RAG-ED: Retrieval-Augmented Generation for Entity Disambiguation

Anonymous ACL submission

Abstract

Entity Disambiguation (ED) resolves ambigu-
ous mentions in text by linking them to entities
in a knowledge base. A key challenge in ED
is entity overshadowing, where dominant en-
tities obscure the correct choice. We propose
RAG-ED (Retrieval-Augmented Generation for
Entity Disambiguation), a data efficient three-
stage pipeline consisting of a lightweight re-
triever, reranker, and a strong large language
model based selector. RAG-ED achieves state-
of-the-art performance on entity overshadow-
ing cases, outperforming prior methods by 17
points. Additionally, the pipeline can also main-
tain competitive performance across standard
ED benchmarks, demonstrating its broad ap-
plicability. A key advantage of RAG-ED is its
ability to identify instances where disambigua-
tion should not be performed, which is partic-
ularly useful in settings relying on lightweight
retrievers. We conduct extensive analyses and
ablation studies on diverse ED datasets further
highlighting the effectiveness of our approach.

1 Introduction

Entity Disambiguation (ED) is a fundamental
challenge in Natural Language Processing (NLP),
where ambiguous mentions must be correctly
linked to entities in a knowledge base (Hoffart et al.,
2011). Traditional ED methods rely on fixed can-
didate sets and static representations, often strug-
gling with entity overshadowing (Provatorova et al.,
2021), a scenario where a well-known entity domi-
nates over a lesser-known but contextually correct
one. This phenomenon leads to systematic biases in
entity disambiguation, particularly when handling
overshadowed entities.

Retrieval-Augmented Generation (RAG) has
demonstrated promising results across various NLP
tasks (Lewis et al., 2020b) and holds significant
potential for ED (Cao et al., 2021; Mrini et al.,
2022). By dynamically retrieving relevant con-
textual information, RAG enables more flexible

and context-aware entity selection. However, in-
tegrating retrieval with instruction-following large
language models (LLMs) poses unique challenges,
including managing retrieval efficiency, reranking
noisy candidate sets, and optimizing final selection
within constrained context windows.

In this study, we introduce RAG-ED, Retrieval
Augmented Generation for Entity Disambiguation,
a novel three-stage ED pipeline that leverages: 1.
An efficient retriever (e.g., Wikipedia API, or a
BLINK-like encoder (Wu et al., 2020a)) to ensure
broad coverage. 2. A computationally lightweight
reranker to prioritize the most relevant candidates.
3. A strong selector to make the final entity se-
lection which takes advantage of the text under-
standing and instruction-following capabilities of
LLMs such as GPT-4 (OpenAl, 2023) or Llama-3
(Al@Meta, 2024).

Previous ED solutions leverage machine learn-
ing and deep learning models (Shen et al., 2021;
Sevgili et al., 2022). While these methods demon-
strate strong performance in many scenarios, they
often struggle with disambiguating complex men-
tions, scaling to large knowledge bases, and han-
dling overshadowing. Unlike these approaches that
rely on fixed ranking mechanisms, our method al-
lows for context-dependent candidate refinement,
maximizing accuracy while minimizing computa-
tional costs.

We evaluate RAG-ED using the ZELDA bench-
mark (Milich and Akbik, 2023), focusing on the en-
tity overshadowing ShadowLinks datasets (Prova-
torova et al., 2021). Evaluation is performed us-
ing both closed-source and open-source LLMs
as selectors. While closed-source models have
demonstrated strong performance, open-source al-
ternatives offer greater adaptability and accessibil-
ity. To further enhance performance of the open-
source LLM, we apply lightweight fine-tuning to
it, demonstrating the feasibility of adapting such
models to ED.

Additionally, we investigate an under-explored
aspect of ED: handling cases when the retriever/r-
eranker fails. Most ED models assume the correct
entity is always present in the candidate set, lead-
ing to forced and often incorrect predictions. Our
approach allows LLMs to abstain from incorrect
predictions, explicitly stating when none of the
given candidates are correct. This capability is cru-
cial because erroneous entity linking can provide
incorrect information to downstream tasks (Zhu
et al., 2023).

Through this work, we aim to establish an ef-
ficient and scalable pipeline for ED that balances
retrieval cost, reranking efficiency, and LLM-based
selection. Our contributions are as follows:

1. aretriever-reranker-selector pipeline for ED;

2. experiments showing the effectiveness of our
approach in handling entity overshadowing
scenarios which acheives state-of-the art re-
sults showing a 17 point improvement in this
scenario;

3. an investigation into candidate selection in
RAG for ED; and

4. a fine tuned open-source LLLM for candidate
selection.

The source code for our methods is provided as
supplementary material and released publicly '.

The rest of the paper is organized as follows:
Section 2 reviews related work. Section 3 describes
our proposed approach. Section 4 describes the
experiments performed. Section 5 discusses the
results and our findings, and Section 6 concludes
the paper.

2 Related Work

Entity Disambiguation: Traditional entity disam-
biguation methods typically involve candidate se-
lection using techniques like TF-IDF (Aizawa,
2003) and word2vec (Mikolov et al., 2013), fol-
lowed by reranking with models such as LSTMs
(Hochreiter and Schmidhuber, 1997) or BERT (De-
vlin et al., 2019). More advanced architectures,
such as CNNs (Francis-Landau et al., 2016) and
cross-encoders like BLINK (Wu et al., 2020a),
capture richer contextual relationships, improv-
ing entity ranking accuracy. Additionally, autore-
gressive models like BART (Lewis et al., 2020a)

1h'ctps ://anonymous. 4open.science/r/
RAG-ED-33B8

have been explored for entity disambiguation (Cao
et al., 2021), leveraging generative capabilities to
refine entity selection. However, these methods
still face challenges in high-ambiguity scenarios,
particularly when dealing with short or contextu-
ally coarse-grained texts (Shi et al., 2024; Liu et al.,
2024a).

While end-to-end entity disambiguation mod-
els like ReFinED (Ayoola et al., 2022) streamline
processing by integrating mention detection, entity
typing, and disambiguation into a single forward
pass, they can be constrained by fixed retrieval
mechanisms and lack flexibility in ambiguous con-
texts. In contrast, our approach leverages RAG
and instruction-following LLMs to refine disam-
biguation by dynamically retrieving and selecting
entities.

Retrieval-Augmented Generation: The RAG
paradigm combines retrieval mechanisms with gen-
erative models, achieving success across tasks
like question answering and summarization (Lewis
et al., 2020b; Karpukhin et al., 2020; Vig et al.,
2022). In entity disambiguation, RAG enables re-
trieval of relevant candidates and their refinement
via generative models (Xiao et al., 2023; Orlando
et al., 2024). Although effective, existing methods
often struggle to distinguish between retrieval er-
rors and limitations of generative models. Because
of the retrieval portion of RAG approaches, there
is a potential for the correct candidate entity not
to be retrieved. We test the impact of this later in
the paper. This problem is somewhat similar to the
problem of NIL entities (Zhu et al., 2023) where
the goal is to determine when there is no entity
match for a mention. Our setting is different in that
we do not assume that the retrieval is correct.

LLMs in Entity Disambiguation: LLMs have
transformed NLP with their advanced contex-
tual understanding, instruction-following behav-
ior (Ouyang et al., 2022), and in-context learning
capabilities (Brown et al., 2020; Touvron et al.,
2023). In entity disambiguation, LLMs have been
employed to enrich candidate entity descriptions
(Xin et al., 2024) or refine predictions in multi-step
reasoning frameworks (Liu et al., 2024b). These
methods often introduce additional computational
overhead and complexity due to the need for open-
ended text generation for entity explanations and
iterative reasoning steps.

https://anonymous.4open.science/r/RAG-ED-33B8
https://anonymous.4open.science/r/RAG-ED-33B8

: Input Retriever Vi Reranker ' (7" 'Selector | { Output |
i il i1 Retrieved Reranked | ! | i : i
| Mention [Wiki API Top64 Ll ip6s |—| top8 |fiw CGF140 L Top1 |
|) candidates | ' . ; \ ! mini | \
! \/ !1| candidates candidates [|
|| Passage i\ l iy Llama-3.1- 1A\, :
i——— I\ e A 8B N !
| LISt.Of L Top 64 |i! AT RS \BETETT T
| entity 7 Encoder X | top 64 [top 8 . !
| Lo 1 candidates |1 , i ! V 3.1-8B 11| candidates |!
\[_descriptions | | i, | candidates candidates | ! L !

Figure 1: Architecture of RAG-ED, illustrating the input, the Retriever, Reranker, Selector modules, and the output.

3 Proposed approach

3.1 Problem statement

ED is defined as follows: given a textual passage
as a sequence of words d = (w1, ..., w;), together
with a set of mentions m = (my, ..., m,) where
each m; is a selection of one or several words in d
that span mentions of entities. We are additionally
given a knowledge base (such as Wikipedia) con-
sisting of a fixed list of entities £. The goal of the
ED task is to find a function f(d,m;) = e¢; € £
that maps each of the mentions in the passage to
the correct entity in the knowledge base.

3.2 Approach Overview

We propose to solve the ED problem by making use
of three stages, aimed at fast retrieval of candidates
for mentions with high recall in the initial stage,
followed by improved precision over smaller sets
of candidates to control computational cost. These
three stages consist of a retriever, a reranker, and
a selector.

Retriever. Given a passage-mention pair (d, m;),
the retriever is tasked with ranking all entities in £
as candidates for the mention. A crucial require-
ment for the retriever is computational efficiency,
as in practical applications the set £ can grow to
millions of entities?. For the majority of texts, only
a small subset of £ is likely to be relevant, which
motivates prioritizing recall over precision at this
stage.

Reranker. At this stage, we select a subset of
candidates by taking the top-k, entities retrieved by
the retriever. For each of these entities, we form an
input consisting of their description together with
the input passage, which we pass to a cross-encoder
model that computes a score for the relevance of
each candidate entity. Given that this model needs

2For reference, Wikipedia has over 50 million pages as of
2025.

to jointly process the candidate and the passage, it
requires more resources than the retriever, though
over a smaller set of entities of size k, < |£].

Selector. In the last stage, we select a smaller set
of candidates by taking the top ks < k, entities
according to the scores computed by the reranker.
This final stage is aimed at high precision, thus we
rely on directly prompting an LLM by providing
it with the descriptions of the ks candidate entities,
the textual passage, and the task of deciding which
candidate entity corresponds to the mention query.

We illustrate an overview of the architecture of
RAG-ED in Fig. 1. In the following sections we
describe the specific details of each of the modules
in our implementation of the RAG-ED pipeline.

3.3 Retriever

We consider two approaches for fast retrieval of en-
tities over a large knowledge base: an embedding-
based Encoder method, and the Wikipedia API,
which relies on methods such as fuzzy search and
string matching.

Encoder. We employ the bi-encoder architecture
proposed in BLINK by Wu et al. (2020b)3 as one of
our retrievers. BLINK ranks a list of candidate en-
tities based on their likelihood of being the correct
match for a given entity. The bi-encoder module
uses two independent BERT models (Devlin et al.,
2019) to encode the mention context and entity
description into dense vectors ¥, y. € R%. The
similarity between a mention and an entity candi-
date is computed using the dot product of these
vectors, which scales well to retrieval over large
sets of entities (Malkov and Yashunin, 2018).

Wikipedia API. The Wikipedia API serves as
a lightweight and efficient retrieval mechanism to
generate potential entity candidates for ED tasks.

3We use the implementation available at https://github.
com/facebookresearch/BLINK.

https://github.com/facebookresearch/BLINK
https://github.com/facebookresearch/BLINK

This method is based on string matching and key-
word search to identify relevant entities from the
vast knowledge base of Wikipedia. To retrieve
entity candidates, we query the Wikipedia API’s
search endpoint, which identifies articles match-
ing a provided string or keyword. For each iden-
tified candidate, we then query the extracts end-
point of the Wikipedia API using the page ID. This
retrieves the introductory section of the article, typi-
cally providing a concise and informative summary.

3.4 Reranker

Given the list of entities retrieved by the previous
module, we take the top k, entities together with
their titles, unique identifiers, and a short textual de-
scription. For each mention m; in the input passage
d, we construct the following sentence:

What does the entity <mention> refer to in
the following sentence?
<input passage>

We pass this sentence, together with the descrip-
tion of each of the k, candidates from the retriever,
to a cross-encoder model that outputs a score indi-
cating the relevance of the candidate. We employ a
Sentence-BERT (SBERT) Cross-Encoder (Reimers
and Gurevych, 2019)*. This model helps improve
the ranking of candidates, ensuring that the most
contextually relevant entities are prioritized before
being passed to the last stage.

3.5 Selector

The goal of the last stage is to improve precision
by prompting an instruction-tuned LLM with the
task of selecting the right entity from a the top
ks candidates obtained from the reranker module.
From the previous stage, we prepare a prompt de-
scribing the ED task, the input passage, and the
list of candidates and their descriptions (a detailed
description and examples of our prompt are shown
in Appendix A). We use this to prompt the LLM to
generate an output indicating which is the right can-
didate entity for a given mention. In comparison
with the retriever and reranker modules, the selec-
tor requires a slight increase in computation, which
is offset by the small set of ks < k, < |£]| candi-
dates that have been filtered out by the initial stages
and allows us to focus on increasing precision at

*We use the implementation available at
https://huggingface.co/cross-encoder/
ms-marco-MinilM-L-6-v2.

the final stage.

Importantly, at this stage we enable the LLM to
reject the list of candidates. This can be useful to
detect and address recall problems in the first two
stages, as an alternative to forcing the selector to
choose a potentially incorrect entity.

We experiment with three LLMs for the selector:

GPT-40-mini. A compact variant of GPT-4 (Ope-
nAl, 2023), optimized for high performance in
resource-constrained environments. This closed-
source model offers state-of-the-art generalization
across various NLP tasks, serving as a robust base-
line for evaluating our prompt design and retrieval
and reranking mechanisms.

Llama-3.1-8B-Instruct. An open-source model
from Meta’s Llama 3 family (Al@Meta, 2024),
designed for generative and instruction-following
tasks. Its instruction-tuning enables effective per-
formance in structured tasks like entity disambigua-
tion, making it suitable for our RAG-ED pipeline.

Llama-3.1-8B-QLoRA. We fine-tuned the pre-
vious Llama-3.1-8B-Instruct model using QLoRA
(Quantized Low-Rank Adapter) (Dettmers et al.,
2024) with a subset of training datasets available
for the ED task. Fine-tuning was conducted using
the Python unsloth library. We used a small sub-
set of training examples containing diverse, task-
specific examples, including mentions, context, and
labeled candidates, to better align the model with
the requirements of ED.

4 Experiments

Our experiments are aimed at answering the fol-
lowing questions:

1. What is the entity disambiguation perfor-
mance of each of the stages in RAG-ED?

2. How does the performance of RAG-ED com-
pare with respect to state-of-the-art methods
for ED?

3. What can RAG-ED do when early stages fail
at retrieving correct entities?

4. What is the impact of allowing LLMs in the
selector phase to reject lists of candidates on
their disambiguation capacity?

We measure ED performance by computing ac-
curacy, which for each mention we define as 1 if
the final entity selected by RAG-ED is correct, and
0 otherwise.

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

Top-1 Top-8 Top-64 Top-1 Top-8
1.0 094 1.0
0.82 0.84
0.8 0.8
0.71 0.71
0.66
0.6 0.59 30,6
g g
3 3 0.46
Q04{ 037 04
0.25
0.2 0.2
0.0 Encoder Model Wikipedia API 0.0 Encoder Model Wikipedia API

(a) Retriever

(b) Reranker

Figure 2: Retriever (a) and Reranker (b) performance on the ZELDA Benchmark: accuracy scores.

4.1 Datasets

The ZELDA benchmark (Milich and Akbik, 2023)
provides a unified training dataset, a standardized
entity vocabulary, predefined candidate lists, and
evaluation splits across multiple domains, enabling
rigorous assessment of ED methods. The bench-
mark consists of the following datasets:

AIDA-B: A test split from the widely used
AIDA (Yosef et al., 2011) dataset, featuring 231
manually annotated Reuters news articles.

TWEEKI: A collection of 500 hand-annotated
tweets, representing short and highly ambiguous
contexts (Harandizadeh and Singh, 2020).

REDDIT-POSTS and REDDIT-COMMENTS:
Two datasets of top-ranking posts and comments
from Reddit, focusing on informal and conver-
sational text. Only annotations with full agree-
ment among annotators are included (Botzer et al.,
2021).

WNED-WIKI and WNED-CWEB: Wikipedia
articles and web pages, annotated with difficulty

levels for more granular analysis (Guo and Barbosa,
2018).

ShadowLink: This is a dataset aimed at investi-
gating the problem of entity overshadowing (Prova-
torova et al., 2021). Entity overshadowing is a
phenomenon in entity linking where a prominent
or frequently mentioned entity overshadows less
common but contextually appropriate entities in the
candidate selection or linking process. It contains
instances of the following cases:

SLINKS-TOP: High ambiguity, but the correct
answer is the most frequent entity.

SLINKS-SHADOW: High level of ambiguity,
and the correct answer is overshadowed by a more
popular entity.

SLINKS-TAIL: Control group, low level of am-
biguity but contains only "long tail" entities that
are very rare in Wikipedia.

4.2 Methods

RAG-ED. We experiment with different vari-
ants of RAG-ED, investigating the effect of
each module. In one variant, we employ an
Encoder—Selector pipeline, in which we keep the
top k, = 8 retrieved entities which we then pass
directly to the Selector. In a second variant, we
employ a pipeline Encoder—Reranker— Selector
where we keep the top k., = 64 entities from the
Retriever, which we pass to the Reranker to keep
the top ks = 8 that we pass to the last Selector
stage. For these two variants, we experiment with
two settings: using a BLINK-based Encoder, or the
Wikipedia API for the Retriever, which leads to a
total of four variants.

Baselines We compare our method with
FEVRY (Févry et al., 2020), LUKE (Yamada
et al., 2022), and GENRE (Cao et al., 2021) - the
current state-of-the-art in ED. We refer to their
performance as reported in Milich and Akbik
(2023).

5 Results

5.1 Retriever Performance

Retrievers play a crucial role in the RAG-ED
pipeline, as LLMs can only disambiguate enti-
ties when the correct candidate is included in the
retrieved set. To assess retrieval effectiveness,
we compare our Encoder as retriever with the
Wikipedia API retriever, measuring their accuracy
in retrieving the correct entity within the top 1, 8,
and 64 candidates (Figure 2a).

The Encoder as retriever, described in Section
3.3, achieves an accuracy of 0.37 at the top-1 candi-

AIDA- TWEEKI REDDIT- REDDIT- ‘WNED- WNED- SLINKS- SLINKS- SLINKS- @
B PosTS COMM. CWEB WIKI TAIL SHADOW Top

Pipeline 1: Encoder-Top 8 (Retriever) => LLM (Selector)
RAG-ED¢pr 0.68 0.57 0.62 0.60 0.57 0.67 0.73 0.51 0.53 0.61
RAG-EDyr4ma 0.42 0.43 0.40 0.37 0.35 0.46 0.71 0.42 043 0.44
RAG-EDgr 0.66 0.57 0.61 0.57 0.52 0.65 0.76 0.47 0.51 0.59
Pipeline 2: API-Top 8 (Retriever) => LLM (Selector)
RAG-ED¢pr 0.76 0.79 0.92 0.92 0.65 0.65 0.98 0.36 0.62 0.74
RAG-EDr1ama 0.52 0.49 0.43 0.43 0.38 0.41 0.80 0.28 0.48 0.47
RAG-EDgr 0.72 0.75 0.87 0.82 0.58 0.61 0.96 0.23 0.51 0.67
Pipeline 3: Encoder-Top 64 (Retriever) => SBERT-Top8 (Reranker) => LLM (Selector)
RAG-ED¢gpr 0.68 0.65 0.72 0.73 0.48 0.64 0.87 0.60 0.64 0.66
RAG-EDLiama 0.38 0.42 0.44 0.47 0.30 0.43 0.80 0.49 0.52 0.47
RAG-EDgr 0.56 0.64 0.70 0.69 0.45 0.62 0.86 0.57 0.61 0.63
Pipeline 4: API-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-ED¢pr 0.54 0.72 0.77 0.73 0.34 0.51 0.97 0.55 0.56 0.63
RAG-ED_rama 0.38 0.50 0.44 0.47 0.22 0.34 0.81 0.43 0.42 0.45
RAG-EDgr 0.51 0.66 0.71 0.61 0.31 0.47 0.95 0.43 0.46 0.58
Other approaches (Milich and Akbik, 2023)
FEVRY oL 0.79 0.71 0.88 0.84 0.68 0.84 0.63 0.43 0.53 0.70
FEVRY ¢ 0.79 0.76 0.89 0.86 0.70 0.84 0.87 0.31 0.47 0.72
LUKEPRrE 0.79 0.73 0.76 0.69 0.66 0.68 0.97 0.20 0.50 0.67
LUKE 7 0.81 0.77 0.81 0.78 0.70 0.76 0.98 0.22 0.51 0.71
GENREArL 0.72 0.75 0.88 0.83 0.66 0.85 0.95 0.38 0.43 0.72
GENRE([, 0.78 0.80 0.92 091 0.73 0.88 0.99 0.37 0.52 0.77

Table 1: Performance of the RAG-ED pipelines on the ZELDA Benchmark across different candidate generation
and selection methods. In this evaluation, the selector must choose an answer from the given candidate list and is
not permitted to reject all options. The highest scores are bolded, and the second-highest scores are underlined.

date, improving to 0.66 at top-8 and 0.82 at top-64.
In comparison, the Wikipedia API retriever out-
performs it, achieving 0.59, 0.84, and 0.94 under
the same conditions. These results highlight the
strength of the Wikipedia API, particularly in low-
context settings, where retrieval is based solely on
the entity mention.

5.2 Reranking Performance

Using all 64 retrieved candidates in a single prompt
is impractical due to context length limitations. It
also makes the task of selector more difficult. To
refine the candidate set, we employ an SBERT
CrossEncoder as a reranker, aiming to improve
ranking quality by pushing the correct entity into
the top-8 candidates. As shown in Figure 2b,
reranking significantly benefits the Encoder re-
triever, boosting top-1 accuracy from 0.37 to 0.46
and top-8 accuracy from 0.66 to 0.71. However, its
effect on the Wikipedia API retriever is negative,
with top-1 accuracy dropping from 0.59 to 0.25 and
top-8 accuracy decreasing from 0.84 to 0.71.

This disparity suggests that while reranking en-
hances less-structured retrieval outputs, it may dis-
rupt the ranking of already well-ordered candidates.
One possible explanation lies in the difference in
candidate descriptions: the Encoder retriever uses
descriptions from the ZELDA candidate list, while

the API retriever relies on Wikipedia API descrip-
tions, which can vary in length and detail. The
reranker, trained on well-defined entity descrip-
tions, may struggle to interpret these pages cor-
rectly, leading to misplacement of relevant candi-
dates and ultimately reducing retrieval accuracy.

5.3 RAG-ED Performance

Table 1 compares the performance of RAG-ED
pipelines against other approaches across ZELDA
test sets. The top-performing RAG-ED model
achieves an overall accuracy of 0.74, closely ap-
proaching the state-of-the-art 0.77 achieved by
GENREc(. In this evaluation setup, the selector
must choose an answer from the provided candidate
list, as previous work does not assess whether mod-
els can reject incorrect candidate sets. This setting
allows for a direct comparison between RAG-ED
and prior methods, highlighting the competitive-
ness and effectiveness of our approach in entity
disambiguation.

5.3.1 Performance on Overshadowing Cases

RAG-EDgpr in Pipeline 3 (Table 1) sets a new
state-of-the-art in mitigating entity overshadow-
ing. It outperforms the previous state-of-the-art
model, FEVRY 411, with a substantial +17-point
gain on the SLINKS-Shadow dataset and an +11-

AIDA- TWEEKI REDDIT- REDDIT- ‘WNED- WNED- SLINKS- SLINKS- SLINKS- @
B PosTS COMM. CWEB WIKI TAIL SHADOW Top

Pipeline 1: Encoder-Top 8 (Retriever) => LLM (Selector)
RAG-ED¢pr 0.83 0.83 0.86 0.86 0.79 0.80 0.99 0.77 0.82 0.84
RAG-EDyLi4ma 0.39 0.39 0.32 0.32 0.41 0.45 0.66 0.39 0.40 0.41
RAG-EDgr 0.70 0.65 0.68 0.68 0.64 0.69 0.84 0.55 0.59 0.67
Pipeline 2: API-Top 8 (Retriever) => LLM (Selector)
RAG-ED¢gpr 0.79 0.82 0.92 0.93 0.72 0.73 0.98 0.50 0.69 0.79
RAG-EDr1ama 0.46 0.48 0.41 0.35 0.41 0.39 0.79 0.22 0.41 0.44
RAG-EDrr 0.73 0.76 0.87 0.83 0.61 0.64 0.96 0.23 0.51 0.68
Pipeline 3: Encoder-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-EDgpr 0.83 0.82 0.89 0.87 0.77 0.79 0.99 0.73 0.81 0.83
RAG-EDriama 0.34 0.38 0.29 0.35 0.40 0.42 0.72 0.39 0.45 0.42
RAG-EDgr 0.62 0.71 0.74 0.75 0.62 0.67 0.91 0.61 0.66 0.70
Pipeline 4: API-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-ED¢pr 0.67 0.76 0.80 0.77 0.58 0.66 0.98 0.61 0.63 0.72
RAG-ED_r4ma 0.35 0.49 0.38 0.39 0.32 0.34 0.80 0.35 0.39 0.42
RAG-EDgr 0.52 0.68 0.72 0.69 0.44 0.52 0.94 0.42 0.47 0.60

Table 2: Performance of the RAG-ED pipelines on the ZELDA Benchmark with Various Candidate Generation and
Selection Methods. The table reports accuracy scores calculated by taking true negatives into account, i.e., when
models can respond with "None of the given candidates is the correct entity." The highest scores are bolded, and the

second-highest scores are underlined.

point improvement on SLINKS-Top. As the best-
performing solution on these challenging bench-
marks, Pipeline 3 demonstrates effectiveness in
addressing entity overshadowing. We do note that
there is a trade-off lowering performance on less
challenging datasets.

5.3.2 Impact of Task-specific Adaptation

Task-specific adaptation is essential for enhanc-
ing the performance of open-source models like
Llama, which are not inherently optimized for En-
tity Disambiguation. Our results demonstrate that
fine-tuning with the QLoRA method leads to sig-
nificant improvement in performance, as observed
when comparing the accuracy scores achieved by
RAG-ED g and the off-the-shelf RAG-ED;4ma
(Table 1).

Across all datasets, RAG-ED pr consistently out-
performs RAG-ED 4., and comes close to RAG-
ED¢gpr. Concretely, in the Pipeline 3, the perfor-
mance gap between the two is just 3 points (0.66
vs 0.63). This improvement underscores the effec-
tiveness of task adaptation in aligning the model
with the specific challenges of Entity Disambigua-
tion. Notably, RAG-EDpr achieves the second-
highest accuracy on most challenging datasets such
as Slinks-Shadow, demonstrating its enhanced abil-
ity to handle complex cases. These findings high-
light the added value of lightweight fine-tuning
in refining model performance without requiring
extensive retraining or substantial computational
resources.

5.3.3 What can Selectors do when candidate
selection fails?

One of the key advantages of using LLMs as se-
lectors is their ability to assess whether the cor-
rect entity is present among the given candidates.
Concretely, when the correct entity is absent (i.e.,
candidate selection fails), the model may reject all
options and respond with “None of the candidates
given is the correct entity.” This capability is cru-
cial for reducing the number of false positives and
improving overall reliability.

Table 2 presents accuracy scores in a setting
where the model must either select the correct can-
didate or reject all options when none are correct.
In this evaluation, the RAG-ED model achieves an
accuracy of 0.84, revealing key insights into the per-
formance dynamics of RAG-ED pipelines. Notably,
allowing the model to reject incorrect candidates
leads to a 10-point accuracy increase, reaching 0.84.
This highlights the LLM’s ability not only to select
the correct entity but also to recognize when no
correct option is present.

Interestingly, while the Encoder Model under-
performs compared to the Wikipedia API as a stan-
dalone retriever, Table 2 reveals a different trend
when selectors are allowed to reject disambigua-
tion. In this setting, Encoder-based pipelines sur-
pass those using the Wikipedia API, suggesting a
synergistic effect between the retriever, reranker,
and LLM selector. The broader candidate sets re-
trieved by the Encoder Model appear to benefit
from the reranker’s filtering and the LLM’s refined

AIDA- TWEEKI REDDIT- REDDIT- ‘WNED- WNED- SLINKS- SLINKS- SLINKS- @
B PosTS COMM. CWEB WIKI TAIL SHADOW Top

Pipeline 1: Encoder-Top 8 (Retriever) => LLM (Selector)
RAG-ED¢gpr 0.67 0.57 0.62 0.60 0.56 0.67 0.76 0.50 0.52 0.61
RAG-EDyriama 0.37 0.36 0.31 0.29 0.31 0.44 0.63 0.37 0.38 0.38
RAG-EDgr 0.67 0.57 0.61 0.58 0.51 0.65 0.75 0.47 0.51 0.59
Pipeline 2: API-Top 8 (Retriever) => LLM (Selector)
RAG-ED¢gpr 0.76 0.78 0.91 0.91 0.64 0.65 0.98 0.36 0.62 0.73
RAG-EDr1ama 0.46 0.48 0.41 0.35 0.38 0.37 0.79 0.22 0.41 0.43
RAG-EDgr 0.72 0.75 0.87 0.83 0.58 0.61 0.96 0.23 0.51 0.67
Pipeline 3: Encoder-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-ED¢gpr 0.58 0.65 0.72 0.73 0.48 0.63 0.87 0.59 0.63 0.65
RAG-EDLiama 0.32 0.36 0.28 0.33 0.28 0.41 0.71 0.37 0.44 0.39
RAG-EDgr 0.56 0.64 0.70 0.69 0.44 0.62 0.86 0.56 0.61 0.63
Pipeline 4: API-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-ED¢pr 0.54 0.71 0.76 0.73 0.34 0.51 0.97 0.54 0.55 0.63
RAG-ED_r4ma 0.34 0.49 0.38 0.38 0.21 0.32 0.80 0.35 0.39 0.41
RAG-EDgr 0.51 0.67 0.71 0.68 0.31 0.47 0.94 041 0.47 0.57

Table 3: Ablation study on the impact of rejecting candidate sets. Accuracy is calculated by treating such responses
as incorrect, effectively penalizing the model for rejecting all candidates. The highest scores are bolded, and the

second-highest scores are underlined.

selection process, ultimately leading to more accu-
rate disambiguation.

The comparison of LLMs as selectors follows a
similar trend to Table 1, with RAG-ED¢ pr consis-
tently achieving the highest performance, followed
by RAG-EDg7, while RAG‘EDLlama lags behind.
RAG-ED g7 remains competitive when forced to
select a candidate, it struggles compared to the
GPT-based model in correctly rejecting incorrect
candidates.

5.3.4 Does allowing LLMs to reject candidate
sets decrease their disambiguation
capacity?

We perform an ablation study in which rejecting a
candidate set is treated as incorrect. This allows us
to assess whether rejecting candidates negatively
affects the selector’s ability to disambiguate. The
results are presented in Table 3.

Comparing this evaluation setup to the results
in Table 1, where the LLM is required to select
from the given candidate set, we observe that RAG-
ED¢gpr and RAG-ED 7 experience only a modest
decline in performance (1-2%) when permitted to
reject incorrect candidates. This suggests that their
disambiguation capabilities remain strong, even
with the added task of identifying when no correct
entity is present. In contrast, RAG-EDy 4, Shows
a more pronounced performance drop, reaching up
to 6% (in both Pipeline 1 and Pipeline 3). This sug-
gests that the Llama model faces greater difficulty
when tasked with rejecting incorrect candidates,
underscoring the need for task-specific adaptation

to improve its performance in such scenarios.

These findings show that RAG-EDgpr and
RAG-EDFg7 retain strong disambiguation perfor-
mance even when tasked with rejecting candidate
sets, indicating that their ability to detect the ab-
sence of the correct entity does not undermine their
overall disambiguation capabilities. In contrast,
the substantial performance drop observed in RAG-
EDy1ame highlights the need for task-specific fine-
tuning.

6 Conclusion

In this work, we introduced RAG-ED (Retrieval-
Augmented Generation for Entity Disambiguation),
a pipeline that addresses the challenging issue of
entity overshadowing. By combining a lightweight
retriever, a reranker, and a robust large language
model selector, RAG-ED significantly outperforms
prior methods in entity overshadowing cases. Our
experiments show that RAG-ED excels in complex
disambiguation scenarios but can also maintain
competitive performance across a range of stan-
dard ED benchmarks depending on its configura-
tion. Notably, RAG-ED’s ability to reject candi-
date sets when the correct entity is absent further
enhances its reliability, especially in settings with
lightweight retrievers. We believe that the ability to
use lightweight retrievers like the Wikipedia API
makes the implementation of entity disambigua-
tion pipelines easier and more efficient in practice.
Going forward, we aim to investigate additional
ensembles of selectors and integration the entity
disambiguation into a full entity linking pipeline.

Limitations

While RAGED demonstrates strong performance
in entity disambiguation, several challenges remain.
One limitation is its reliance on lightweight retriev-
ers, such as Wikipedia API and the encoder model
as retriever. Although efficient, these retrievers
may not always surface the most relevant candi-
dates, particularly for less common entities. A
more advanced retrieval strategy could further im-
prove performance.

Another constraint lies in the reranking stage.
The reranker employed in our pipeline, SBERT
CrossEncoder, is not specifically fine-tuned for en-
tity disambiguation. Using a reranker designed for
this task could lead to better candidate ranking and
more precise selections.

A key unknown is the extent to which LLMs
have encountered these entities during pretraining.
It is difficult to determine whether the models are
reasoning from context or relying on memorized
knowledge.

Generalization across domains is another consid-
eration. While RAG-ED performs well on standard
benchmarks, its effectiveness in specialized fields
such as medicine or law remains uncertain. Adapt-
ing the pipeline to domain-specific datasets could
enhance its applicability in those areas.

Finally, the use of LLMs introduces potential
biases inherited from their training data. These
biases may impact disambiguation decisions, par-
ticularly for underrepresented entities or contexts.
Addressing these biases is an important step to-
ward ensuring fairness and reliability in real-world
applications.

References

Al@Meta. 2024. Llama 3 model card.

Akiko Aizawa. 2003. An information-theoretic per-
spective of tf—idf measures. Information Processing
Management, 39(1):45-65.

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos
Christodoulopoulos, and Andrea Pierleoni. 2022. Re-
FinED: An efficient zero-shot-capable approach to
end-to-end entity linking. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Track, pages 209—
220, Hybrid: Seattle, Washington + Online. Associa-
tion for Computational Linguistics.

Nicholas Botzer, Yifan Ding, and Tim Weninger. 2021.

Reddit entity linking dataset. Information Processing
& Management, 58(3):102479.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS °20,
Red Hook, NY, USA. Curran Associates Inc.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thibault Févry, Nicholas FitzGerald, Livio Baldini
Soares, and Tom Kwiatkowski. 2020. Empirical eval-
uation of pretraining strategies for supervised entity
linking. In Automated Knowledge Base Construc-
tion.

Matthew Francis-Landau, Greg Durrett, and Dan Klein.
2016. Capturing semantic similarity for entity link-
ing with convolutional neural networks. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1256-1261, San Diego, California. Association for
Computational Linguistics.

Zhaochen Guo and Denilson Barbosa. 2018. Robust
named entity disambiguation with random walks. Se-
mantic Web, 9(4):459-479.

Bahareh Harandizadeh and Sameer Singh. 2020.
Tweeki: Linking named entities on Twitter to a
knowledge graph. In Proceedings of the Sixth Work-
shop on Noisy User-generated Text (W-NUT 2020),
pages 222-231, Online. Association for Computa-
tional Linguistics.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1016/S0306-4573(02)00021-3
https://doi.org/10.1016/S0306-4573(02)00021-3
https://doi.org/10.1016/S0306-4573(02)00021-3
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=iHXV8UGYyL
https://openreview.net/forum?id=iHXV8UGYyL
https://openreview.net/forum?id=iHXV8UGYyL
https://openreview.net/forum?id=iHXV8UGYyL
https://openreview.net/forum?id=iHXV8UGYyL
https://doi.org/10.18653/v1/N16-1150
https://doi.org/10.18653/v1/N16-1150
https://doi.org/10.18653/v1/N16-1150
https://doi.org/10.18653/v1/2020.wnut-1.29
https://doi.org/10.18653/v1/2020.wnut-1.29
https://doi.org/10.18653/v1/2020.wnut-1.29

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735-
1780.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fiirstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 782—792, Edinburgh, Scotland, UK. Associa-
tion for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769—6781,
Online. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020b. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Qi Liu, Yongyi He, Tong Xu, Defu Lian, Che Liu, Zhi
Zheng, and Enhong Chen. 2024a. Unimel: A uni-
fied framework for multimodal entity linking with
large language models. In Proceedings of the 33rd
ACM International Conference on Information and
Knowledge Management, pages 1909-1919.

Xukai Liu, Ye Liu, Kai Zhang, Kehang Wang, Qi Liu,
and Enhong Chen. 2024b. OneNet: A fine-tuning
free framework for few-shot entity linking via large
language model prompting. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 13634-13651, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-

gence, 42(4):824-836.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In International Con-
ference on Learning Representations.

10

Marcel Milich and Alan Akbik. 2023. ZELDA: A com-
prehensive benchmark for supervised entity disam-
biguation. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 2061-2072, Dubrovnik,
Croatia. Association for Computational Linguistics.

Khalil Mrini, Shaoliang Nie, Jiatao Gu, Sinong Wang,
Maziar Sanjabi, and Hamed Firooz. 2022. Detec-
tion, disambiguation, re-ranking: Autoregressive en-
tity linking as a multi-task problem. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1972-1983, Dublin, Ireland. Association
for Computational Linguistics.

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Riccardo Orlando, Pere-Lluis Huguet Cabot, Edoardo
Barba, and Roberto Navigli. 2024. ReLiK: Retrieve
and LinK, fast and accurate entity linking and rela-
tion extraction on an academic budget. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 14114—-14132, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Vera Provatorova, Samarth Bhargav, Svitlana Vaku-
lenko, and Evangelos Kanoulas. 2021. Robust-
ness evaluation of entity disambiguation using prior
probes: the case of entity overshadowing. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10501-10510,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Ozge Sevgili, Artem Shelmanov, Mikhail Arkhipov,
Alexander Panchenko, and Chris Biemann. 2022.
Neural entity linking: A survey of models based on
deep learning. Semantic Web, 13(3):527-570.

Wei Shen, Yuhan Li, Yinan Liu, Jiawei Han, Jiany-
ong Wang, and Xiaojie Yuan. 2021. Entity linking
meets deep learning: Techniques and solutions. IEEE

Transactions on Knowledge and Data Engineering,
35(3):2556-2578.

Senbao Shi, Zhenran Xu, Baotian Hu, and Min Zhang.
2024. Generative multimodal entity linking. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/D11-1072/
https://aclanthology.org/D11-1072/
https://aclanthology.org/D11-1072/
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://doi.org/10.18653/v1/2023.eacl-main.151
https://doi.org/10.18653/v1/2023.eacl-main.151
https://doi.org/10.18653/v1/2023.eacl-main.151
https://doi.org/10.18653/v1/2023.eacl-main.151
https://doi.org/10.18653/v1/2023.eacl-main.151
https://doi.org/10.18653/v1/2022.findings-acl.156
https://doi.org/10.18653/v1/2022.findings-acl.156
https://doi.org/10.18653/v1/2022.findings-acl.156
https://doi.org/10.18653/v1/2022.findings-acl.156
https://doi.org/10.18653/v1/2022.findings-acl.156
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.findings-acl.839
https://doi.org/10.18653/v1/2024.findings-acl.839
https://doi.org/10.18653/v1/2024.findings-acl.839
https://doi.org/10.18653/v1/2024.findings-acl.839
https://doi.org/10.18653/v1/2024.findings-acl.839
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://doi.org/10.18653/v1/2021.emnlp-main.820
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/2024.lrec-main.676/

and Evaluation (LREC-COLING 2024), pages 7654—
7665, Torino, Italia. ELRA and ICCL.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Jesse Vig, Alexander Fabbri, Wojciech Kryscinski,
Chien-Sheng Wu, and Wenhao Liu. 2022. Exploring
neural models for query-focused summarization. In
Findings of the Association for Computational Lin-
guistics: NAACL 2022, pages 1455-1468, Seattle,
United States. Association for Computational Lin-
guistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020a. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397-6407, Online. Association for Computa-
tional Linguistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020b. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397-6407, Online. Association for Computa-
tional Linguistics.

Zilin Xiao, Ming Gong, Jie Wu, Xingyao Zhang, Linjun
Shou, and Daxin Jiang. 2023. Instructed language
models with retrievers are powerful entity linkers.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2267-2282, Singapore. Association for Computa-
tional Linguistics.

Amy Xin, Yunjia Qi, Zijun Yao, Fangwei Zhu, Kaisheng
Zeng, Xu Bin, Lei Hou, and Juanzi Li. 2024. Llmael:
Large language models are good context augmenters
for entity linking. Preprint, arXiv:2407.04020.

Ikuya Yamada, Koki Washio, Hiroyuki Shindo, and
Yuji Matsumoto. 2022. Global entity disambiguation
with BERT. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3264-3271, Seattle, United States.
Association for Computational Linguistics.

Mohamed Amir Yosef, Johannes Hoffart, Ilaria Bor-
dino, Marc Spaniol, and Gerhard Weikum. 2011.
Aida: an online tool for accurate disambiguation
of named entities in text and tables. Proc. VLDB
Endow., 4(12):1450-1453.

Fangwei Zhu, Jifan Yu, Hailong Jin, Lei Hou, Juanzi
Li, and Zhifang Sui. 2023. Learn to not link: Explor-
ing NIL prediction in entity linking. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 10846—10860, Toronto, Canada. Associ-
ation for Computational Linguistics.

11

A Prompt Example
A.1 System Role

System role establishes the overarching context,
defines the task, and sets the behavior of the LLM.
We intentionally keep the system role brief, dele-
gating the task of providing detailed instructions
and examples to the user role.

You are a helpful AI assistant

specializing in Entity
Disambiguation. You will be
given a mention and some context.
Your task is to select the
correct entity from the given
candidates.

A.2 User Role

User role is responsible for delivering the detailed
task description and providing an illustrative ex-
ample to guide the LLM. Our approach focuses
on user role to leverage the in-context learning
capabilities of the model by suppling contextual
information about the input, and it instructs the
LLM the specific task while outlining the expected
output format.

This role ensures that the LLM is equipped
with all necessary information to complete the task
while adhering to the specified format. It also em-
phasizes minimalistic responses to prevent ambigu-
ity in the output or any post processing errors.

Entity linking is the process of
determining the true identity of
an entity mentioned in text by
linking it to the correct entry
in a knowledge base. Given a
piece of input text where the
mention is marked as follows:
#mention#, your goal is to
select the candidate that most
accurately represents the given
mention based on the contextual
information provided in the text.

Here is an example:

Text: #Amazon# is one of the
largest e-commerce platforms in
the world, founded by Jeff Bezos.

Entity Mention: Amazon

Candidates: [list of entity
candidates with descriptions]

https://doi.org/10.18653/v1/2022.findings-naacl.109
https://doi.org/10.18653/v1/2022.findings-naacl.109
https://doi.org/10.18653/v1/2022.findings-naacl.109
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2023.emnlp-main.139
https://doi.org/10.18653/v1/2023.emnlp-main.139
https://doi.org/10.18653/v1/2023.emnlp-main.139
https://arxiv.org/abs/2407.04020
https://arxiv.org/abs/2407.04020
https://arxiv.org/abs/2407.04020
https://arxiv.org/abs/2407.04020
https://arxiv.org/abs/2407.04020
https://doi.org/10.18653/v1/2022.naacl-main.238
https://doi.org/10.18653/v1/2022.naacl-main.238
https://doi.org/10.18653/v1/2022.naacl-main.238
https://doi.org/10.14778/3402755.3402793
https://doi.org/10.14778/3402755.3402793
https://doi.org/10.14778/3402755.3402793
https://doi.org/10.18653/v1/2023.findings-acl.690
https://doi.org/10.18653/v1/2023.findings-acl.690
https://doi.org/10.18653/v1/2023.findings-acl.690

Correct Answer : [correct

candidate ID]

Now it is time to perform
entity linking with the following
inputs:

Text: #mention#. ..
Entity Mention: [mention]
Candidates: [list of candidates]

Answer only with the candidate

number that you think is the
correct answer. Answer with
‘None of the candidates’ if

none of the candidates can be
selected. Please do not include
any additional information or
explanation in your answer.

A.3 Assistant Role

The assistant role represents the LLM’s response
to the task outlined by the system and user roles.
In this role, the LLM is expected to process the
provided text, mention, and candidate entities, and
then identify the most appropriate entity from the
given list. The assistant’s output is intentionally
designed to be concise and unambiguous, focusing
solely on delivering the correct answer without
additional commentary or explanation.

B Implementation Details

B.1 Context and Description Length

The ZELDA Benchmark contains instances with
varying context lengths, and entity descriptions
also differ in size. Descriptions retrieved via the
Wikipedia API exhibit even greater length variation.
To standardize context and description lengths, we
used the n1tk library. Specifically, we extract con-
text from the passage by locating the mention and
selecting up to two sentences on either side using
a sentence tokenizer. For entity descriptions, we
enforce brevity by limiting them to a maximum of
three sentences.

B.2 Encoder as Retriever

For our encoder model as a retriever, we randomly
sample 100,000 instances from the large ZELDA
training set (8M datapoints). We split this data
80:20 for training and validation. Training is con-
ducted on an A100 GPU (40GB), taking approxi-
mately 2 hours, with testing requiring an additional
30 minutes.

12

B.3 QLoRA: ED Adaptation

For ED task adaptation, we adopt a data- and
compute-efficient approach using the Python
unsloth library for QLoRA fine-tuning. We ran-
domly sample 4,000 instances from the ZELDA
training set, splitting it 90:10 for training and vali-
dation. We fine-tune Llama-3.1-8B-Instruct for one
epoch on an A100 GPU (40GB), which takes ap-
proximately one hour. Testing requires around 2.5
hours due to the large test set of 27,277 instances.

For more details, please refer to the code repos-
itory: https://anonymous.4open.science/r/
RAG-ED-33BS.

https://anonymous.4open.science/r/RAG-ED-33B8
https://anonymous.4open.science/r/RAG-ED-33B8
https://anonymous.4open.science/r/RAG-ED-33B8

	Introduction
	Related Work
	Proposed approach
	Problem statement
	Approach Overview
	Retriever
	Reranker
	Selector

	Experiments
	Datasets
	Methods

	Results
	Retriever Performance
	Reranking Performance
	RAG-ED Performance
	Performance on Overshadowing Cases
	Impact of Task-specific Adaptation
	What can Selectors do when candidate selection fails?
	Does allowing LLMs to reject candidate sets decrease their disambiguation capacity?

	Conclusion
	Prompt Example
	System Role
	User Role
	Assistant Role

	Implementation Details
	Context and Description Length
	Encoder as Retriever
	QLoRA: ED Adaptation

