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Abstract

Deep Neural Networks (DNNs) are known to be vulnerable to various adversarial1

perturbations. To address the safety concerns arising from these vulnerabilities,2

adversarial training (AT) has emerged as one of the most effective paradigms for3

enhancing the robustness of DNNs. However, existing AT frameworks primarily4

focus on a single or a limited set of attack types, leaving DNNs still exposed to5

newly considered attack types that have not been addressed during training. In this6

paper, we explore a new robust generalization paradigm that fine-tunes robust DNNs7

to cope with unforeseen attacks. To this end, we propose Calibrated Adversarial8

Sampling (CAS), a method that dynamically adjusts sampling probabilities during9

fine-tuning to balance robustness across various adversarial attacks. CAS operates10

in three key phases: sample-wise robustness testing, warm-up fine-tuning, and11

dynamic fine-tuning. Experiments on benchmark datasets show that CAS achieves12

superior overall robustness, maintains clean accuracy, and effectively balances13

robustness across different types of attacks, providing a new paradigm for robust14

generalization of DNNs.15

1 Introduction16

Deep Neural Networks (DNNs) are known to be vulnerable against adversarial attacks [1], where17

attackers can add imperceptible [29, 9] or semantic [11, 12] perturbations to craft adversarial examples18

that lead the target DNN to make incorrect predictions. So far, the existence of adversarial examples19

has raised significant concerns about DNNs [19, 17, 20], compromising their trustworthiness in their20

deployments.21

To address these concerns, numerous defense tactics have been proposed, such as adversarial training22

(AT) [23, 36, 33], robustness repair [28, 21, 4], and adversarial noise purification [35, 25, 3]. Despite23

their success in different deployment stages of DNNs, most of the existing defenses only focus on24

a particular robustness metric. However, in this context, the metrics of DNN robustness can be25

diverse. Generally, adversarial perturbations can be categorized into (i) ℓp-norm perturbations,26

and (ii) semantic perturbations. The ℓp-norm perturbation δ is commonly optimized through27

the classification loss (e.g., cross-entropy) and constrained by an ℓp ball ∥δ∥p ≤ ϵ, where popular28

p ∈ {1, 2,∞}. They are more imperceptible due to the ℓp-norm constraint, yet are difficult to directly29

inject into real-world vision models. By contrast, semantic perturbation is crafted by adding preset30

transformation rules, e.g., snow, geometric transformation, etc.. Examples of these two kinds of31

perturbations are illustrated in Figure 1.32

The current adversarially robust generalization literature primarily focuses on the ℓp-norm robustness33

of DNNs. For example, various AT techniques are designed toward a single worst-case ℓ∞ or ℓ2-norm34

adversarial robustness [23, 27, 8, 31]. Though a few preliminary works focus on multiple robustness35

metrics, they are either limited to multiple ℓp-norm robustness [6] or require training the model from36
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(a) Original (b) ℓp-norm (c) Semantic

Figure 1: Illustration of adversarial perturbations by different attack types from [12].

Figure 2: An overview of CAS. CAS operates in three sequential phases. It first evaluates model
performance: accuracy and robustness across various adversarial attacks. CAS then warms up multi-
robustness fine-tuning by sampling attacks with smoothed probability weights. Finally, it dynamically
updates the sampling probabilities via synthesizing previously measured metrics.

scratch [24]. In this paper, we explore a new robust generalization paradigm through fine-tuning37

ℓp-norm robust DNNs. Specifically, we aim to fine-tune robust DNNs against unforeseen attacks (i.e.,38

adversarial attacks that are not employed during the initial training phase).39

The motivation behind this paradigm is illustrated as follows. First, existing AT techniques designed40

for multiple robustness metrics primarily focus on the ℓp-norm perturbations. However, novel and41

unforeseen attacks, particularly those involving semantic perturbations, remain largely unexplored.42

Additionally, while these techniques can be directly adapted to defend both ℓp and semantic pertur-43

bations, they necessitate training from scratch and struggle to generalize to newly identified threats44

continuously. Furthermore, since numerous pre-trained ℓp-norm robust models are available online45

for commonly used datasets like RobustBench [18], it is feasible to leverage and fine-tune these46

models against new attacks rather than training from scratch, as conducting AT on DNNs requires47

expensive computational cost.48

To this end, we introduce a technique called Calibrated Adversarial Sampling (CAS), which aims49

to balance the trade-offs in sampling among various adversarial attacks during fine-tuning robust50

DNNs. Specifically, CAS employs dynamic probability weights during fine-tuning to holistically51

optimize resource allocation by integrating trade-off considerations regarding different adversarial52

perturbations. This procedure includes three phases: (i) sample-wise robustness testing to obtain the53

calibrated probability weights for adversarial attacks sampling, (ii) warm-up fine-tuning to facilitate54

the model with basic robustness of newly introduced attacks, and (iii) dynamic fine-tuning to balance55

better trade-offs between different robustness metrics. Additionally, given the notable success of the56

Exponential Moving Average (EMA) mechanism in improving adversarial robustness [30, 33], we57

design an EMA variant tailored for multiple robustness trade-offs to enhance overall accuracy further.58

To validate the effectiveness of CAS, we conduct extensive experiments on pre-trained robust59

models trained on popular benchmark datasets that are available from RobustBench [18]. For60

2



adversarial attacks, we consider three common ℓp attacks and 18 semantic attacks (e.g., snow, fog,61

blur). Experimental results show CAS achieves superior overall robustness and maintains the clean62

accuracy, and also balances robustness against different types of attacks, contributing to a novel and63

practical paradigm of DNN robust generalization. Overall, our contribution in this paper can be64

summarized as follows:65

• We explore a new DNN robust generalization paradigm that fine-tunes ℓp-robust DNNs66

for unforeseen semantic adversarial attacks and propose Calibrated Adversarial Sampling67

(CAS) to address this issue.68

• CAS extends and innovates upon the dynamic probability weighting methodology from69

ℓp-robustness fine-tuning baselines, achieving a dual breakthrough in both methodological70

depth and breadth by comprehensively addressing both ℓp and semantic adversarial attacks.71

• Extensive experiments demonstrate that CAS achieves superior effectiveness and efficiency72

towards this goal compared to conventional methods, offering a novel technique in real-world73

robust deployments of DNNs.74

2 Related Work75

2.1 Adversarial Examples76

Adversarial examples are firstly discovered as deceptive samples crafted by applying subtle (often77

imperceptible) perturbations to clean inputs [29], which can mislead DNNs into making erroneous78

predictions. In practice, such perturbations are typically constrained within specific norm balls (e.g.,79

ℓp-norm constraints). To deal with this threat, adversarial training has emerged as the primary80

defense paradigm [34, 2, 27], which enhances model robustness by explicitly injecting adversarial81

examples during training.82

Notably, beyond ℓp-bounded “pixel-level” perturbations, there exists a challenging class of semantic83

adversarial examples. These leverage natural, semantically meaningful transformations (e.g., rota-84

tions, translations, lighting changes, fog, and blur) to deceive models, operating in larger perturbation85

spaces that better reflect real-world variations [11]. Correspondingly, semantic adversarial training86

has emerged as a critical research direction to enhance robustness against such semantically valid87

perturbations [12].88

2.2 Multi-Robustness of DNNs89

While single-type adversarial training targets specific attack models, comprehensive adversarial90

training for multi-robustness is more effective in evaluating and enhancing a model’s defenses91

against a broader range of attacks, providing stronger and more practical protection in real-world92

scenarios [7]. Moreover, fine-tuning techniques can further improve multi-robustness by building on93

existing models, making them highly applicable in practice.94

Adversarial Training. Adversarial training (AT) methods share a common limitation: training95

a model from scratch requires substantial computational resources and disregards progress made96

through prior model development. Stochastic adversarial training (SAT) [22] injects random noise97

during adversarial example generation to enhance robustness against ℓ1, ℓ2, and ℓ∞ on AutoAttack98

benchmarks. This approach generalizes well to unforeseen attacks. Similarly, Multi-perturbation99

adversarial training (MPAT) [24] achieves strong multi-norm robustness by jointly optimizing against100

ℓ1, ℓ2, and ℓ∞ perturbations using a multi-steepest descent method.101

Fine-Tuning. Fine-tuning methods offer a more computationally efficient alternative to full retraining102

for enhancing robustness across multiple threat models. E-AT [6], a fast fine-tuning method for robust103

classifiers, significantly boosts robustness across ℓp norms with minimal training cost. It achieves this104

by: (1) utilizing extreme norms (ℓ1, ℓ∞) to implicitly cover intermediate (ℓp, p > 1) perturbations;105

(2) and applying dynamic probability weighting based on average error rates. RAMP [14] introduces106

a regularization-based fine-tuning framework that uses a logit pairing loss function to account for the107

effects of different ℓp attacks. It achieves a union accuracy of up to 53.3% on CIFAR-10 and 29.1%108

on ImageNet.109
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However, both E-AT and RAMP fine-tuning focus solely on ℓp-norm adversarial attacks. In contrast,110

our proposed CAS framework integrates defenses against both ℓp perturbations and semantic adversar-111

ial attacks, providing a more comprehensive and unified approach to fine-tuning for multi-robustness.112

3 Preliminaries113

3.1 Unforeseen Adversarial Attacks114

While significant breakthroughs have currently been achieved in research on ℓp robustness, such as115

AutoAttack [5], systematic investigations into semantic adversarial attacks remain comparably under-116

explored [5, 20]. Moreover, current robustness evaluations are often confined to single attack types,117

lacking a holistic framework that jointly considers diverse threat models. This narrow focus poses118

significant limitations for real-world AI deployments (e.g., autonomous driving, image processing119

systems), where robustness against physically plausible and naturalistic corruptions is critical for120

safety-critical applications [11, 32].121

To enhance the versatility and comprehensiveness of robust fine-tuning methods in real-world122

applications, this work investigates multi-robustness under a broad and diverse set of adversarial123

attacks. From the framework proposed by [15], we select 17 representative semantic attacks for124

evaluation, including Wood, Elastic, Pixel, Snow, Gabor, JPEG, Glitch, Kaleidoscope, Blur, Edge,125

Fog, Texture, Prison, Whirlpool, Polkadot, Klotski, and Hsv. These cover a wide range of both126

environmental and digital perturbations that commonly arise in real-world settings. In addition, we127

incorporate the PerceptivePGD (PPGD) attack [37], a human-perception-guided method that explicitly128

models semantically meaningful visual changes, along with three standard ℓp-norm attacks: ℓ∞,129

ℓ2, and ℓ1. Together, this suite comprises 21 distinct adversarial attacks, enabling a comprehensive130

evaluation of model robustness against both semantic and norm-constrained perturbations.131

3.2 Mutually Exclusive Perturbations132

Since our research comprehensively considers 21 adversarial attacks to transcend the limitations of133

prior studies that were predominantly confined to ℓp perturbations, integrating diverse adversarial134

attacks into a unified adversarial training framework introduces significant challenges. In particular,135

the Mutually Exclusive Perturbations (MEPs) [15] theory represents a fundamental limitation. MEPs136

occur when the constraint sets of two perturbation types are inherently incompatible, such that137

improving robustness against one attack inevitably degrades robustness against the other under138

fixed optimization conditions. Classic examples of this contradiction include the ℓp attack and the139

rotation-translation transformation as discussed in [15].140

While the concept of MEPs qualitatively captures the inherent conflicts in achieving multi-attack141

robustness, it currently lacks a rigorous definition and quantitative characterization. In the following,142

we aim to formalize and extend this concept through quantitative analysis.143

3.3 Quantifying Multi-Robustness Trade-Off144

To systematically quantify these phenomena, we conduct a large-scale empirical study based on145

the online pre-trained ℓ∞-robust model (called pretr_Linf) [6] on the CIFAR-10 dataset [16], since146

pretr_Linf exhibits inherent robustness against many adversarial attacks compared to a completely147

non-robust pre-trained model. In this experiment, we choose 11 perturbation types – ℓ∞, ℓ2, ℓ1, and148

8 semantic attacks. For each attack type, we perform individual adversarial fine-tuning for 10 epochs149

and measure the robust accuracy against all 11 attacks before/after fine-tuning. As illustrated in150

Figure 3, we observe several notable patterns:151

Semantic-ℓp Conflicts. As shown in the figure, semantic attacks often degrade ℓp robustness because152

most natural corruptions are incompatible with ℓp perturbation constraints.153

Transfer Asymmetry. The tradeoff matrix shows no symmetric pattern with respect to the diagonal.154

For instance, ℓp adversarial training enhances robustness against most semantic attacks, while155

adversarial training using most semantic attacks tends to impair ℓp robustness.156

Robustness Interference. When summing all values in the tradeoff matrix, it yields a notably157

negative total of −3.123, indicating that sequential training against individual attack types tends to158
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Figure 3: Trade-off matrix visualization. In the figure, each bar represents the change in robust
accuracy for its corresponding attack type after AT against designated types.

decrease overall robustness. This mutual interference of robustness presents a fundamental challenge159

for improving multi-robustness. Interestingly, probability-weighted training methods such as SAT160

demonstrate improved average robust accuracy by random sampling adversarial attacks during161

training. This highlights the critical role of training sample order in multi-robustness optimization.162

These findings underscore that the mutual interference dilemma for MEPs cannot be freely solved.163

Based on this matrix, we propose the Calibrated Adversarial Sampling (CAS) method, which leverages164

empirical data from a trade-off matrix to quantify the “externality” of each adversarial attack—defined165

as its cross-impact on other robustness types—thereby enabling systematic optimization of robustness166

allocation across diverse threat categories.167

4 Methodology168

This section details our CAS framework. We begin with a brief overview, followed by a detailed169

description of its three key phases.170

4.1 Framework Overview171

As illustrated in Figure 2, the CAS framework operates in three phases. First, it evaluates the accuracy,172

loss, and trade-off for each batch of data under various adversarial attacks to provide a prior for the173

subsequent probability calibration. Next, CAS selects adversarial attacks randomly with calibrated174

probability weights to warm up the Multi-Robustness fine-tuning. Finally, CAS synthesizes the175

previously evaluated accuracy, loss, and trade-off to dynamically update the probability weights.176

4.2 Phase I: Sample-Wise Testing177

Since quantitative balancing across different attack types is required for CAS, (e.g., using the178

aforementioned trade-off matrix), the weighting parameters must be derived from testing data. This179

initial phase establishes a granular vulnerability assessment framework, designed to quantify the180

DNN’s robustness at the individual sample level. Unlike conventional model-wide evaluations, our181

sample-wise approach enables sample-wise precise identification of vulnerabilities, forming the182

foundation for targeted fine-tuning in subsequent phases.183

For each adversarial attack type Aj , we compute per-batch metrics including mean robust accuracy184

acc[j] and cross-entropy loss loss[i][j].185

x′
ij = Aj(xi, ϵj) subject to Dj(x

′
ij − xi) ≤ ϵj (1)
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186

acc[j] =
1

n

n∑
i=1

I
(
N(x′

ij) = yij
)

(2)

187
loss[i][j] = CrossEntropy(N(x′

ij), yij) (3)

where Dj(x
′
ij − xi) denotes the distance between x′

ij and xi under the perturbation constraints of188

Aj . Concurrently, we record robust accuracy across all attack types before training (acc_bj) and after189

training (acc_aj) against Aj attack. The pairwise trade-off matrix is then derived as:190

TR[j][k] = acc_aj [k]− acc_bj [k] (4)

However, substantial computational overhead emerges when handling numerous adversarial attack191

types, with the tradeoff matrix summation
∑

j,k TR[j][k] typically being slightly negative. This192

indicates that sample-wise testing is computationally intensive and suboptimal for model performance.193

To mitigate computational costs, Phase I executes just one epoch where attack Aj is exclusively194

evaluated on batches satisfying i mod len(A) = j (A being the attack set). This partial evaluation195

creates incomplete loss data loss[i][j], so we initialize all loss[i][j] = 2.0 (rather than 0.0) and196

excludes loss metrics from probability weight calculations during warm-up phase to minimize the197

impact of missing values.198

4.3 Phase II: Warm-Up Fine-Tuning with Accuracy-Driven Optimization199

This phase initiates model adaptation using accuracy-based probabilistic weighting. The selection200

probability for attack Aj follows:201

p[j] = exp (1− acc[j]) (5)

with categorical reweighting for ℓp attacks:202

p[j] = p[j]× m−mp

m
, ∀j s.t. Aj is an ℓp attack (6)

This scaling preserves relative selection frequency for ℓp attack families despite varying mp/m ratios,203

preventing optimization bias toward more numerous attack types. The effectiveness of ℓp/semantic204

reweighting is validated through ablation studies in the next section.205

Meanwhile, since research has found that EMA (Exponential Moving Average) substantially enhances206

adversarial robustness [13, 30, 33], we explore adapting the EMA techniques specialized for the207

multiple robustness setting. The vanilla EMA update during training can be formulated as:208

θ̄ = αθ̄ + (1− α)θ (7)

where α is the decay rate, θ is the parameter of the model at the current epoch, and θ̄ is the parameter209

of the EMA model.210

Conventionally, α is a fixed hyper-parameter. While in this setting, we propose a Multi-robustness-211

oriented Dynamic EMA (MDE) method, where the decay rate is adapted to trade-off magnitude:212

α = min

(
τ, 1− d

2

m

m∑
k=1

(acc_a[k]− acc_b[k])

)
(8)

where d2 is a hyper-parameter and τ denotes a fixed threshold. Selecting a threshold marginally213

below 1 is to prevent the model from converging to local optima during MDE.214

Moreover, the adversarial loss matrix loss[i][j] and robustness accuracy vector acc[j] are dynamically215

updated after per-batch training.216

4.4 Phase III: Dynamic Fine-Tuning for Balancing Robustness Trade-Offs217

After the warm-up phase, we proceed to conduct finer-grained and better-calibrated targeted fine-218

tuning.219

The core optimization phase employs a multi-criteria weighting scheme:220

p[j] = exp (w1(1− acc[j]) + w2loss[i][j] + w3VTR) (9)
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where w1, w2, w3 are hyper-parameters and VTR denotes the trade-off based vulnerability matrix (i.e.221

sum(TR[j])). This phase features a significantly steeper probability weight distribution than during222

warm-up.223

In this phase, MDE maintenance continues with decay rate scaled for diminishing returns:224

α = min

(
τ, 1− d3

m

m∑
k=1

(acc_a[k]− acc_b[k])

)
(10)

where d3 is a hyper-parameter much larger than d2. Because during the fine-tuning phase, robustness225

improvements are generally smaller than those achieved in the warm-up phase.226

4.5 Summary and Discussion227

The complete algorithm of our method can be summarized in appendix. Collectively, the CAS228

methodology demonstrates qualitative superiority by holistically considering and balancing ℓp and229

semantic attacks, outperforming both E-AT and RAMP in semantic attack robustness. Its dynamic230

probability weighting mechanism proves more effective than static-weight SAT when facing non-231

uniform perturbation intensity distributions across different attacks. Furthermore, CAS’s integrated232

consideration of accuracy, loss, and trade-off in probability weighting fundamentally distinguishes it233

from E-AT-all extensions that solely rely on accuracy metrics. The Multi-robustness-oriented Dynamic234

EMA (MDE) variant further enhances CAS’s efficacy beyond conventional EMA integrations. We235

will quantitatively validate these advantages in the subsequent experimental section.236

5 Experiment237

In this section, we demonstrate the effectiveness of our proposed CAS framework to improve overall238

robustness and address the Multi-Robust Trade-off.239

5.1 Experimental Setup240

We conduct our experiments on the benchmark dataset CIFAR-10 and CIFAR-100 [16] using the241

pre-trained PreActResNet-18 [10] models (pretr_Linf, pretr_L2, and pretr_L1) provided by [6]. We242

consider the 21 different adversarial attacks during fine-tuning presented in the Preliminary section.243

Baselines. We select E-AT [6], RAMP [14], and SAT [22] as our baselines, which are introduced244

in the Related Work section. While E-AT solely considers ℓp robustness, we also consider its245

extension form, which is an expanded baseline incorporating 21 adversarial attacks, called E-AT-all.246

Additionally, since our CAS method is a variant of the weight average method with EMA, we add247

the EMA method to our baselines to ensure a fair comparison. In particular, since RAMP inherently248

incorporates the innovation of model fusion, we refrain from augmenting it with additional attack249

types or EMA methodology.250

Training Settings. Following the common practice of AT [26, 30, 33], we fine-tune a pre-trained PRN-251

18 model using SGD with momentum 0.9, weight decay 5× 10−4, and initial learning rate 0.1 for 20252

epochs. All ℓp attacks are conducted by the default perturbation margin ϵ∞ = 8
255 , ϵ2 = 0.5, ϵ1 = 12.253

For semantic attacks, we We employ an iteratively computed calibrated margin to ensure that most254

adversarial perturbations maintain accuracy between 20% and 60% on the pre-trained ℓ∞-robust255

model on CIFAR-10:256

ϵk = (λk + accadv[k]) ∗ ϵ (11)
Where ϵk is the original perturbation margin, λk is a hyper-parameter to ensure that the robust257

accuracy accadv[k] is between 20% and 60%.258

Evaluation Metrics. We evaluate the clean and robust accuracy in the average case against different259

attacks. The ℓp robustness is evaluated by AutoAttack [5], a popular reliable robustness evaluation260

benchmark. The robustness against other attacks is evaluated on the testing dataset against the same261

attack algorithms during fine-tuning.262

5.2 Main Results263

In this section, we present comprehensive experimental results to validate264
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Superior Holistic Robustness. On CIFAR-10, pretr_Linf model, CAS achieves the highest overall265

robustness (average = 52.54%), outperforming all baselines by at least 1.2 percentage points (vs. SAT266

+ EMA 51.34%) while maintaining the highest clean precision (85.8%). Moreover, CAS establishes a267

new state-of-the-art for semantic robustness (52.52%), delivering at least 2.1% improvement over268

multi-attack baselines (E-AT-all+EMA: 50.42%).269

Cross-Model and Cross-Dataset Generalization. While primarily tuning hyperparameters on270

CIFAR-10 with pretr_Linf models, we achieved competitive results using identical code on both271

pretr_L2, CIFAR-10 and pretr_Linf, CIFAR-100. Although individual metrics may not reach peak272

performance, our method consistently outperforms baselines in comprehensive evaluations. This273

demonstrates both the overall efficacy and transferability of our approach.274

MDE outperforms EMA in terms of multi-robustness. Table 1 quantitatively demonstrates that275

integrating MDE with CAS yields a significant +0.69% improvement in average robustness (52.54%276

vs 51.85%) compared to CAS+EMA. This stems from MDE’s organic integration of multidimensional277

characteristics and the dynamic nature of our CAS framework, which optimizes update weights for278

favorable training outcomes through dynamic decay rate selection and threshold-based filtering.279

Method Clean Avg. avg. ℓp avg. Sem.
pretr_Linf 83.7 39.71 38.13 41.29
E-AT 83.1 50.66 54.70 46.62
E-AT+EMA 83.4 50.43 53.90 46.96
E-AT-all 84.1 51.13 52.07 50.18
E-AT-all
+EMA 84.5 51.29 52.17 50.42

RAMP 84.2 50.68 54.93 46.43
SAT 85.0 50.83 51.87 49.79
SAT+EMA 84.1 51.34 53.93 48.74
CAS 85.0 51.81 51.90 51.72
CAS+EMA 85.9 51.85 51.9 51.81
CAS+MDE 85.8 52.54 52.57 52.52

Table 1: Overall camparison of our
CAS+MDE method with baselines on
CIFAR-10, pretr_Linf model.

Method Clean Avg. avg. ℓp avg. Sem.
pretr_L2 88.2 39.43 41.53 37.32
E-AT 85.4 50.44 55.23 45.66
E-AT
+EMA 84.9 50.99 55.50 46.49

E-AT-all 85.7 51.76 52.93 50.58
E-AT-all
+EMA 86.6 52.16 53.17 51.15

RAMP 85.9 48.29 53.17 43.42
SAT 86.4 51.66 52.83 50.49
SAT+EMA 86.5 52.04 53.00 51.07
CAS 87.4 51.56 51.90 51.21
CAS+MDE 86.3 52.45 52.73 52.17

Table 2: Overall camparison of our
CAS+MDE method with baselines on CIFAR-
10, pretr_L2 model.

280

Method Clean Avg. avg. ℓp avg. Sem.

pretr_Linf 68.5 28.88 28.67 29.08
E-AT 67.0 29.92 33.67 26.17
E-AT+EMA 62.5 31.07 35.33 26.81
E-AT-all 69.0 31.33 31.83 30.83
E-AT-all
+EMA 64.5 33.25 34.67 31.83

SAT 68.5 29.31 27.83 30.78
SAT+EMA 67.0 31.36 31.00 31.72

CAS 65.5 31.49 32.67 30.31
CAS+MDE 68.0 32.71 33.50 31.92

Table 3: Overall camparison of our
CAS+MDE method with baselines on
CIFAR-100, pretr_Linf model.

Method Clean Avg. avg. ℓp avg. Sem.

AC 84.7 51.51 52.27 50.75
AC+MDE 85.4 52.14 52.17 52.12
AC+LO 83.8 52.05 53.20 50.90
AC+LO
+MDE 84.7 52.36 51.87 52.85

AC+TR 85.5 51.72 52.83 50.61
AC+TR
+MDE 85.4 51.92 52.00 51.83

AC+LO+TR
(CAS) 85.0 51.81 51.90 51.72

CAS+MDE 85.8 52.54 52.57 52.52

Table 4: Ablation study on calibrated proba-
bility weights (Eq. 9).

281

5.3 Ablation Study282

In this subsection, we show the usefulness of each component of our CAS framework. All these283

experiments are conducted on pretrained-ℓ∞ model, CIFAR-10.284

Loss- and Trade-off-Aware Weighting. The superiority of our dynamic weighting over static285

sampling stems from its adaptive resource allocation capability. Our dynamic scheme actively286

redirects training focus toward attacks with:287

• Low current robustness (w1(1− acc[j]) term)288
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Figure 4: Ablation study on the number of considered perturbations.

• High learning difficulty (w2loss[i][j] term)289

• Positive systemic externalities (w3VTR term)290

As evidenced in the Table 4, our holistic consideration of probability-weighted integration across all291

three factors yields more significant improvements compared to approaches using individual factors292

or pairwise combinations.293

Number of considered perturbations. To investigate the stability and transferability of the294

CAS+MDE framework under varying perturbation regimes, we conduct fine-tuning experiments295

combining 3 ℓp attacks with progressively increasing numbers of semantic perturbations (3, 6, 9, 12,296

15, 18). As shown in Figure 4, both clean accuracy and average ℓp robust accuracy remain remarkably297

stable across perturbation scales, while average semantic robust accuracy, which is still measured298

against all 18 semantic attacks post-fine-tuning, exhibits consistent improvement with additional299

perturbation types. This demonstrates exceptional method stability against configuration variations300

and confirms that incorporating more attack types can enhance overall robustness. Consequently, prac-301

tical implementations would better maximize coverage of domain-relevant adversarial threats, while302

integrating and formalizing unforeseen attacks could further enrich multi-robustness benchmarks.303

6 Conclusion304

In this work, we provide a concise overview of multi-robustness research and its technical bottlenecks.305

We revisit the critical concept of Mutually Exclusive Perturbations (MEPs) and present an initial306

attempt to establish its quantitative definition. We holistically integrate and balance ℓp attacks307

and semantic attacks. Building on these foundations—along with dynamic probabilistic weighting308

and exponential moving average (EMA) variant—we propose Calibrated Adversarial Sampling309

(CAS), a fine-tuning framework that achieves state-of-the-art robustness across multiple adversarial310

settings. Extensive experiments validate the effectiveness of holistic multi-factor integration and311

the incorporation of diverse adversarial attack types within practical robust training pipelines. This312

establishes CAS as a strong baseline for multi-robustness fine-tuning and provides a promising313

paradigm for robust generalization.314
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A The Complete Algorithm and Motivation of Our Method415

Algorithm 1: CAS Framework
Input: Original DNN N , epochs,
batches of inputs and their targets {xi, yi}ni=1,
different adversarial attacks {A1, A2, · · · , Am} and their epsilons ϵ1, ϵ2, · · · , ϵm
Output: A repaired DNN N ′

1 Phase I: Sample-wise Testing.
2 for j ← 1 to m do
3 evaluate the robust accuracy before training
4 for i← 1 to n, if i ≡ j mod m do
5 get the adversarial example x′

ij of xi in Aj attack
6 evaluate the loss[i][j] and accuracy of x′

ij

7 evaluate the robust accuracy before training
8 get the total accuracy acc[j] for each attack Aj

9 get the tradeoff matrix

10 Phase II: Warm Up.
11 for epoch← 1 to epochs do
12 for i← 1 to n do
13 for j ← 1 to m do
14 compute the smoother probability weight based on acc[j](Eq. (5)).
15 balance the probability weights between ℓp attacks and semantic attacks(Eq. (6))
16 randomly choose attack Al for AT
17 update loss[i][j] and acc[j]
18 calculate the dynamic decay-rate and then deploy MDE average

19 Phase III: Dynamic Fine-tuning.
20 for epoch← 1 to epochs do
21 for i← 1 to n do
22 for j ← 1 to m do
23 compute the calibrated probability weights(Eq. (9))
24 balance the probability weights and randomly choose Al for AT
25 update loss[i][j] and acc[j]
26 MDE with higher sensitivity

The complete algorithm of CAS+MDE method can be summarized in Algorithm 1. Overall, the416

CAS framework delivers qualitative superiority through its multi-phase design. First, sample-wise417

testing provides critical diagnostic precision by systematically evaluating robust accuracy and loss418

metrics for each attack type, thereby generating an innovative trade-off matrix that quantifies nuanced419

accuracy shifts between attack types. Transitioning to Phase II, the smooth probability weights420

prevent premature over-specialization by maintaining smoother attack-type distributions than steeper421

alternatives. The framework culminates in Phase III with its sophisticated multi-factor weighting422

system, which integrates three critical defense dimensions. This phase advances tradeoff modeling423

while implementing precision MDE with enhanced sensitivity (d3 > d2) to capture subtle late-stage424

improvements.425

To investigate fine-tuning for multiple robustness more broadly, we augment the baseline that consid-426

ers only ℓp attacks with semantic attacks. SAT’s fixed probability weights are flawed, and E-AT’s427

weights that focus solely on robust accuracy also fall short. We therefore adopt calibrated proba-428

bility weights that integrate accuracy, loss, and trade-off. While studying the trade-offs in multiple429

robustness, we extend and quantify the notion of mutually exclusive perturbations. Recognizing that430

model-fusion techniques such as EMA are effective at boosting adversarial robustness and can be431
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plugged into many methods, we further design and incorporate MDE—an EMA variant tailored to432

the dynamic nature of our CAS approach.433

B More Details about Our Experiments434

At this point, we specify the hyperparameter selections for the main experiments with CIFAR-10435

dataset:436

Parameter Value
batch size 128

batch size for eval 100
max lr 0.1

weight decay 5e-4
decay rate (in EMA) 0.995

w1 10
w2 1
w3 0.5
d1 5
d2 50

τ (threshold in MDE) 0.95
Table 5: Hyperparameters for CAS

C Additional Discussion on Experiment Results437

By examining the detailed tabular data (Table 6, Table 7, and Table 8) from the "Overall Comparison"438

experiment in the main text, we can derive additional insights:439

First, different types of adversarial attacks exhibit varying degrees of sensitivity to fine-tuning440

regarding robustness. For instance, the robust accuracy of L1 and prison attacks shows significant441

improvement across different fine-tuning approaches, whereas blur-based attacks demonstrate no442

noticeable changes in robust accuracy after fine-tuning.443

Second, multi-robustness-based fine-tuning does not necessarily enhance robustness against all attack444

types. For example, the robust accuracy against hsv attacks decreases across all fine-tuning methods445

compared to the original model. This stems from complex interference patterns between different446

robustness types.447

Third, the trends of improvement/decline and significance of changes in robust accuracy across all448

attack types remain largely consistent regardless of the fine-tuning method employed. This indicates449

that both the sensitivity of attack-specific robustness to fine-tuning and the trade-offs between different450

robustness types represent intrinsic properties, independent of fine-tuning approaches.451

Fourth, we observe that robust accuracy against natural corruptions (e.g. fog, snow, blur) generally452

shows minimal variation after fine-tuning. In contrast, robustness against human-engineered adver-453

sarial attacks (e.g. ℓp, JPEG, prison) exhibits relatively more pronounced changes post-fine-tuning.454

Moreover, while we state in the main text that "To mitigate computational costs, Phase I executes just455

one epoch," detailed computational costs are not explicitly provided. In practice, our CAS method456

conducts one epoch for sample-wise testing, followed by 10 epochs of warm-up and 10 epochs of457

dynamic fine-tuning. All baselines undergo 20 epochs of fine-tuning. Under identical hardware458

configurations, the per-epoch computational time of our method shows minimal difference compared459

to probability-weighting-based baselines like E-AT and SAT. This demonstrates that our CAS method460

enhances efficacy without compromising efficiency.461

D Cross-model Comparison462

Meanwhile, we compared the performance of different pre-trained models under our multi-robustness463

metrics framework. The results (Table 9) reveal that the pretr_L1 model delivers the strongest overall464
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Model pretr_Linf E-AT E-AT
+EMA E-AT-all E-AT-all

+EMA RAMP SAT SAT+EMA CAS CAS+EMA CAS+MDE

Clean 83.7 83.1 83.4 84.1 84.5 84.2 85 84.1 85 85.9 85.8
Avg. 39.71 50.66 50.43 51.13 51.29 50.68 50.83 51.34 51.81 51.85 52.54

avg. ℓp 38.13 54.70 53.90 52.07 52.17 54.93 51.87 53.93 51.90 51.90 52.57
avg. Sem. 41.29 46.62 46.96 50.18 50.42 46.43 49.79 48.74 51.72 51.81 52.52

Linf 48.1 43.2 41.7 39.3 40.2 46.8 38.5 41.3 40.3 39.8 41
L2 60 67 67 67.2 67.5 67.9 67.5 67.6 67.3 67.7 68.1
L1 6.3 53.9 53 49.7 48.8 50.1 49.6 52.9 48.1 48.2 48.6

ppgd 42.5 53.9 53.5 50.7 50.6 55.3 50.8 53 51.2 50.9 52.2
wood 58.8 72 71.7 73.9 72.6 71.8 71.9 72.6 75.7 74.2 74.7
elastic 28.3 29.8 28.4 37.4 38.9 29.3 38.2 32.3 37.8 38 39
pixel 27.8 38.8 43.7 38.8 41.1 35.5 41.4 38.2 37.9 40.1 39.2
snow 24.9 21.5 20.7 21.9 24.8 18.9 26.8 22 26.1 24.3 26.6
gabor 38.6 45.9 49.9 50.6 39.6 47.4 38 51.3 65.6 56 58.8
jpeg 44.6 59.5 60.8 58.4 58.1 60 57.2 60.3 58.8 58.7 59.3

glitch 30.2 38.8 36.5 39.5 40.7 36.3 41.4 38.6 40.6 40.2 41
kalei 39.2 44.1 42.1 56.3 59.9 40.7 58.9 50.1 56.6 58.4 58.8
blur 54.2 52 52 55.5 56 52.6 56.7 53.9 53.7 57.3 56.1
edge 44.2 52.9 54.1 58.7 57.9 55 57.1 56.1 59.9 59.3 59.6
fog 73.4 69.3 70.9 71.9 73.2 71.9 72.5 72.9 73.3 75.4 74.5

texture 34.1 42.2 40.5 45.8 47.2 41 46.6 44 48.9 45.2 47.7
prison 31.8 52.4 50.8 58.5 57.5 49.2 50.5 51.9 57.6 59.8 62
whirl 55.3 58.9 62.1 67.7 67.2 59.4 66.5 66.8 67.7 69.2 67.4

polkadot 33.5 28.5 30.6 32.8 34.3 30.3 33 33.1 31.8 36.6 37
klotski 30.5 33.9 33.5 41.5 42.8 32.5 43.4 36.1 43.5 44.4 45.1

hsv 51.4 44.8 43.5 43.4 45.1 48.6 45.3 44.2 44.3 44.5 46.4

Table 6: Overall camparison of our CAS+MDE method with baselines on CIFAR-10, pretr_Linf
model.

Model pretr_L2 E-AT E-AT
+EMA E-AT-all E-AT-all

+EMA RAMP SAT SAT+EMA CAS CAS+EMA CAS+MDE

Clean 88.2 85.4 84.9 85.7 86.6 85.9 86.4 86.5 87.4 87.4 86.3
Avg. 39.43 50.44 50.99 51.76 52.16 48.29 51.66 52.04 51.56 52.02 52.45

avg. ℓp 41.53 55.23 55.50 52.93 53.17 53.17 52.83 53.00 51.90 51.87 52.73
avg. Sem. 37.32 45.66 46.49 50.58 51.15 43.42 50.49 51.07 51.21 52.18 52.17

Linf 29.8 41.5 41.6 39 38.8 43.6 38.2 38.1 38.5 37.4 38.5
L2 68.6 70 70.1 69.8 70 69.6 69.5 70.1 69.9 70.1 71.4
L1 26.2 54.2 54.8 50 50.7 46.3 50.8 50.8 47.3 48.1 48.3

ppgd 43.7 54.8 54.9 52.1 53.2 54.8 52.4 52.6 51.4 52.4 52.3
wood 70 71.5 73.1 71.2 75.7 73.9 75.8 76.7 77.5 76.5 75.6
elastic 14 28.7 28.4 38.7 38.4 25.2 36.8 35.9 39 37.1 39.2
pixel 21.7 43.8 43.8 51.4 40.9 31.8 40.6 40.7 38.5 46.7 41
snow 9.7 17.4 18.7 24.9 27 14.7 26.3 27.8 22.4 23.2 22.8
gabor 32.6 23.5 41.8 34 43.7 29 39 40.9 43.1 50.4 51.9
jpeg 52.2 61.3 61.5 58.5 59.7 60.9 60.4 60.1 60.9 60.2 59.9

glitch 20.9 38.2 37.3 39.1 40.5 32.2 40.3 39.8 38.8 40.3 40.6
kalei 34.1 41.4 40 61.4 60.2 39.2 61.2 60.1 62.7 62.7 63.4
blur 55.4 53.9 52.5 57.5 55.9 52.7 57.6 58.3 56.9 59.4 60.9
edge 42.1 53.8 53.8 57.3 59 51.8 58.1 58.4 58.2 59.7 58.9
fog 77.8 72.3 71.5 73.9 74 73 75.2 74.9 73.4 76.1 76.2

texture 21.5 38.8 38.6 44.6 43.8 38.2 44.7 43.1 44.9 42.2 42.5
prison 26.8 51.5 51.1 55.6 55.5 42.1 51.5 56.9 58.8 57.5 57.6
whirl 54.3 62.5 61.7 68 70.2 58.8 68.6 69.4 70.3 69 68.5

polkadot 40.6 32.6 31.7 33.2 34 31 34 36.1 35.5 36.9 36.7
klotski 19.1 31.8 31.7 43.4 44.1 28.5 41.7 42 45 43.7 45.8

hsv 35.3 44 44.7 45.7 44.9 43.8 44.7 45.6 44.5 45.2 45.2

Table 7: Overall camparison of our CAS+MDE method with baselines on CIFAR-10, pretr_L2 model.

performance. The pretr_L2 model exhibits deficiencies in robustness against semantic attacks and465

shows significant weaknesses when facing adversarial attacks like elastic and snow. The pretr_Linf466

model underperforms in both clean accuracy and ℓp robustness, primarily due to the pronounced467

trade-offs between ℓ∞ robustness versus clean accuracy and ℓ1 robustness.468

This suggests that if adversarial training focuses solely on a single perturbation type while aiming469

for favorable clean accuracy and multi-robustness metrics, ℓ1-based adversarial attacks may be a470

preferable choice. However, in practice, the ℓ∞ model often holds certain advantages. For example,471

ℓ∞ pre-trained models generally demonstrate superior defense capability against highly engineered472

adversarial attacks (e.g. hsv and klotski) ; and ℓ∞ adversarial training methods (e.g. PGD-AT for ℓ∞)473

are simpler and more mature than their ℓ1 counterparts (e.g., APGD-AT for ℓ1).474
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Model pretr_Linf E-AT E-AT
+EMA E-AT-all E-AT-all

+EMA SAT SAT+EMA CAS CAS+MDE

Clean 68.5 67 62.5 69 64.5 68.5 67 65.5 68
Avg. 28.88 29.92 31.07 31.33 33.25 29.31 31.36 31.49 32.71

avg. ℓp 28.67 33.67 35.33 31.83 34.67 27.83 31.00 32.67 33.50
avg. Sem. 29.08 26.17 26.81 30.83 31.83 30.78 31.72 30.31 31.92

Linf 31.5 23 24.5 21 25 17.5 21 23.5 22
L2 40 45 46 46 46.5 44 44.5 46 48
L1 14.5 33 35.5 28.5 32.5 22 27.5 28.5 30.5

ppgd 36 34.5 35.5 31.5 33.5 28.5 32.5 31.5 33
wood 42.5 50.5 51.5 54.5 53 49 53.5 51.5 57
elastic 24.5 14.5 20.5 21.5 22 23.5 23.5 22 23.5
pixel 21.5 19 20 23 23 24.5 24.5 25.5 24.5
snow 19 9 10.5 10 14.5 10.5 17.5 12 11.5
gabor 7.5 7.5 17 20.5 34.5 13.5 16.5 14.5 16
jpeg 34 40 41.5 39.5 40.5 33.5 38 38.5 39

glitch 20 17.5 17 20.5 20 21 19 20.5 21.5
kalei 25.5 21 21.5 42.5 39.5 41.5 45 38.5 40.5
blur 40.5 35.5 31.5 35 33 43 35 42.5 36
edge 31 32.5 35.5 37.5 45.5 35 45 35.5 41
fog 58 53 46 55.5 48 60 52.5 55 54.5

texture 24 15 17 17 26.5 14 27.5 19 25.5
prison 15 21 17.5 28.5 26 21.5 23 21 24.5
whirl 42.5 42 38 46 46 51 45.5 47 52.5

polkadot 20.5 17 16.5 22 14.5 29.5 16.5 22 18
klotski 24.5 18.5 19 25 24.5 30 29 24.5 30

hsv 37 23 26.5 25 28.5 24.5 27 24.5 26

Table 8: Overall camparison of our CAS+MDE method with baselines on CIFAR-100, pretr_Linf
model.

E Extended Experiments on Multi-Robustness Trade-offs475

E.1 Semantic-ℓp Conflicts476

As quantified in the tradeoff matrix (Figure 5), semantic attacks generally degrade ℓp robustness477

due to incompatible perturbation constraints, but exhibit texture-dependent exceptions. Weather478

corruptions (e.g. fog and snow) conflict universally with all ℓp norms.479

Moreover, we find that Linf robustness suffers much more overall semantic interference than L1480

robustness due to fundamental differences in perturbation geometry.481

E.2 Transfer Asymmetry482

While ℓp training before semantic attacks yields net positive transfer, the reverse sequence causes483

disproportionate degradation. Strikingly, elastic → wood transfer (+0.192) demonstrates notably484

greater efficacy than the reverse direction (-0.007), indicating a broad and pronounced asymmetry in485

the trade-offs between different types of robustness.486

E.3 Robustness Interference487

The significantly negative matrix sum (
∑

i,j Mij = −3.123) confirms global interference, but masks488

polarized cluster dynamics. We also computed the row-wise and column-wise sums of the trade-off489

matrix. Under single-type training, we observed that—apart from pixel-level perturbations—every490

semantic attack in the table reduces the overall robust-accuracy sum; adversarial training against491

the gabor attack even degrades robustness to all other attack types. In contrast, adversarial training492

on the three ℓp norms consistently improves overall robustness, underscoring why practical DNN493

robust-training regimes usually focus on ℓP attacks. Only wood and gabor robust-accuracy achieve494

noticeable overall gains when adversarial training is progressively applied to each perturbation495
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Model pretr_Linf pretr_L2 pretr_L1
Clean 83.7 88.2 87.1
Avg. 39.71 39.43 45.30

avg. ℓp 38.13 41.5 48.97
avg. Sem. 41.29 37.32 41.63

Linf 48.1 29.8 22
L2 60 68.6 64.9
L1 6.3 26.2 60

ppgd 42.5 43.7 43.3
wood 58.8 70 73.6
elastic 28.3 14 14.8
pixel 27.8 21.7 30.2
snow 24.9 9.7 14.1
gabor 38.6 32.6 41.6
jpeg 44.6 52.2 47.1

glitch 30.2 20.9 30.5
kalei 39.2 34.1 35
blur 54.2 55.4 56
edge 44.2 42.1 53.3
fog 73.4 77.8 75.7

texture 34.1 21.5 24.3
prison 31.8 26.8 54.4
whirl 55.3 54.3 62.4

polkadot 33.5 40.6 44.7
klotski 30.5 19.1 20.5

hsv 51.4 35.3 27.9

Table 9: Camparison of 3 pretrained PreActResNet-18 models based on our multi-robustness bench-
mark

type, highlighting the formidable challenge that robustness inference poses to improving multiple496

robustness dimensions simultaneously.497

This explains CAS’s effectiveness: stochastic sampling prevents irreversible catastrophic damage from498

"interference source" attacks (gabor→ fog : −0.384) by distributing training across compatibility499

zones.500

F Ablation Studies501

F.1 Number of Considered Perturbations502

In our ablation study on the number of considered perturbations, we gradually add new semantic503

attacks to the fine-tuning pipeline from top to bottom, adding three at each step. The detailed504

results show that most robustness types do not improve significantly when their corresponding505

attacks are included; only gabor and Kaleidoscope enjoy noticeable robust-accuracy gains. Moreover,506

introducing new attacks can reduce the robustness of previously considered ones—for example, pixel507

robust-accuracy drops sharply after the final three attacks are added. Overall, however, considering508

a wider range of perturbations benefits overall multiple robustness. We also observe that clean509

accuracy and ℓp robustness remain relatively stable as the attack count grows, because we balance the510

probability weights of ℓp and semantic attacks during fine-tuning.511

ℓp and semantic reweighting. Table 10 demonstrates that balancing our probability weights between512

ℓp and semantic attacks significantly enhances average robustness. The motivation for increasing513

the relative weight of ℓp attacks stems from empirical observations in E-AT and RAMP: adversarial514

training focused solely on ℓp threats unexpectedly improves semantic robustness [6, 14]—though515

substantially less than direct semantic AT. Our trade-off matrix quantitatively validates this phe-516

nomenon, revealing that ℓp adversarial training enhances most semantic robustness while semantic517
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Figure 5: Trade-off matrix. In the figure, each number represents the change in robust accuracy for
its corresponding attack type after AT against designated types. Each row shows the data fine-tuned
against the adversarial attack labeled on the left; each column shows the data evaluated after being
tested with the attack labeled above.

adversarial training often impairs ℓp robustness. This asymmetric relationship fundamentally informs518

our reweighting strategy.

Method Clean Avg. avg. ℓp avg. Sem.
no reweight 85.6 48.84 46.27 56.42
no reweight+MDE 86 50.44 47.47 53.42
CAS 85.0 51.81 51.90 51.72
CAS+EMA 85.8 52.54 52.57 52.52

Table 10: Ablation study on reweighting (Eq. 6).

519

F.2 Components in Calibrated Probability Weights520

Regarding the Ablation Study results on Calibrated Probability Weights, where CAS(AC+LO+TR)521

exhibits lower average accuracy than AC+LO+MDE, AC+TR+MDE, and AC+LO, we clarify that this522

does not imply mutual exclusivity between LO and TR. The apparent discrepancy arises because MDE523

inherently elevates clean and robust accuracy within adversarial robustness frameworks. Consequently,524

comparing the plain CAS configuration (AC+LO+TR) against variants augmented with MDE (e.g.,525

AC+LO+MDE) constitutes an unbalanced comparison. Crucially, LO and TR operate synergistically526

in the probability weighting mechanism: while LO alone typically increases robust accuracy at the527

expense of clean accuracy, the combined integration of LO and TR enables more effective balancing528

of these objectives. This synergy ultimately enhances both clean and robust accuracies, demonstrating529

the significance of the full AC+LO+TR integration in our proposed CAS framework.530

G Limitations531

While our trade-off matrix provides a quantitative definition of Mutually Exclusive Perturbations532

(MEPs), this framework and related investigations remain insufficiently rigorous. Critical questions533

persist: (i) Model selection: On which model architectures should MEPs be evaluated? (ii) Pertur-534

bation calibration: How should perturbation intensities be standardized across diverse adversarial535

attacks?536
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3+3 3+6 3+9 3+12 3+15 3+18

Clean 85.4 84.8 84.7 85 85.6 85.8
Avg. 50.33 51.69 51.56 51.84 51.77 52.54

avg. ℓp 52.17 53.07 52.87 52.57 51.80 52.57
avg. Sem. 48.49 50.31 50.25 51.11 51.74 52.52

Linf 40.1 41.3 41.6 40.5 39.1 41
L2 68 68.5 67.9 67.8 67.4 68.1
L1 48.4 49.4 49.1 49.4 48.9 48.6

ppgd 52.3 54 52.3 52.3 52 52.2
wood 73.6 72.4 73.1 72.2 74.3 74.7
elastic 40.3 41.5 38.3 37.9 35.8 39

pixel 43.3 44.5 50.6 46.7 46.6 39.2
snow 26.3 25.4 25.1 27.5 23.2 26.6
gabor 38.7 65.9 40.3 56.3 54.1 58.8

jpeg 58.7 58.3 59.9 59.7 59 59.3
glitch 37.8 39.5 40.6 42.4 41.5 41
kalei 42 43.2 63.9 62.2 62.7 58.8

blur 54.1 55.6 54.3 55.2 57.8 56.1
edge 57.2 55.6 55.8 57.9 58.3 59.6
fog 72.5 72.6 72.6 72.9 74.1 74.5

texture 40.2 40.6 42.4 41.5 44.4 47.7
prison 48.6 47.3 49.8 52.8 56.9 62
whirl 66.3 65.8 68.1 64.1 67.9 67.4

polkadot 33.8 33.6 31.9 32.4 39.2 37
klotski 43 44.2 41.6 41.9 40.7 45.1

hsv 44.1 45.5 43.9 44.1 42.8 46.4

Table 11: Ablation study on the number of considered perturbations.

Furthermore, translating theoretical trade-off insights into direct robustness enhancement remains537

an underexplored yet promising research direction. Our ablation study confirms that incorporating538

trade-off relationships into probabilistic weighting yields measurable benefits, though its efficacy is539

less pronounced than accuracy-based adaptations.540

Notably, while CAS achieves state-of-the-art results in both clean accuracy and average robust541

accuracy, our MEP analysis reveals a fundamental tension: enhancing robustness against mutually542

exclusive perturbations inherently incurs costs in clean accuracy or other robustness dimensions. This543

suggests potential degradation against unconsidered attack types—an intrinsic challenge in multi-544

robustness fine-tuning. To mitigate this limitation, we could systematically identify and cover those545

attack types prevalent in specific application areas before deploying such frameworks in real-world546

scenarios.547

H Promising Research Directions548

Finally, we reflect on the study’s limitations and outline promising research directions:549

1. Advancing trade-off characterization: Rigorous benchmarking frameworks or novel theoretical550

frameworks for multi-robustness trade-offs are waiting to be developed.551

2. Expanding attack typology: New adversarial constraints could be proposed, or existing semantic552

attacks refined through granular categorization to clarify robustness conflicts/synergies.553

3. Exploring composite perturbations: Stronger attacks may emerge from strategically combined554

perturbation types.555
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4. Formalizing non-algorithmic attacks: Attacks lacking clear algorithmic definitions warrant556

alternative formalizations or methodological innovations for systematic study.557
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