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Abstract

We present SpeechMatrix, a large-scale multi-001
lingual corpus of speech-to-speech translations002
mined from real speech of European Parlia-003
ment recordings. It contains speech alignments004
in 136 language pairs with a total of 418 thou-005
sand hours of speech. To evaluate the qual-006
ity of this parallel speech, we train bilingual007
speech-to-speech translation models on mined008
data only and establish extensive baseline re-009
sults on Europarl-ST, VoxPopuli and FLEURS010
test sets. Enabled by the multilinguality of011
SpeechMatrix, we also explore multilingual012
speech-to-speech translation, a topic which was013
addressed by few other works. We also demon-014
strate that model pre-training and sparse scaling015
using Mixture-of-Experts bring large gains to016
translation performance. The mined data and017
models will be publicly released.018

1 Introduction019

Research has progressed in the area of speech-to-020

speech translation (S2ST) with the goal of seam-021

less communication among people who speak dif-022

ferent languages. Direct S2ST models attract in-023

creasing research interest, e.g. (Jia et al., 2019).024

Compared to conventional cascaded models, direct025

models do not rely on intermediate text represen-026

tations which make them applicable to the trans-027

lation of languages without a well-defined writing028

script. Moreover, direct S2ST have the advantage029

of higher training and inference efficiency (Lee030

et al., 2022a).031

Despite the benefits of direct approaches, their032

training is faced with the major issue of data033

scarcity in parallel speech. Human labeled speech034

data is expensive to create, there are very few035

data resources providing speech alignments, and036

the data amount is quite limited. To mitigate the037

data scarcity, some works have leveraged multi-038

task learning (Jia et al., 2019; Lee et al., 2022a),039

data augmentation with speech variations (Jia et al.,040

2019), or with synthesized speech (Jia et al., 2022a; 041

Popuri et al., 2022). It is also shown useful to lever- 042

age knowledge transferred from pre-trained models 043

(Lee et al., 2022b; Popuri et al., 2022) such as Hu- 044

BERT (Hsu et al., 2021), wav2vec 2.0 (Baevski 045

et al., 2020) and mBART (Liu et al., 2020). 046

Recently, Duquenne et al. (2021) is the first 047

work to make speech mining efforts by learning 048

a shared multilingual speech and text embedding 049

space. Speech content is encoded by speech en- 050

coders into fixed-size representations which is then 051

used for aligning speech and text across different 052

languages. It demonstrates good empirical gains 053

to train direct speech-to-text and speech-to-speech 054

translation systems with the mined data (Duquenne 055

et al., 2021; Lee et al., 2022b). 056

In this work, we trained speech encoders for 17 057

languages1 and mined speech-to-speech alignments 058

for all possible language pairs from VoxPopuli 059

(Wang et al., 2021a), a collection of European Par- 060

liament recordings. To the best of our knowledge, 061

SpeechMatrix is by far the largest freely available 062

speech-to-speech translation corpus, with 136 lan- 063

guage directions and an average of 1,537 hours 064

of source speech in each direction for a total of 065

418 thousand hours. We demonstrate that strong 066

S2ST models can be trained with these mined data 067

and validate the good quality of the speech align- 068

ments across languages. We are open-sourcing 069

the mined data and the speech encoders used for 070

mining, which could pave the way for future re- 071

search on S2ST. Moreover, for reproducibility, we 072

will release model components including multilin- 073

gual HuBERT models in four language families for 074

target unit generation, language-specific vocoders 075

for speech synthesis from discrete units, and S2S 076

models trained and presented in this work. 077

1Czech (cs), German (de), English (en), Spanish (es), Es-
tonian (et), Finnish (fi), French (fr), Croatian (hr), Hungarian
(hu), Italian (it), Lithuanian (lt), Dutch (nl), Polish (pl), Por-
tuguese (pt), Romanian (ro), Slovak (sk) and Slovenian (sl).
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2 Related Works078

From bitext mining to speech mining. Bitext079

mining is to find parallel sentences from mono-080

lingual resources, which provides a large amount081

of training data for machine translation models.082

Early works on bitext mining used document meta-083

information (Resnik, 1999), cross-lingual docu-084

ment retrieval (Munteanu and Marcu, 2005) or085

information retrieval (Abdul-Rauf and Schwenk,086

2009; Bouamor and Sajjad, 2018). More re-087

cent work use multilingual sentence embeddings088

(Artetxe and Schwenk, 2018; Yang et al., 2019;089

Schwenk et al., 2021a). The embedding based ap-090

proach can be extended to new languages (Reimers091

and Gurevych, 2020; Heffernan et al., 2022) or the092

speech modality (Duquenne et al., 2021; Khurana093

et al., 2022) with knowledge distillation, also called094

teacher-student approach. These multilingual and095

multimodal sentence embeddings enabled to per-096

form large-scale speech-text mining, or speech-097

speech mining for a small set of languages.098

Speech-to-speech translation (S2ST). S2ST099

started from cascaded systems consisting of auto-100

matic speech recognition (ASR), machine trans-101

lation (MT) and text-to-speech synthesis (TTS)102

(Nakamura et al., 2006; Do et al., 2015). The103

reliance on intermediate text outputs poses limi-104

tations on cascaded models to support efficient in-105

ference and unwritten languages. Given these chal-106

lenges, there has been a recent surge of research107

interest in direct approaches to speech translation108

without the need of texts. Translatotron (Jia et al.,109

2019) and Translatotron2 (Jia et al., 2022b) propose110

end-to-end S2ST to generate target spectrograms111

with multitask learning. Another line of research112

replaces the target spectrograms in S2ST modeling113

with discrete units which are learned from a large114

amount of unlabeled speech (Lee et al., 2022a,b).115

Discrete units have shown to better capture lin-116

guistic content than spectrograms. Despite these117

progress on direct S2ST, it is faced with the chal-118

lenge of limited parallel speech.119

Speech translation corpora. The Fisher dataset,120

a collection of approximately 170 hours of tele-121

phone conversations in Spanish (Post et al., 2014),122

is commonly used as training data for Spanish-123

English S2ST. However, it does not provide parallel124

English speech. Previous works generate synthe-125

sized English speech from English text translations126

provided by Fisher. Another S2S dataset containing127

synthesized speech is CVSS, which covers paral-128

lel S2ST translations from 21 languages into En- 129

glish. It is derived from Common Voice (Ardila 130

et al., 2020) and CoVoST 2 (Wang et al., 2021b), 131

and synthesizes speech from translated texts. The 132

release of VoxPopuli dataset provided the largest 133

S2S translations in real speech so far (Wang et al., 134

2021a). It covers pairwise speech-to-speech trans- 135

lations among 15 languages, and each direction has 136

less than 500 hours of speech. In another initiative 137

named FLEURS, the text-to-text evaluation data 138

of the FLoRes-101 benchmark (Goyal et al., 2022) 139

was extended to the speech modality. Supporting 140

102 languages, FLEURS has a larger language cov- 141

erage than VoxPopuli, but it only contains around 142

12 hours of speech per language and it is intended 143

to be used as a N -way parallel test set. 144

In this work, we present SpeechMatrix, a large- 145

scale multilingual speech-to-speech corpus mined 146

from VoxPopuli (Wang et al., 2021a). It contains 147

speech alignments in 136 language pairs with an 148

average of 1, 537-hour source speech per direction. 149

The main characteristics of these speech corpora 150

are summarized in Table 1. 151

3 Speech-to-Speech Mining 152

The mining approach of this work is built upon 153

the idea of encoding multilingual speech utterances 154

into a shared embedding space. Speech encoders 155

project utterances with similar semantic content to 156

fixed-size representations which are close in the em- 157

bedding space regardless of their languages. The 158

closeness of embeddings reflects the similarity of 159

speech content, and is used as the alignment score 160

in the mining process. In this section, we discuss 161

speech encoders and speech mining. 162

3.1 Speech Encoders 163

We followed the teacher-student approach intro- 164

duced in (Duquenne et al., 2021) and trained speech 165

encoders with the supervision of the multilingual 166

LASER text encoder (Schwenk et al., 2021b). Tran- 167

scriptions or written translation of the audio utter- 168

ances are encoded with LASER text encoder as 169

target vectors for speech encoder training. Dur- 170

ing training, we minimize the cosine loss between 171

fixed-size representations output by speech en- 172

coders, and the outputs of LASER text encoder 173

(whose weights are frozen during training). Speech 174

encoders are initialized with the 2B-parameter 175

XLS-R model (Babu et al., 2021), which was 176

pre-trained on nearly half a million hours of pub- 177
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Dataset # of Languages Avg. duration (h) Source speech Target speech

Fisher (Post et al., 2014) 2 127 Telephone conversation Synthetic
MaSS (Boito et al., 2020) 8 20 Bible reading Bible reading

VoxPopuli (Wang et al., 2021a) 15 82 European Parliament speech Simultaneous interpretation
CVSS (C+T) (Jia et al., 2022c) 21 181 Read Synthetic
FLEURS (Conneau et al., 2022) 102 12 Read Read

SpeechMatrix (ours) 17 1537 European Parliament speech European Parliament speech

Table 1: A comparison of existing speech-to-speech datasets.

licly available audios in 128 languages. Following178

(Duquenne et al., 2022), the fixed-size represen-179

tation for speech is obtained with max pooling of180

the encoder outputs which appeared to work bet-181

ter compared to other pooling methods. We sum-182

marize the architecture of the speech encoder in183

Figure 1.184

We used various publicly available ASR data185

sets which cover our languages to train the speech186

encoders, including CoVoST 2 (Wang et al., 2020,187

2021b), Common Voice (Ardila et al., 2020),188

Europarl (Ardila et al., 2020), mTedx (Salesky189

et al., 2021), Must-C (Di Gangi et al., 2019) and190

VoxPopuli (Wang et al., 2021a), as well as speech191

translation data from the foreign languages into En-192

glish and from English into German. We removed193

training samples whose transcription or the writ-194

ten translation consisted of multiple sentences, as195

LASER has been trained on single sentences only.196

For better training efficiency, we trained speech197

encoders for each language family instead of each198

language. The language grouping is provided in199

Appendix. To better handle imbalanced training200

data, we sample the training data from different lan-201

guages with the same approach as (Duquenne et al.,202

2021). For English (en), Slovenian (sl), Lithuanian203

(lt) and Dutch (nl), we also trained separate mono-204

lingual speech encoders that had lower valid cosine205

loss compared to multilingual encoders, and these206

four monolingual encoders were used for mining.207

Figure 1: Architecture of speech encoders training.

3.2 Evaluation of speech encoders 208

Similarity search is frequently used to evaluate mul- 209

tilingual text encoders, e.g. (Artetxe and Schwenk, 210

2018; Feng et al., 2020; Heffernan et al., 2022). 211

We use the following score to measure similarity 212

between the source audio, and the target transcrip- 213

tions or translations: 214

sim(x,y) (1) 215

= cos(x, y) −

( ∑
z∈NNk(x)

cos(x, z)

2k
+

∑
z∈NNk(y)

cos(y, z)

2k

)
216

where x and y are the source and target embed- 217

dings, and NNk(x) denotes the k nearest neigh- 218

bors of x. We used k = 4. We evaluated sim- 219

ilarity search of audios against transcriptions on 220

VoxPopuli ASR test set in Table 2, which is our 221

target domain as we plan to mine unlabeled speech 222

from VoxPopuli (see subsection 3.3). We also eval- 223

uated similarity search of audio against written 224

translations or transcriptions on CoVoST 2 test set 225

in order to compare with speech encoders in pre- 226

vious work (see detailed analysis in Appendix A). 227

Finally, we report text-to-text similarity search us- 228

ing the LASER text encoder as lower bound for the 229

speech translation similarity search error rate since 230

we use gold transcriptions to search against written 231

translations. We report error rates (in %) that are 232

percentage of audio utterances incorrectly matched 233

with text transcripts from the same test set. We note 234

that error rates are very low for all languages (be- 235

low 5% and around 1 or 2% for most languages), 236

which is an initial validation of good-quality speech 237

encoders before the large-scale mining. 238

3.3 Large-scale speech mining 239

We used VoxPopuli as our source of unlabeled un- 240

segmented speech for 17 languages in focus. In 241

principle, performing speech-to-speech or speech- 242

to-text mining can be done with exactly the same 243

pipeline as text-to-text mining but with different 244

encoders. We follow the global mining approach as 245

described in Schwenk et al. (2021a) and compare 246
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Sim Search cs de en es et fi fr hr hu it lt nl pl pt ro sk sl

# test sentences 1k 1.7k 1.5k 1.4k 47 0.4k 1.5k 0.3k 1k 1k 39 1k 1.6k — 1.3k 0.6k 0.3k

Audio vs. transcriptions 0.6 1.0 0.2 0.7 0.0 0.7 0.5 0.3 1.1 4.9 0.0 0.8 0.9 — 0.9 0.7 3.1

Table 2: Similarity search error rates (in %) on VoxPopuli ASR test set.

all segments in the source language with all seg-247

ments in the target language. Similarity scores are248

calculated in both directions using the margin as249

described in Equation 1 considering k = 16 neigh-250

bors. Segments are considered to be parallel if the251

margin score exceeds a threshold, we use 1.06 if252

not specified otherwise. The reader is referred to253

Schwenk et al. (2021a) for a detailed description254

of the generic mining pipeline.255

There is however one important difference when256

processing speech: it is not straightforward to seg-257

ment the audio signal into parts which have the258

optimal granularity for mining. The VoxPopuli259

recordings have a rather long duration, e.g. one260

hour and a half on average for English. We apply261

Voice Activity Detection (VAD) using Silero-VAD262

(Silero-Team, 2021) which supports over 100 lan-263

guages. The resulting segments do not necessarily264

correspond to complete sentences. On one hand,265

there may be silence in the middle of an utterance,266

e.g. a hesitation. On the other hand, two sentences267

may follow each other without a long silence sep-268

arating them. We follow the “over segmentation”269

approach outlined in Duquenne et al. (2021): sev-270

eral possible segments are created and we let the271

mining algorithm decide which ones match the best.272

Initial experiments suggest that segments shorter273

than 1 second or longer than 20 seconds are un-274

likely to be aligned and therefore were excluded.275

After mining, the resulting speech alignments276

may have overlap as we over-segment the unlabeled277

speech. A post-processing method Duquenne et al.278

(2021) is introduced to remove overlaps between279

mined speech segments on the source speech side.280

We relax the post-processing of the mined data,281

allowing for some overlap between mined speech282

segments: for two audio segments that overlap on283

the source side, if the overlap represents more than284

20% of the first segment and of the second seg-285

ment, we discard the alignment with the lowest286

mining score. We did an ablation study on different287

thresholds of overlap ratio for one low-resource,288

one mid-resource and one high-resource direction289

and found that 20% was the best threshold in all290

settings.291

We report the statistics of the mined speech-to- 292

speech translation pairs in Table 3, with a mining 293

score threshold of 1.06. The mined data totals 418k 294

hours of parallel speech with an average of 1,537 295

hours of source speech in all translation directions. 296

While some high resource languages like English 297

(en), Spanish (es) or French (fr) can reach up to 298

5k hours of aligned speech with other spoken lan- 299

guages; lower resource languages such as Estonian 300

(et) and Lithuanian (lt) obtain much fewer align- 301

ments, with only a few hours of aligned speech 302

for Lithuanian. We also performed mining of the 303

source speech in sixteen languages against more 304

than twenty billion English sentences from Com- 305

mon Crawl. This yielded speech-text alignments 306

between 827 and 3966 hours (c.f. the last column 307

of Table 3). Training and evaluation of speech-to- 308

text translation are left for future research. 309

3.4 Evaluation Data 310

Besides the speech-to-speech data mined as the 311

train set, we leverage labeled public speech datasets 312

as the evaluation sets. 313

Test set. In our experiments, we derive test sets 314

in speech translation from three public corpora, 315

evaluating translation models trained on mined data 316

across different domains. 317

(1) Europarl-ST (EPST) (Iranzo-Sánchez et al., 318

2020). It is a multilingual speech-to-text transla- 319

tion corpus built on recordings of debates from 320

the European Parliament, containing 72 translation 321

directions in 9 languages.2 322

(2) VoxPopuli (Wang et al., 2021a). S2S data, as 323

part of VoxPopuli release, provides aligned source 324

and target speech together with source transcrip- 325

tions. We prepare the speech-to-text data with 326

target speech and source transcription as our test 327

set. To ensure that there is no overlap between 328

the mined data and VoxPopuli test sets, we need 329

to remove speech from mined alignments which 330

are from the same session as test samples. In order 331

to keep as much mined data as possible, we use 332

VoxPopuli test set only when a language direction 333

is not covered by EPST considering their domain 334

2en, fr, de, it, es, pt, pl, ro and nl
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Speech targets Text
Src/Tgt cs de en es et fi fr hr hu it lt nl pl pt ro sk sl en

cs - 2381 3208 2290 952 1312 2476 726 1396 2410 84 2377 2516 1867 1190 2146 452 2528
de 2386 - 4734 3113 901 1477 3536 498 1871 3476 41 3384 2632 2250 1281 1646 361 3073
en 3172 4676 - 4715 1585 2169 5178 824 2266 4897 82 4422 3583 3572 2258 2306 586 -
es 2240 3041 4708 - 862 1373 4446 528 1599 4418 47 3067 2646 3484 1857 1603 308 3966
et 943 892 1593 877 - 1201 934 265 1119 1019 39 1055 949 721 419 780 196 1578
fi 1296 1463 2180 1393 1197 - 1449 306 1473 1599 47 1654 1350 1128 621 977 260 1969
fr 2424 3457 5171 4455 923 1435 - 560 1711 4618 50 3273 2822 3384 1991 1657 326 3966
hr 736 507 854 553 273 317 588 - 328 615 24 546 660 433 277 586 136 1311
hu 1417 1897 2346 1672 1140 1507 1787 328 - 1855 68 1839 1566 1315 808 1064 311 2301
it 2404 3460 4948 4500 1028 1614 4700 607 1823 - 103 3414 2848 3421 1995 1656 474 2891
lt 78 38 79 46 37 44 48 21 61 95 - 77 80 35 18 64 6 827
nl 2322 3305 4396 3066 1040 1633 3269 521 1768 3355 80 - 2459 2399 1352 1646 458 2708
pl 2530 2646 3662 2735 967 1378 2913 656 1554 2883 88 2540 - 2121 1301 1892 431 2871
pt 1849 2224 3606 3525 722 1131 3421 421 1279 3403 37 2436 2087 - 1579 1358 247 3540
ro 1187 1275 2290 1894 423 627 2024 271 789 1996 19 1384 1288 1592 - 870 125 2784
sk 2127 1628 2329 1631 781 982 1685 574 1038 1650 69 1676 1869 1361 867 - 370 2090
sl 436 350 579 307 192 254 324 128 295 461 6 454 413 241 121 359 - 1267

# hours of unlabeled speech
18.7k 23.2k 24.1k 21.4k 10.6k 14.2k 22.8k 8.1k 17.7k 21.9k 14.4k 19.0k 21.2k 17.5k 17.9k 12.1k 11.3k

Table 3: Duration statistics (hours of source speech) of speech-to-speech alignments for each pair of 17 languages
(for mining threshold of 1.06). The last column provides statistics for alignments of source speech against 21.5
billion sentences of English texts. The last row provides duration of raw speech from VoxPopuli used for mining.

similarity. Moreover, similarity scores are provided335

to indicate the quality of VoxPopuli samples. To336

choose high-quality data, we sort all sessions in the337

VoxPopuli S2S data in a decreasing order of the338

average similarity score of their samples. We keep339

adding samples from highly ranked sessions to the340

test set until the test size reaches 1000.341

(3) FLEURS (Conneau et al., 2022). Built342

upon N-way text translations from FLoRes (Goyal343

et al., 2022), FLEURS provides speech for aligned344

texts and creates speech-to-speech data covering345

all mined directions. We take its source speech and346

target texts as the test data. In the case where mul-347

tiple utterances correspond to one piece of source348

text, we generate one test pair for each source ut-349

terance respectively. FLEURS texts are from En-350

glish Wikipedia, which is a different domain from351

VoxPopuli and EPST.352

Valid set. Valid sets are prepared for S2S model-353

ing using VoxPopuli and FLEURS data in a similar354

way as test sets. For VoxPopuli, we extract a valid355

set of about 1000 samples by adding data from356

highly scored sessions which are not in the test set.357

FLEURS valid set is derived from its valid sam-358

ples. We prepare speech-to-unit data from these359

selected valid samples by transforming the target360

speech into target units for speech-to-unit model-361

ing, which will be discussed in section 4.362

4 Experiments & Results363

To evaluate the quality of the mined data, we364

trained S2ST models on SpeechMatrix data and365

report the translation performance. We hope that 366

these results will serve as baselines for future stud- 367

ies in speech translation. 368

4.1 Experimental Setup 369

HuBERT

VocoderSpeech-to-Unit

source speech

target speech
target units

prediction loss Generated 
target speech

predicted units

ASR Transcriptions

Target texts

BLEU

Figure 2: A Pipeline of Speech-to-Speech Translation
and Evaluation.

The training and evaluation pipeline of speech- 370

to-speech translation is shown in Figure 2. Recent 371

progress in speech-to-speech translation modeling 372

suggests to discretize the target speech waveform 373

into a unit sequence, relieving models from the 374

complexity of predicting continuous waveform val- 375

ues. We borrow the idea of training speech-to-unit 376

(S2U) model where units are pre-generated from 377

target speech with a pre-trained HuBERT model 378

(Lee et al., 2022a). During S2U training, models 379

are periodically evaluated on the valid set of speech- 380

to-unit samples, and the best checkpoint with the 381

lowest valid loss is saved for model inference. 382

When it comes to inference, speech could be syn- 383

thesized from the predicted units with a vocoder, 384

as the output of the S2S pipeline. It is then tran- 385

scribed into texts by an off-the-shelf ASR model. 386

The BLEU score is calculated by comparing the 387
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transcriptions against the ground truth target texts,388

which serves as the quantitative metric of mined389

data quality. We note that the ASR BLEU score390

is not a perfect metric for data quality, as it is un-391

avoidably affected by the quality of ASR models.392

Next we discuss each module of the pipeline.393

Speech-to-Unit. The S2U model takes the394

source speech and predicts a sequence of target395

units. It typically has an encoder-decoder architec-396

ture, where the encoder consists of convolutional397

and Transformer encoder layers, and the decoder398

is a Transformer decoder. We have experimented399

with different model variants, and discuss bilingual400

and multilingual training in section 5 and section 6.401

HuBERT. HuBERT is used to extract speech402

features of audio frames, which are then grouped403

into k-means clusters. The continuous features404

are thus mapped to corresponding clusters. In this405

way, speech could be discretized into unit sequence406

where units are basically indices of clusters. We407

reuse the same HuBERT model and k-means clus-408

ters for English, Spanish and French as in (Lee409

et al., 2022b) for a fair comparison with existing410

results. We also train multilingual HuBERT mod-411

els to cover other languages in SpeechMatrix, and412

more HuBERT training details can be found in Ap-413

pendix B.1.414

Vocoder. Unit-based HiFi-GAN vocoders are415

trained to synthesize speech from unit sequence416

(Polyak et al., 2021). In our experiments, vocoders417

are separately trained from S2U model. We train418

vocoders on three datasets:419

(1) CSS10 (Park and Mulc, 2019). It is a single-420

speaker corpus which we use to train vocoders in421

German, Finnish, Hungarian and Dutch.422

(2) VoxPopuli (Wang et al., 2021a). Given its423

ASR data with speaker id, we sort speakers based424

on their speech duration, and keep adding the top425

speakers until the speech is more than 20 hours.426

(3) Common Voice (Ardila et al., 2020). Por-427

tuguese and Estonian are not covered by the two428

corpora above, and thus we turn to Common Voice.429

Again, we select top speakers and prepare 12-hour430

and 10-hour speech for the vocoder training in Por-431

tuguese and Estonian respectively.432

Data preprocessing and training are included in433

Appendix B.3.434

ASR. We use off-the-shelf ASR models to tran-435

scribe the speech generated by vocoders. Details436

about the ASR models and their benchmark results437

of word error rates are provided in Appendix B.2.438

5 Bilingual Speech-to-Speech Baselines 439

In this part, we discuss the bilingual S2S mod- 440

els trained in each of 272 language directions in 441

SpeechMatrix. The architecture of Textless model 442

is used for bilingual translation in our experiments 443

(Lee et al., 2022a). A Textless model consists of a 444

speech encoder, Transformer encoder and decoder. 445

Training. For a given direction, we extract units 446

for source and target speech with their correspond- 447

ing HuBERT models (Hsu et al., 2021). Taking 448

source speech, the model is trained to predict target 449

unit sequence with cross-entropy loss as well as 450

source unit reconstruction as an auxiliary task. 451

For the training efficiency of extensive S2ST 452

experiments, we use a subset of mine data as the 453

train set. Mined samples are selected if their align- 454

ment scores are above a preset threshold. We per- 455

formed an analysis of the threshold selection in 456

Appendix B. 457

Comparison with existing results. Since we 458

adopt the same model as the previous work (Lee 459

et al., 2022a) and the only difference lies in the train 460

set, it is straightforward to compare with existing 461

results. Table 4 shows the results of S2ST models 462

which are trained on our SpeechMatrix mined data 463

compared to VoxPopuli S2S data in each of four 464

language directions: es-en, fr-en, en-es and en- 465

fr. The threshold of mined data is set as 1.09 to 466

these four directions, yielding an average of 1, 436- 467

hour train set. Compared with 480-hour labeled 468

speech from VoxPopuli, SpeechMatrix achieves an 469

an average improvement of 5.4 BLEU, indicating 470

the good quality and usefulness of the mined data. 471

5.1 Large-Scale Bilingual Evaluation 472

A large-scale evaluation is launched covering 272 473

mined languages directions, and bilingual models 474

are trained for each direction to establish baseline 475

results in speech-to-speech translation. 476

Table 5 summarizes performance of bilingual 477

S2ST models on three test sets. In each direction, 478

Train set Es-En Fr-En En-Es En-Fr

VoxPopuli
S2S

Hours 532 523 415 451
BLEU 13.1 15.4 16.4 15.8

SpeechMatrix
(t = 1.09)

Hours 1,353 1,507 1,366 1,518
BLEU 20.4 20.7 21.9 19.3

Table 4: BLEU scores on EPST test sets by S2ST mod-
els with different training data.
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cs de en es et fi fr hr hu it lt nl pl pt ro sk sl
cs - / - 12.9 / 2.0 22.7 / 4.2 16.7 / 4.6 - / 0.1 0.6 / 0.2 21.1 / 7.5 4.4 / 2.1 0.5 / 0.2 10.2 / 2.5 0.1 / 0.1 6.1 / 1.0 8.5 / 2.3 - / 2.8 4.3 / 1.4 16.9 / 3.5 3.0 / 1.7
de 7.3 / 2.3 - / - 16.3 / 8.3 11.7 / 3.8 - / 0.1 1.2 / 0.2 10.7 / 6.5 4.5 / 2.2 0.6 / 0.2 3.8 / 1.8 0.1 / 0.0 10.4 / 1.2 3.5 / 0.9 7.1 / 3.1 5.2 / 2.1 3.0 / 0.8 4.1 / 1.0
en 8.2 / 2.7 10.1 / 2.7 - / - 21.9 / 6.0 - / 0.7 1.9 / 0.6 19.2 / 10.4 8.4 / 2.4 1.1 / 0.3 11.5 / 3.6 0.3 / 0.1 15.1 / 3.8 8.2 / 1.3 11.8 / 5.1 7.6 / 2.0 5.7 / 1.2 5.5 / 1.2
es 5.2 / 1.9 6.1 / 1.8 20.4 / 7.5 - / - - / 0.1 1.3 / 0.2 16.3 / 9.2 3.6 / 1.0 0.7 / 0.2 11.1 / 4.2 0.1 / 0.1 8.0 / 1.5 3.9 / 1.4 13.3 / 5.9 5.2 / 2.3 2.2 / 0.9 2.2 / 0.8
et - / 2.1 - / 0.7 - / 8.2 - / 3.0 - / - - / 0.7 - / 6.3 - / 1.0 - / 0.7 - / 2.3 - / 0.1 - / 1.5 - / 1.2 - / 1.7 - / 1.4 - / 0.4 - / 0.8
fi 3.0 / 1.5 9.0 / 0.9 19.7 / 5.5 11.4 / 3.8 - / 0.5 - / - 14.1 / 6.2 1.5 / 0.5 0.0 / 0.0 5.8 / 1.2 0.1 / 0.0 6.6 / 0.8 4.5 / 1.2 - / 2.0 4.4 / 1.1 1.7 / 0.7 1.6 / 0.7
fr 5.4 / 1.5 6.3 / 2.1 20.7 / 9.8 18.4 / 7.6 - / 0.1 0.8 / 0.2 - / - 5.4 / 1.7 0.7 / 0.2 10.2 / 3.1 0.1 / 0.1 8.4 / 1.3 4.8 / 1.5 13.4 / 5.8 5.6 / 2.4 1.6 / 0.6 1.5 / 0.6
hr - / 2.5 - / 0.9 - / 7.7 - / 3.1 - / 0.2 - / 0.1 - / 5.8 - / - - / 0.2 - / 1.1 - / 0.0 - / 0.9 - / 1.1 - / 2.0 - / 0.6 - / 0.9 - / 0.8
hu 2.6 / 1.3 7.3 / 1.0 15.3 / 4.6 9.5 / 3.0 - / 0.1 0.7 / 0.2 13.8 / 5.7 1.9 / 0.7 - / - 6.3 / 1.2 0.1 / 0.0 3.0 / 0.1 1.6 / 0.4 - / 2.3 2.4 / 0.9 0.9 / 0.2 1.2 / 0.3
it 6.4 / 1.3 4.9 / 1.0 18.9 / 6.3 19.6 / 8.3 - / 0.1 0.4 / 0.1 15.3 / 11.3 5.2 / 1.3 0.7 / 0.2 - / - 0.1 / 0.0 6.5 / 0.9 3.6 / 1.1 12.4 / 5.6 3.7 / 1.9 2.1 / 0.4 2.8 / 0.6
lt 0.2 / 0.1 0.0 / 0.0 3.1 / 0.9 0.8 / 0.2 - / 0.0 0.0 / 0.0 0.7 / 0.2 0.1 / 0.0 0.0 / 0.0 0.6 / 0.4 - / - 0.7 / 0.1 0.1 / 0.0 - / 0.0 0.0 / 0.0 0.0 / 0.0 0.1 / 0.0
nl 3.5 / 1.4 8.1 / 3.1 18.0 / 5.7 13.2 / 4.9 - / 0.2 0.5 / 0.2 13.0 / 7.5 3.3 / 1.8 0.4 / 0.2 5.2 / 1.7 0.1 / 0.0 - / - 3.4 / 0.9 6.7 / 3.3 4.1 / 1.4 1.7 / 0.4 2.1 / 1.0
pl 7.2 / 1.6 2.8 / 1.6 4.9 / 4.9 6.3 / 4.4 - / 0.1 1.0 / 0.2 5.5 / 5.4 4.5 / 1.2 0.5 / 0.1 5.8 / 1.5 0.2 / 0.0 1.6 / 0.3 - / - 6.1 / 2.5 3.2 / 1.2 4.7 / 1.1 2.4 / 0.7
pt - / 1.2 4.7 / 1.0 21.2 / 6.1 23.2 / 8.7 - / 0.1 - / 0.3 18.1 / 11.1 - / 1.1 - / 0.1 4.4 / 1.1 - / 0.1 5.0 / 0.6 3.6 / 0.8 - / - 4.4 / 1.5 - / 0.6 - / 0.6
ro 4.6 / 1.9 6.5 / 2.2 22.6 / 7.8 20.1 / 7.0 - / 0.4 0.8 / 0.3 18.6 / 11.3 2.4 / 0.9 0.4 / 0.2 8.7 / 3.8 0.1 / 0.1 3.5 / 0.9 4.6 / 1.1 10.3 / 6.0 - / - 2.3 / 0.7 0.7 / 0.2
sk 28.2 / 9.1 10.7 / 2.1 21.4 / 5.5 15.5 / 5.1 - / 0.3 1.0 / 0.2 19.2 / 7.8 5.0 / 3.0 0.5 / 0.4 4.7 / 2.1 0.1 / 0.0 4.2 / 0.7 5.3 / 1.9 - / 2.3 4.4 / 1.9 - / - 3.6 / 1.5
sl 4.0 / 2.2 11.1 / 2.0 19.5 / 7.3 8.6 / 3.4 - / 0.2 0.8 / 0.3 13.2 / 4.5 4.8 / 1.1 0.4 / 0.1 6.0 / 1.2 0.1 / 0.0 4.5 / 1.0 6.7 / 1.2 - / 1.5 1.1 / 0.1 1.7 / 0.3 - / -

Table 5: BLEU scores of bilingual S2S models on three test sets. The first score is either on EPST or VoxPopuli
data, and EPST score is underscored. The second score is on FLEURS data.

the first BLEU score is for European Parliament do-479

main, either EPST or VoxPopuli set. EPST BLEU480

is underlined to be distinguished from VoxPopuli481

BLEU. The second score is for Wikipedia domain,482

i.e., FLEURS test data.483

Bilingual results. Empirically we find that trans-484

lations into high-resource languages such as en,485

es and fr outperform those into low-resource lan-486

guages such as lt and sl based on the speech amount487

of these languages in Table 3. Another observation488

is the performance difference across test domains,489

i.e., BLEU on FLEURS is lower than that on EPST490

and VoxPopuli data, likely because of the domain491

mismatch between train and test data.492

It is also found that translation results are not493

symmetric for some language pairs, for example,494

ro-en has a BLEU of 22.6 while en-ro BLEU is495

only 7.6 on EPST. Besides different complexity496

levels of target languages and test sets, such asym-497

metry also results from the dependency of BLEU498

score on the speech synthesis quality of the vocoder499

and transcription quality of the ASR model. For500

languages whose vocoder and ASR models are not501

good, they are likely to receive low BLEU scores.502

In this case, Romanian vocoder and ASR are not as503

strong as English models as reflected by its higher504

word error rate in speech resynthesis as reported in505

Appendix B.3.506

6 Multilingual Speech-to-Speech507

Translation508

Multilingual modeling has been explored in tasks509

of language understanding and machine transla-510

tion, demonstrating knowledge transfer among lan-511

guages. However, to our best knowledge, there are512

few studies of multilingual S2ST on real speech,513

partially due to the lack of multilingual speech-to-514

speech resources. With the massively multilingual515

data we have mined, we are able to explore multi- 516

lingual S2ST training. 517

In this work, we focus on many-to-English trans- 518

lation, studying the translation from 6 Slavic lan- 519

guages to English in subsection 6.1 and the transla- 520

tion from all 16 languages in SpeechMatrix to En- 521

glish in subsection 6.2. English-to-many or many- 522

to-many translation are left to future work. We 523

present here multilingual models used in our exper- 524

iments (more details can be found in Appendix C: 525

(1) Textless model. The same model with 70M 526

parameters that we use for bilingual evaluation is 527

reused in the multilingual experiments. Given di- 528

verse multilingual data, we increase the model size 529

for larger model capacity, trying multilingual mod- 530

els with 70M and 260M parameters. 531

(2) XM Transformer. Inspired by the recent 532

finding that crossmodal pre-training is beneficial 533

for speech translation (Popuri et al., 2022), we 534

apply XM Transformer to multilingual training, 535

whose encoder is initialized from pre-trained XLS- 536

R model with 1B parameters (Babu et al., 2021) 537

and decoder is initialized from a unit decoder pre- 538

trained in an mBART style (Popuri et al., 2022). 539

With multilingual speech-to-unit data, the model 540

is further finetuned to minimize the cross-entropy 541

loss in target unit prediction. 542

(3) XM Transformer with Sparsity. Sparse 543

modeling, in particular Mixture-of-Experts (MoE), 544

has been widely studied in multilingual machine 545

translation. MoE increases the number of parame- 546

ters without sacrificing computation efficiency. 547

GShard. GShard is a sparse scaling technique 548

proposed in (Lepikhin et al.). We replace every 549

other Transformer layer with an MoE layer. FFN 550

modules in an MoE transformer layer are shared 551

across experts. A learnable gating function routes 552

input tokens to different experts (NLLB Team et al., 553
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2022). We apply GShard architecture on the de-554

coder of XM Transformer, and expert weights are555

all initialized with the pretrained unit mBART.556

Bilingual Multilingual
EP/VP FL EP/VP FL EP/VP FL EP/VP FL

Textless 70M 260M 70M 260M
Avg. 14.3 5.1 16.8 6.5 14.1 2.5 22.4 11.2
XM Dense(1.2B) Dense (1.2B) GShard (4.3B)
Avg. 18.1 10.1 26.0 15.2 27.0 15.5

Table 6: Average BLEU of Slavic-to-English models in
EP/VP and FLEURS (FL) domains.

6.1 Slavic-to-English Translation557

The six Slavic languages include Czech (cs), Croa-558

tian (hr), Lituanian (lt), Polish (pl), Slovak (sk),559

and Slovenian (sl). In the multilingual setting, all560

mined data into English are combined from each561

Slavic language as the train set.562

We summarize ASR BLEU scores of different563

models averaged over six Slavic-to-English direc-564

tions in Table 6. Due to page limit, we report565

BLEU of each direction in Appendix C. As is566

shown, Textless model benefits from the parameter567

increase to 260M, and multilingual training further568

brings BLEU gains of 5.6 and 4.7 in EP/VP and569

FLEURS. We tried larger models than 260M but570

didn’t see more gains.571

Comparing against bilingual Textless model572

(70M), bilingual XM Transformer achieves +3.8573

BLEU in EP/VP and +5.0 BLEU in FLEURS.574

Multilingual training further improves dense575

XM Transformer by 7.9 and 5.1 BLEU. GShard576

with 64 experts brings +1.0 BLEU over dense577

XM Transformer to EP/VP, and +0.3 BLEU578

to FLEURS. Overall the best Slavic-to-English579

translation is achieved by XM Transformer with580

GShard trained in multilingual setting. This demon-581

strates that multilinguality, pre-training and model582

sparsity are of help to speech-to-speech translation.583

6.2 All-to-English Translation584

We move forward to a larger-scale multilinguality585

by extending from Slavic language family to all lan-586

guages in SpeechMatrix. We adopt the best models587

in Slavic-to-English translation, i.e., multilingual588

XM Transformer with both dense and sparse archi-589

tectures.590

Results. Compared with XM Transformer591

(1.2B) dense model, MoE-GShard64 (4.3B) with592

the same forward computation time brings gains593

of +0.9 and +0.2 BLEU to EP/VP and FLEURS594

Dense (1.2B) GShard (4.3B)
EP/VP FL EP/VP FL

cs 29.9 18.7 30.9 18.2
de 18.8 19.0 19.3 20.3
es 22.8 15.2 23.3 15.9
et - 16.7 - 16.7
fi 26.8 14.1 28.2 14.0
fr 23.5 18.3 24.1 18.9
hr - 16.6 - 16.8
hu 20.2 12.0 21.3 12.5
it 36.3 16.2 37.8 14.9
lt 21.9 9.8 23.8 10.3
nl 21.4 16.4 22.1 17.3
pl 21.2 12.4 21.3 13.4
pt 23.8 21.8 24.2 22.3
ro 25.1 19.7 25.0 19.8
sk 30.8 19.6 32.2 18.2
sl 28.3 13.7 29.9 13.7

avg 25.1 16.3 26.0 16.5

Table 7: BLEU of All-to-English multilingual models
across FLEURS (FL) and EP/VP domains (for EP/VP
column, underlined scores are on EPST data, and others
on VoxPopuli data).

respectively. Similar to our findings in Slavic-to- 595

English setting, increasing the capacity with sparse 596

modeling benefits in-domain (EP/VP) more than 597

out-of-domain FLEURS test set. 598

Given sparse architecture of XM Transformer 599

with GShard, all-to-English model shows +0.6 and 600

-0.4 BLEU difference compared with Slavic-to- 601

English model on EP/VP and FLEURS respec- 602

tively, averaged over Slavic languages. Multilin- 603

gual sparse model benefits from the additional in- 604

domain data in other languages when evaluated in 605

EP/VP domain, while sees performance degrada- 606

tion in out-of-domain data. 607

7 Conclusion 608

In this paper, we introduce a large-scale mul- 609

tilingual speech-to-speech corpus mined from 610

VoxPopuli. It is the largest resource of speech 611

alignments with a coverage of 17 languages. We 612

perform an extensive evaluation of the mined par- 613

allel speech, showing good quality of the speech 614

alignments. Multilingual speech-to-speech models 615

can be efficiently trained on this corpus and we 616

suggest different methods, such as sparse scaling 617

using Mixture-of-Experts, to further boost transla- 618

tion performance in the multilingual setting. 619
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A Speech Encoder899

A.1 Similarity search on CoVoST900

We compared our similarity search results with901

previous work (Duquenne et al., 2021) in Table 8.902

We notice that our new speech encoders have lower903

error rates compared to previous work.904

Audio vs. en translations de es fr
Previous work 3.36 1.66 2.05
This work 3.27 1.26 1.55

Table 8: Similarity search error rates (in %) on
CoVoST 2 test set.

We also provide similarity search of audios905

against written translations or transcriptions on906

CoVoST 2 test set for other languages covered by907

our speech encoders in Table 9, in order to evaluate908

cross-modal similarity search.909

de en es et fr it nl pt sl
# test sentences 14k 16k 13k 2k 15k 9k 2k 4k 0.4k
Audio

vs. transcriptions 1.4 2.9 0.4 0.1 0.5 0.5 1.0 1.1 1.7
vs. en translations 3.3 — 1.3 1.0 1.5 1.7 4.4 1.9 4.4

Text transcription
vs. en translations 2.0 — 1.0 0.1 1.0 1.3 2.4 0.7 0.8

Table 9: Similarity search error rates (in %) on
CoVoST 2 test set.

B Bilingual Speech-to-Speech Translation910

We describe experiment details of bilingual speech-911

to-speech translation.912

B.1 HuBERT913

Family Languages

Romance es, fr, it, pt, ro
Slavic cs, pl, sk, sl, hr, lt

Germanic en, de, nl
Uralic fi, et, hu

Table 10: Language families in VoxPopuli data.

We train a multilingual HuBERT model for each914

family on the collection of speech in each compo-915

nent language as shown in Table 10. We collect916

unlabeled VoxPopuli speech for all languages of917

the same family as the training data. The HuBERT918

model consists of 7 convolutional layers and 12919

Transformer encoder layers. Each encoder layer920

has 12 attention heads, the embedding dimension921

of 768 and the forward dimension of 3072. Models922

are trained for 3 iterations, and in each iteration923

pseudo-labels are prepared as the training target for924

utterances. In the first iteration, the target labels are 925

MFCC features. In the second iteration, we extract 926

speech features from the 6-th layer of the trained 927

HuBERT model and apply k-means clustering to 928

derive a set of 500 labels. In the third iteration, 929

speech features from the 9-th layer are clustered 930

into 500 labels. Lastly after these three iterations, 931

we try feature extraction from different layers in- 932

cluding layer 10, 11 and 12 of trained HuBERT. As 933

for feature clustering, we also try different numbers 934

of clusters, 800, 1000 and 1200, to derive multiple 935

sets of target units. 936

To choose the optimal setup, we launch a resyn- 937

thesis evaluation to select the HuBERT layer to 938

extract speech features and the number of k-means 939

clusters. We train a vocoder on each set of target 940

units, i.e., vocoder takes the units and synthesizes 941

target speech. The synthesized speech is sent to 942

off-the-shelf ASR models, and Word Error Rate 943

(WER) is reported to measure the speech quality. 944

The resynthesis experiments are discussed in sub- 945

section B.3. The optimal HuBERT layer and la- 946

bel size is selected if their corresponding vocoder 947

achieves lowest WER. 948

B.2 ASR models 949

We use ASR models publicly released on Hugging- 950

Face to transcribe the generated speech in order 951

to calculate WER or BLEU scores in comparison 952

with ground truth texts. ASR models used in our 953

evaluation are listed in Table 11. 954

B.3 Vocoder 955

Data preprocessing. We applied a denoiser3 (De- 956

fossez et al., 2020) to the speech of VoxPopuli 957

and Common Voice as the speech preprocessing 958

to increase signal-to-noise ratio (SNR) given that 959

they are noisier than CSS10 audios. Then we pre- 960

pare vocoder labels with HuBERT models gen- 961

erating k-means cluster labels for each utterance. 962

Single-speaker vocoders are trained in CSS10, and 963

languages from VoxPopuli and Common Voice 964

have multi-speaker vocoders where speaker em- 965

beddings are learned. During inference, we select 966

the speaker with the longest speech duration to syn- 967

thesize speech from predicted unit sequences, who 968

has the most data for the vocoder to learn good 969

speaker embeddings. 970

Vocoder training and evaluation. Vocoders are 971

trained to synthesize speech from a given sequence 972

3https://github.com/facebookresearch/
denoiser
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Lang cs de
ASR comodoro/wav2vec2-xls-r-300m-cs-250 jonatasgrosman/wav2vec2-xls-r-1b-german
Lang et fi
ASR RASMUS/wav2vec2-xlsr-1b-et jonatasgrosman/wav2vec2-large-xlsr-53-finnish
Lang hr hu
ASR classla/wav2vec2-xls-r-parlaspeech-hr jonatasgrosman/wav2vec2-large-xlsr-53-hungarian
Lang it lt
ASR jonatasgrosman/wav2vec2-large-xlsr-53-italian sammy786/wav2vec2-xlsr-lithuanian
Lang nl pl
ASR jonatasgrosman/wav2vec2-xls-r-1b-dutch jonatasgrosman/wav2vec2-xls-r-1b-polish
Lang pt ro
ASR jonatasgrosman/wav2vec2-xls-r-1b-portuguese gigant/romanian-wav2vec2
Lang sk sl
ASR anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm

Table 11: HuggingFace ASR models for each language.

of units. The train sets are speech data from CSS10,973

VoxPopuli and Common Voice. As mentioned be-974

fore, units are derived from HuBERT models for975

these speech. Table 12 summarizes WER of ASR976

models, which reflects the transcription quality in977

each language. Besides, we report the training978

dataset, vocoder WER of synthesized speech from979

vocoders, and here we include the vocoder results980

obtained from the optimal HuBERT layer and k-981

means cluster size. Layer 11 is the best HuBERT982

layer for feature extraction in all languages, and983

most languages have the best k-means size of 1000984

except Italian (it) whose best label size is 800.985

As shown in Table 12, ASR models are of good986

quality for high-resource languages such as de, fi987

and pt, while suffering from high error rates in lan-988

guages such as ro, lt and sl. It is expected to have989

higher vocoder WER than ASR WER since the990

former is for synthesized speech. By measuring991

the gap between the two error rates, we can tell992

how good a vocoder is and also infer the quality of993

HuBERT units. For et, pt and lt, the gaps are obvi-994

ously larger than other languages. It not surprising995

since we do not have much good-quality vocoder996

data for these languages. fFr example, there is only997

around 10-hour noisy speech from Common Voice998

for et and pt vocoder training.999

B.4 Training1000

Textless model. A Textless model consists of a1001

speech encoder with 2 convolution layers and 121002

Transformer encoder layers. Transformer layer has1003

the embedding dimension of 512 and the forward1004

dimension of 2048. It has two unit decoders with1005

6 and 2 Transformer decoder layers for target and1006

Figure 3: Bilingual S2S BLEU by mined data at differ-
ent thresholds.

source unit prediction respectively. The target unit 1007

decoder has the embedding dimension of 512 and 1008

the forward dimension of 2048, and the source unit 1009

decoder’s dimensions are 256 and 2048. 1010

Hyperparameters. We tried learning rates of 1011

0.0003 and 0.0005, and dropout rates of 0.1 and 1012

0.3. The best setup is a learning rate of 0.0005 1013

and a dropout of 0.3 for bilingual Textless model 1014

training. Bilingual models are trained with a batch 1015

of 20000 tokens for 400k steps. A label smoothing 1016

weight of 0.2 is applied to the cross-entropy loss. 1017

As for decoding of speech-to-unit models, we set 1018

the beam size of 10 in all bilingual and multilingual 1019

experiments. 1020

Mined data selection. We performed an analy- 1021

sis of translation performance varying with thresh- 1022

olds from 1.06 to 1.09 on three language pairs: 1023

es-en, ro-en and hr-en. Figure 3 shows the thresh- 1024

old, the corresponding speech data size and BLEU 1025

score. 1026

For low-resource directions such as hr-en, it is 1027
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Lang Data ASR WER HuBERT Vocoder WER Lang Data ASR WER HuBERT Vocoder WER

de CSS10 0.10
Germanic HuBERT
layer 11, km 1000

0.16 nl CSS10 0.19
Germanic HuBERT
layer 11, km 1000

0.27

fi CSS10 0.02
Uralic HuBERT

layer 11, km 1000
0.15 hu CSS10 0.21

Uralic HuBERT
layer 11, km 1000

0.21

et
Common

Voice
0.14

Uralic HuBERT
layer 11, km 1000

0.44 it VoxPopuli 0.23
Uralic HuBERT
layer 11, km 800

0.27

pt
Common

Voice
0.06

Uralic HuBERT
layer 11, km 1000

0.31 ro VoxPopuli 0.42
Uralic HuBERT

layer 11, km 1000
0.50

cs VoxPopuli 0.15
Slavic HuBERT

layer 11, km 1000
0.23 pl VoxPopuli 0.14

Slavic HuBERT
layer 11, km 1000

0.23

hr VoxPopuli 0.21
Slavic HuBERT

layer 11, km 1000
0.29 lt VoxPopuli 0.38

Slavic HuBERT
layer 11, km 1000

0.57

sk VoxPopuli 0.28
Slavic HuBERT

layer 11, km 1000
0.41 sl VoxPopuli 0.37

Slavic HuBERT
layer 11, km 1000

0.46

Table 12: Benchmark results of ASR models and vocoder resynthesis.

best to include all the mined data. For high- and1028

medium-resource directions, es-en and ro-en, the1029

optimal amount of mined data is around 1k hours1030

and it does not bring further gains to go beyond1031

that data size. Given these observations, we choose1032

the highest threshold that keeps the source speech1033

duration in mined data more than 1k hour for each1034

direction. For example, we use a threshold of 1.091035

for es-en and of 1.06 for hr-en.1036

Computation. Each bilingual model is trained1037

on 16 A100 GPUs for 3 days on average.1038

C Multilingual Speech-to-Speech1039

Translation1040

We provide details of models and experiment se-1041

tups in multilingual speech-to-speech translation.1042

C.1 Slavic-to-English Translation1043

Textless model. Textless model (260M) has a1044

speech encoder with 4 convolution layers and 121045

Transformer encoder layers with the embedding1046

dimension of 1024 and the forward dimension of1047

4096. It has two unit decoders with 6 and 2 Trans-1048

former decoder layers for target and source unit1049

prediction respectively. The target unit decoder has1050

the embedding dimension of 1024 and the forward1051

Bilingual Multilingual
70M 260M 70M 260M 424M

EP/VP FL EP/VP FL EP/VP FL EP/VP FL EP/VP FL
cs 22.7 4.2 24.7 11.2 19.7 2.3 27.5 13.7 25.3 10.2
hr - 7.7 - 4.6 - 3.1 - 12.8 - 9.2
lt 3.1 0.9 0.2 0.0 2.8 0.3 14.7 4.8 10.7 3.3
pl 4.9 4.9 17.6 7.7 14.4 1.9 19.9 9.5 16.4 6.9
sk 21.4 5.5 24.4 11.0 18.9 4.1 27.2 15.4 24.9 11.1
sl 19.5 7.3 16.9 4.7 14.6 3.1 22.9 10.7 21.0 7.6

avg 14.3 5.1 16.8 6.5 14.1 2.5 22.4 11.2 19.7 8.1

Table 13: BLEU of Slavic-to-English multilingual
Textless model across FLEURS (FL) and EP/VP do-
mains (for EP/VP column, underlined scores are on
EPST data, and others on VoxPopuli data).

dimension of 4096, and the source unit decoder’s 1052

dimensions are 256 and 2048. 1053

For the Textless model (424M), its speech en- 1054

coder contains 6 convolution layers and 16 Trans- 1055

former encoder layers with the embedding dimen- 1056

sion of 1024 and the forward dimension of 4096. 1057

It has two unit decoders with 12 and 2 Transformer 1058

decoder layers for target and source unit prediction 1059

respectively. The target unit decoder has the embed- 1060

ding dimension of 1024 and the forward dimension 1061

of 4096, and the source unit decoder’s dimensions 1062

are 256 and 2048. 1063

XM Transformer. XM Transformer (1.2B) is 1064

initialized from XLS-R encoder with 7 convolu- 1065

tion layers and 48 Transformer encoder layers with 1066

the embedding dimension of 1280 and the forward 1067

dimension of 5120. Its unit decoder is initialized 1068

from a pre-trained mbart-style decoder with 12 lay- 1069

ers, embedding dimension of 1024 and forward 1070

dimension of 4096. 1071

Hyperparameters. For Textless model, we 1072

reuse a learning rate of 0.0005, a dropout of 0.3 1073

and a label smoothing weight of 0.2 for Slavic-to- 1074

English training. The 70M model has 20000 tokens 1075

in one batch. The 260M model has batch tokens 1076

of 6000 and a update frequency of 4. The 424M 1077

Bilingual (1.2B) Multiling. Dense (1.2B) Multiling. GShard (4.3B)
EP/VP FL EP/VP FL EP/VP FL

cs 28.3 17.8 29.7 18.2 30.6 19.3
hr - 12.1 - 17.1 - 17.6
lt 0.0 0.0 20.9 9.6 22.2 10.2
pl 17.4 7.4 21.1 12.9 21.4 12.6
sk 24.7 14.5 30.8 19.3 31.8 20.0
sl 20.1 8.5 27.4 14.0 29.1 13.0

avg 18.1 10.1 26.0 15.2 27.0 15.5

Table 14: BLEU of Slavic-to-English multilingual
XM Transformer models across FLEURS (FL) and
EP/VP domains (for EP/VP column, underlined scores
are on EPST data, and others on VoxPopuli data).
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model has tokens of 4000 and a update frequency1078

of 6. For XM Transformer model, we use a learn-1079

ing rate of 0.0001, a dropout of 0.1 and a label1080

smoothing weight of 0.2. In a batch, token sizes of1081

1500 and 9000 with update frequency of 15 and 21082

are used for V100 and A100 training respectively.1083

Results. We first extend Textless model from1084

the bilingual to multilingual setting. Translation1085

results are presented for Textless models with dif-1086

ferent parameter sizes in Table 13. Multilingual1087

Textless model works best with 260M parameters.1088

Compared with its bilingual counterparts, an aver-1089

age gain of 5.6 BLEU is achieved in EP/VP and1090

the gain of 4.7 BLEU in FLEURS.1091

With the Textless model size fixed as 70M, mul-1092

tilingual training hurts the performance of most1093

languages compared with bilingual training. This1094

is due to the insufficient model capacity, and the1095

language interference is reflected by an average1096

of −2.6 BLEU in FLEURS. We increase model1097

parameters to 260M in both bilingual and mul-1098

tilingual settings. With a larger model capacity,1099

bilingual models achieve gains in high-resource1100

languages including cs, pl and sk, while suffering1101

from performance loss in low-resource directions1102

such as hr, lt and sl.1103

Given model sizes of 260M, we observe consis-1104

tent gains of multilingual models over the bilingual1105

models across different language directions and test1106

domains. An average gain of 5.6 BLEU is achieved1107

in EP/VP and the gain of 4.7 BLEU in FLEURS. It1108

demonstrates the positive transfer enabled by mul-1109

tilingual training. As the multilingual model size1110

continues to increase to 424M, we don’t observe1111

further gains likely due to the bottleneck of training1112

data amount.1113

XM Transformer leveraging pre-trained mod-1114

ules is also trained on Slavic-to-English data.1115

Pre-training is shown to be beneficial, and re-1116

sults are reported in Table 14. Comparing1117

against bilingual Textless model (70M), bilingual1118

XM Transformer outperforms it in all directions1119

except lt-en. The gain in EP/VP is 3.8 BLEU on av-1120

erage, and a larger gain of 5.0 BLEU is achieved in1121

FLEURS. Multilingual training brings further gains1122

to XM Transformer with +7.9 and +5.1 BLEU over1123

bilingual training in EP/VP and FLEURS test set1124

respectively.1125

Comparing against dense XM Transformer,1126

GShard with 64 experts has 1.0 BLEU gains on av-1127

erage over 5 directions on EP/VP, and +0.3 BLEU1128

gains for FLEURS. We believe that it is due to a 1129

phenomena mentioned in (Zoph et al., 2022), i.e., 1130

MoE specializes in multilingual settings but not 1131

by language. GShard in our setting brings larger 1132

improvements to in-domain test sets. 1133

Computation. Textless models used 32 A100 1134

GPUs, the 70M model was trained for 3 days, 1135

the 260M model was for 5 days, and the 424M 1136

model was for 6 days. It took 2 days to train 1137

XM Transformer on 32 A100 GPUs for Slavic-to- 1138

English translation. 1139

Dense (1.2B) MoE-GShard64 (4.3B) Base Layer (1.7B)
EP/VP FL EP/VP FL EP/VP FL

cs 29.9 18.7 30.9 18.2 29.9 17.3
de 18.8 19.0 19.3 20.3 19.4 19.5
es 22.8 15.2 23.3 15.9 22.9 14.9
et - 16.7 - 16.7 - 16.4
fi 26.8 14.1 28.2 14.0 28.5 13.9
fr 23.5 18.3 24.1 18.9 23.4 18.2
hr - 16.6 - 16.8 - 16.3
hu 20.2 12.0 21.3 12.5 20.5 12.1
it 36.3 16.2 37.8 14.9 37.4 14.0
lt 21.9 9.8 23.8 10.3 23.4 10.0
nl 21.4 16.4 22.1 17.3 21.5 16.6
pl 21.2 12.4 21.3 13.4 20.9 12.5
pt 23.8 21.8 24.2 22.3 23.8 21.1
ro 25.1 19.7 25.0 19.8 25.3 19.0
sk 30.8 19.6 32.2 18.2 31.5 18.4
sl 28.3 13.7 29.9 13.7 28.8 13.5

avg 25.1 16.3 26.0 16.5 25.5 15.9

Table 15: BLEU of All-to-English multilingual models
across FLEURS (FL) and EP/VP domains (for EP/VP
column, underlined scores are on EPST data, and others
on VoxPopuli data).

C.2 All-to-English Translation 1140

In this work, we experiment with two variants of 1141

sparse modeling, GShard and Base Layer. 1142

XM Transformer-GShard. XM Transformer 1143

(1.2B) is initialized with the same XLS-R encoder 1144

and unit decoder used in Slavic-to-English exper- 1145

iments. On the decoder side of XM Transformer- 1146

GShard, each expert is initialized with the same 1147

unit decoder. We set MoE frequency as 2, i.e., 1148

every other Transformer layer is an MoE layer. 1149

XM Transformer-Base Layer. For our 1150

XM Transformer with Base Layer sparsity (1.7B), 1151

the encoder is initialized with the same XLS-R 1152

encoder, and the dense layers of the decoder is ini- 1153

tialized with the same unit decoder as GShard. We 1154

add an additional Base Layer which is randomly 1155

initialized as the 7th layer of decoder. There is one 1156

expert in each GPU and we used 64 GPUs in our 1157

experiments, which means we have 64 Base Layer 1158

experts in total. 1159
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The sparse variant, Base Layer (1.7B) performs1160

comparably to the dense XM Transformer, with1161

an average of +0.4 BLEU in EP/VP test sets and1162

-0.4 BLEU in FLEURS. The sparsity in Base Layer1163

does not bring obvious gains to all-to-English trans-1164

lation. This is likely because we only add one1165

Base Layer to the decoder with a small expert size.1166

The number of increased model parameters is only1167

0.5B in Base Layer, while it is 3.1B in GShard. As1168

suggested by (Lewis et al., 2021), the Base Layer1169

performance might improve with more GPUs and1170

a larger expert size.1171

Hyperparameters. For dense XM Transformer,1172

hyperparameters are the same as that for Slavic-to-1173

English. GShard also shares the same set of hy-1174

perparameters. As for expert-specific parameters,1175

we use 64 experts with each running on a single1176

GPU with the frequency of 2 so that every other1177

Transformer decoder layer becomes an MoE layer.1178

The capacity token fraction is set as 0.5 so that if1179

more than half of tokens in a sample get routed to1180

one expert, extra tokens would overflow and get1181

dropped.1182

Computation. It took 3 days to train dense1183

XM Transformer for all-to-English with 32 A1001184

GPUs. It took 5 days to train the GShard counter-1185

part with 64 A100 GPUs.1186

D Limitations and Risks1187

Limitations. The HuBERT model quality is crit-1188

ical to speech-to-speech translation performance,1189

as its extracted units are used by both speech-to-1190

unit model and vocoder. We have not explored the1191

optimal strategy of multilingual HuBERT training.1192

One research question is how to choose a group of1193

languages so that a multilingual HuBERT model1194

could be well trained. For example, it is arguable1195

whether Lithuanian (lt) should be included in Slavic1196

or Uralic family. Other questions could be whether1197

a larger HuBERT with more model capacity should1198

be used and how we should deal with language1199

imbalance in multilingual training.1200

We provide benchmark results of bilingual1201

speech translation with mined data selected by1202

heuristics. One of our future directions is to come1203

up with a better strategy of mined data selection1204

to improve translation performance and training1205

efficiency.1206

As mentioned in our results analysis, the re-1207

ported BLEU scores are heavily dependent on the1208

ASR quality, which may not reflect the speech1209

translation performance accurately. Future direc- 1210

tions could be improving ASR quality or exploring 1211

other evaluation metrics without reliance on ASR 1212

models. 1213

Potential Risks. As a technology used for 1214

speech generation, the presented speech transla- 1215

tion models or the translation models that will be 1216

trained with SpeechMatrix dataset might have sys- 1217

temic bias or produce inappropriate outputs. 1218

E License and Terms of Scientific 1219

Artifacts 1220

E.1 Third-Party Artifacts 1221

Data. Common Voice is released under CC0 li- 1222

cense, VoxPopuli and CoVoST 2 data are also un- 1223

der CC0 license. As for EuroParl, it is released 1224

under a Creative Commons license. The multilin- 1225

gual TEDx corpus is released under a CC BY-NC- 1226

ND 4.0 license. FLEURS dataset is under Creative 1227

Commons license (CC-BY-4.0). These datasets are 1228

publicly accessible and freely downloadable for 1229

research purposes. 1230

Models. XLS-R model used for the speech encoder 1231

initialization is open sourced under Apache-2.0 li- 1232

cense. Text LASER used as the teacher model 1233

in training is released under BSD license. ASR 1234

models avaliable on HuggingFace are released un- 1235

der Apache-2.0 license. These models are publicly 1236

available. 1237

Code. The implementations of Textless model, 1238

XM Transformer, HuBERT and Vocoder are open 1239

sourced under MIT license. 1240

E.2 SpeechMatrix and translation models 1241

. 1242

The mined resource, SpeechMatrix, will be re- 1243

leased under CC0 license, and the trained speech- 1244

to-speech translation models will be released under 1245

CC BY-NC 4.0. The data and models are intended 1246

for research purposes. 1247
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