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ABSTRACT

Identifying cell types and understanding their functional properties is crucial for
unraveling the mechanisms underlying perception and cognition. In the retina,
functional types can be identified by carefully selected stimuli, but this requires
expert domain knowledge and biases the procedure towards previously known
cell types. In the visual cortex, it is still unknown what functional types exist
and how to identify them. Thus, for unbiased identification of the functional
cell types in retina and visual cortex, new approaches are needed. Here we pro-
pose an optimization-based clustering approach using deep predictive models to
obtain functional clusters of neurons using Most Discriminative Stimuli (MDS).
Our approach alternates between stimulus optimization with cluster reassignment
akin to an expectation-maximization algorithm. The algorithm recovers func-
tional clusters in mouse retina, marmoset retina and macaque visual area V4. This
demonstrates that our approach can successfully find discriminative stimuli across
species, stages of the visual system and recording techniques. The resulting most
discriminative stimuli can be used to assign functional cell types fast and on the
fly, without the need to train complex predictive models or show a large natural
scene dataset, paving the way for experiments that were previously limited by ex-
perimental time. Crucially, MDS are interpretable: they visualize the distinctive
stimulus patterns that most unambiguously identify a specific type of neuron.

1 INTRODUCTION

Animals perceive the world through an intricate network of neurons in the visual system. These
neurons are organized into cell types that can be identified by their distinct responses to visual
stimuli. Such functional cell typing has been demonstrated in the mouse retina (Baden et al., 2016),
where functional cell types also match in their gene expression and morphology (Goetz et al., 2022).
In higher visual areas, it has proven difficult to identify cell types based on their response patterns,
although recent attempts point at a mix of continuous and discrete functional types in mouse primary
visual cortex (V1) (Ustyuzhaninov et al., 2020; 2022) and primate cortical area V4 (Willeke et al.,
2023).

Functional cell type identification currently often requires domain knowledge to handcraft suitable
visual finger-printing stimuli (Farrow & Masland, 2011; Baden et al., 2016; Franke et al., 2017)

1

mailto:max.burg@bethgelab.org
mailto:ecker@cs.uni-goettingen.de


Published as a conference paper at ICLR 2024

Figure 1: Most discriminative stimulus (MDS) clustering based on a digital twin. A. Digital twin
model trained to mirror responses of neurons in the visual system. B. MDS clustering (Algorithm 1)
iterates between optimizing MDS to drive neurons within one cluster while suppressing all others
and reassigning neurons to the cluster associated with the MDS they respond most to.

and to select distinctive response features for classification (Farrow & Masland, 2011). This biases
classification towards known cell types and might make it hard to discover new types. Also, in many
brain areas the functional types are still unknown – hence no “ground truth” exists to tailor stimuli
towards. Therefore, the study of both well known and less understood visual areas would benefit
from a more neutral, data-driven approach that does not require domain knowledge. One idea would
be to directly cluster cell’s responses to unbiased naturalistic stimuli. However, the receptive field
locations vary within a simultaneously recorded population of neurons, which means that each cell
would “see” a different part of the stimulus. Hence, even cells with identical input-output function
will respond differently to the same stimulus, preventing direct clustering of their responses.

Fortunately, resolving this issue has recently come within reach: artificial neural networks have
been proposed as “digital twins” of the visual system – these networks receive visual stimuli as
inputs and predict how a specific biological neuron would respond to that stimulus with high fidelity
(Fig. 1A; Antolı́k et al. (2016); Batty et al. (2016); McIntosh et al. (2016); Klindt et al. (2017);
Sinz et al. (2018); Walker et al. (2019); Lurz et al. (2020); Burg et al. (2021); Willeke et al. (2022);
Ustyuzhaninov et al. (2022)). Such digital twins make it possible to analyze the computational
properties of visual neurons in silico. For instance, digital twins allow to center a stimulus on each
individual neuron’s receptive field (Ustyuzhaninov et al., 2022) and to optimize it to maximally drive
a single neuron, yielding its Maximally Exciting Input (MEI), that visualizes the neuron’s preferred
feature (Walker et al., 2019; Bashivan et al., 2019). Bashivan et al. (2019) attempted to make MEIs
more specific by optimizing images that do not only drive one neuron, but also suppress all others.
However, this is often not possible in practice, because multiple neurons of the same functional cell
type are present, which respond similarly.

If we knew which cells belong to the same functional type, we could easily extend this approach
and find Most Discriminative Stimuli (MDS) at the cell type level – stimuli that drive one cell type
while suppressing all others when presented centered on each cell’s receptive field. With the result-
ing MDS, we can discover the unique visual features that the different cell types preferably process,
rendering MDS to be efficient finger-printing stimuli for easy cell type identification in future ex-
periments. As it is unknown which neurons belong to which cell type a priori, we need to cluster
cells into types and find the MDS for each type in a joint procedure.

Here, we tackle this task in an Expectation-Maximization (EM) style manner: We alternate be-
tween assigning neurons to cell type clusters, and optimizing a MDS for each cluster (Fig. 1B). We
empirically validate our novel clustering algorithm by benchmarking the resulting clusters against
well-established retinal ganglion cell (RGC) types (Baden et al., 2016; Field & Chichilnisky, 2007).
We further demonstrate that our method found meaningful functional clusters when little domain
knowledge is available, as in cortical area V4. Our clustering works across species (mouse, mar-
moset, macaque) and recording techniques (two-photon imaging, electrophysiology), and leveraging
MDS as finger-printing stimuli can identify cell types 20% faster than traditional methods.
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Algorithm 1 Most discriminative clustering algorithm

Randomly assign neurons into clusters
while cluster assignments change do ▷ Initial clustering

M-step: Optimize MDS for all clusters with objective function Eq. (1)
E-step: Re-assign each neuron to the cluster whose MDS drives it the most

end while
while cluster assignments change do ▷ Determine the optimal number of clusters

for each cluster do
Randomly assign this cluster’s neurons into candidate sub-clusters
Run EM clustering on sub-clusters until convergence
Keep candidate sub-clusters if they improve mean objective ⟨Jc⟩c and remove empty clusters

end for
end while
return Cluster assignments, most discriminative stimuli

2 RELATED WORK

Cell type clustering. Cell types form the building blocks of neural circuits across the brain (Sanes
& Masland, 2015). To understand how these cell types perform computations in the visual system, a
functional classification based on light responses may be most relevant (Vlasits et al., 2019). In the
mouse retina, functional cell types have been studied extensively (Farrow & Masland, 2011; Baden
et al., 2016; Franke et al., 2017), especially for retinal ganglion cells: RGCs can be hierarchically
divided by response polarity into ON, OFF and ON-OFF types, and then further by response dy-
namics into transient and sustained types (Farrow & Masland, 2011). Using more complex stimuli,
Baden et al. (2016) identified a finer cluster structure of at least 32 functional RGC types, many of
which were later matched to morphological and genetic types (Bae et al., 2018; Tran et al., 2019;
Goetz et al., 2022; Huang et al., 2022). As the Baden et al. (2016) functional clustering for RGCs is
the most comprehensive available to date, we focus on their cluster labels in the retina experiments
presented here. In cortex, functional cell types have been harder to define. For instance, the fin-
gerprinting stimuli used in the retina rely mainly on temporal characteristics of full-field brightness
changes or known properties such as direction selectivity probed with moving bars. How to find ap-
propriate stimuli for the diverse spatial selectivity patterns observed in visual cortex (Walker et al.,
2019; Ustyuzhaninov et al., 2022; Tong et al., 2023) is less clear. Ustyuzhaninov et al. (2020; 2022)
modeled responses to natural images in mouse primary visual cortex (V1) with a convolutional neu-
ral network (CNN), where each neuron’s response is modeled by a linear readout from a shared
feature space. They then used the readout weights as a vector representation of the neuron’s func-
tion. This approach captures the full selectivity of a neuron, but it requires showing natural scenes
and training a predictive model to infer a neuron’s cell type, whereas our approach can identify a
neuron’s cell type in new experiments quickly and without model training.

Image optimization. Optimizing input images has been used to maximize the response of units in
artificial neural networks for object classification (Erhan et al., 2009; Zeiler & Fergus, 2014; Olah
et al., 2017) and to distinguish between different classification models (Golan et al., 2020). Build-
ing on these ideas, Deep Neural Network (DNN) models of neural activity were used to generate
maximally exciting inputs (MEIs) for biological neurons. These MEIs can drive single neurons in
vivo (Bashivan et al., 2019; Walker et al., 2019; Franke et al., 2022; Hoefling et al., 2022; Willeke
et al., 2023; Pierzchlewicz et al., 2023), even when using multiple diverse MEIs (Ding et al., 2023);
inhibit a single neuron (Fu et al., 2023), or drive a single neuron but suppress others (Bashivan et al.,
2019). While MEIs were recently extended to drive a predefined group of neurons (Ustyuzhaninov
et al., 2022), there is no technique that at the same time suppresses the activity of all other neurons.
Here, we provide this missing technique and extend it into a full-fledged clustering algorithm.

3 MOST DISCRIMINATIVE STIMULUS CLUSTERING ALGORITHM

Digital twins are models trained to predict neural activity based on shown stimuli. They allow us to
search the stimulus space for most discriminative stimuli (MDS) that optimally separate functional
groups of neurons in their activity (Fig. 1A). Here, we simultaneously generated MDS and clustered
neurons in an EM-like fashion (Fig. 1B and Algorithm 1). We started by randomly assigning neurons
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into a small number of initial “seed” clusters. Then we alternated between (M) optimizing an MDS
for each cluster exclusively activating that cluster’s neurons, while avoiding to activate other clusters,
and (E) re-assigning neurons to the cluster whose MDS drove them the most (Fig. 1B). Periodically,
we split candidate clusters into sub-clusters that we kept if this improved the objective (see below).

In each M step, we optimized an MDS xc (centered on the neuron’s receptive field) to maximize the
average response r̄ of all neurons j in the target cluster c, i.e. r̄c(xc) = ⟨rj(xc)⟩j , while suppressing
the average response of all other clusters, r̄k(xc). We maximized the softmax-based objective

max
xc

Jc = max
xc

(
log

exp (r̄c(xc)/τ)
1
K

∑K
k=1 exp (r̄k(xc)/τ)

)
, (1)

where the temperature parameter τ determines how strongly we penalize large responses in other
clusters (we set τ = 1.6 which is the best within a broad optimum of the final objective, see Fig. 14).
This yielded one MDS per cluster. In the E step, we re-assigned neurons to the cluster associated
with the MDS to which they responded most strongly. We then alternated between the E- and M-step
until cluster assignments did not change anymore.

To find the optimal number of clusters, we devised a procedure to determine if adding more clusters
enhanced our overall clustering. We treated each cluster independently and split its neurons into sev-
eral new sub-cluster candidates. Then we performed the EM clustering procedure on the sub-cluster
candidates followed by a global optimization step on all clusters yielding optimal MDS and cluster
assignments, and we kept new clusters if the mean objective across all clusters ⟨Jc⟩c improved (see
Appendix A.1 for details). During the splitting procedure, we removed any clusters not containing
any neurons. We then repeated cluster splitting until it did not improve the objective anymore. To
finalize clustering, we optimized all MDS until convergence followed by a final reassignment step.

4 DATA AND IMPLEMENTATION DETAILS

Mouse retinal ganglion cells. We used a mouse retinal ganglion cell (RGC) dataset. A digital twin
model for this dataset was previously published by Hoefling et al. (2022). The neurons in this dataset
were stimulated with an ultraviolet (UV) and green channel naturalistic video (30 Hz frame rate).
The digital twin was an ensemble of five CNNs that were trained to predict the time-varying RGC
response with a 30 frame context window. Each member of the ensemble consisted of a core shared
between all neurons and a neuron-specific linear readout (see Appendix A.2 for details). All models
used in this study share this core-readout structure.

We assigned neurons to Baden et al. (2016) functional types using a classifier that predicts the cell
type based on soma size and the light response to two synthetic fingerprinting stimuli, a “chirp” and
a moving bar (Qiu et al., 2023). We removed neurons with less than 25% assignment confidence
and all functional types containing less than 50 modeled neurons, as they might have been under-
represented in digital twin training. Further, displaced amacrine cells, which are usually part of this
dataset, were removed as well. This led to 2,448 RGCs of 17 types. To ensure MDS are not overfit to
the cells they were optimized on and that they also work in future experiments, we computed MDS
on a 80% training split of the cells and report results on the remaining held-out test cells. Splits
retained relative functional group sizes. These type labels are no perfect ground truth, as they are
subject to potential misassignments by the classifier.

Stimulus optimization. We synthesized MDS with the same parameters that Hoefling et al. (2022)
used to optimize MEIs and summarize the key components here. We initialized the stimulus, a
50 frames × (18 × 16) pixels ×2 channels video-snippet, with Gaussian white noise. We fed this
stimulus to the digital twin predicting a 20 frames response trace for each cell. The average predicted
activity over the last ten frames was the input into the objective function (Eq. (1)). We optimized
the stimulus by gradient ascent for ten steps with a learning rate of 100 (the optimal learning rate
within the range [10−3, 103]). During algorithm development we verified that sufficient optimization
steps were performed by inspecting the objective values during optimization. To ensure that the
MDS stayed within the pixel intensity range used when training the digital twin (Hoefling et al.,
2022), we jointly renormalized both channels’ pixel values of each frame to an L2-norm of 30 after
each optimization step. Additionally, we clipped the pixel values to the minimum (UV: −0.913,
green: −0.654) and maximum (UV and green: 6.269) light intensity of the stimulus projector that
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displayed the videos, where zero corresponds to the mean luminance across the stimuli. This avoids
that single pixels can exceed the display range of the projector and is a typical procedure in stimulus
optimization settings (e.g. Walker et al. (2019); Hoefling et al. (2022); Willeke et al. (2023)).

Simulation of experiment. To estimate how time-efficient MDS are in determining a functional
type, we did an in silico experiment with simulated observational noise. We modeled the trial-to-
trial variability for each neuron by a gamma distribution whose mean we set to the digital twin’s
MDS response prediction for that neuron. We set the variance to be proportional to the mean and
estimated the proportionality constant for each neuron from a subset of the stimuli in the dataset
for which responses to three repeated stimulus presentations were provided. Then we sampled from
the gamma distribution to generate 16 “trials” of activity and computed the neural responses by
averaging the activity over the last ten frames (as in the stimulus optimization procedure). Model
neurons were then assigned to the cluster whose MDS activated them the most.

Marmoset retinal ganglion cells. We additionally evaluated our approach on 167 marmoset RGCs
obtained from Multi-Electrode Array (MEA) recordings of spiking activity in one retina while pre-
senting a naturalistic gray-scale movie. For this data, no fine-grained reference taxonomy of func-
tional types exists. We optimized the mouse digital twin (Hoefling et al., 2022) for this dataset (four
CNN layers, larger 21 pixel spatial filters in the first layer; see Appendix A.3 for details).

Macaque visual cortex area V4. Additionally, we used a third dataset of extracellular multi-
electrode recordings from macaque visual cortex area V4, covering spiking responses of 1,224 neu-
rons to gray-scale natural images shown to awake macaque monkeys (Willeke et al., 2023). We kept
only the 1,030 neurons for which Willeke et al. (2023) provided MEI-based cluster labels. Note
that these single cell MEI clusters do not represent ground truth, as they were not verified with in-
dependent biological measurements. Again, we sampled train (80%) and test (20%) splits retaining
relative cluster sizes. For digital twin details and MDS optimization parameters, see Appendix A.4.

5 RESULTS

Mouse retinal ganglion cells. We started by empirically validating our novel clustering algorithm
on the mouse RGC dataset that was labeled with 17 well-established Baden et al. (2016) functional
types. Our MDS clustering algorithm found seven functional clusters after discarding small clusters
with less than ten cells. Clusters were reasonably well separated in terms of their mean response
(Fig. 2A) to the MDS (Fig. 2B). While our MDS clustering yielded fewer clusters than that by
Baden et al. (2016), the clusters we found comprised the well known functional cluster hierarchy of
the retina (e.g. Baden et al. (2016); Farrow & Masland (2011)), namely OFF, ON-OFF, fast ON, and
slow ON types, and one color-opponent type that was recently highlighted as having very distinct
selectivity (Hoefling et al., 2022). Clusters differed in their preference for temporal frequencies,
receptive field center sizes, strength of UV preference, and surround strength and structure (Fig. 2C).

Next, we compared the 17 Baden et al. (2016) types to our MDS clusters (Fig. 2D). We found that
groups of Baden et al. (2016) types with similar functional properties matched well with our MDS
clusters (color-coded labels in Fig. 2D based on clustering hierarchy in Baden et al. (2016)). Off-
diagonal entries in Fig. 2A,D show that not all fine types could be perfectly separated by MDS.
However, the block-diagonal structure (black boxes in Fig. 2D) indicates that cell types were only
confused within groups of very similar function. All OFF and ON-OFF types (orange labels in
Fig. 2D) mapped almost exclusively to MDS clusters 2 and 3, with a tendency of OFF cells mapping
to cluster 2, and ON-OFF cells to cluster 3. From the groups of Baden et al. (2016) types, fast
ON types (“ON loc tr OS”, “ON trans”, “ON high freq”; green in Fig. 2D) showed the clearest
correspondence to a single MDS cluster, 38%, 93%, and 93% of cells of its three types mapping
to MDS cluster 4, respectively. Slow ON types (blue in Fig. 2D) mapped mostly to clusters 5
and 6, with a preference for one of the two in most but not all types. In this group, one type (“ON
DS sustained”) even mapped exclusively to a single MDS cluster. Despite its name, the “OFF
suppressed 1” type also mapped to ON MDS cluster 6, likely because this type has an ON response
for some local stimuli (e.g. moving bar response in Baden et al. (2016)). The biggest exception of
the slow ON types was “ON contrast suppressed”, which did not map strongly to either cluster 5
or 6, but instead mapped to the color opponent MDS cluster 7 (Fig. 2D). Interestingly, this cluster
showed the strongest one-to-one correspondence with a single Baden et al. (2016) type. The only
other MDS cluster consisting of mostly one type was MDS cluster 1, which was dominated by
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D Confusion with Baden et al. (2016) types E Confusion matrix of classifier predicting Baden et al. (2016) types

Figure 2: Most discriminative stimuli clustering on mouse RGCs. Results on held-out test neurons
and empirical comparison to Baden et al. (2016) types shown. A. Cluster averaged digital twin
response to the optimized MDS. Elements within a column normalized to highest value. B. MDS
video snippets per cluster decomposed into time, UV- and green-channel stimulus components by
singular value decomposition. For display, spatial components were re-scaled to a symmetric color
scale between -1 (blue) and 1 (red). C. Summary of the functional characteristics for each cluster
(UV-pref: UV-preference, T-freq. pref.: Temporal frequency preference; Surr.: Surround properties;
RF: Receptive Field; +/ ◦ /−: High/medium/low). D. Confusion matrix between MDS clusters and
Baden et al. (2016) types (predicted by a classifier for the mouse RGC dataset; Qiu et al. (2023)).
Annotations in same color belong to the same hierarchical functional type. Elements within rows
were normalized to sum to 1, annotated numbers display the number of neurons in percent. E.
Confusion matrix of the classifier (Qiu et al., 2023) used to predict Baden et al. (2016) types for our
dataset only having access to the same type of information as MDS clustering between Baden et al.
(2016) type labels and predicted type labels on held out test data. Types confused by the classifier
are merged into MDS clusters. Rows normalized (across Baden et al. (2016) types) to sum to 1,
annotations displaying the number of neurons in percent.
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the “OFF suppressed 2” type, but also comprised other types, including both OFF and ON cells.
Similar to “OFF suppressed 2”, cells of “OFF suppressed 1” could be found in most clusters. This
is expected, given that both types likely comprise sub-types with distinct functional properties (see
coverage factor in Baden et al. (2016)).

We further analyzed why most Baden et al. (2016) types mapped to two or more MDS clusters
and why all MDS clusters comprised more than one Baden et al. (2016) type. One hint was that
direction- and orientation selective Baden et al. (2016) types (DS and OS in Fig. 2D) were mixed
into all three major cluster groups (colored in Fig. 2D), suggesting the clustering did not capture
direction selectivity. Consistent with that idea, we found that none of the MDS exhibited significant
lateral motion. This is likely because the used digital twin is limited in capturing direction selectivity
by both architecture (space-time-separable convolution) and training data (sampling bias in optical
flow; Hoefling et al. (2022)). We note that this is a limitation of the predictive model, not of our
procedure. Also, the original Baden et al. (2016) types were constructed with additional information
on direction selectivity of each cell that our MDS clustering did not have access to. The MDS
clustering can therefore not distinguish cells based on their direction selectivity, and instead merged
types with and without direction selectivity when they had otherwise similar functional properties.
To confirm this, we re-created cell type labels for a fairer comparison using a reduced classifier. This
classifier re-labeled cells using only information the MDS clustering also had access to, namely
functional responses to “chirp” stimuli, but not direction selectivity or soma size. We found that
the reduced classifier performed substantially worse (accuracy dropped from 79% to 49% on test
data) and also confused types that were merged by MDS clustering into single clusters (Fig. 2E).
For instance, the reduced classifier confused OFF and ON-OFF types that were mapped to MDS
clusters 2 and 3, the fast ON types which were mapped mostly to the single MDS cluster 4, and
some of the slow ON types mapping to MDS clusters 5 and 6 (Fig. 2D,E). This indicates that
without access to direction selectivity or morphological features (e.g. soma size) the finer Baden
et al. (2016) types cannot be reliably distinguished. This also explains why our MDS clustering
finds fewer clusters.

Robustness. To verify that our clustering algorithm returned consistent results across runs, we
repeated MDS clustering with another random initialization of the stimulus and initial neuron as-
signments into 30 instead of five clusters. Again the algorithm converged to seven clusters, which
exhibited strikingly similar MDS as the run initialized with five clusters (Appendix Fig. 6). The sim-
ilarity of cluster assignments across eleven comparison runs varying in initial number of clusters,
initial neuron assignment, and MDS initialization was also high (median ARI: 0.67), suggesting
MDS clustering is robust across initializations. Further, running MDS clustering for a different dig-
ital twin architecture yielded similar results, suggesting robustness to the specific digital twin model
used (see Appendix A.6 and Fig. 13 for details).
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Figure 3: Accuracy of iden-
tifying MDS clusters under
simulated observational noise
for varying repeats. Presen-
tation time for the full set
of seven MDS. Mean and
standard deviation across ten
simulations shown. MDS
outperform the baseline after
1 min 45 s (9 repeats).

MDS provide time-efficient on-the-fly cell type assignments. As
MDS condense the unique response features of each cell type into
a single, short stimulus, we next asked if they allow us to assign
neurons to types faster than conventional methods. For a fair com-
parison with conventional approaches, we considered the clusters
predicted by the classifier purely trained on the “chirp” responses
(see above) as a baseline. For a comparable assessment between
clusterings, we merged the 17 “conventional” clusters from the
chirp-classifier according to the Baden et al. (2016) hierarchy and
matched them to the seven MDS clusters. The baseline classifier
retrained on this task predicted the correct cluster label with 73.5%
accuracy on a held-out test set of neurons. Recording the required
chirp responses (four stimulus repetitions) and assigning functional
type labels for new neurons requires 2 min 12 s with this baseline
classifier.

We used the digital twin to simulate an experiment in which we
want to obtain the functional type using only MDS. We showed
each MDS video of 1.66 s length (50 frames) to each in-silico neu-
ron and assigned them to the functional type of the MDS that elicits
the highest simulated response. We simulated multiple MDS rep-
etitions to average out trial-to-trial variability. Repeating the MDS
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nine times outperformed the conventional approach in identifying the correct MDS cluster while
saving 20% (27 sec) of experimental time compared to the chirp stimulus (Fig. 3). Note that identi-
fying cell types in an experiment requires only the pre-computed MDS. No digital twin training is
required to use the MDS as finger-printing stimuli.
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Figure 4: MDS clustering on marmoset
RGCs. Cluster averaged digital twin re-
sponse to MDS normalized by mean pre-
dictions across the twin’s training stim-
uli. Elements within a column normal-
ized to highest value. MDS space com-
ponent displayed on symmetric color
scale between −1 (black) and 1 (white).

Marmoset retinal ganglion cells. Next, we demon-
strated that our approach is robust across species and
recording techniques, using a dataset with the spiking
responses of 167 marmoset RGCs to naturalistic videos
recorded with multi-electrode arrays. MDS clustering
yielded four functional clusters (Fig. 4). Even though
the data contained only seven ON cells, the MDS algo-
rithm recovered and even split them into a slow and fast
ON cluster (cluster 3 and 4, respectively). OFF cells
were also grouped into a fast and slow cluster (clus-
ter 1 and 2, respectively). These clusters likely corre-
spond to ON and OFF midget (slow) and parasol (fast)
cells previously described in the primate retina (Field &
Chichilnisky, 2007) and are in good agreement with a
clustering baseline based on the spike-triggered averages
on white noise stimuli (see Appendix A.3 and Fig. 10).

We also verified that repeating MDS clustering with a different seed or initial number of clusters
resulted in the same number of final clusters (Appendix Fig. 9). The similarity of clusters across
nine comparison runs was also high (median ARI: 0.96). Although the number of cells is smaller and
the taxonomy of functional types is less refined for the marmoset retina, the results on this dataset
show that MDS clustering finds meaningful clusters across species and recording techniques.
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Figure 5: MDS clustering on macaque V4 on
held-out test neurons. Cluster averaged digi-
tal twin response to MDS normalized by mean
predictions across the twin’s training stimuli.
Elements within a column normalized to high-
est value. MDS displayed on symmetric color
scale between -1 (white) and 1 (black).

Macaque visual cortex area V4. Finally, we
showed that our approach extends beyond the
retina and also works for brain areas with little
domain knowledge about cell types. For that, we
tested MDS clustering on spiking responses of neu-
rons in macaque area V4, stimulated by gray-scale
images (Willeke et al., 2023). We discarded clus-
ters containing less than six neurons in the test set,
yielding 12 well separated MDS clusters (Fig. 5).
Here, the MDS were individual images, which
showed complex patterns with curvature or texture,
typical for V4 (Bashivan et al., 2019; Willeke et al.,
2023). Interpreting these MDS suggests that V4
might compute such complex features on the cell
type-level. Repeating clustering with a different
seed and ten instead of five initial clusters resulted
in the same number of MDS clusters (Appendix
Fig. 11) with reasonable similarity (ARI: 0.53).
Our results suggest that the MDS algorithm can
also be successful in computationally more com-
plex brain areas such as primate V4.

6 DISCUSSION

We presented a novel clustering algorithm that alternates between assigning neurons into func-
tional clusters and optimizing a most discriminative stimulus (MDS) for each functional cluster.
We empirically validated our algorithm on three datasets across species, visual processing stages
(mouse/marmoset RGCs, macaque V4) and data modalities (gray-scale and multi-channel image and
video stimulation, multi-electrode array recordings and calcium-imaging), and showed that MDS al-
low to identify cell types faster than traditional methods.
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Comparison to other functional clustering methods. Willeke et al. (2023) reported hints towards
functional groups in macaque V4. They optimized a maximally exciting image for each single cell
and clustered these MEIs. In contrast, our algorithm computes MDS capturing unique functional
properties that distinguish clusters of neurons based on their responses. In mouse V1, Ustyuzhaninov
et al. (2022) clustered non-interpretable digital-twin model parameters they assume to represent a
neuron’s function. In contrast, our algorithm clusters directly based on responses to interpretable
MDS, not requiring expert knowledge to extract parameters from the digital twin. Unlike both of
these approaches, we empirically validated our clustering algorithm on data where type labels akin
to biological ground truth exist (Baden et al., 2016). In addition, once the cell types and their MDS
have been established, our approach can identify a neuron’s type in new experiments without the
digital twin, while both other approaches would need to retrain the digital twin. This suggests that
MDS allow for fast online cell typing at recording time, enabling researchers to target a specific cell
type they are interested in for data collection and experimental interventions.

Data-driven and interpretable cell type discovery with MDS. While previous clustering ap-
proaches required domain knowledge to hand-craft fingerprinting stimuli (Farrow & Masland, 2011;
Baden et al., 2016; Goetz et al., 2022), our approach identifies functional cell types by automatically
generating a fingerprinting stimulus: the MDS. Therefore, our approach is particularly advantageous
when domain knowledge is scarce and functional types are yet to be discovered, for example in V1
or – as we demonstrated – in V4: here, without incorporating domain knowledge, our clustering
approach successfully identified plausible clusters.

The resulting MDS facilitate interpretability of a cluster’s function, as it highlights a cluster’s unique
visual feature that distinguishes it from the features processed by other groups. For instance, the
mouse RGC type “ON contrast suppressed” has been a subject of study for some time (Tien et al.,
2015; Baden et al., 2016; Mani & Schwartz, 2017; Tien et al., 2022), but only recently Hoefling et al.
(2022) found that this cell type responds strongly to center color opponency – a property that was
not revealed by previous fingerprint stimuli, but is clearly visible in our MDS. For complex visual
features (e.g. in V4, Fig. 5), describing a cluster’s function in words might be more difficult and
provides an interesting avenue for future work.

Limitations and future work. MDS clustering is applicable for any dataset rich enough to train a
digital twin, which is the case for many recent experimental studies (Yamins et al., 2014; Bashivan
et al., 2019; Lurz et al., 2020; Sinz et al., 2018; Hoefling et al., 2022; Willeke et al., 2022; Tur-
ishcheva et al., 2023; Wang et al., 2023). While a systematic investigation of how the choice of a
specific digital twin model affects downstream results is to date unavailable, our MDS and clusters
were consistent with another digital twin architecture choice (Appendix A.6 and Fig. 13), suggesting
a certain degree of robustness to model details. Another promising direction for future work is to ap-
ply our method to new functional recordings where no comparison clustering exists and to validate
it with transcriptomic data, e.g. by testing experimentally which cells are driven by our MDS and
subsequently identifying their transcriptomic types by PatchSeq (Liu et al., 2020) or spatial tran-
scriptomics (Alon et al., 2021) in the same tissue. While the final judge of the MDS’ faithfulness
would be an in vivo experiment, single cell MEIs generated with the same optimizer and digital
twins as we used were verified in vivo (Willeke et al., 2023) and ex vivo (Hoefling et al., 2022),
suggesting that our results might well generalize to an in vivo setting – similar to other work on in
vivo verification (Bashivan et al., 2019; Walker et al., 2019; Franke et al., 2022; Tong et al., 2023).

Algorithm extensions. ON-OFF RGCs are stimulated by both light increases and decreases. Solely
optimizing a single, short MDS may not effectively capture both properties and thus fails to distin-
guish ON-OFF from pure ON or pure OFF cells. To address this, our method can be expanded to
optimize multiple MDS for each cluster, showing promising initial results (see Appendix A.5 and
Fig. 12). Additionally, identifying “OFF suppressed 2” cells, characterized by their high baseline fir-
ing rate reduced through stimulation, might be improved by searching for a maximally suppressing
stimulus. As currently set up, MDS clustering assumes discrete cell types, and future work could
extend it towards accounting for recently reported continuity within or between cell types (Tasic
et al., 2016; Harris et al., 2018; Tasic et al., 2018; Stanley et al., 2020; Scala et al., 2021).

Conclusions. Our general-purpose functional cell type clustering algorithm and clusters’ most dis-
criminative stimuli could be a useful tool for the neuroscience community and spark further work on
exploring functional groups across the visual system – especially in areas where no fingerprinting
stimuli are available – and help designing experiments previously limited by experiment time.
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REPRODUCIBILITY STATEMENT

We will make our code, seeds, and used Python environment publicly available for reproducibility at
https://github.com/ecker-lab/most-discriminative-stimuli. Furthermore, we provide detailed method
descriptions and parameters in sections Most discriminative stimulus clustering algorithm, Data
and implementation details, and Appendix. For all results we quantified reproducibility of MDS
clustering across runs with varying parameter initializations and we provide according visualizations
in Figs. 6, 9 and 11.
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Matthias Mietsch, Dario A Protti, Fernando Rozenblit, and Tim Gollisch. Diversity of ganglion
cell responses to saccade-like image shifts in the primate retina. Journal of Neuroscience, 43(29):
5319–5339, 2023.

Jianwei Liu, Mengdi Wang, Le Sun, Na Clara Pan, Changjiang Zhang, Junjing Zhang, Zhentao Zuo,
Sheng He, Qian Wu, and Xiaoqun Wang. Integrative analysis of in vivo recording with single-cell
rna-seq data reveals molecular properties of light-sensitive neurons in mouse v1. Protein & cell,
11(6):417–432, 2020.

Konstantin-Klemens Lurz, Mohammad Bashiri, Konstantin Friedrich Willeke, Akshay Kumar Ja-
gadish, Eric Wang, Edgar Y Walker, Santiago Cadena, Taliah Muhammad, Eric Cobos, Andreas
Tolias, et al. Generalization in data-driven models of primary visual cortex. bioRxiv, 2020.

12

http://biorxiv.org/lookup/doi/10.1101/2023.03.13.532473
http://biorxiv.org/lookup/doi/10.1101/2023.03.13.532473
http://www.pnas.org/lookup/doi/10.1073/pnas.1912334117
http://www.pnas.org/lookup/doi/10.1073/pnas.1912334117
http://biorxiv.org/lookup/doi/10.1101/2022.11.30.518492
http://biorxiv.org/lookup/doi/10.1101/2022.11.30.518492
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Published as a conference paper at ICLR 2024

Adam Mani and Gregory W Schwartz. Circuit mechanisms of a retinal ganglion cell with stimulus-
dependent response latency and activation beyond its dendrites. Current Biology, 27(4):471–482,
2017.

Lane McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen Baccus. Deep
learning models of the retinal response to natural scenes. Advances in neural information pro-
cessing systems, 29, 2016.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Dis-
till, 2017. doi: 10.23915/distill.00007. URL https://distill.pub/2017/
feature-visualization.

Paweł A. Pierzchlewicz, Konstantin F. Willeke, Arne F. Nix, Pavithra Elumalai, Kelli Restivo, Tori
Shinn, Cate Nealley, Gabrielle Rodriguez, Saumil Patel, Katrin Franke, Andreas S. Tolias, and
Fabian H. Sinz. Energy guided diffusion for generating neurally exciting images. bioRxiv, 2023.
doi: 10.1101/2023.05.18.541176. URL https://www.biorxiv.org/content/early/
2023/05/20/2023.05.18.541176.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69.
Springer, 2002.

Yongrong Qiu, David A. Klindt, Klaudia P. Szatko, Dominic Gonschorek, Larissa Hoefling, Timm
Schubert, Laura Busse, Matthias Bethge, and Thomas Euler. Efficient coding of natural scenes im-
proves neural system identification. PLOS Computational Biology, 19(4):e1011037, April 2023.
ISSN 1553-7358. doi: 10.1371/journal.pcbi.1011037. URL https://journals.plos.
org/ploscompbiol/article?id=10.1371/journal.pcbi.1011037. Publisher:
Public Library of Science.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-
sarially robust imagenet models transfer better? In ArXiv preprint arXiv:2007.08489, 2020.

Joshua R Sanes and Richard H Masland. The types of retinal ganglion cells: current status and
implications for neuronal classification. Annual review of neuroscience, 38:221–246, 2015.

Federico Scala, Dmitry Kobak, Matteo Bernabucci, Yves Bernaerts, Cathryn René Cadwell, Je-
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A APPENDIX

A.1 SUB-CLUSTER OPTIMIZATION DETAILS

To optimize MDS for sub-cluster candidates, we needed to avoid the trivial case where all neurons
are in one cluster with the same MDS as before splitting. Thus, we first optimized MDS for the sub-
clusters only and reassigned neurons after each stimulus optimization step. Hence, in the beginning
of this optimization, neuron reassignments were done on noisy stimuli to break symmetry. After iter-
ating this procedure for 50 steps, we performed one global optimization step considering all original
clusters and the newly created sub-cluster candidates. To do so, we kept neurons’ assignments to the
clusters and randomly initialized the according MDS. We then optimized the MDS for all clusters
and reassigned neurons based on them. Now, the neuron assignments and MDS accurately reflect
the new optimal clustering state. Then, we evaluated the mean objective across all clusters (⟨Jc⟩c,
Eq. (1)) and kept the new sub-clusters if they improved overall clustering.

A.2 MOUSE RETINA DETAILS

Robustness check. As a simple robustness check of MDS clustering, we ran clustering with 30
instead of 5 initial clusters. The resulting clusters and average responses are visualized in Fig. 6.
This run had a rather high adjusted rand index of 0.87, thus, we asked how similar the result shown
in Fig. 2 would be compared to a typical run. Therefore, out of eleven comparison runs varying in
initial number of clusters, initial neuron assignment, and MDS initialization, we compared to the
run with median adjusted rand index (ARI: 0.67) and found overall good agreement (compare Fig. 7
to Fig. 2).

Response traces. To analyze individual clusters it might be useful to inspect response traces of
neurons. Fig. 8 shows mean responses for each MDS and cluster combination, for which response
traces are grouped by Baden et al. (2016) RGC types.

Digital twin. The digital twin of the mouse retina was an ensemble of five identically structured
convolutional neural networks (CNN) trained to predict inferred firing rates (from calcium imaging)
of RGCs in response to dichromatic natural movies previously published by Hoefling et al. (2022).
In this ensemble, each member consisted of a core module, that was shared between all neurons, and
a neuron specific readout module Klindt et al. (2017). The core was implemented as a CNN with
two convolutional layers, each with 16 features. Both convolutional layers consisted of space-time
separable 3D convolutional kernels, batch normalization layer and an ELU nonlinearity (Clevert
et al., 2015). In the first layer, sixteen 2 × 11 × 11 × 21 (channels × height × width × frames)
kernels were applied as valid convolution; in the second layer, sixteen 16 × 5 × 5 × 11 kernels were
applied with zero padding along the spatial dimensions. The temporal kernels were parameterized as
Fourier series. To account for inter-experimental variability affecting the speed of retinal processing,
the model included a time stretching parameter trained for each recording separately Zhao et al.
(2020). The readout module modeled the spatial receptive field (RF) of each neuron as a 2D isotropic
Gaussian, parameterized as N (µx, µy;σ). The model’s output, i.e. the predicted RGC responses,
were implemented as an affine function of the feature maps of the core module, weighted by the
spatial RF from the readout module, followed by a softplus nonlinearity. During inference, predicted
responses were averaged over all five members of the ensemble.

Digital twin training. Each member was initialized with a different seed and trained independently
using the Adam optimizer (Kingma & Ba, 2015) minimizing a Poisson loss,

LPoisson =

N∑
n=1

(
r̂(n) − r(n) ln r̂(n)

)
, (2)

where N is the number of neurons, and r(n) and r̂(n) are the measured and predicted firing rate of
a neuron n for an input of duration of t = 50 frames, respectively. The batch size was set to 32 and
a chunk size (number of frames for each element in the batch) to 50.

The training schedule was based on Lurz et al. (2020) and used early stopping (Prechelt, 2002) based
on the validation set, consisting of 15 out of the 108 movie clips. If the mean correlation between
predicted and measured neuronal responses failed to increase on the validation set during any five
consecutive passes through the entire training set (epochs), the training was stopped and the model
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Figure 6: Mouse retina results of clustering run with 30 instead of 5 initial clusters with another
random initialization of stimulus and neuron assignments. The final number of clusters is lower
than 30, as empty clusters are removed while running MDS clustering.
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Figure 7: Results of a typical clustering run (run with median ARI compared to results in Fig. 2).
Results on held-out test neurons and empirical comparison to Baden et al. (2016) types shown. A.
Cluster averaged digital twin response to the optimized MDS. Elements within a column normalized
to highest value. B. Confusion matrix between neuron’s MDS cluster assignment in Fig. 2 and the
most typical comparison run. C. Confusion matrix between MDS clusters and Baden et al. (2016)
types. Elements within rows were normalized to sum to 1, annotated numbers display the number
of neurons in percent.
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checkpoint performing best on the validation set was restored. This process of early stopping and
weight restoring was repeated four times, each time reducing the initial learning rate of 0.01 by a
learning rate decay factor of 0.3.

A.3 MARMOSET RETINA DETAILS

Robustness check. As a simple robustness check of MDS clustering, we compared to a typical
comparison run (the one with mean ARI compared to Fig. 4 selected across nine comparison runs
varying in the number of initial clusters, intial cluster assignment, and MDS initialization). The
resulting clusters and average responses are visualized in Fig. 9.
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Figure 9: Marmoset retina results of typical clustering run with five instead of ten initial clusters
with a different random initialization of stimulus and neuron assignments. Responses normalized
by mean of digital twin predictions across the twin’s training set.

Digital twin. The model trained to predict marmoset RGC responses was a CNN with a core and
readout structure similar to Hoefling et al. (2022). The core consisted of 4 layers with space-time
separated kernels of shape 21 × 21 pixels (height × width) for the spatial kernel and 27 frames for
the temporal kernel in the first layer. In the following layers, the spatial kernel was of 5 × 5 pixels
size and the temporal kernel covered 5 frames. The number of channels increased from 8 in the first
layer to 16, 32 and 64 in subsequent layers. The kernels of the first layer were smoothed adding a
2D Laplace filter in the spatial dimensions and a 1D Laplace in the temporal dimensions as a prior.
In contrast to Hoefling et al. (2022) temporal kernels were not parameterized as Fourier series. In
the readout, each cell’s receptive field (RF) was modeled as an isotropic Gaussian. The response
function was then modeled as an affine function of the core’s weighted feature maps at the RF
positions, followed by a softplus. The feature map weight vector was regularized using L1-norm to
enforce sparsity.

Digital twin training. We trained the CNN using the Adam optimizer (Kingma & Ba, 2015) op-
timizing the Poisson loss (Eq. (2)) on 16 out of 20 available 5 minute trials. The batch size was
16 and we used early stopping on the correlation between predicted and recorded responses on the
validation set which consisted of the 4 remaining trials. We reduced the learning rate by a factor

20



Published as a conference paper at ICLR 2024

1
[135]

2
[7]

3
[4]

4
[3]

ST
A-
ba

se
d
cl
us
te
rs

[#
ne

ur
on

s]

MDS clusters
[# neurons]

100 0 0 0

95 0 5 0

33 67 0 0

89 11 0 0

100 0 0 0

77 23 0 0

80 20 0 0

0 0 0 100

0 0 0 100

Confusion with
STA-based clusters

1 [45]

2 [86]

3 [3]

4 [9]

5 [3]

6 [13]

7 [5]

8 [1]

9 [2]

Figure 10: Confusion matrix to STA-based clustering provided with the marmoset data. Elements
within rows normalized to sum to 1, annotated number of RGCs in percent.

of 0.1 each time the validation correlation did not improve for 5 epochs. The initial learning rate
was 0.008 and the minimal learning rate we allowed was 8 · 10−5. We stopped training early if the
validation correlation did not improve for 50 epochs.

MDS optimization. To optimize the MDS on this dataset we used an ensemble of 5 of the above
described models varying in their initialization before model training. We also tailored a few of
the parameters of MDS optimization to this dataset, optimizing 39 frames × (80 × 90) pixels one-
channel MDS videos (85 Hz frame-rate) with a learning rate of 4 and chose ten initial clusters.
Unlike for the mouse retina data, here we fed the predicted activity of only the last time-bin to
the discriminative objective function (Eq. (1)). The MDS input was constraint with an L2-norm
of 3.5 and the pixel values were clipped to stay within the range of -1 and 1. We optimized the
stimulus for a maximum of 10,000 optimization steps, and for 10 steps during splitting, or until
an exponential moving average of the objective (Eq. (1)) did not improve for 100 optimization
steps. During splitting, we created two new sub-cluster candidates and terminated splitting after 100
iterations. As neuron’s responses are not normalized in this data, we post-hoc normalized digital
twin predictions such that for each neuron, predictions were standard-normal distributed across the
digital twin’s training stimuli, ensuring single cell responses do not dominate the within-cluster
mean.

STA-based cell clustering. To be able to compare our MDS clustering of marmoset RGCs to an
alternative clustering approach, we determined each cell’s RF size as the area within the 1.5 standard
deviation contour of a Gaussian fitted to the cell’s spatial component of the spike triggered average
(STA) measured under spatio-temporal white-noise stimulation. The STA’s temporal component
and the RF size were taken as a feature vector for each cell. The feature vectors were normalized
and their dimensionality was reduced using Principal Component Analysis (PCA). We selected as
many principal components as necessary to explain 90% of the variance. We then used KMeans++
(Arthur & Vassilvitskii, 2007) on the reduced-dimensionality feature vectors to determine 4-6 initial
clusters. These clusters were then manually curated to ensure each cluster had similarly-sized cells
and tiled the retinal surface, resulting in a total of nine clusters. However, the taxonomy of functional
types in the marmoset is less understood compared to the mouse and a concise interpretation of these
clusters is not yet established, so they cannot be treated as ground truth. Comparing these clusters
to our MDS approach yielded overall good agreement (Fig. 10).

Data recording. All marmoset data were obtained by recording RGC spikes extracellularly from
isolated retina placed on a MEA, as explained in Krüppel et al. (2023). Marmoset retinal tis-
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sue was obtained immediately after euthanasia from animals used by other researchers, in ac-
cordance with national and institutional guidelines and as approved by the institutional animal
care committee of the German Primate Center and by the responsible regional government office
(Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, permit number
33.19-42502-04-20/3458).

A.4 MACAQUE VISUAL AREA V4 DETAILS

Robustness check. As a simple robustness check of MDS clustering, we ran clustering with 10
instead of 5 initial clusters. The resulting clusters and average responses are visualized in Fig. 11.
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Figure 11: Macaque V4 results of clustering run with 10 instead of 5 initial clusters with another
random initialization of stimulus and neuron assignments. Responses normalized by mean of digital
twin predictions across the twin’s training set.

Digital twin. The digital twin of macaque V4 neurons, published by Willeke et al. (2023), again
followed the core-readout structure. The core of the model consisted of a ResNet50 (He et al., 2016)
which was adversarially trained on ImageNet (Deng et al., 2009) to have robust visual representa-
tions (Salman et al., 2020). In the digital twin’s core, the first residual block of layer 3 (layer-3.0)
of the ResNet trained with image perturbation constraint ϵ = 0.1 was selected to read out from, be-
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cause it yielded the highest predictive performance, compared to all other ResNet models and layers.
The corresponding size of the output feature map was 1024. The model used batch-normalization
(Ioffe & Szegedy, 2015). Lastly, the resulting tensor was rectified with a ReLU unit to obtain the
final nonlinear feature space. To predict the response of a single neuron from the feature space,
a Gaussian readout was used (Lurz et al., 2020). For each neuron n, this readout learned spatial
coordinates of the position of the receptive field on the output tensor and extracted a feature vector
of length channels at this location. This extracted feature vector was then used in a linear-nonlinear
model to predict the neuronal response. To this end, an affine function of the resulting feature vector
at the chosen location was computed, followed by a rectifying nonlinearity, chosen to be an ELU
(Clevert et al., 2015) offset by one (ELU(x)+1) to make responses positive. The weight vector was
L1-regularized during training.

Digital twin training. The model was trained to minimize the Poisson loss (Eq. (2)) summed across
neurons and computed between observed spike counts and the models’ predicted spike counts with
an additional L1 regularization of the readout parameters. Models were trained on the full dataset of
n = 100 recording sessions with n = 1244 neurons and an image size of 100 by 100 pixels. After
each epoch, the Poisson loss was computed on the entire validation set. Early stopping was used as
follows: If the validation loss did not improve for five consecutive epochs, we restored the weights
with the lowest Poisson loss on the validation set and down-scaled the learning rate by a factor of 0.3
before training continued. After four early stopping steps were completed, the training was stopped.

MDS optimization. We tailored a few MDS optimization parameters to the V4 dataset, optimizing
single gray-scale (100× 100) pixel images with a learning rate of 20, before each optimization step
we smoothed image gradients by convolving a Gaussian filter with standard deviation 2 and after
each optimization step we normalized the image to a L2-norm of 35. We optimized MDS for 666
steps, and for 1 step during splitting. We stopped MDS optimization early if the exponential moving
average of the objective (Eq. (1)) did not improve for 100 optimization steps. Furthermore, during
splitting we created two new sub-cluster candidates, and terminated splitting after 2 iterations when
initializing with 10 clusters and 3 iterations when initializing with 5 clusters (theoretically allowing
for the creation of 40 clusters each). As neurons’ responses are not normalized in this data, we post-
hoc normalized digital twin predictions such that for each neuron predictions were standard-normal
distributed across the digital twin’s training stimuli, ensuring single cell responses do not dominate
the within-cluster mean.

A.5 EXTENSION TO TWO MDS PER CLUSTER

To investigate if our method could be extended to increase cluster granularity by optimizing multiple
stimuli, we performed a proof-of-concept experiment: we optimized two MDS per cluster. The
responses to both stimuli need to be aggregated before feeding them to the objective (Eq. (1)).
Here, we chose the product of the responses across stimuli, a soft and differentiable implementation
of the “logical and” operation that requires neurons to respond to both stimuli. Initializing with
five randomly assigned clusters for the mouse retina, we found a similar result as when optimizing
only one stimulus, with a crucial difference: cluster three now showed two different MDS with a
sign-flipped temporal UV dependence (Fig. 12A). Only ON-OFF cells would respond to both of
these stimuli, and consequently the neurons of this new cluster were mainly associated with ON-
OFF Baden et al. (2016) types (Fig. 12B). Interestingly, the MDS also showed orientation-selective
features, and hence the according cluster also contained orientation-selective Baden et al. (2016)
types.

While this proof-of-concept is very promising, the extension to multiple stimuli raises a number of
new questions. For instance, there are several ways of aggregating responses from multiple stimuli
(for example taking the mean, the minimum, the maximum, etc.). Further, optimizing more than
two stimuli could be beneficial, and adding a diversity term between stimuli (Cadena et al., 2018;
Ding et al., 2023) could improve clustering. Such extensive expansions are beyond the scope of
the current paper, and we propose them as a fruitful avenue to further improve optimization-based
functional clustering.
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Figure 12: Proof of concept of clustering based on two MDS on mouse RGCs. Results on held-out
test neurons shown. A. Cluster averaged digital twin response to the optimized MDS. To obtain
the response for a cell, the product of the responses to each individual MDS is computed. Elements
within a column normalized to highest value. B. Confusion matrix between MDS clusters and Baden
et al. (2016) types. Elements within rows were normalized to sum to 1, annotated numbers display
the number of neurons in percent.
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Figure 13: Most discriminative stimuli clustering on mouse RGCs for another digital twin model
architecture. Results on held-out test neurons and empirical comparison to Baden et al. (2016) types
shown. A. Cluster averaged digital twin response to the optimized MDS. Elements within a column
normalized to highest value. B. Confusion matrix between MDS clusters and Baden et al. (2016)
types. Elements within rows were normalized to sum to 1, annotated numbers display the number
of neurons in percent. C. Confusion matrix between the MDS cluster assignments for the modified
digital twin architecture and MDS cluster assignments reported for the original digital twin used for
Fig. 2. Elements within rows were normalized to sum to 1, annotated numbers display the number
of neurons in percent.
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Figure 14: Mouse retina clustering results vs. objective temperature. For each temperature value,
we optimized three runs varying in stimulus and cluster assignment initialization.

A.6 RESULTS FOR ANOTHER MOUSE RETINA DIGITAL TWIN ARCHITECTURE

To investigate how the choice of a digital twin architecture affects the clustering results, we modified
the mouse retina digital twin model (Appendix A.2) by adding a third layer and varying the size
of the convolutional kernels. Specifically, we changed the kernels of the second layer to sixteen
8 × 3 × 3 × 9 (channels × height × width × frames) kernels, and introduced a third layer of
sixteen 16 × 3 × 3 × 3 kernels, both applied with zero padding along the spatial dimensions.
We trained five of these digital twins initialized with different random seeds and used the same
training schedule as Hoefling et al. (2022) (see our Appendix A.2 for details). We applied our MDS
clustering to this ensemble of digital twins. The resulting clusters and MDS looked similar for both
digital twin neural network architectures (compare Fig. 2 to Fig. 13), suggesting that while details
may differ across digital twin models, the overall result remains the same.

A.7 ANALYSIS OF TEMPERATURE HYPER-PARAMETER

We asked how the choice of a specific temperature would affect MDS clustering. For the mouse
retina, we systematically swept temperatures logarithmically and ran MDS clustering for three dif-
ferent initializations. We found a broad, flat objective optimum for temperature values between 0.8
and 12.8 with a consistent number of five to seven resulting clusters (Fig. 14). In general, all cluster-
ing algorithms will slightly over- or under-cluster, and to determine a precise number of cell types,
functional clusters need to be verified by comparison with morphological, genetic, or transcriptomic
data. The analyses in our paper are based on temperature 1.6 with the highest objective value, re-
sulting in seven clusters that we successfully matched to an existing hierarchy of cell types (Baden
et al., 2016).

For lower or higher temperatures, the objective value and the number of clusters we found decreased,
indicating worse clustering performance. This results directly from the structure of our softmax
objective function (Eq. (1)). For high temperatures, τ ≫ r̄k(xc), k = 1, 2, ..., c, ..., the inputs to the
objective r̄k(xc)/τ are dominated by the temperature, τ . Hence, the objective becomes insensitive
to stimulus-dependent inputs r̄k(xc), and clustering performance decreases. For small temperatures,
τ ≪ r̄k(xc), the inputs will be strongly amplified and the response of a single cluster r̄k∗(xc) will
dominate the objective, making it insensitive to the inputs of all other clusters r̄k ̸=k∗(xc). The
resulting MDS will then not suppress all clusters. In conclusion, a good temperature balances these
two undesirable regimes.
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