
DP-InstaHide: Data Augmentations Provably Enhance
Guarantees Against Dataset Manipulations

Eitan Borgnia
Department of Computer Science

University of Maryland
eborgnia2@gmail.com

Jonas Geiping
Department of Computer Science

University of Maryland
jgeiping@umd.edu

Valeriia Cherepanova
Department of Computer Science

University of Maryland
vcherepa@umd.edu

Liam Fowl
Department of Mathematics

University of Maryland
lfowl@math.umd.edu

Arjun Gupta
Department of Computer Science

University of Maryland
arjung15@umd.edu

Amin Ghiasi
Department of Computer Science

University of Maryland
amin@cs.umd.edu

Furong Huang
Department of Computer Science

University of Maryland
furongh@umd.edu

Micah Goldblum
Department of Computer Science

University of Maryland
goldblumcello@gmail.com

Tom Goldstein
Department of Computer Science

University of Maryland
tomg@cs.umd.edu

Abstract

Data poisoning and backdoor attacks manipulate training data to induce security
breaches in a victim model. These attacks can be provably deflected using differ-
entially private (DP) training methods, although this comes with a sharp decrease
in model performance. The InstaHide method has recently been proposed as an
alternative to DP training that leverages supposed privacy properties of the mixup
augmentation, although without rigorous guarantees. In this paper, we rigorously
show that k-way mixup provably yields at least k times stronger DP guarantees
than a naive DP mechanism, and we observe that this enhanced privacy guarantee
is a strong foundation for building defenses against poisoning.

1 Introduction

As the capabilities of machine learning systems expand, so do their training data demands. To satisfy
this massive data requirement, developers create automated web scrapers that download data without
human supervision. The lack of human control over the machine learning pipeline may expose
systems to poisoned training data that induces pathologies in models trained on it. Data poisoning and

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



backdoor attacks may degrade accuracy or elicit incorrect predictions in the presence of a triggering
visual feature [Shafahi et al., 2018, Chen et al., 2017].

To combat this threat model, a number of defenses against data poisoning have emerged. Certified
defenses based on differential privacy (DP) provably desensitize models to small changes in their
training data by adding noise to either the data or the gradients used by their optimizer [Ma et al.,
2019]. When a model is trained using sufficiently strong DP, it is not possible to infer whether a
small collection of data points were present in the training set by observing model behaviors, and it is
therefore not possible to significantly alter model behaviors by introducing a small number of poisoned
samples. In this work, we show that strong data augmentations, specifically mixup Zhang et al. [2017]
and its variants, provide state-of-the-art empirical defense against data poisoning, backdoor attacks,
and even adaptive attacks. This good performance can be explained by the differential privacy benefits
of mixup.

We present a variant of InstaHide [Huang et al., 2020b] with rigorous privacy guarantees and study
its use to rebuff poisoning attacks. Like the original InstaHide, our approach begins by applying
mixup augmention to a dataset. However, we do not use the random multiplicative mask and
instead introduce randomness via added Laplacian noise. Our approach exploits the fact that mixup
augmentation concentrates training data near the center of the ambient unit hypercube and saturates
this region of space more densely than the original dataset. Hence, less noise is required to render the
data private than if noise were added to the original data. In fact, we show that adding noise on top of
k-way mixup creates a differential privacy guarantee that is k times stronger (i.e., ϵ is k time smaller)
than adding noise alone.

In addition to mixup, we also perform experiments with the related CutMix and MaxUp augmentations.
Because these augmentations are designed for improving generalization in image classifiers, we find
that they yield a favorable robustness accuracy trade-off compared to other strong defenses [Yun
et al., 2019, Zhang et al., 2017, Gong et al., 2020].

1.1 Related Work

Broadly speaking, data poisoning attacks aim to compromise the performance of a network by
maliciously modifying the data on which the network is trained. In this paper, we examine three
classes of such attacks:

Backdoor attacks involve inserting a “trigger," often a fixed patch, into training data. Attackers can
then add the same patch to data at test time to fool the network into misclassifying modified images as
the target class [Gu et al., 2017, Tran et al., 2018b, Saha et al., 2020]. Feature collision attacks occur
when the attacker modifies training samples so they collide with, or surround, a target test-time image
in feature space [Shafahi et al., 2018, Zhu et al., 2019, Aghakhani et al., 2020]. These methods work
primarily in the transfer learning setting, where a known feature extractor is fixed and a classification
layer is fine-tuned on the perturbed data. From-scratch attacks modify training data to cause targeted
misclassification of pre-selected test time images. Crucially, these attacks work in situations where a
deep network is a priori trained on modified data, rather than being pre-trained and subsequently
fine-tuned on poisoned data [Huang et al., 2020a, Geiping et al., 2020].

A variety of defenses against poisoning attacks have also been proposed:

Filtering defenses, which either remove or relabel poisoned data, are the most common type of defense
for targeted attacks. These methods rely on the tendency of poisoned data to differ sufficiently from
clean data in feature space. Differentially private SGD is a principled defense, where training
gradients are clipped and noised, thus diminishing the effects of poisoned gradient updates. However,
these defenses have been shown to fail against advanced attacks, as they often lead to significant
drops in clean validation accuracy Geiping et al. [2020].

Outside of data poisoning, Lee et al. [2019] introduce DP-Mix, which connects data augmentation
and privacy by using tools for Rényi differential privacy for subsampling [Wang et al., 2019] to
analyze Rényi bounds for image mixtures with Gaussian noise. While these bounds can readily be
converted into differential privacy guarantees, they suffer from numeric instability and tend to be
loose in the low privacy regime, where validation accuracy is maintained. InstaHide, proposed by
Huang et al. [2020b], uses mixup combined with a random mask to achieve dataset privacy, but was
found to fail by Carlini et al. [2020].
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2 DP-InstaHide: A Mixup Defense with Provable Differential Privacy
Advantages

The original InstaHide method attempted to privatize data by first applying mixup, and then mul-
tiplying the results by random binary masks. While the idea that mixup enhances the privacy of a
dataset is well founded, the original InstaHide scheme lies outside of the classical differential privacy
framework and is now known to be insecure. We propose a variant of the method, DP-InstaHide,
which replaces the multiplicative random mask with additive random noise (see Figure A.3). The
resulting method comes with a differential privacy guarantee that enables us to quantify and analyze
the privacy benefits of mixup augmentation.

Differential privacy, developed by Dwork et al. [2014], aims to prevent the leakage of potentially
compromising information about individuals present in released data sets. By utilizing noise and
randomness, differentially private data release mechanisms are provably robust to any auxiliary
information available to an adversary.

Formally, let M : D → R be a random mechanism, mapping from the space of datasets to a
co-domain containing potential outputs of the mechanism. We consider a special case where R is
another space of datasets, so that M outputs a synthetic dataset. We say two datasets D,D′ ∈ D are
adjacent if they differ by at most one element, that is D′ has one fewer, one more, or one element
different from D.

Then, M is (ϵ, δ)-differentially private if it satisfies the following inequality for any U ⊆ R:

P[M(D) ∈ U ] ≤ eϵP[M(D′) ∈ U ] + δ. (1)

Intuitively, the inequality and symmetry in the definition of dataset adjacency tells us that the
probability of getting any outcome from M does not strongly depend on the inclusion of any
individual in the dataset. In other words, given any outcome of the mechanism, a strong privacy
guarantee implies one cannot distinguish whether D or D′ was used to produce it. This sort of
indistinguishability condition is what grants protection from linkage attacks such as those explored
by Narayanan and Shmatikov [2006]. The quantity ϵ describes the extent to which the probabilities
differ for most outcomes, and δ represents the probability of observing an outcome which breaks the
ϵ guarantee.

In the case where differentially private datasets are used to train neural networks, such indistinguisha-
bility also assures poisoned data will not have a large effect on the trained model. Ma et al. [2019]
formalize this intuition by proving a lower bound for the defensive capabilities of differentially private
learners against poisoning attacks.

We define the threat model as taken from Ma et al. [2019]: The attacker aims to direct the trained
model M(D′) to reach some attack target by modifying at most l elements of the clean dataset D to
produce the poisoned dataset D′. We measure the distance of M(D′) from the attack target using
a cost function C, which takes trained models as an input and outputs an element of R. The attack
problem is then to minimize the expectation of the cost of M(D′).

min
D′

J(D′) := E[C(M(D′))] (2)

Finally, we arrive at the theorem proven in Ma et al. [2019].

Theorem 1. For an (ϵ, δ)-differentially private mechanism M and bounded cost function |C| ≤ B,
it follows that the attack cost J(D′) satisfies

J(D′) ≥ max{e−lϵ

(
J(D) +

Bδ

eϵ − 1

)
− Bδ

eϵ − 1
, 0} (3)

J(D′) ≥ max{e−lϵ

(
J(D) +

Bδ

eϵ − 1

)
+

Bδ

eϵ − 1
,−B} (4)

where the former bound holds for non-negative cost functions and the latter holds for non-positive
cost functions.
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(a) Theoretical privacy guarantees
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(b) Empirical defense against poisoning attacks

Figure 1: Theoretical and empirical mixup. Left: Privacy guarantee ϵ as a function of mixture width
k, computed for each implemented Laplacian noise level s. We use values n = T = 5 × 104,
corresponding to the CIFAR-10 dataset. Right: Poisoning success for a strong adaptive gradient
matching attack for several mixture widths and noise levels.

Empirically, however, it is found that the defense offered by differential privacy mechanisms tends to
be more effective than the theoretical limit. Likely, this is a result of differential privacy definitionally
being a worst-case guarantee, and in practice the worst case is rarely observed.

We find that differential privacy achieved through the combination of k-way mixup and additive
Laplacian noise is an example of such a defense. Because mixup augmentation concentrates training
data near the center of the unit hypercube, less noise must be added to the mixed up data to render the
noisy data indistinguishable from other points nearby in comparison to solely adding noise to the
data points [Zhang et al., 2017]. Additionally, mixup benefits from improved generalization due to its
enforcement of linear interpolation between classes and has recently been shown to be robust to a
variety of adversarial attacks, such as FGSM Zhang et al. [2020]. We use a combinatorial approach
to achieve a formal differential privacy guarantee for mixup with Laplacian noise, which in tandem
with the result from Ma et al. [2019] gives us a direct theoretical protection from data poisoning.

2.1 A Theoretical Guarantee for DP-InstaHide

Let D be a dataset of size n and D′ denote the same dataset with the point x0 removed. Let d be the
dimension of data points and assume the data lies in a set V of diameter one, i.e., sup{||D −D′||1 :
D,D′ ∈ V } ≤ 1. We sample a point of the form z = 1

k (x1 + x2 + · · · + xk) + η, where the
xi are drawn at random from the relevant dataset P without replacement, and η ∼ Lap(0, σI)
is the independent d-dimensional isotropic Laplacian additive noise vector with density function
ϕσ(η) =

1
(2σ)d

e∥η∥1/σ. The random variable representing the outcome of the sampling is therefore a
sum of random variables:

MP =
1

k

k∑
i=1

Xi +N (5)

Our differential privacy guarantee is stated below and proven in section A.2.

Theorem 2. Assume the data set D has ℓ1-norm radius less than 1, and that mixup groups of mixture
width k are sampled without replacement. The DP-InstaHide method producing a data set of size T
satisfies (ϵ, 0)-differential privacy with

ϵ = T max {A,B} ≤ T

kσ

where

A = log

(
1− k

n
+ e

1
kσ

k

n

)
, B = log

n

n− k + ke−
1
kσ

.

Remark: A classical Laplacian mechanism for differentially private dataset release works by adding
noise to each dataset vector separately and achieves privacy with ϵ = 1

σ . Theorem 2 recovers this
bound in the case k = 1, however it also shows that k-way mixup enhances the privacy guarantee
over the classical mechanism by a factor of at least k.
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2.2 Defending with DP Augmentations in Practice

We investigate the practical implications of Theorem 2 in Figure 1, where we show the predicted
theoretical privacy guarantees in Figure 1a and the direct practical application for defenses against
data poisoning in Figure 1b. Figure 1b shows the average poison success for a strong, adaptive
gradient matching attack against a ResNet-18 trained on CIFAR-10 (the setting considered in Geiping
et al. [2020] with an improved adaptive attack). We find that the theoretical results predict the success
of a defense by mixup with Laplacian noise surprisingly well.

As a result of Theorem 2, we investigate data augmentations with additional Laplacian noise, also in
the setting of a gradient matching attack. Figure A.4 shows that the benefits of Laplacian noise which
we only prove for mixup also extend empirically to variants of mixing data augmentations such as
CutMix and MaxUp. In particular, combining MaxUp with Laplacian noise of sufficient strength
(s = 16/255) completely shuts down the data poisoning attack via adaptive gradient matching,
significantly improving upon numbers reached by MaxUp alone. Moreover, Figure A.2 and Table
A1 show these data augmentations also exhibit a strong security performance trade-off compared to
other defenses in the case of backdoor and gradient matching attacks.
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A Appendix

Experimental details for the experiments shown in the main paper are contained in this document.

A.1 Data Augmentation as an Empirical Defense against Dataset Manipulation

We study the empirical effectiveness of data augmentations to prevent poisoning. We are mainly
interested in data augmentations that mix data points; we consider the hypothesis that data poisoning
attacks rely on the deleterious effects of a subset of modified samples, which can in turn be diluted
and deactivated by mixing them with other, likely unmodified, samples.

One such augmentation is mixup, proposed in Zhang et al. [2017], which trains on samples (x, y)ki=1
mixed randomly in input space

x̂ =

k∑
i=1

λixi, ŷ =

k∑
i=1

λiyi, (6)

to form the augmented sample (x̂, ŷ). Though λ is traditionally drawn from a Dirichlet distribution
parametrized by some chosen factor α, we will restrict to the case of equal weighting λ = 1/k to aid
in theoretical analysis. From here on, k is referred to as the mixture width.

CutOut [DeVries and Taylor, 2017], which blacks out a randomly generated patch from an image, can
be combined with mixup to form CutMix [Yun et al., 2019], another type of mixing augmentation.
Specifically, the idea is to paste a randomly selected patch from one image onto a second image,
with labels computed by taking a weighted average of the original labels. The weights of the labels
correspond to the relative area of each image in the final augmented data point.

MaxUp [Gong et al., 2020] can also be considered as a mixing data augmentation, which first
generates augmented samples using various techniques and then selects the sample with the lowest
associated loss value to train on. CutMix and mixup will be the central mixing augmentations that we
consider in this work, which we contrast with MaxUp in select scenarios.

Backdoor Patch Attack CutMix Defense mixup Defense

Figure A.1: “Cat” image from CIFAR-10 with a backdoor patch and the same image with CutMix
and mixup augmentations.

Adding noise to input data is another augmentation method, which can be understood as a mixing
augmentation that combines input data not with another image, but with a random sample from the
input space, unrelated to the data distribution. This mechanism is also common in differential privacy
[Hardt and Talwar, 2010]. Since the exact original image is not apparent from its noised counterpart,
adding noise decreases the sensitivity of the new data to the original dataset.

A.1.1 Backdoor Attacks

In contrast to recent targeted data poisoning attacks, backdoor attacks often involve inserting a simple
preset trigger into training data to cause base images to be misclassified into the target class. For our
experiments, we use small 4× 4 randomly generated patches as triggers to poison the target class
(See Figure A.1). To evaluate the baseline effectiveness of backdoor attacks, we poison a target class,
train a ResNet-18 model on this poisoned data and use it to classify patched images from a victim
test class. Only if a patched image from a victim class is labeled with the target class do we treat it
as a successfully poisoned example. Our results show that backdoor attacks achieve 98.3% poison
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Table A1: Validation accuracy and poison success for a baseline model, models trained with mixup
and CutMix augmentations (rows 2,3) and Spectral Signature Tran et al. [2018a] and Activation
Clustering Chen et al. [2018] defenses (rows 4,5). The first two columns correspond to the case
where 10% of one class is poisoned. The last two columns correspond to the case where all images of
one class are poisoned (a scenario in which filter defenses are inapplicable as no unmodified images
remain for this class). The results are averaged across 20 runs (with different pairs of target and
victim classes).

CLEAN ACCURACY (10%) POISON SUCCESS (10%) CLEAN ACCURACY (100%) POISON SUCCESS (100%)

BASELINE 94.3% 45.6% 85.0% 98.3%

CUTMIX 95.1% 7.0% 94.2% 14.1%
MIXUP 94.4% 23.9% 85.3% 99.8%

SS 92.3% 48.3%
AC 89.4% 44.0%

success when 100% of images from the target class are poisoned and 45.6% poison success when
only 10% of target images are patched (see Table A1). In addition, when 100% of training images
from the target class are patched, clean test accuracy of the model drops by almost 10% since the
model is unable to learn meaningful features of the target class.

We then compare the baseline model to models trained with the mixup and CutMix data augmentation
techniques. We find that although mixup helps when only part of the target class is poisoned, it is
not efficient as a defense against backdoor attacks when all images in the target class are patched. In
contrast, CutMix is an extremely effective defense against backdoor attacks in both scenarios and it
reduces poison success from 98.3% to 14.1% in the most aggressive setting. Finally, models trained
on poisoned data with CutMix data augmentation have a clean test accuracy similar to the accuracy
of models trained on clean data. Intuitively, CutMix often produces patch-free mixtures of the target
class with other classes, hence the model does not solely rely on the patch to categorize images of
this class.

We extend this analysis to two more complex attacks, clean-label backdoor attacks Turner et al.
[2018], and hidden-Trigger backdoor attacks in Table A6.

For the patch attack, we insert patches of size 4×4 into CIFAR train images from target class and test
images from victim class. The patches are generated using a Bernoulli distribution and are normalized
using the mean and standard deviation of CIFAR training data. The patch location for each image is
chosen at random. To evaluate the effectiveness of the backdoor attack and our proposed defenses,
we train a ResNet-18 model on poisoned data with cross-entropy loss. The model is trained for 80
epochs using SGD optimizer with a momentum of 0.9, a weight decay of 5e-4 and learning rate of
0.1 which we reduce by a factor of 10 at epochs 30, 50 and 70. A batch size of 128 is used during
training.

A.1.2 Targeted Data Poisoning

We further evaluate data augmentations as a defense against targeted data poisoning attacks. We
analyze the effectiveness of CutMix and mixup as a defense against feature collision attacks in
Table A4. Applying these data augmentations as a defense against Poison Frogs [Shafahi et al., 2018]
(FC) is exceedingly successful, as the poisoned data is crafted independently there, making it simple
to disturb by data augmentations. The poisons crafted via Convex Polytope (CP) [Zhu et al., 2019]
however, are more robust to data augmentations, due to the polytope of poisoned data created around
the target. Nonetheless, the effectiveness of CP is diminished more by data augmentations than by
other defenses.

We then evaluate the success of data augmentations against Witches’ Brew, the gradient matching
attack of Geiping et al. [2020] in Table A2. Against this attack, we evaluate a wide range of data
augmentations, as the attack is relatively robust to basic mixup data augmentations which mix only
two images. However, using a stronger augmentation that mixes four images still leads to a strong
defense in the non-adaptive setting (where the attacker is unaware of the defense). As this attack can
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be adapted to specific defenses, we also consider such a scenario. Against the adaptive attack, we
found MaxUp to be most effective, evaluating the worst-case loss for every image in a minibatch over
four samples of data augmentation drawn from cutout. To control for the effects of the CIFAR-10
dataset that we consider for most experiments, we also evaluate defenses against an attack on the
ImageNet dataset in Table A3, finding that the described effects transfer to other datasets.

Table A2: Poison success rates (lower is better for the defender) for various data augmentations tested
against the gradient matching attack of Geiping et al. [2020]. All results are averaged over 20 trials.
We report the success of both a non-adaptive and an adaptive attacker.

AUGMENTATION NON-ADAPTIVE ADAPTIVE

2-WAY MIXUP 45.00% 72.73%
CUTOUT 60.00% 81.25%
CUTMIX 75.00% 60.00%
4-WAY MIXUP 5.00% 55.00%
MAXUP-CUTOUT 5.26% 20.00%

Table A3: Success rate for selected data augmentation when tested against the gradient matching
attack on the ImageNet dataset. All results are averaged over 10 trials.

AUGMENTATION POISON SUCCESS

NONE 90%
2-WAY MIXUP 50.00%
4-WAY MIXUP 30.00%

A.1.3 Comparison to Other Defenses

We show that our method outperforms filter defenses when evaluating backdoor attacks, such as in
Table A1 and Table A6, as well as when evaluating targeted data poisoning attacks, as we show for
Poison Frogs and Convex Polytope in Table A4 and for Witches’ Brew in Table A3 and A5. We
note that data augmentations do not require additional training compared to filter defenses in some
settings and are consequently more computationally efficient.

In Figure A.2, we plot the average poison success against the validation error for adaptive gradient
matching attacks. We find that data augmentations exhibit a stronger security performance trade-off
compared to other defenses.

Table A4: Poison success rate for Poison Frogs [Shafahi et al., 2018] and Convex Polytope [Zhu
et al., 2019] attacks when tested with baseline settings and when tested with mixup and CutMix. All
results are averaged over 20 trials.

ATTACK BASELINE SS AC MIXUP CUTMIX

FC 80% 70% 45% 5% 5%

CP 95% 90% 75% 70% 50%

We run our experiments for feature collision attacks in Table 4 by likewise using the framework
of Schwarzschild et al. [2020], running the defense with the same settings as proposed there and
following the constraints considered in this benchmark. For gradient matching we likewise implement
a number of data augmentations as well as input noise into the framework of Geiping et al. [2020].
We run all gradient matching attacks within their proposed constraints, using a subset of 1% of the
training data to be poisoned for gradient matching and an ℓ∞ bound of 16/255. For all experiments
concerning gradient matching we thus consider the same setup of a ResNet-18 trained on normalized
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Table A5: Poison success rates (lower is better for the defender) for competing defenses when tested
against the gradient matching attack compared to mixup. For DP-SGD, we consider a noise level of
n = 0.01. All results are averaged over 20 trials.

DEFENSE POISON SUCCESS

SPECTRAL SIGNATURES 95.00%
DEEPKNN 90.00%
SPECTRAL SIGNATURES 95.00%
ACTIVATION CLUSTERING 30.00%

DP-SGD 86.25%

4-WAY MIXUP 5.00%

Table A6: Success rate against backdoor attacks when tested with baseline settings and when tested
with the mixup and CutMix. All results are averaged over 20 trials.

ATTACK BASELINE SS AC MIXUP CUTMIX

HTBD 60% 65% 55% 20% 10%

CLBD 65% 60% 45% 25% 15%

CIFAR-10 with horizontal flips and random crops of size 4, trained by Nesterov SGD with 0.9
momentum and 5e-4 weight decay for 40 epochs for a batch size of 128. We drop the initial learning
rate of 0.1 at epochs 14, 24 and 35 by a factor of 10. For the ImageNet experiments we consider the
same hyperparameters for an ImageNet-sized ResNet-18, albeit for a smaller budget of 0.01% as in
the original work.

Comparing to poison detection algorithms, we re-implement spectral signatures [Tran et al., 2018b],
deep K-NN [Peri et al., 2019] and Activation Clustering [Chen et al., 2018] with hyperparameters as
proposed in their original implementations. For differentially private SGD, we implement Gaussian
gradient noise and gradient clipping to a factor of 1 on the mini-batch level (otherwise the ResNet-18
architecture we consider would be inapplicable due to batch normalizations), and vary the amount of
gradient noise with values (0.0001, 0.001, 0.01) to produce the curve in Fig. 2.

To implement data augmentation defenses we generally these data augmentations straightforward as
proposed in their original implementations, also keeping components such as the late start of Maxup

4-way mixup

8-way mixup

CutMix

MaxUp-Cutout

2-way mixup

Activation Clustering

DeepKNN
Spectral Signatures
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Figure A.2: Trade-off between average poison success and validation accuracy for various defenses
against gradient matching (adaptive).
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+ + =

mixup Laplacian Noise Defense

Poisoned Image

Figure A.3: Illustration of the DP-InstaHide defense on two CIFAR-10 images, the first of which has
been poisoned with ε = 16. Mixup is used to average two images, and then Laplacian noise is added,

after 5 epochs described in Gong et al. [2020] and the randomized activation of CutMix described in
Zhang et al. [2017].

A.2 A Theoretical Guarantee for DP-InstaHide

Let D be a dataset of size n and D′ denote the same dataset with the point x0 removed. Let d be the
dimension of data points and assume the data lies in a set V of diameter one, i.e., sup{||D −D′||1 :
D,D′ ∈ V } ≤ 1. We sample a point of the form z = 1

k (x1 + x2 + · · · + xk) + η, where the
xi are drawn at random from the relevant dataset P without replacement, and η ∼ Lap(0, σI)
is the independent d-dimensional isotropic Laplacian additive noise vector with density function
ϕσ(η) =

1
(2σ)d

e∥η∥1/σ. The random variable representing the outcome of the sampling is therefore a
sum of random variables:

MP =
1

k

k∑
i=1

Xi +N (7)

We use p and q to denote the probability density functions of MD, and MD′ respectively.

Theorem 3. Assume the data set D has ℓ1-norm radius less than 1, and that mixup groups of mixture
width k are sampled without replacement. The DP-InstaHide method producing a data set of size T
satisfies (ϵ, 0)-differential privacy with

ϵ = T max {A,B} ≤ T

kσ

where

A = log

(
1− k

n
+ e

1
kσ

k

n

)
, B = log

n

n− k + ke−
1
kσ

.

Proof. To prove differential privacy, we must bound the ratio of P[MD ∈ U ] to P[MD′ ∈ U ] from
above and below, where U ⊆ V is arbitrary and measurable. For a fixed sampling combination x =

(x1, . . . , xk) ∈ Dk, the density for observing z = 1
k

∑k
i=1 xi +N is given by ϕσ

(
z −

∑k
i=1 xi

)
.

Since there are
(
n
k

)
possible values that x can take on, each of equal probability, we have

p(z) =
k!(n− k)!

n!

∑
x∈Dk

ϕσ

(
z −

k∑
i=1

xi

)
.

Let’s now write a similar expression for q(z). We have

q(z) =
k!(n− k − 1)!

(n− 1)!

∑
x∈D′k

ϕσ

(
z −

k∑
i=1

xi

)
. (8)

Now, we write the decomposition p(z) = p0(z) + p1(z), where p0(z) is the probability of the
ensemble not containing x0 times the conditional density for observing z given this scenario, and

11



0

4
8 16

32

0

4

8

16 32

04

8

16

32

0 4
8

16

32

0

4

8

16 32

0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

mixup (+input noise)Aa

MaxUp (+input noise)Aa

CutMix (+input noise)Aa

4-way mixup (+input Noise)Aa

8-way mixup (+input Noise)Aa

Undefended (Baseline)

Validation Error

Av
g.

 P
oi

so
n 

Su
cc

es
s

Figure A.4: Enhancing various data augmentations with Laplacian noise. We visualize the security-
performance trade-off when enhancing the data augmentations considered in Sec. A.1 with Laplacian
noise as predicted by Thm. 2. We visualize the development of these data augmentations when adding
Laplacian noise with scales (2/255, 4/255, 8/255, 16/255, 32/255).

p1(z) is the probability of having x0 in the ensemble times the conditional density for observing z
given this scenario.

Then, we have

p0(z) =

(
1− k

n

)
q(z). (9)

Now, consider p1(z). This can be written

p1(z) =
k

n

(k − 1)!(n− k − 2)!

(n− 1)!

∑
x∈D′k−1

ϕσ

(
z − x0 −

k−1∑
i=1

xi

)
. (10)

In the equation above, k
n represents the probability of drawing an ensemble x that contains x0, and

the remainder of the expression is the probability of forming z − x0 using the remaining k − 1 data
points in the ensemble.

We can simplify equation (10) using a combinatorial trick. Rather than computing the sum over all
tuples of size k − 1, we compute the sum over all tuples of length k, but we discard the last entry of
each tuple. We get

p1(z) =
k

n

k!(n− k − 1)!

(n− 1)!

∑
x∈D′k

ϕσ

(
z − x0 −

k−1∑
i=1

xi

)
. (11)

Now, from the definition of the Laplace density, we have that if ∥u− v∥1 < ϵ for any u, v then

e−∥u−v∥1/σϕσ(v) ≤ ϕσ(u) ≤ e∥u−v∥1/σϕσ(v).

Let’s apply this identity to (11) with u = z − x0 −
∑k−1

i=1 xi and v = z −
∑k

i=1 xi. We get

e−
1
kσ

k

n
q(z) ≤ p1(z) ≤ e

1
kσ

k

n
q(z),

where we have used the fact that the dataset D has unit diameter to obtain ∥u− v∥1 ≤ j
k , and we

used the definition (8) to simplify our expression.

Now, we add (9) to this equation. We get(
1− k

n
+ e−

1
kσ

k

n

)
q(z) ≤ p(z)

≤
(
1− k

n
+ e

1
kσ

k

n

)
q(z).
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From this, we arrive at the conclusion

p(z)

q(z)
≤
(
1− k

n
+ e

1
kσ

k

n

)
≤ e

1
kσ ,

and

q(z)

p(z)
≤ n

n− k + ke−
1
kσ

≤ e
1
kσ .

The left-most upper bound in the above equation is achieved by replacing k with n wherever k
appears outside of an exponent. We get the final result by taking the log of these bounds and using
the composibility property of differential privacy to account for the number T of points sampled.
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