 5172 5283 5061
SAT 68.5 2931 27.83  30.78 AC+TR 854 5192 5200  51.83
SAT+EMA | 67.0 3136 3100 31.72 21\C4D50 .
+LO+

CAS 655 3149 3267 303l (CAS) 850 5181 5190  51.72
CAS+MDE | 68.0 3271 33.50  31.92 CAS+MDE | 858  52.54 5257  52.52

Table 3: Overall camparison of our

Table 4: Ablation study on calibrated proba-

CAS+MDE method with baselines on bility weights (Eq. 9).

CIFAR-100, pretr_Linf model.

5.3 Ablation Study

In this subsection, we show the usefulness of each component of our CAS framework. All these
experiments are conducted on pretrained-¢,, model, CIFAR-10.

Loss- and Trade-off-Aware Weighting. The superiority of our dynamic weighting over static
sampling stems from its adaptive resource allocation capability. Our dynamic scheme actively
redirects training focus toward attacks with:

 Low current robustness (w1 (1 — acc[j]) term)
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Figure 4: Ablation study on the number of considered perturbations.

* High learning difficulty (woloss[i][j] term)

* Positive systemic externalities (w3 Vg term)

As evidenced in the Table 4, our holistic consideration of probability-weighted integration across all
three factors yields more significant improvements compared to approaches using individual factors
or pairwise combinations.

Number of considered perturbations. To investigate the stability and transferability of the
CAS+MDE framework under varying perturbation regimes, we conduct fine-tuning experiments
combining 3 /,, attacks with progressively increasing numbers of semantic perturbations (3, 6, 9, 12,
15, 18). As shown in Figure 4, both clean accuracy and average ¢, robust accuracy remain remarkably
stable across perturbation scales, while average semantic robust accuracy, which is still measured
against all 18 semantic attacks post-fine-tuning, exhibits consistent improvement with additional
perturbation types. This demonstrates exceptional method stability against configuration variations
and confirms that incorporating more attack types can enhance overall robustness. Consequently, prac-
tical implementations would better maximize coverage of domain-relevant adversarial threats, while
integrating and formalizing unforeseen attacks could further enrich multi-robustness benchmarks.

6 Conclusion

In this work, we provide a concise overview of multi-robustness research and its technical bottlenecks.
We revisit the critical concept of Mutually Exclusive Perturbations (MEPs) and present an initial
attempt to establish its quantitative definition. We holistically integrate and balance ¢, attacks
and semantic attacks. Building on these foundations—along with dynamic probabilistic weighting
and exponential moving average (EMA) variant—we propose Calibrated Adversarial Sampling
(CAS), a fine-tuning framework that achieves state-of-the-art robustness across multiple adversarial
settings. Extensive experiments validate the effectiveness of holistic multi-factor integration and
the incorporation of diverse adversarial attack types within practical robust training pipelines. This
establishes CAS as a strong baseline for multi-robustness fine-tuning and provides a promising
paradigm for robust generalization.



3

5

316
317

318
319

320
321
322

323
324
325

326
327
328

329
330
331

332
333
334

335
336

337
338

339
340

341
342

344
345
346

347
348
349

350
351
352

353
354

355
356

357
358

359
360
361

References

[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer
vision: A survey. leee Access, 6:14410-14430, 2018.

[2] Tao Bai, Jingi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial
training for adversarial robustness. arXiv preprint arXiv:2102.01356, 2021.

[3] Huanran Chen, Yinpeng Dong, Shitong Shao, Hao Zhongkai, Xiao Yang, Hang Su, and Jun Zhu.
Diffusion models are certifiably robust classifiers. Advances in Neural Information Processing
Systems, 37:50062-50097, 2024.

[4] Zhiming Chi, Jianan Ma, Pengfei Yang, Cheng-Chao Huang, Renjue Li, Xiaowei Huang, and
Lijun Zhang. Patch synthesis for property repair of deep neural networks. arXiv preprint
arXiv:2404.01642, 2024.

[5] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206-2216. PMLR, 2020.

[6] Francesco Croce and Matthias Hein. Adversarial robustness against multiple and single [_p-
threat models via quick fine-tuning of robust classifiers. In International Conference on Machine
Learning, pages 4436-4454. PMLR, 2022.

[7] Sihui Dai, Saeed Mahloujifar, Chong Xiang, Vikash Sehwag, Pin-Yu Chen, and Prateek Mit-
tal. Multirobustbench: Benchmarking robustness against multiple attacks. In International
Conference on Machine Learning, pages 6760-6785. PMLR, 2023.

[8] Yinpeng Dong, Ke Xu, Xiao Yang, Tianyu Pang, Zhijie Deng, Hang Su, and Jun Zhu. Exploring
memorization in adversarial training. arXiv preprint arXiv:2106.01606, 2021.

[9] IanJ Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572,2014.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630—645. Springer, 2016.

[11] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[12] Lei Hsiung, Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Towards compositional adver-
sarial robustness: Generalizing adversarial training to composite semantic perturbations. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
24658-24667, 2023.

[13] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[14] Enyi Jiang and Gagandeep Singh. Ramp: Boosting adversarial robustness against multiple [_p
perturbations for universal robustness. Advances in Neural Information Processing Systems,
37:43759-43787, 2024.

[15] Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. Testing robustness
against unforeseen adversaries. 2019.

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[17] Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou.
Trustworthy ai: From principles to practices. ACM Computing Surveys, 55(9):1-46, 2023.

[18] Lin Li, Yifei Wang, Chawin Sitawarin, and Michael Spratling. Oodrobustbench: a benchmark
and large-scale analysis of adversarial robustness under distribution shift. arXiv preprint
arXiv:2310.12793, 2023.

10



362
363
364

365
366
367

368
369

371
372

373
374
375

376
377
378

379
380

381

383
384
385

386
387
388

389
390
391

392
393

394

396

397
398
399
400

401
402
403

[19] Haochen Liu, Yiqi Wang, Wenqi Fan, Xiaorui Liu, Yaxin Li, Shaili Jain, Yunhao Liu, Anil
Jain, and Jiliang Tang. Trustworthy ai: A computational perspective. ACM Transactions on
Intelligent Systems and Technology, 14(1):1-59, 2022.

[20] Haoyang Liu, Maheep Chaudhary, and Haohan Wang. Towards trustworthy and aligned machine
learning: A data-centric survey with causality perspectives. arXiv preprint arXiv:2307.16851,
2023.

[21] Jianan Ma, Pengfei Yang, Jingyi Wang, Youcheng Sun, Cheng-Chao Huang, and Zhen Wang.
Vere: Verification guided synthesis for repairing deep neural networks. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering, pages 1-13, 2024.

[22] Divyam Madaan, Jinwoo Shin, and Sung Ju Hwang. Learning to generate noise for multi-attack
robustness. In International Conference on Machine Learning, pages 7279-7289. PMLR, 2021.

[23] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[24] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of
multiple perturbation models. In International Conference on Machine Learning, pages 6640—
6650. PMLR, 2020.

[25] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. arXiv preprint arXiv:2205.07460, 2022.

[26] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial
training. arXiv preprint arXiv:2010.00467, 2020.

[27] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances
in neural information processing systems, 32, 2019.

[28] Bing Sun, Jun Sun, Long H Pham, and Jie Shi. Causality-based neural network repair. In
Proceedings of the 44th international conference on software engineering, pages 338-349,
2022.

[29] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[30] Hongjun Wang and Yisen Wang. Self-ensemble adversarial training for improved robustness.
arXiv preprint arXiv:2203.09678, 2022.

[31] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion

models further improve adversarial training. In International conference on machine learning,
pages 36246-36263. PMLR, 2023.

[32] Hui Wei, Hao Tang, Xuemei Jia, Zhixiang Wang, Hanxun Yu, Zhubo Li, Shin’ichi Satoh, Luc
Van Gool, and Zheng Wang. Physical adversarial attack meets computer vision: A decade
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12):9797-9817,
2024.

[33] Zeming Wei, Yifei Wang, Yiwen Guo, and Yisen Wang. Cfa: Class-wise calibrated fair
adversarial training. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 8193-8201, 2023.

[34] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial
training. arXiv preprint arXiv:2001.03994, 2020.

[35] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature

denoising for improving adversarial robustness. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 501-509, 2019.

11



409
410
411

412
413
414

[36] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pages 7472-7482. PMLR, 2019.

[37] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586-595, 2018.

12



415

A W B W N =

2

10
11
12
13
14

15
16
17

18

19
20
21
22
23

24
25

26

416
417
418
419
420
421
422
423
424
425

426
427
428
429
430
431

A The Complete Algorithm and Motivation of Our Method

Algorithm 1: CAS Framework

Input: Original DNN N, epochs,

batches of inputs and their targets {z;, y; }7;,

different adversarial attacks { A1, Aa, - -+ , A,, } and their epsilons €1, €2, - - , €,

Output: A repaired DNN N’

Phase I: Sample-wise Testing.
for j < 1to mdo
evaluate the robust accuracy before training
for i < 1ton, if i = j mod m do
get the adversarial example ; of z; in A; attack
evaluate the loss[i][j] and accuracy of j

evaluate the robust accuracy before training

get the total accuracy acc|j] for each attack A;
get the tradeoff matrix

Phase II: Warm Up.
for epoch < 1 to epochs do
fori < 1tondo
for j < 1to m do
L compute the smoother probability weight based on acc[j](Eq. (5)).

balance the probability weights between ¢, attacks and semantic attacks(Eq. (6))
randomly choose attack A; for AT
update loss[i][j] and accl[j]

calculate the dynamic decay-rate and then deploy MDE average

Phase I1I: Dynamic Fine-tuning.
for epoch < 1 to epochs do
fori < 1ton do
for j < 1to m do
L compute the calibrated probability weights(Eq. (9))

balance the probability weights and randomly choose A; for AT
update loss[i][j] and acc[j]

| MDE with higher sensitivity

The complete algorithm of CAS+MDE method can be summarized in Algorithm 1. Overall, the
CAS framework delivers qualitative superiority through its multi-phase design. First, sample-wise
testing provides critical diagnostic precision by systematically evaluating robust accuracy and loss
metrics for each attack type, thereby generating an innovative trade-off matrix that quantifies nuanced
accuracy shifts between attack types. Transitioning to Phase II, the smooth probability weights
prevent premature over-specialization by maintaining smoother attack-type distributions than steeper
alternatives. The framework culminates in Phase III with its sophisticated multi-factor weighting
system, which integrates three critical defense dimensions. This phase advances tradeoff modeling
while implementing precision MDE with enhanced sensitivity (d3 > ds) to capture subtle late-stage
improvements.

To investigate fine-tuning for multiple robustness more broadly, we augment the baseline that consid-
ers only £, attacks with semantic attacks. SAT’s fixed probability weights are flawed, and E-AT’s
weights that focus solely on robust accuracy also fall short. We therefore adopt calibrated proba-
bility weights that integrate accuracy, loss, and trade-off. While studying the trade-offs in multiple
robustness, we extend and quantify the notion of mutually exclusive perturbations. Recognizing that
model-fusion techniques such as EMA are effective at boosting adversarial robustness and can be
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plugged into many methods, we further design and incorporate MDE—an EMA variant tailored to
the dynamic nature of our CAS approach.

B More Details about Our Experiments

At this point, we specify the hyperparameter selections for the main experiments with CIFAR-10
dataset:

Parameter | Value
batch size 128
batch size for eval 100
max Ir 0.1
weight decay Se-4
decay rate (in EMA) | 0.995
w1 10
wao 1
ws 0.5
dy 5
do 50
7 (threshold in MDE) | 0.95

Table 5: Hyperparameters for CAS

C Additional Discussion on Experiment Results

By examining the detailed tabular data (Table 6, Table 7, and Table 8) from the "Overall Comparison"
experiment in the main text, we can derive additional insights:

First, different types of adversarial attacks exhibit varying degrees of sensitivity to fine-tuning
regarding robustness. For instance, the robust accuracy of L1 and prison attacks shows significant
improvement across different fine-tuning approaches, whereas blur-based attacks demonstrate no
noticeable changes in robust accuracy after fine-tuning.

Second, multi-robustness-based fine-tuning does not necessarily enhance robustness against all attack
types. For example, the robust accuracy against hsv attacks decreases across all fine-tuning methods
compared to the original model. This stems from complex interference patterns between different
robustness types.

Third, the trends of improvement/decline and significance of changes in robust accuracy across all
attack types remain largely consistent regardless of the fine-tuning method employed. This indicates
that both the sensitivity of attack-specific robustness to fine-tuning and the trade-offs between different
robustness types represent intrinsic properties, independent of fine-tuning approaches.

Fourth, we observe that robust accuracy against natural corruptions (e.g. fog, snow, blur) generally
shows minimal variation after fine-tuning. In contrast, robustness against human-engineered adver-
sarial attacks (e.g. £,,, JPEG, prison) exhibits relatively more pronounced changes post-fine-tuning.

Moreover, while we state in the main text that "To mitigate computational costs, Phase I executes just
one epoch," detailed computational costs are not explicitly provided. In practice, our CAS method
conducts one epoch for sample-wise testing, followed by 10 epochs of warm-up and 10 epochs of
dynamic fine-tuning. All baselines undergo 20 epochs of fine-tuning. Under identical hardware
configurations, the per-epoch computational time of our method shows minimal difference compared
to probability-weighting-based baselines like E-AT and SAT. This demonstrates that our CAS method
enhances efficacy without compromising efficiency.

D Cross-model Comparison

Meanwhile, we compared the performance of different pre-trained models under our multi-robustness
metrics framework. The results (Table 9) reveal that the pretr_L.1 model delivers the strongest overall
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465
466
467
468

469
470
471
472
473
474

E-AT E-AT-all

Model pretr_Linf E-AT SEMA E-AT-all +EMA RAMP SAT SAT+EMA CAS CAS+EMA CAS+MDE
Clean 83.7 83.1 834 84.1 84.5 84.2 85 84.1 85 85.9 85.8
Avg. 39.71 50.66 50.43 51.13 51.29 50.68 50.83 51.34 51.81 51.85 52.54
avg. £, 38.13 54.70 53.90 52.07 52.17 54.93 51.87 53.93 51.90 51.90 52.57
avg. Sem. 41.29 46.62 46.96 50.18 50.42 46.43 49.79 48.74 51.72 51.81 52.52
Linf 48.1 432 41.7 39.3 40.2 46.8 38.5 413 40.3 39.8 41
L2 60 67 67 67.2 67.5 67.9 67.5 67.6 67.3 67.7 68.1
L1 6.3 53.9 53 49.7 48.8 50.1 49.6 529 48.1 482 48.6
pped 42.5 539 53.5 50.7 50.6 553 50.8 53 512 50.9 522
wood 58.8 72 7.7 73.9 72.6 71.8 71.9 72.6 75.7 742 74.7
elastic 283 29.8 284 374 38.9 29.3 38.2 323 37.8 38 39
pixel 278 38.8 43.7 38.8 41.1 355 41.4 38.2 379 40.1 39.2
snow 249 21.5 20.7 219 24.8 18.9 26.8 22 26.1 243 26.6
gabor 38.6 459 49.9 50.6 39.6 474 38 513 65.6 56 58.8
jpeg 44.6 595 60.8 584 58.1 60 572 60.3 58.8 58.7 593
glitch 30.2 38.8 36.5 39.5 40.7 36.3 41.4 38.6 40.6 40.2 41
kalei 39.2 44.1 42.1 56.3 59.9 40.7 589 50.1 56.6 584 58.8
blur 542 52 52 55.5 56 52.6 56.7 539 537 573 56.1
edge 44.2 529 54.1 58.7 579 55 57.1 56.1 59.9 59.3 59.6
fog 73.4 69.3 70.9 71.9 732 71.9 72.5 729 73.3 75.4 74.5
texture 34.1 422 40.5 458 472 41 46.6 44 48.9 45.2 47.7
prison 31.8 52.4 50.8 58.5 57.5 49.2 50.5 51.9 57.6 59.8 62
whirl 55.3 58.9 62.1 67.7 67.2 59.4 66.5 66.8 67.7 69.2 67.4
polkadot 335 28.5 30.6 328 343 30.3 33 33.1 31.8 36.6 37
Kklotski 30.5 339 335 41.5 42.8 325 434 36.1 43.5 44.4 45.1
hsv 51.4 44.8 435 43.4 45.1 48.6 453 442 443 44.5 46.4

Table 6: Overall camparison of our CAS+MDE method with baselines on CIFAR-10, pretr_Linf
model.

Model pretr_L2 E-AT :i?::/['l; E-AT-all Iijl[; ;:" RAMP SAT SAT+EMA CAS CAS+EMA CAS+MDE
Clean 88.2 85.4 849 85.7 86.6 859 86.4 86.5 87.4 87.4 86.3
Avg. 39.43 50.44 50.99 51.76 52.16 48.29 51.66 52.04 51.56 52.02 5245
avg. £p 41.53 55.23 55.50 52.93 53.17 53.17 52.83 53.00 51.90 51.87 52.73
avg. Sem. 37.32 45.66 46.49 50.58 S1.15 43.42 50.49 51.07 51.21 52.18 52.17
Linf 29.8 41.5 41.6 39 38.8 43.6 38.2 38.1 38.5 374 38.5
L2 68.6 70 70.1 69.8 70 69.6 69.5 70.1 69.9 70.1 71.4
L1 26.2 542 54.8 50 50.7 46.3 50.8 50.8 47.3 48.1 48.3
pped 43.7 54.8 549 52.1 532 54.8 524 52.6 514 524 523
wood 70 71.5 73.1 712 75.7 739 75.8 76.7 71.5 76.5 75.6
elastic 14 28.7 28.4 38.7 384 25.2 36.8 35.9 39 37.1 39.2

pixel 21.7 43.8 43.8 514 40.9 31.8 40.6 40.7 38.5 46.7 41

snow 9.7 17.4 18.7 24.9 27 14.7 26.3 27.8 22.4 23.2 22.8
gabor 32.6 23.5 41.8 34 43.7 29 39 40.9 43.1 50.4 51.9
jpeg 522 61.3 61.5 58.5 59.7 60.9 60.4 60.1 60.9 60.2 59.9
glitch 20.9 38.2 37.3 39.1 40.5 322 40.3 39.8 38.8 40.3 40.6
kalei 34.1 41.4 40 61.4 60.2 39.2 61.2 60.1 62.7 62.7 63.4
blur 55.4 53.9 52.5 57.5 55.9 52.7 57.6 58.3 56.9 59.4 60.9
edge 42.1 53.8 53.8 57.3 59 51.8 58.1 58.4 58.2 59.7 58.9
fog 77.8 72.3 71.5 739 74 73 75.2 74.9 734 76.1 76.2
texture 21.5 38.8 38.6 44.6 43.8 38.2 44.7 43.1 44.9 422 42.5
prison 26.8 51.5 51.1 55.6 55.5 42.1 51.5 56.9 58.8 57.5 57.6
whirl 543 62.5 61.7 68 70.2 58.8 68.6 69.4 70.3 69 68.5
polkadot 40.6 32,6 317 332 34 31 34 36.1 355 36.9 36.7
klotski 19.1 31.8 317 434 44.1 285 41.7 42 45 43.7 45.8
hsv 353 44 44.7 45.7 449 43.8 44.7 45.6 445 45.2 45.2

Table 7: Overall camparison of our CAS+MDE method with baselines on CIFAR-10, pretr_L2 model.

performance. The pretr_L2 model exhibits deficiencies in robustness against semantic attacks and
shows significant weaknesses when facing adversarial attacks like elastic and snow. The pretr_Linf
model underperforms in both clean accuracy and ¢, robustness, primarily due to the pronounced
trade-offs between /., robustness versus clean accuracy and ¢; robustness.

This suggests that if adversarial training focuses solely on a single perturbation type while aiming
for favorable clean accuracy and multi-robustness metrics, ¢1-based adversarial attacks may be a
preferable choice. However, in practice, the £, model often holds certain advantages. For example,
¢~ pre-trained models generally demonstrate superior defense capability against highly engineered
adversarial attacks (e.g. hsv and klotski) ; and /., adversarial training methods (e.g. PGD-AT for ¢,)
are simpler and more mature than their ¢; counterparts (e.g., APGD-AT for ¢;).
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Model pretr_Linf E-AT +]§<‘:11\&/[’I£& E-AT-all Ei_ég;[:“ SAT SAT+EMA | CAS CAS+MDE
Clean 68.5 67 62.5 69 64.5 68.5 67 65.5 68
Avg. 28.88 29.92  31.07 31.33 33.25 29.31 31.36 31.49 32.71
avg. /,, 28.67 33.67 35.33 31.83 34.67 27.83 31.00 32.67 33.50
avg. Sem. 29.08 26.17 26.81 30.83 31.83 30.78 31.72 30.31 31.92
Linf 31.5 23 24.5 21 25 17.5 21 23.5 22
L2 40 45 46 46 46.5 44 44.5 46 48
L1 14.5 33 35.5 28.5 32.5 22 27.5 28.5 30.5
ppgd 36 34.5 355 31.5 33.5 28.5 325 31.5 33
wood 42.5 50.5 51.5 54.5 53 49 53.5 51.5 57
elastic 24.5 14.5 20.5 21.5 22 23.5 23.5 22 23.5
pixel 21.5 19 20 23 23 24.5 24.5 25.5 24.5
Snow 19 9 10.5 10 14.5 10.5 17.5 12 11.5
gabor 7.5 7.5 17 20.5 34.5 13.5 16.5 14.5 16
jpeg 34 40 41.5 39.5 40.5 33.5 38 38.5 39
glitch 20 17.5 17 20.5 20 21 19 20.5 21.5
kalei 25.5 21 21.5 42.5 39.5 41.5 45 38.5 40.5
blur 40.5 35.5 31.5 35 33 43 35 42.5 36
edge 31 32.5 355 375 45.5 35 45 355 41
fog 58 53 46 55.5 48 60 52.5 55 54.5
texture 24 15 17 17 26.5 14 27.5 19 25.5
prison 15 21 17.5 28.5 26 21.5 23 21 24.5
whirl 42.5 42 38 46 46 51 45.5 47 52.5
polkadot 20.5 17 16.5 22 14.5 29.5 16.5 22 18
Kklotski 24.5 18.5 19 25 24.5 30 29 24.5 30
hsv 37 23 26.5 25 28.5 24.5 27 24.5 26

Table 8: Overall camparison of our CAS+MDE method with baselines on CIFAR-100, pretr_Linf
model.

a5 E  Extended Experiments on Multi-Robustness Trade-offs

a7 E.1 Semantic-/,, Conflicts

477 As quantified in the tradeoff matrix (Figure 5), semantic attacks generally degrade ¢, robustness
478 due to incompatible perturbation constraints, but exhibit texture-dependent exceptions. Weather
479 corruptions (e.g. fog and snow) conflict universally with all £, norms.

480 Moreover, we find that Linf robustness suffers much more overall semantic interference than L1
481 robustness due to fundamental differences in perturbation geometry.

4s2 E.2 Transfer Asymmetry

as3  While ¢, training before semantic attacks yields net positive transfer, the reverse sequence causes
484 disproportionate degradation. Strikingly, elastic — wood transfer (+0.192) demonstrates notably
485 greater efficacy than the reverse direction (-0.007), indicating a broad and pronounced asymmetry in
486 the trade-offs between different types of robustness.

487 E.3 Robustness Interference

ass  The significantly negative matrix sum (> ij M;; = —3.123) confirms global interference, but masks
489 polarized cluster dynamics. We also computed the row-wise and column-wise sums of the trade-off
490 matrix. Under single-type training, we observed that—apart from pixel-level perturbations—every
491 semantic attack in the table reduces the overall robust-accuracy sum; adversarial training against
492 the gabor attack even degrades robustness to all other attack types. In contrast, adversarial training
493 on the three £, norms consistently improves overall robustness, underscoring why practical DNN
494 robust-training regimes usually focus on ¢p attacks. Only wood and gabor robust-accuracy achieve
495 noticeable overall gains when adversarial training is progressively applied to each perturbation
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Model pretr_Linf pretr_L2 pretr_L1

Clean 83.7 88.2 87.1
Avg. 39.71 39.43 45.30
avg. 0, 38.13 41.5 48.97
avg. Sem. 41.29 37.32 41.63
Linf 48.1 29.8 22
L2 60 68.6 64.9
L1 6.3 26.2 60
ppgd 42.5 43.7 43.3
wood 58.8 70 73.6
elastic 28.3 14 14.8
pixel 27.8 21.7 30.2
snow 24.9 9.7 14.1
gabor 38.6 32.6 41.6
jpeg 44.6 52.2 47.1
glitch 30.2 20.9 30.5
kalei 39.2 34.1 35
blur 54.2 55.4 56
edge 442 42.1 53.3
fog 73.4 77.8 75.7
texture 34.1 21.5 24.3
prison 31.8 26.8 54.4
whirl 55.3 54.3 62.4
polkadot 33.5 40.6 44.7
klotski 30.5 19.1 20.5
hsv 514 35.3 27.9

Table 9: Camparison of 3 pretrained PreActResNet-18 models based on our multi-robustness bench-
mark

type, highlighting the formidable challenge that robustness inference poses to improving multiple
robustness dimensions simultaneously.

This explains CAS’s effectiveness: stochastic sampling prevents irreversible catastrophic damage from
"interference source" attacks (gabor — fog : —0.384) by distributing training across compatibility
zones.

F Ablation Studies

F.1 Number of Considered Perturbations

In our ablation study on the number of considered perturbations, we gradually add new semantic
attacks to the fine-tuning pipeline from top to bottom, adding three at each step. The detailed
results show that most robustness types do not improve significantly when their corresponding
attacks are included; only gabor and Kaleidoscope enjoy noticeable robust-accuracy gains. Moreover,
introducing new attacks can reduce the robustness of previously considered ones—for example, pixel
robust-accuracy drops sharply after the final three attacks are added. Overall, however, considering
a wider range of perturbations benefits overall multiple robustness. We also observe that clean
accuracy and £, robustness remain relatively stable as the attack count grows, because we balance the
probability weights of £, and semantic attacks during fine-tuning.

¢, and semantic reweighting. Table 10 demonstrates that balancing our probability weights between
¢, and semantic attacks significantly enhances average robustness. The motivation for increasing
the relative weight of £, attacks stems from empirical observations in E-AT and RAMP: adversarial
training focused solely on £,, threats unexpectedly improves semantic robustness [6, 14]—though
substantially less than direct semantic AT. Our trade-off matrix quantitatively validates this phe-
nomenon, revealing that £,, adversarial training enhances most semantic robustness while semantic
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Figure 5: Trade-off matrix. In the figure, each number represents the change in robust accuracy for
its corresponding attack type after AT against designated types. Each row shows the data fine-tuned
against the adversarial attack labeled on the left; each column shows the data evaluated after being
tested with the attack labeled above.

adversarial training often impairs £, robustness. This asymmetric relationship fundamentally informs
our reweighting strategy.

Method | Clean Avg. avg./, avg. Sem.
no reweight 85.6 48.84 46.27 56.42
no reweight+MDE | 86 50.44 4747 53.42
CAS 85.0 51.81 5190  51.72
CAS+EMA 85.8 52.54 5257 5252

Table 10: Ablation study on reweighting (Eq. 6).

F.2 Components in Calibrated Probability Weights

Regarding the Ablation Study results on Calibrated Probability Weights, where CAS(AC+LO+TR)
exhibits lower average accuracy than AC+LO+MDE, AC+TR+MDE, and AC+LO, we clarify that this
does not imply mutual exclusivity between LO and TR. The apparent discrepancy arises because MDE
inherently elevates clean and robust accuracy within adversarial robustness frameworks. Consequently,
comparing the plain CAS configuration (AC+LO+TR) against variants augmented with MDE (e.g.,
AC+LO+MDE) constitutes an unbalanced comparison. Crucially, LO and TR operate synergistically
in the probability weighting mechanism: while LO alone typically increases robust accuracy at the
expense of clean accuracy, the combined integration of LO and TR enables more effective balancing
of these objectives. This synergy ultimately enhances both clean and robust accuracies, demonstrating
the significance of the full AC+LO+TR integration in our proposed CAS framework.

G Limitations

While our trade-off matrix provides a quantitative definition of Mutually Exclusive Perturbations
(MEPs), this framework and related investigations remain insufficiently rigorous. Critical questions
persist: (i) Model selection: On which model architectures should MEPs be evaluated? (ii) Pertur-
bation calibration: How should perturbation intensities be standardized across diverse adversarial
attacks?
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548

549

550
551

552
553

554
555

3+3 3+6 349 3+12  3+15 3+18

Clean 854 848 847 85 856 85.8
Avg. 50.33 51.69 51.56 51.84 51.77 5254
avg. 0, 52.17 53.07 52.87 5257 51.80 52.57
avg. Sem. 4849 50.31 5025 51.11 51.74 5252

Linf 40.1 413 416 405 391 41
L2 68 685 679 678 674 68.1
L1 484 494 491 494 489 486

pped 523 54 523 523 52 522
wood  73.6 724 731 722 743 747
elastic 403 415 383 379 358 39

pixel 433 445 506 467 466  39.2
snow 263 254 251 275 232 266
gabor 387 659 403 563 541 588

jpeg 587 583 599 597 59 593
glitch  37.8 395 406 424 415 41
kalei 42 432 639 622 627 588

blur 541 556 543 552 578  56.1
edge 572 556 558 579 583 596
fog 725 726 726 729 741 745

texture 40.2 40.6 42.4 41.5 444 47.7
prison 48.6 473 49.8 52.8 56.9 62
whirl 66.3 65.8 68.1 64.1 67.9 67.4

polkadot 33.8 336 319 324 392 37
klotski 43 442 41,6 419 407 451
hsv 441 455 439 441 428 464

Table 11: Ablation study on the number of considered perturbations.

Furthermore, translating theoretical trade-off insights into direct robustness enhancement remains
an underexplored yet promising research direction. Our ablation study confirms that incorporating
trade-off relationships into probabilistic weighting yields measurable benefits, though its efficacy is
less pronounced than accuracy-based adaptations.

Notably, while CAS achieves state-of-the-art results in both clean accuracy and average robust
accuracy, our MEP analysis reveals a fundamental tension: enhancing robustness against mutually
exclusive perturbations inherently incurs costs in clean accuracy or other robustness dimensions. This
suggests potential degradation against unconsidered attack types—an intrinsic challenge in multi-
robustness fine-tuning. To mitigate this limitation, we could systematically identify and cover those
attack types prevalent in specific application areas before deploying such frameworks in real-world
scenarios.

H Promising Research Directions

Finally, we reflect on the study’s limitations and outline promising research directions:

1. Advancing trade-off characterization: Rigorous benchmarking frameworks or novel theoretical
frameworks for multi-robustness trade-offs are waiting to be developed.

2. Expanding attack typology: New adversarial constraints could be proposed, or existing semantic
attacks refined through granular categorization to clarify robustness conflicts/synergies.

3. Exploring composite perturbations: Stronger attacks may emerge from strategically combined
perturbation types.
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ss6 4. Formalizing non-algorithmic attacks: Attacks lacking clear algorithmic definitions warrant
557 alternative formalizations or methodological innovations for systematic study.
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