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Abstract
Entity Disambiguation (ED) resolves ambigu-001
ous mentions in text by linking them to entities002
in a knowledge base. A key challenge in ED003
is entity overshadowing, where dominant en-004
tities obscure the correct choice. We propose005
RAG-ED (Retrieval-Augmented Generation for006
Entity Disambiguation), a data efficient three-007
stage pipeline consisting of a lightweight re-008
triever, reranker, and a strong large language009
model based selector. RAG-ED achieves state-010
of-the-art performance on entity overshadow-011
ing cases, outperforming prior methods by 17012
points. Additionally, the pipeline can also main-013
tain competitive performance across standard014
ED benchmarks, demonstrating its broad ap-015
plicability. A key advantage of RAG-ED is its016
ability to identify instances where disambigua-017
tion should not be performed, which is partic-018
ularly useful in settings relying on lightweight019
retrievers. We conduct extensive analyses and020
ablation studies on diverse ED datasets further021
highlighting the effectiveness of our approach.022

1 Introduction023

Entity Disambiguation (ED) is a fundamental024

challenge in Natural Language Processing (NLP),025

where ambiguous mentions must be correctly026

linked to entities in a knowledge base (Hoffart et al.,027

2011). Traditional ED methods rely on fixed can-028

didate sets and static representations, often strug-029

gling with entity overshadowing (Provatorova et al.,030

2021), a scenario where a well-known entity domi-031

nates over a lesser-known but contextually correct032

one. This phenomenon leads to systematic biases in033

entity disambiguation, particularly when handling034

overshadowed entities.035

Retrieval-Augmented Generation (RAG) has036

demonstrated promising results across various NLP037

tasks (Lewis et al., 2020b) and holds significant038

potential for ED (Cao et al., 2021; Mrini et al.,039

2022). By dynamically retrieving relevant con-040

textual information, RAG enables more flexible041

and context-aware entity selection. However, in- 042

tegrating retrieval with instruction-following large 043

language models (LLMs) poses unique challenges, 044

including managing retrieval efficiency, reranking 045

noisy candidate sets, and optimizing final selection 046

within constrained context windows. 047

In this study, we introduce RAG-ED, Retrieval 048

Augmented Generation for Entity Disambiguation, 049

a novel three-stage ED pipeline that leverages: 1. 050

An efficient retriever (e.g., Wikipedia API, or a 051

BLINK-like encoder (Wu et al., 2020a)) to ensure 052

broad coverage. 2. A computationally lightweight 053

reranker to prioritize the most relevant candidates. 054

3. A strong selector to make the final entity se- 055

lection which takes advantage of the text under- 056

standing and instruction-following capabilities of 057

LLMs such as GPT-4 (OpenAI, 2023) or Llama-3 058

(AI@Meta, 2024). 059

Previous ED solutions leverage machine learn- 060

ing and deep learning models (Shen et al., 2021; 061

Sevgili et al., 2022). While these methods demon- 062

strate strong performance in many scenarios, they 063

often struggle with disambiguating complex men- 064

tions, scaling to large knowledge bases, and han- 065

dling overshadowing. Unlike these approaches that 066

rely on fixed ranking mechanisms, our method al- 067

lows for context-dependent candidate refinement, 068

maximizing accuracy while minimizing computa- 069

tional costs. 070

We evaluate RAG-ED using the ZELDA bench- 071

mark (Milich and Akbik, 2023), focusing on the en- 072

tity overshadowing ShadowLinks datasets (Prova- 073

torova et al., 2021). Evaluation is performed us- 074

ing both closed-source and open-source LLMs 075

as selectors. While closed-source models have 076

demonstrated strong performance, open-source al- 077

ternatives offer greater adaptability and accessibil- 078

ity. To further enhance performance of the open- 079

source LLM, we apply lightweight fine-tuning to 080

it, demonstrating the feasibility of adapting such 081

models to ED. 082
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Additionally, we investigate an under-explored083

aspect of ED: handling cases when the retriever/r-084

eranker fails. Most ED models assume the correct085

entity is always present in the candidate set, lead-086

ing to forced and often incorrect predictions. Our087

approach allows LLMs to abstain from incorrect088

predictions, explicitly stating when none of the089

given candidates are correct. This capability is cru-090

cial because erroneous entity linking can provide091

incorrect information to downstream tasks (Zhu092

et al., 2023).093

Through this work, we aim to establish an ef-094

ficient and scalable pipeline for ED that balances095

retrieval cost, reranking efficiency, and LLM-based096

selection. Our contributions are as follows:097

1. a retriever-reranker-selector pipeline for ED;098

2. experiments showing the effectiveness of our099

approach in handling entity overshadowing100

scenarios which acheives state-of-the art re-101

sults showing a 17 point improvement in this102

scenario;103

3. an investigation into candidate selection in104

RAG for ED; and105

4. a fine tuned open-source LLM for candidate106

selection.107

The source code for our methods is provided as108

supplementary material and released publicly 1.109

The rest of the paper is organized as follows:110

Section 2 reviews related work. Section 3 describes111

our proposed approach. Section 4 describes the112

experiments performed. Section 5 discusses the113

results and our findings, and Section 6 concludes114

the paper.115

2 Related Work116

Entity Disambiguation: Traditional entity disam-117

biguation methods typically involve candidate se-118

lection using techniques like TF-IDF (Aizawa,119

2003) and word2vec (Mikolov et al., 2013), fol-120

lowed by reranking with models such as LSTMs121

(Hochreiter and Schmidhuber, 1997) or BERT (De-122

vlin et al., 2019). More advanced architectures,123

such as CNNs (Francis-Landau et al., 2016) and124

cross-encoders like BLINK (Wu et al., 2020a),125

capture richer contextual relationships, improv-126

ing entity ranking accuracy. Additionally, autore-127

gressive models like BART (Lewis et al., 2020a)128

1https://anonymous.4open.science/r/
RAG-ED-33B8

have been explored for entity disambiguation (Cao 129

et al., 2021), leveraging generative capabilities to 130

refine entity selection. However, these methods 131

still face challenges in high-ambiguity scenarios, 132

particularly when dealing with short or contextu- 133

ally coarse-grained texts (Shi et al., 2024; Liu et al., 134

2024a). 135

While end-to-end entity disambiguation mod- 136

els like ReFinED (Ayoola et al., 2022) streamline 137

processing by integrating mention detection, entity 138

typing, and disambiguation into a single forward 139

pass, they can be constrained by fixed retrieval 140

mechanisms and lack flexibility in ambiguous con- 141

texts. In contrast, our approach leverages RAG 142

and instruction-following LLMs to refine disam- 143

biguation by dynamically retrieving and selecting 144

entities. 145

Retrieval-Augmented Generation: The RAG 146

paradigm combines retrieval mechanisms with gen- 147

erative models, achieving success across tasks 148

like question answering and summarization (Lewis 149

et al., 2020b; Karpukhin et al., 2020; Vig et al., 150

2022). In entity disambiguation, RAG enables re- 151

trieval of relevant candidates and their refinement 152

via generative models (Xiao et al., 2023; Orlando 153

et al., 2024). Although effective, existing methods 154

often struggle to distinguish between retrieval er- 155

rors and limitations of generative models. Because 156

of the retrieval portion of RAG approaches, there 157

is a potential for the correct candidate entity not 158

to be retrieved. We test the impact of this later in 159

the paper. This problem is somewhat similar to the 160

problem of NIL entities (Zhu et al., 2023) where 161

the goal is to determine when there is no entity 162

match for a mention. Our setting is different in that 163

we do not assume that the retrieval is correct. 164

LLMs in Entity Disambiguation: LLMs have 165

transformed NLP with their advanced contex- 166

tual understanding, instruction-following behav- 167

ior (Ouyang et al., 2022), and in-context learning 168

capabilities (Brown et al., 2020; Touvron et al., 169

2023). In entity disambiguation, LLMs have been 170

employed to enrich candidate entity descriptions 171

(Xin et al., 2024) or refine predictions in multi-step 172

reasoning frameworks (Liu et al., 2024b). These 173

methods often introduce additional computational 174

overhead and complexity due to the need for open- 175

ended text generation for entity explanations and 176

iterative reasoning steps. 177
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Figure 1: Architecture of RAG-ED, illustrating the input, the Retriever, Reranker, Selector modules, and the output.

3 Proposed approach178

3.1 Problem statement179

ED is defined as follows: given a textual passage180

as a sequence of words d = (w1, . . . , wt), together181

with a set of mentions m = (m1, . . . ,mn) where182

each mi is a selection of one or several words in d183

that span mentions of entities. We are additionally184

given a knowledge base (such as Wikipedia) con-185

sisting of a fixed list of entities E . The goal of the186

ED task is to find a function f(d,mi) = ei ∈ E187

that maps each of the mentions in the passage to188

the correct entity in the knowledge base.189

3.2 Approach Overview190

We propose to solve the ED problem by making use191

of three stages, aimed at fast retrieval of candidates192

for mentions with high recall in the initial stage,193

followed by improved precision over smaller sets194

of candidates to control computational cost. These195

three stages consist of a retriever, a reranker, and196

a selector.197

Retriever. Given a passage-mention pair (d,mi),198

the retriever is tasked with ranking all entities in E199

as candidates for the mention. A crucial require-200

ment for the retriever is computational efficiency,201

as in practical applications the set E can grow to202

millions of entities2. For the majority of texts, only203

a small subset of E is likely to be relevant, which204

motivates prioritizing recall over precision at this205

stage.206

Reranker. At this stage, we select a subset of207

candidates by taking the top-kr entities retrieved by208

the retriever. For each of these entities, we form an209

input consisting of their description together with210

the input passage, which we pass to a cross-encoder211

model that computes a score for the relevance of212

each candidate entity. Given that this model needs213

2For reference, Wikipedia has over 50 million pages as of
2025.

to jointly process the candidate and the passage, it 214

requires more resources than the retriever, though 215

over a smaller set of entities of size kr ≪ |E|. 216

Selector. In the last stage, we select a smaller set 217

of candidates by taking the top ks < kr entities 218

according to the scores computed by the reranker. 219

This final stage is aimed at high precision, thus we 220

rely on directly prompting an LLM by providing 221

it with the descriptions of the ks candidate entities, 222

the textual passage, and the task of deciding which 223

candidate entity corresponds to the mention query. 224

We illustrate an overview of the architecture of 225

RAG-ED in Fig. 1. In the following sections we 226

describe the specific details of each of the modules 227

in our implementation of the RAG-ED pipeline. 228

3.3 Retriever 229

We consider two approaches for fast retrieval of en- 230

tities over a large knowledge base: an embedding- 231

based Encoder method, and the Wikipedia API, 232

which relies on methods such as fuzzy search and 233

string matching. 234

Encoder. We employ the bi-encoder architecture 235

proposed in BLINK by Wu et al. (2020b)3 as one of 236

our retrievers. BLINK ranks a list of candidate en- 237

tities based on their likelihood of being the correct 238

match for a given entity. The bi-encoder module 239

uses two independent BERT models (Devlin et al., 240

2019) to encode the mention context and entity 241

description into dense vectors ym, ye ∈ Rd. The 242

similarity between a mention and an entity candi- 243

date is computed using the dot product of these 244

vectors, which scales well to retrieval over large 245

sets of entities (Malkov and Yashunin, 2018). 246

Wikipedia API. The Wikipedia API serves as 247

a lightweight and efficient retrieval mechanism to 248

generate potential entity candidates for ED tasks. 249

3We use the implementation available at https://github.
com/facebookresearch/BLINK.
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This method is based on string matching and key-250

word search to identify relevant entities from the251

vast knowledge base of Wikipedia. To retrieve252

entity candidates, we query the Wikipedia API’s253

search endpoint, which identifies articles match-254

ing a provided string or keyword. For each iden-255

tified candidate, we then query the extracts end-256

point of the Wikipedia API using the page ID. This257

retrieves the introductory section of the article, typi-258

cally providing a concise and informative summary.259

3.4 Reranker260

Given the list of entities retrieved by the previous261

module, we take the top kr entities together with262

their titles, unique identifiers, and a short textual de-263

scription. For each mention mi in the input passage264

d, we construct the following sentence:265

What does the entity <mention> refer to in
the following sentence?
<input passage>

266

We pass this sentence, together with the descrip-267

tion of each of the kr candidates from the retriever,268

to a cross-encoder model that outputs a score indi-269

cating the relevance of the candidate. We employ a270

Sentence-BERT (SBERT) Cross-Encoder (Reimers271

and Gurevych, 2019)4. This model helps improve272

the ranking of candidates, ensuring that the most273

contextually relevant entities are prioritized before274

being passed to the last stage.275

3.5 Selector276

The goal of the last stage is to improve precision277

by prompting an instruction-tuned LLM with the278

task of selecting the right entity from a the top279

ks candidates obtained from the reranker module.280

From the previous stage, we prepare a prompt de-281

scribing the ED task, the input passage, and the282

list of candidates and their descriptions (a detailed283

description and examples of our prompt are shown284

in Appendix A). We use this to prompt the LLM to285

generate an output indicating which is the right can-286

didate entity for a given mention. In comparison287

with the retriever and reranker modules, the selec-288

tor requires a slight increase in computation, which289

is offset by the small set of ks < kr ≪ |E| candi-290

dates that have been filtered out by the initial stages291

and allows us to focus on increasing precision at292

4We use the implementation available at
https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-6-v2.

the final stage. 293

Importantly, at this stage we enable the LLM to 294

reject the list of candidates. This can be useful to 295

detect and address recall problems in the first two 296

stages, as an alternative to forcing the selector to 297

choose a potentially incorrect entity. 298

We experiment with three LLMs for the selector: 299

GPT-4o-mini. A compact variant of GPT-4 (Ope- 300

nAI, 2023), optimized for high performance in 301

resource-constrained environments. This closed- 302

source model offers state-of-the-art generalization 303

across various NLP tasks, serving as a robust base- 304

line for evaluating our prompt design and retrieval 305

and reranking mechanisms. 306

Llama-3.1-8B-Instruct. An open-source model 307

from Meta’s Llama 3 family (AI@Meta, 2024), 308

designed for generative and instruction-following 309

tasks. Its instruction-tuning enables effective per- 310

formance in structured tasks like entity disambigua- 311

tion, making it suitable for our RAG-ED pipeline. 312

Llama-3.1-8B-QLoRA. We fine-tuned the pre- 313

vious Llama-3.1-8B-Instruct model using QLoRA 314

(Quantized Low-Rank Adapter) (Dettmers et al., 315

2024) with a subset of training datasets available 316

for the ED task. Fine-tuning was conducted using 317

the Python unsloth library. We used a small sub- 318

set of training examples containing diverse, task- 319

specific examples, including mentions, context, and 320

labeled candidates, to better align the model with 321

the requirements of ED. 322

4 Experiments 323

Our experiments are aimed at answering the fol- 324

lowing questions: 325

1. What is the entity disambiguation perfor- 326

mance of each of the stages in RAG-ED? 327

2. How does the performance of RAG-ED com- 328

pare with respect to state-of-the-art methods 329

for ED? 330

3. What can RAG-ED do when early stages fail 331

at retrieving correct entities? 332

4. What is the impact of allowing LLMs in the 333

selector phase to reject lists of candidates on 334

their disambiguation capacity? 335

We measure ED performance by computing ac- 336

curacy, which for each mention we define as 1 if 337

the final entity selected by RAG-ED is correct, and 338

0 otherwise. 339
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Figure 2: Retriever (a) and Reranker (b) performance on the ZELDA Benchmark: accuracy scores.

4.1 Datasets340

The ZELDA benchmark (Milich and Akbik, 2023)341

provides a unified training dataset, a standardized342

entity vocabulary, predefined candidate lists, and343

evaluation splits across multiple domains, enabling344

rigorous assessment of ED methods. The bench-345

mark consists of the following datasets:346

AIDA-B: A test split from the widely used347

AIDA (Yosef et al., 2011) dataset, featuring 231348

manually annotated Reuters news articles.349

TWEEKI: A collection of 500 hand-annotated350

tweets, representing short and highly ambiguous351

contexts (Harandizadeh and Singh, 2020).352

REDDIT-POSTS and REDDIT-COMMENTS:353

Two datasets of top-ranking posts and comments354

from Reddit, focusing on informal and conver-355

sational text. Only annotations with full agree-356

ment among annotators are included (Botzer et al.,357

2021).358

WNED-WIKI and WNED-CWEB: Wikipedia359

articles and web pages, annotated with difficulty360

levels for more granular analysis (Guo and Barbosa,361

2018).362

ShadowLink: This is a dataset aimed at investi-363

gating the problem of entity overshadowing (Prova-364

torova et al., 2021). Entity overshadowing is a365

phenomenon in entity linking where a prominent366

or frequently mentioned entity overshadows less367

common but contextually appropriate entities in the368

candidate selection or linking process. It contains369

instances of the following cases:370

SLINKS-TOP: High ambiguity, but the correct371

answer is the most frequent entity.372

SLINKS-SHADOW: High level of ambiguity,373

and the correct answer is overshadowed by a more374

popular entity.375

SLINKS-TAIL: Control group, low level of am- 376

biguity but contains only "long tail" entities that 377

are very rare in Wikipedia. 378

4.2 Methods 379

RAG-ED. We experiment with different vari- 380

ants of RAG-ED, investigating the effect of 381

each module. In one variant, we employ an 382

Encoder→Selector pipeline, in which we keep the 383

top kr = 8 retrieved entities which we then pass 384

directly to the Selector. In a second variant, we 385

employ a pipeline Encoder→Reranker→Selector 386

where we keep the top kr = 64 entities from the 387

Retriever, which we pass to the Reranker to keep 388

the top ks = 8 that we pass to the last Selector 389

stage. For these two variants, we experiment with 390

two settings: using a BLINK-based Encoder, or the 391

Wikipedia API for the Retriever, which leads to a 392

total of four variants. 393

Baselines We compare our method with 394

FEVRY (Févry et al., 2020), LUKE (Yamada 395

et al., 2022), and GENRE (Cao et al., 2021) - the 396

current state-of-the-art in ED. We refer to their 397

performance as reported in Milich and Akbik 398

(2023). 399

5 Results 400

5.1 Retriever Performance 401

Retrievers play a crucial role in the RAG-ED 402

pipeline, as LLMs can only disambiguate enti- 403

ties when the correct candidate is included in the 404

retrieved set. To assess retrieval effectiveness, 405

we compare our Encoder as retriever with the 406

Wikipedia API retriever, measuring their accuracy 407

in retrieving the correct entity within the top 1, 8, 408

and 64 candidates (Figure 2a). 409

The Encoder as retriever, described in Section 410

3.3, achieves an accuracy of 0.37 at the top-1 candi- 411
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AIDA- TWEEKI REDDIT- REDDIT- WNED- WNED- SLINKS- SLINKS- SLINKS- ∅
B POSTS COMM. CWEB WIKI TAIL SHADOW TOP

Pipeline 1: Encoder-Top 8 (Retriever) => LLM (Selector)
RAG-EDGPT 0.68 0.57 0.62 0.60 0.57 0.67 0.73 0.51 0.53 0.61
RAG-EDLlama 0.42 0.43 0.40 0.37 0.35 0.46 0.71 0.42 0.43 0.44
RAG-EDFT 0.66 0.57 0.61 0.57 0.52 0.65 0.76 0.47 0.51 0.59

Pipeline 2: API-Top 8 (Retriever) => LLM (Selector)
RAG-EDGPT 0.76 0.79 0.92 0.92 0.65 0.65 0.98 0.36 0.62 0.74
RAG-EDLlama 0.52 0.49 0.43 0.43 0.38 0.41 0.80 0.28 0.48 0.47
RAG-EDFT 0.72 0.75 0.87 0.82 0.58 0.61 0.96 0.23 0.51 0.67

Pipeline 3: Encoder-Top 64 (Retriever) => SBERT-Top8 (Reranker) => LLM (Selector)
RAG-EDGPT 0.68 0.65 0.72 0.73 0.48 0.64 0.87 0.60 0.64 0.66
RAG-EDLlama 0.38 0.42 0.44 0.47 0.30 0.43 0.80 0.49 0.52 0.47
RAG-EDFT 0.56 0.64 0.70 0.69 0.45 0.62 0.86 0.57 0.61 0.63

Pipeline 4: API-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-EDGPT 0.54 0.72 0.77 0.73 0.34 0.51 0.97 0.55 0.56 0.63
RAG-EDLlama 0.38 0.50 0.44 0.47 0.22 0.34 0.81 0.43 0.42 0.45
RAG-EDFT 0.51 0.66 0.71 0.61 0.31 0.47 0.95 0.43 0.46 0.58

Other approaches (Milich and Akbik, 2023)
FEVRYALL 0.79 0.71 0.88 0.84 0.68 0.84 0.63 0.43 0.53 0.70
FEVRYCL 0.79 0.76 0.89 0.86 0.70 0.84 0.87 0.31 0.47 0.72
LUKEPRE 0.79 0.73 0.76 0.69 0.66 0.68 0.97 0.20 0.50 0.67
LUKEFT 0.81 0.77 0.81 0.78 0.70 0.76 0.98 0.22 0.51 0.71
GENREALL 0.72 0.75 0.88 0.83 0.66 0.85 0.95 0.38 0.43 0.72
GENRECL 0.78 0.80 0.92 0.91 0.73 0.88 0.99 0.37 0.52 0.77

Table 1: Performance of the RAG-ED pipelines on the ZELDA Benchmark across different candidate generation
and selection methods. In this evaluation, the selector must choose an answer from the given candidate list and is
not permitted to reject all options. The highest scores are bolded, and the second-highest scores are underlined.

date, improving to 0.66 at top-8 and 0.82 at top-64.412

In comparison, the Wikipedia API retriever out-413

performs it, achieving 0.59, 0.84, and 0.94 under414

the same conditions. These results highlight the415

strength of the Wikipedia API, particularly in low-416

context settings, where retrieval is based solely on417

the entity mention.418

5.2 Reranking Performance419

Using all 64 retrieved candidates in a single prompt420

is impractical due to context length limitations. It421

also makes the task of selector more difficult. To422

refine the candidate set, we employ an SBERT423

CrossEncoder as a reranker, aiming to improve424

ranking quality by pushing the correct entity into425

the top-8 candidates. As shown in Figure 2b,426

reranking significantly benefits the Encoder re-427

triever, boosting top-1 accuracy from 0.37 to 0.46428

and top-8 accuracy from 0.66 to 0.71. However, its429

effect on the Wikipedia API retriever is negative,430

with top-1 accuracy dropping from 0.59 to 0.25 and431

top-8 accuracy decreasing from 0.84 to 0.71.432

This disparity suggests that while reranking en-433

hances less-structured retrieval outputs, it may dis-434

rupt the ranking of already well-ordered candidates.435

One possible explanation lies in the difference in436

candidate descriptions: the Encoder retriever uses437

descriptions from the ZELDA candidate list, while438

the API retriever relies on Wikipedia API descrip- 439

tions, which can vary in length and detail. The 440

reranker, trained on well-defined entity descrip- 441

tions, may struggle to interpret these pages cor- 442

rectly, leading to misplacement of relevant candi- 443

dates and ultimately reducing retrieval accuracy. 444

5.3 RAG-ED Performance 445

Table 1 compares the performance of RAG-ED 446

pipelines against other approaches across ZELDA 447

test sets. The top-performing RAG-ED model 448

achieves an overall accuracy of 0.74, closely ap- 449

proaching the state-of-the-art 0.77 achieved by 450

GENRECL. In this evaluation setup, the selector 451

must choose an answer from the provided candidate 452

list, as previous work does not assess whether mod- 453

els can reject incorrect candidate sets. This setting 454

allows for a direct comparison between RAG-ED 455

and prior methods, highlighting the competitive- 456

ness and effectiveness of our approach in entity 457

disambiguation. 458

5.3.1 Performance on Overshadowing Cases 459

RAG-EDGPT in Pipeline 3 (Table 1) sets a new 460

state-of-the-art in mitigating entity overshadow- 461

ing. It outperforms the previous state-of-the-art 462

model, FEVRYALL, with a substantial +17-point 463

gain on the SLINKS-Shadow dataset and an +11- 464
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AIDA- TWEEKI REDDIT- REDDIT- WNED- WNED- SLINKS- SLINKS- SLINKS- ∅
B POSTS COMM. CWEB WIKI TAIL SHADOW TOP

Pipeline 1: Encoder-Top 8 (Retriever) => LLM (Selector)
RAG-EDGPT 0.83 0.83 0.86 0.86 0.79 0.80 0.99 0.77 0.82 0.84
RAG-EDLlama 0.39 0.39 0.32 0.32 0.41 0.45 0.66 0.39 0.40 0.41
RAG-EDFT 0.70 0.65 0.68 0.68 0.64 0.69 0.84 0.55 0.59 0.67

Pipeline 2: API-Top 8 (Retriever) => LLM (Selector)
RAG-EDGPT 0.79 0.82 0.92 0.93 0.72 0.73 0.98 0.50 0.69 0.79
RAG-EDLlama 0.46 0.48 0.41 0.35 0.41 0.39 0.79 0.22 0.41 0.44
RAG-EDFT 0.73 0.76 0.87 0.83 0.61 0.64 0.96 0.23 0.51 0.68

Pipeline 3: Encoder-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-EDGPT 0.83 0.82 0.89 0.87 0.77 0.79 0.99 0.73 0.81 0.83
RAG-EDLlama 0.34 0.38 0.29 0.35 0.40 0.42 0.72 0.39 0.45 0.42
RAG-EDFT 0.62 0.71 0.74 0.75 0.62 0.67 0.91 0.61 0.66 0.70

Pipeline 4: API-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-EDGPT 0.67 0.76 0.80 0.77 0.58 0.66 0.98 0.61 0.63 0.72
RAG-EDLlama 0.35 0.49 0.38 0.39 0.32 0.34 0.80 0.35 0.39 0.42
RAG-EDFT 0.52 0.68 0.72 0.69 0.44 0.52 0.94 0.42 0.47 0.60

Table 2: Performance of the RAG-ED pipelines on the ZELDA Benchmark with Various Candidate Generation and
Selection Methods. The table reports accuracy scores calculated by taking true negatives into account, i.e., when
models can respond with "None of the given candidates is the correct entity." The highest scores are bolded, and the
second-highest scores are underlined.

point improvement on SLINKS-Top. As the best-465

performing solution on these challenging bench-466

marks, Pipeline 3 demonstrates effectiveness in467

addressing entity overshadowing. We do note that468

there is a trade-off lowering performance on less469

challenging datasets.470

5.3.2 Impact of Task-specific Adaptation471

Task-specific adaptation is essential for enhanc-472

ing the performance of open-source models like473

Llama, which are not inherently optimized for En-474

tity Disambiguation. Our results demonstrate that475

fine-tuning with the QLoRA method leads to sig-476

nificant improvement in performance, as observed477

when comparing the accuracy scores achieved by478

RAG-EDFT and the off-the-shelf RAG-EDLlama479

(Table 1).480

Across all datasets, RAG-EDFT consistently out-481

performs RAG-EDLlama and comes close to RAG-482

EDGPT . Concretely, in the Pipeline 3, the perfor-483

mance gap between the two is just 3 points (0.66484

vs 0.63). This improvement underscores the effec-485

tiveness of task adaptation in aligning the model486

with the specific challenges of Entity Disambigua-487

tion. Notably, RAG-EDFT achieves the second-488

highest accuracy on most challenging datasets such489

as Slinks-Shadow, demonstrating its enhanced abil-490

ity to handle complex cases. These findings high-491

light the added value of lightweight fine-tuning492

in refining model performance without requiring493

extensive retraining or substantial computational494

resources.495

5.3.3 What can Selectors do when candidate 496

selection fails? 497

One of the key advantages of using LLMs as se- 498

lectors is their ability to assess whether the cor- 499

rect entity is present among the given candidates. 500

Concretely, when the correct entity is absent (i.e., 501

candidate selection fails), the model may reject all 502

options and respond with “None of the candidates 503

given is the correct entity.” This capability is cru- 504

cial for reducing the number of false positives and 505

improving overall reliability. 506

Table 2 presents accuracy scores in a setting 507

where the model must either select the correct can- 508

didate or reject all options when none are correct. 509

In this evaluation, the RAG-ED model achieves an 510

accuracy of 0.84, revealing key insights into the per- 511

formance dynamics of RAG-ED pipelines. Notably, 512

allowing the model to reject incorrect candidates 513

leads to a 10-point accuracy increase, reaching 0.84. 514

This highlights the LLM’s ability not only to select 515

the correct entity but also to recognize when no 516

correct option is present. 517

Interestingly, while the Encoder Model under- 518

performs compared to the Wikipedia API as a stan- 519

dalone retriever, Table 2 reveals a different trend 520

when selectors are allowed to reject disambigua- 521

tion. In this setting, Encoder-based pipelines sur- 522

pass those using the Wikipedia API, suggesting a 523

synergistic effect between the retriever, reranker, 524

and LLM selector. The broader candidate sets re- 525

trieved by the Encoder Model appear to benefit 526

from the reranker’s filtering and the LLM’s refined 527
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AIDA- TWEEKI REDDIT- REDDIT- WNED- WNED- SLINKS- SLINKS- SLINKS- ∅
B POSTS COMM. CWEB WIKI TAIL SHADOW TOP

Pipeline 1: Encoder-Top 8 (Retriever) => LLM (Selector)
RAG-EDGPT 0.67 0.57 0.62 0.60 0.56 0.67 0.76 0.50 0.52 0.61
RAG-EDLlama 0.37 0.36 0.31 0.29 0.31 0.44 0.63 0.37 0.38 0.38
RAG-EDFT 0.67 0.57 0.61 0.58 0.51 0.65 0.75 0.47 0.51 0.59

Pipeline 2: API-Top 8 (Retriever) => LLM (Selector)
RAG-EDGPT 0.76 0.78 0.91 0.91 0.64 0.65 0.98 0.36 0.62 0.73
RAG-EDLlama 0.46 0.48 0.41 0.35 0.38 0.37 0.79 0.22 0.41 0.43
RAG-EDFT 0.72 0.75 0.87 0.83 0.58 0.61 0.96 0.23 0.51 0.67

Pipeline 3: Encoder-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-EDGPT 0.58 0.65 0.72 0.73 0.48 0.63 0.87 0.59 0.63 0.65
RAG-EDLlama 0.32 0.36 0.28 0.33 0.28 0.41 0.71 0.37 0.44 0.39
RAG-EDFT 0.56 0.64 0.70 0.69 0.44 0.62 0.86 0.56 0.61 0.63

Pipeline 4: API-Top 64 (Retriever) => SBERT-Top 8 (Reranker) => LLM (Selector)
RAG-EDGPT 0.54 0.71 0.76 0.73 0.34 0.51 0.97 0.54 0.55 0.63
RAG-EDLlama 0.34 0.49 0.38 0.38 0.21 0.32 0.80 0.35 0.39 0.41
RAG-EDFT 0.51 0.67 0.71 0.68 0.31 0.47 0.94 0.41 0.47 0.57

Table 3: Ablation study on the impact of rejecting candidate sets. Accuracy is calculated by treating such responses
as incorrect, effectively penalizing the model for rejecting all candidates. The highest scores are bolded, and the
second-highest scores are underlined.

selection process, ultimately leading to more accu-528

rate disambiguation.529

The comparison of LLMs as selectors follows a530

similar trend to Table 1, with RAG-EDGPT consis-531

tently achieving the highest performance, followed532

by RAG-EDFT , while RAG-EDLlama lags behind.533

RAG-EDFT remains competitive when forced to534

select a candidate, it struggles compared to the535

GPT-based model in correctly rejecting incorrect536

candidates.537

5.3.4 Does allowing LLMs to reject candidate538

sets decrease their disambiguation539

capacity?540

We perform an ablation study in which rejecting a541

candidate set is treated as incorrect. This allows us542

to assess whether rejecting candidates negatively543

affects the selector’s ability to disambiguate. The544

results are presented in Table 3.545

Comparing this evaluation setup to the results546

in Table 1, where the LLM is required to select547

from the given candidate set, we observe that RAG-548

EDGPT and RAG-EDFT experience only a modest549

decline in performance (1-2%) when permitted to550

reject incorrect candidates. This suggests that their551

disambiguation capabilities remain strong, even552

with the added task of identifying when no correct553

entity is present. In contrast, RAG-EDLlama shows554

a more pronounced performance drop, reaching up555

to 6% (in both Pipeline 1 and Pipeline 3). This sug-556

gests that the Llama model faces greater difficulty557

when tasked with rejecting incorrect candidates,558

underscoring the need for task-specific adaptation559

to improve its performance in such scenarios. 560

These findings show that RAG-EDGPT and 561

RAG-EDFT retain strong disambiguation perfor- 562

mance even when tasked with rejecting candidate 563

sets, indicating that their ability to detect the ab- 564

sence of the correct entity does not undermine their 565

overall disambiguation capabilities. In contrast, 566

the substantial performance drop observed in RAG- 567

EDLlama highlights the need for task-specific fine- 568

tuning. 569

6 Conclusion 570

In this work, we introduced RAG-ED (Retrieval- 571

Augmented Generation for Entity Disambiguation), 572

a pipeline that addresses the challenging issue of 573

entity overshadowing. By combining a lightweight 574

retriever, a reranker, and a robust large language 575

model selector, RAG-ED significantly outperforms 576

prior methods in entity overshadowing cases. Our 577

experiments show that RAG-ED excels in complex 578

disambiguation scenarios but can also maintain 579

competitive performance across a range of stan- 580

dard ED benchmarks depending on its configura- 581

tion. Notably, RAG-ED’s ability to reject candi- 582

date sets when the correct entity is absent further 583

enhances its reliability, especially in settings with 584

lightweight retrievers. We believe that the ability to 585

use lightweight retrievers like the Wikipedia API 586

makes the implementation of entity disambigua- 587

tion pipelines easier and more efficient in practice. 588

Going forward, we aim to investigate additional 589

ensembles of selectors and integration the entity 590

disambiguation into a full entity linking pipeline. 591
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Limitations592

While RAGED demonstrates strong performance593

in entity disambiguation, several challenges remain.594

One limitation is its reliance on lightweight retriev-595

ers, such as Wikipedia API and the encoder model596

as retriever. Although efficient, these retrievers597

may not always surface the most relevant candi-598

dates, particularly for less common entities. A599

more advanced retrieval strategy could further im-600

prove performance.601

Another constraint lies in the reranking stage.602

The reranker employed in our pipeline, SBERT603

CrossEncoder, is not specifically fine-tuned for en-604

tity disambiguation. Using a reranker designed for605

this task could lead to better candidate ranking and606

more precise selections.607

A key unknown is the extent to which LLMs608

have encountered these entities during pretraining.609

It is difficult to determine whether the models are610

reasoning from context or relying on memorized611

knowledge.612

Generalization across domains is another consid-613

eration. While RAG-ED performs well on standard614

benchmarks, its effectiveness in specialized fields615

such as medicine or law remains uncertain. Adapt-616

ing the pipeline to domain-specific datasets could617

enhance its applicability in those areas.618

Finally, the use of LLMs introduces potential619

biases inherited from their training data. These620

biases may impact disambiguation decisions, par-621

ticularly for underrepresented entities or contexts.622

Addressing these biases is an important step to-623

ward ensuring fairness and reliability in real-world624

applications.625
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A Prompt Example 868

A.1 System Role 869

System role establishes the overarching context, 870

defines the task, and sets the behavior of the LLM. 871

We intentionally keep the system role brief, dele- 872

gating the task of providing detailed instructions 873

and examples to the user role. 874

You are a helpful AI assistant 875

specializing in Entity 876

Disambiguation. You will be 877

given a mention and some context. 878

Your task is to select the 879

correct entity from the given 880

candidates. 881

A.2 User Role 882

User role is responsible for delivering the detailed 883

task description and providing an illustrative ex- 884

ample to guide the LLM. Our approach focuses 885

on user role to leverage the in-context learning 886

capabilities of the model by suppling contextual 887

information about the input, and it instructs the 888

LLM the specific task while outlining the expected 889

output format. 890

This role ensures that the LLM is equipped 891

with all necessary information to complete the task 892

while adhering to the specified format. It also em- 893

phasizes minimalistic responses to prevent ambigu- 894

ity in the output or any post processing errors. 895

Entity linking is the process of 896

determining the true identity of 897

an entity mentioned in text by 898

linking it to the correct entry 899

in a knowledge base. Given a 900

piece of input text where the 901

mention is marked as follows: 902

#mention#, your goal is to 903

select the candidate that most 904

accurately represents the given 905

mention based on the contextual 906

information provided in the text. 907

Here is an example: 908

Text: #Amazon# is one of the 909

largest e-commerce platforms in 910

the world, founded by Jeff Bezos. 911

Entity Mention: Amazon 912

Candidates: [list of entity 913

candidates with descriptions] 914
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Correct Answer: [correct915

candidate ID]916

Now it is time to perform917

entity linking with the following918

inputs:919

Text: #mention#...920

Entity Mention: [mention]921

Candidates: [list of candidates]922

Answer only with the candidate923

number that you think is the924

correct answer. Answer with925

‘None of the candidates’ if926

none of the candidates can be927

selected. Please do not include928

any additional information or929

explanation in your answer.930

A.3 Assistant Role931

The assistant role represents the LLM’s response932

to the task outlined by the system and user roles.933

In this role, the LLM is expected to process the934

provided text, mention, and candidate entities, and935

then identify the most appropriate entity from the936

given list. The assistant’s output is intentionally937

designed to be concise and unambiguous, focusing938

solely on delivering the correct answer without939

additional commentary or explanation.940

B Implementation Details941

B.1 Context and Description Length942

The ZELDA Benchmark contains instances with943

varying context lengths, and entity descriptions944

also differ in size. Descriptions retrieved via the945

Wikipedia API exhibit even greater length variation.946

To standardize context and description lengths, we947

used the nltk library. Specifically, we extract con-948

text from the passage by locating the mention and949

selecting up to two sentences on either side using950

a sentence tokenizer. For entity descriptions, we951

enforce brevity by limiting them to a maximum of952

three sentences.953

B.2 Encoder as Retriever954

For our encoder model as a retriever, we randomly955

sample 100,000 instances from the large ZELDA956

training set ( 8M datapoints). We split this data957

80:20 for training and validation. Training is con-958

ducted on an A100 GPU (40GB), taking approxi-959

mately 2 hours, with testing requiring an additional960

30 minutes.961

B.3 QLoRA: ED Adaptation 962

For ED task adaptation, we adopt a data- and 963

compute-efficient approach using the Python 964

unsloth library for QLoRA fine-tuning. We ran- 965

domly sample 4,000 instances from the ZELDA 966

training set, splitting it 90:10 for training and vali- 967

dation. We fine-tune Llama-3.1-8B-Instruct for one 968

epoch on an A100 GPU (40GB), which takes ap- 969

proximately one hour. Testing requires around 2.5 970

hours due to the large test set of 27,277 instances. 971

For more details, please refer to the code repos- 972

itory: https://anonymous.4open.science/r/ 973

RAG-ED-33B8. 974
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