
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COPS: EMPOWERING LLM AGENTS WITH PROVABLE
CROSS-TASK EXPERIENCE SHARING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequential reasoning in agent systems has been significantly advanced by large
language models (LLMs), yet existing approaches face limitations. Reflection-
driven reasoning relies solely on knowledge in pretrained models, limiting perfor-
mance in novel scenarios, while experience-assisted reasoning often depends on
external experiences and lacks clear principles for selecting representative experi-
ences. We address these limitations by proposing COPS (Cross-Task Experience
Sharing), a generalizable algorithm that enhances sequential reasoning by cross-
task experience sharing and selection. In detail, COPS leverages agents’ experi-
ences on previous tasks, selecting distribution-matched experiences via a provable
pessimism-based strategy to maximize utility while minimizing risks from distri-
bution shifts. Extensive experimental results on benchmarks like Alfworld, Web-
shop, and HotPotQA demonstrate that COPS consistently outperforms state-of-
the-art baselines, with superior sample efficiency suitable for resource-constrained
scenarios. Theoretically, we show that the performance of our algorithm depends
on both the quality of the pretrained LLM and the matching between the agent’s
task-dependent trial distribution and that generated by the LLM. Our work bridges
the gap between existing sequential reasoning paradigms and validates the effec-
tiveness of leveraging cross-task experiences, shedding light on the potential to
improve agents’ generalization and adaptability across diverse tasks. Our codes
are released at this link.

1 INTRODUCTION

Burgeoning agent systems driven by advanced large language models (LLMs, (Devlin et al., 2019;
Brown et al., 2020; OpenAI, 2023; Hu et al., 2024a)) have demonstrated remarkable capabilities in
solving complex tasks through sequential reasoning (Qin et al., 2024; Hao et al., 2023; Huang et al.,
2024; Chen et al., 2024b;a; Li et al., 2023a). These agent systems employ two typical sequential
reasoning paradigms: reflection-driven reasoning and experience-assisted reasoning. Reflection-
driven reasoning leverages a model’s internal capabilities through methods such as reflection (Shinn
et al., 2024), long-term rollouts (Zhou et al., 2023), or chain-of-thought (CoT) reasoning (Wei et al.,
2022). While this approach capitalizes on the knowledge within the pre-trained model, it faces
notable limitations. Specifically, relying solely on existing knowledge in the pre-trained model to
generate rationales restricts the model’s performance when encountering novel scenarios. Moreover,
there is an increased risk of hallucinations, where internal reasoning may lead to plausible but in-
correct responses (Huang et al., 2023). These challenges highlight the need for integrating external
experiences to enhance the agent’s sequential reasoning capabilities.

In contrast, experience-assisted sequential reasoning utilizes retrieval-based methods that enable the
agent to interact with a memory bank of experiences, allowing the model to overcome knowledge
cutoffs, personalize responses, and reduce hallucinations. However, these experiences are often
manually curated or sourced from expert models (Raparthy et al., 2023), which is resource-intensive
and poses scalability issues. Additionally, experience-assisted reasoning often lacks clear principles
for selecting representative examples (Kagaya et al., 2024), potentially underutilizing the value of
past experiences. These limitations bring us to a critical research question:

Can agent systems enhance sequential reasoning by sharing and selecting cross-task experiences?

1

https://anonymous.4open.science/r/AlphaMemory-05CA

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

go to shelf 6

Decision Environment

!

You arrive at loc 4. On the
shelf 6, you see a vase 2.

Feedback query

experience

put vase 2 in/
on safe 1

You won!

Decision

Feedback

You are in the middle of a room. Looking quickly around you, you see a drawer 2, a shelf 5, a drawer 1, a shelf 4, a sidetable 1, a
drawer 5, a shelf 6, a shelf 1, a shelf 9, a cabinet 2, a sofa 1, a cabinet 1, a shelf 3, a cabinet 3, a drawer 3, a shelf 11, a shelf 2, a
shelf 10, a dresser 1, a shelf 12, a garbagecan 1, a armchair 1, a cabinet 4, a shelf 7, a shelf 8, a safe 1, and a drawer 4. Your task
is to: put some vase in safe.

Others
Agent Agent

Memory
Bank

CoPS

Figure 1: A brief illustration of COPS, which fully leverages agents’ cross-task experiences to en-
hance sequential reasoning by sharing and selecting distribution-matched experiences from previous
task trajectories.

To address this question, we propose COPS (Cross-Task Experience Sharing), a theoretically
grounded algorithm that empowers agent systems through cross-task experience sharing and selec-
tion. COPS demonstrates its generalizability by working effectively in both settings: utilizing fully
external experiences in the offline setting and leveraging completely self-derived experiences in the
online setting. By utilizing representative cross-task experiences, COPS enables agents to improve
performance on new, complex sequential reasoning tasks. Our key contributions are summarized as
follows:

• We introduce COPS, a method that fully leverages agents’ cross-task experiences to enhance
sequential reasoning by selecting distribution-matched experiences from previous task trajecto-
ries. Central to our approach is a theoretically grounded experience selection strategy based on
the pessimism principle, which aims to maximize the utility of successful, representative experi-
ences while minimizing risks associated with distribution shifts from out-of-distribution samples.
Notably, COPS is agnostic to the agent’s base model, task type, experience sources, and imple-
mentation framework, making it easy-to-use and generalizable across various settings.

• Experimentally, we validate COPS on key benchmarks such as Alfworld (Shridhar et al., 2020),
Webshop (Yao et al., 2022a), and HotPotQA (Yang et al., 2018). COPS consistently outper-
forms state-of-the-art experience-assisted reasoning approaches like RAP (Kagaya et al., 2024)
and reflection-driven reasoning methods, like Reflexion (Shinn et al., 2024) and LATS (Zhou
et al., 2023). Moreover, COPS demonstrates superior sample efficiency compared to resource-
intensive methods like LATS, making it highly suitable for resource-constrained scenarios. These
results showcase COPS’s effectiveness in practical applications.

• Theoretically, we show that in both offline and online settings, the performance of our pessimism-
based algorithm depends on both the quality of the pre-trained LLM and the matching between the
cross-task experience distribution decided by the trials selected by the agent, and a task-dependent
experience distribution denoted by the LLM. Our findings shed light on general strategies for
designing efficient experience sharing and selction algorithms and offer a comprehensive under-
standing of COPS’s effectiveness across different scenarios.

Notations We denote by [n] the set {1, . . . , n}. For two positive sequences {an} and {bn} with
n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn
holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that
an ≥ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We
use (xi)

n
i=1 to denote sequence (x1, ..., xn), and we use {xi}ni=1 to denote the set {x1, ..., xn}.

We use DH(p, q) =
√

1/2 ·
∫
(
√
p−√q)2 to denote the Hellinger distance. We use DTV(p, q) =

1/2 ·
∫
|p − q| to denote the Total variation distance. We use χ2(p, q) =

∫
p2/q − 1 to denote

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 COPS: Cross-Task Experience Sharing

Require: Language model LLM(·|·), memory bank D = {τ1, . . . , τn}, decoder Dec, distance met-
ric d, memory size k, maximum sequence length H .

1: Receive initial state s1, receive state-sampled experience τs1 through decoder τs1 ∼ Dec(·|s1).

2: Set the probability p̂ ∈ ∆(D) as in (2.3), which approximately maximizes the following:

p̂ = argmax
p∈∆(D)

Eτ∼p[r(τ)− d(τ, τ s1)]. (2.1)

3: Repeatedly retrieve trials τ1, . . . , τk ∼ p̂.
4: Concate τ1, . . . , τk into one trajectory T = τ1| . . . |τk, set h← 1.
5: while NOT SUCCESS and h < H do
6: Obtain action ah ∼ LLM(·|T , sh), set sh+1 ← sh|ah, h← h+ 1.
7: end while

the chi-square distance. For two sentences a and b, we use a|b to denote the sentence formed by
concatenating a and b.

2 METHODOLOGY

2.1 PRELIMINARY

We consider a sequential decision-making scenario, consisting of a task space M, a state space S,
and an action space A. The state s ∈ S is defined as a descriptive sentence representing the history
of the current task. For example: “You are in the middle of a room. Please find a path to reach
the apple.” The action a ∈ A is a solution to the task, such as: “Move right. The apple is on the
table.” The agent interacts with the environment through trials. At the beginning of each trial, a task
M is randomly drawn from the task space, M ∼ PM. The agent then observes an initial state s1,
sampled from the initial state distribution, s1 ∼ PM

0 . At each step h, the agent makes a decision
ah based on the current state sh, and the next state is updated as sh+1 = sh|ah. The agent either
successfully completes the task or continues generating actions until reaching the maximum number
of interactions H between the agent and the environment. We define an experience τ as a complete
trial, i.e., τ = sh, where h ≤ H is the final step of the current trial. The reward r(sh) denotes how
effectively the experience solves the task, with 0 ≤ r(sh) ≤ 1.

In this work, we assume access to a large language model (LLM) to assist in decision-making. We
represent the LLM as LLM(a|·), a conditional distribution of actions given the input sequence.

2.2 PROPOSED METHOD

We introduce our proposed method, COPS, based on distribution matching. COPS operates on a
trial-wise basis, making it suitable for both the offline setting, where the agent has access to an exter-
nal static dataset containing experiences, and the online setting, where the agent gathers experiences
through interactions with the environment. Suppose our agent is at the start of a trial with an initial
state s1 ∼ PM

0 . We introduce the key components of COPS as follows.

Memory Bank The agent has access to a memory bank D containing experiences, either from a
pre-collected dataset (offline) or from previous experiences (online). We do not impose restrictions
on D, meaning that experiences in D exhibit great diversity. Specifically, an experience τ ∈ D may
correspond to different tasks M or to varying solution strategies for the same task. Our goal is to
develop a strategy for retrieving experiences from D that assist in decision-making for the current
task.

Cross-Task Experience Sharing COPS utilizes an external module called the decoder, denoted
as Dec in Line 1. In general, the decoder outputs a task-dependent distribution of experiences
conditioned on the initial state s1, reflecting how the LLM would solve the task M associated with
s1 without explicit instructions. With the decoder’s help, the agent’s goal is to find a probability
distribution p̂ over all experiences in D that satisfies:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

p̂ = argmax
p∈∆(D)

Eτ∼p[r(τ)]− d(p, Dec(·|s1)), (2.2)

where d is a metric over distributions. Intuitively, (2.2) is similar to the pessimism principle, com-
monly used in offline RL literature (Jin et al., 2021). The goal of p̂ is to maximize the expected
reward while keeping the distribution close to the one decoded by Dec. Importantly, p̂ supports the
cross-task setting, as it does not restrict its support to experiences from the same task as s1. For a
given in-context memory size k, COPS repeatedly samples experiences τ1, . . . , τk from p̂, as shown
in Line 3.

Execution Planning Let T = τ1| . . . |τk represent the experience collection containing τ1, . . . , τk.
Starting from the initial state s1, the agent executes actions step-by-step, where each action ah is
drawn from the LLM’s distribution, conditioned on both the experience collection and the current
state:

ah ∼ LLM(·|T , sh).
In the online setting, after completing a trial, the agent updates the memory bank D by adding the
new experience for future use.

Implementation Details Here we discuss several implementation details for COPS. First, in prac-
tice, directly computing the distance d(p, Dec(·|s1)) between distributions in (2.2) is computation-
ally intractable. Therefore, we use an empirical approximation to translate the distance between
distributions into the distance between experiences drawn from those distributions, as shown in
(2.1). Second, we specify the choice of Dec. The decoder outputs an experience τs1 from D that
starts with the same initial state s1. If multiple such experiences exist, we select the most recent
one. This τs1 naturally reflects the behavior of the LLM for solving the task starting from s1 with-
out intervention. Third, we discuss how to approximately solve (2.1) since enumerating all possible
distributions in ∆(D) is computationally inefficient. Specifically, we define the distance function d
and approximately solve p̂ as follows:

d(τ, τ ′) := c · cos(e(τ), e(τ ′)), p̂(τ) ∝ r(τ) · exp(−d(τ, τ s1)), (2.3)

where c ≥ 0 is a hyperparameter, “cos” denotes the cosine function, and e is an embedding function
that maps a language sentence to a high-dimensional Euclidean space. In practice, we use e as a
language embedding model (e.g., gte-Qwen2 7b (Li et al., 2023b)). This approach favors select-
ing successful experiences from D with probabilities proportional to the inverse distance from the
current initial state s1. The hyperparameter c in (2.3) controls the influence of relative distances:
when c = 0, the method uniformly samples successful experiences from D, and as c → ∞, it
deterministically selects the experience closest to τs1 .

3 EXPERIMENTS SETUP

In this section, we present our experimental study evaluating the practical performance of COPS
on real-world LLMs, specifically the Llama 3.1 models (Dubey et al., 2024). Our results show that
COPS achieves state-of-the-art (SOTA) performance in both task success rate and sample efficiency,
surpassing existing baselines to the best of our knowledge. A detailed description of our prompt for-
mulation is provided in Appendix L. Notably, COPS is both simple to implement and generalizable
across different environments: for each trial, the selected experiences are straightforwardly added to
the prompts, requiring no manual modifications.

This prompting strategy offers two distinct advantages: first, it significantly boosts sequential rea-
soning performance by incorporating cross-task experiences, outperforming reflection-driven meth-
ods like Reflexion. Second, the prompts across trials share a substantial prefix, which maximizes the
effectiveness of prefix-caching mechanisms in modern LLM-serving systems (Zheng et al., 2023),
leading to significant efficiency improvements over RAP (Kagaya et al., 2024).

Benchmarks We evaluate our algorithms on three representative benchmarks: Alfworld (Shridhar
et al., 2020), Webshop (Yao et al., 2022a), and HotPotQA (Yang et al., 2018). In these benchmarks,
agents strive to solve problems in limited number of trials, enabling cross-trial and cross-task expe-
rience sharing. In Alfworld, agents are provided with a specific task description within a simulated
household environment, interacting through predefined actions and receiving feedback in the form

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of textual descriptions. In Webshop, the agent must locate a product that matches user specifications
from a catalog of over one million items, interacting with the HTML page and search engine while
receiving limited product information per trial. In HotPotQA, the agent answers complex questions
requiring specific knowledge, using Wikipedia to retrieve relevant articles. In all benchmarks, the
reward function r(τ) is defined as 1 if the agent successfully completes the task and 0 otherwise.

LLM Selection We conduct our entire experiment with the widely-used Llama 3.1 series of models
(Dubey et al., 2024), in consideration of their superior benchmark performance and the sustainability
of open-weight LLM ecosystems. Specifically, our experiments are conducted with Llama 3.1 8b
Instruct and Llama 3.1 70b Instruct on NVIDIA A6000 and A100 GPUs. We use gte-Qwen2 7b
Instruct (Li et al., 2023b) as our embedding model. We use SGLang (Zheng et al., 2023) as our
LLM-serving engine for its SOTA serving performance and prefix-caching mechanism.

Baselines We compare COPS with three representative baselines: Reflexion (Shinn et al., 2024),
RAP (Kagaya et al., 2024), and LATS (Zhou et al., 2023). In Reflexion, the agent try to solve
the task in each environment over multiple trials until it succeeds. After each failed attempt, the
LLM agent reflects on its unsuccessful trajectory and saves this reflection in its memory. For each
subsequent trial, the agent is provided with up to three recent reflections from the same task. In
RAP, at each stage within a trial, the agent is presented with the top-k search results of trajectory
fragments as in-context demonstrations. In LATS, the agent utilizes a tree-structured search to
explore multiple reasoning and action rationales at each trial. When it encounters failed rationales,
the agent generates reflections on its mistakes and integrates these insights into its decision-making
process for future trials.

4 RESULTS AND ANALYSIS

In this section, we demonstrate that COPS outperforms all baselines across all benchmarks and
model sizes, considering both sample efficiency and task success rate. Detailed performance illus-
trations over multiple trials are presented in Figure 2.

Table 1: Performance comparison of Reflex-
ion, RAP, and COPS on Alfworld benchmark
using Llama3.1 8b and 70b models.

Algorithm Performance
Llama3.1 8b Llama3.1 70b

Reflexion1 86 94
RAP 70 93

COPS 94 100

Alfworld Benchmark Table 2 and Figures 2(a),
2(d) illustrate the comparison between COPS, Re-
flexion, and RAP on the Alfworld benchmark.
The values represent the success rate after 10 tri-
als across 134 tasks. When using the smaller
Llama 3.1 8b model, COPS reaches a success
rate of 94%, significantly surpassing both Reflex-
ion (86%) and RAP (70%). This result is partic-
ularly noteworthy because Reflexion requires the
much larger Llama 3.1 70b model to achieve sim-
ilar performance, highlighting superior effective-
ness of COPS. This demonstrates COPS’s ability
to achieve state-of-the-art performance even with limited computational resources and less capable
models, offering a clear advantage over other algorithms. Furthermore, when scaling to the larger
Llama 3.1 70b model, COPS achieves a perfect success rate of 100%. These results emphasize that
COPS scales effectively, consistently outperforming the baselines across model sizes. Although
RAP also leverages an in-context demonstrations retrieval mechanism, it lacks an effective expe-
riences selection algorithm, thus noticeably underperforms COPS. Additionally, it is important to
note that RAP manually splits the agent’s planning trajectory into multiple stages for each trial, and
these split methods are specific to each benchmark and must be manually tailored. This signifi-
cantly increases implementation complexity and introduces scalability issues. In contrast, COPS
efficiently reuses successful experiences by directly placing them in the prompts, without requir-
ing benchmark-specific modifications, making it a more practical and flexible solution. As a result,
COPS not only surpasses the baselines in performance but also offers out-of-the-box usability by
eliminating the need for manual intervention.

1The original codebase of Reflexion struggles to perform on most tasks with the smaller Llama3.1 8b model.
This is primarily because the model tends to repeat the same action, leading to task failure. To mitigate this,
we introduced a resampling mechanism to enhance Reflexion performance, which activates when the model
begins to repeat actions. This modification significantly improved Reflexion’s performance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Webshop Benchmark2 Table 2 and Figures 2(b), 2(e) compare the performance of COPS with all
baseline algorithms on the Webshop benchmark, measured in terms of success rate. The values
indicate the success rate over 50 products, with each algorithm evaluated through 10 trials per prod-
uct. For the smaller Llama 3.1 8b model, COPS achieves a success rate of 50%, outperforming
the next best competitor, RAP, by a substantial absolute improvement of 8%. When scaling to the
larger Llama 3.1 70b model, the performance gain of COPS becomes even more pronounced, with
a success rate of 56%. This marks a 14% absolute improvement over RAP.

Table 2: Performance comparison of Reflex-
ion, RAP, LATS, and COPS on Webshop
benchmark using Llama3.1 8b and 70b mod-
els.

Algorithm Performance
Llama3.1 8b Llama3.1 70b

Reflexion 30 30
RAP 42 42
LATS 24 32
COPS 50 56

To ensure a fair comparison across the baselines,
we modified the LATS baseline by reducing the
width of the search tree and limiting the number
of trajectory iterations. This adjustment ensures
that the running time spent on each baseline is
approximately equal. Even with these changes,
LATS still exhibits significantly lower sample ef-
ficiency. Specifically, the total number of tokens
generated by Llama 3.1 8b in LATS (1,555,365 to-
kens) is nearly five times greater than that in COPS
(314,336 tokens). Further details can be found in
Table 4 in Appendix C. This discrepancy in token
usage highlights the inefficiency of current search-
tree-based algorithms. In contrast, COPS demon-
strates much better efficiency and performance under the same inference constraints.

Table 3: Performance comparison of Reflex-
ion, LATS, and COPS on HotPotQA bench-
mark using Llama3.1 8b and 70b models.

Algorithm Performance
Llama3.1 8b Llama3.1 70b

Reflexion 56 61
LATS 55 64
COPS 63 65

HotPotQA Benchmark Table 3 and Figures 2(c),
2(f) illustrate the comparison between COPS, Re-
flexion, and LATS on the HotPotQA benchmark,
conducted on 100 question-answering (QA) tasks.
The values in the table represent the success rates,
with each algorithm being tested over 10 trials.
As evidenced by the results, COPS consistently
achieves superior performance relative to both Re-
flexion and LATS across all model sizes. The ad-
vantage of COPS is particularly evident when us-
ing the smaller Llama 3.1 8b model, where COPS
achieves a success rate of 63%, outperforming Re-
flexion and LATS by substantial absolute improvements of 7% and 8%, respectively. Moreover,
even when scaled up to the larger Llama 3.1 70b model, COPS continues to gain stronger per-
formance. In this setting, COPS reaches a success rate of 65%, surpassing Reflexion by 4% and
LATS by 1%. Note that both Reflexion and LATS baselines demonstrate a significant performance
gap when shifting from smaller to larger model, while the results for COPS is relatively consistent
and maintains the performance edge throughout different sizes of models. This demonstrates that
COPS’s principled cross-task experience sharing mechanism also excels in tasks requiring complex
reasoning.

Conclusion3 Our experiments across Alfworld, Webshop, and HotPotQA demonstrate that COPS
consistently outperforms state-of-the-art baselines in both task success rate and sample efficiency.
Notably, COPS achieves superior performance even with smaller models like Llama 3.1 8b, high-
lighting its efficiency and practicality for resource-constrained scenarios. These results validate
the effectiveness of leveraging principled cross-task experiences sharing through our theoretically
grounded selection strategy, confirming that COPS enhances sequential reasoning capabilities across
diverse tasks and model sizes.

2We observed that scaling up the model sizes for Reflexion and RAP on the Webshop benchmark did not
result in significant improvements. This observation aligns with the original findings of Reflexion (Shinn et al.,
2024, Appendix B.1) and RAP (Kagaya et al., 2024, Table 2), which suggest that these models tend to converge
on local minima that require highly creative strategies to overcome.

3We also conduct ablation studies on tuning key hyperparameters of COPS in Appendix B, providing prac-
tical guidance for hyperparameter selection for optimal performance of COPS.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Trials

0

20

40

60

80

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

Reflexion
RAP
CoPS

(a) Alfworld (Llama3.1 8b)

0 2 4 6 8
Trials

0

10

20

30

40

50

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

Reflexion
RAP
CoPS

(b) Webshop (Llama3.1 8b)

0 2 4 6 8
Trials

0

10

20

30

40

50

60

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

Reflexion
CoPS

(c) HotPotQA (Llama3.1 8b)

0 2 4 6 8
Trials

0

20

40

60

80

100

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

Reflexion
RAP
CoPS

(d) Alfworld (Llama3.1 70b)

0 2 4 6 8
Trials

0

10

20

30

40

50

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

Reflexion
RAP
CoPS

(e) Webshop (Llama3.1 70b)

0 2 4 6 8
Trials

0

10

20

30

40

50

60

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

Reflexion
CoPS

(f) HotPotQA (Llama3.1 70b)

Figure 2: Comparative evaluation of COPS, Reflexion, RAP, and LATS across three benchmarks:
Alfworld, Webshop, and HotPotQA. The figures illustrate the success rates for both the smaller
Llama 3.1 8b and larger Llama 3.1 70b models, averaged over 10 trials.

5 THEORETICAL FRAMEWORK OF EXPERIENCE-ASSISTED AGENTS

In this section, we develop the theoretical framework to demonstrate the effectiveness of COPS.
For simplicity, we analyze our algorithm in a bandit setting, where the maximum number of steps
for each experience is H = 1. Slightly different from the formulation in Section 2, we define an
experience as τ = s|a|r, consisting of an initial state s, an action a, and its reward r = r(s, a).

We introduce additional notations for clarity in our analysis. Let T = τ1|τ2| . . . denote the experi-
ence collection. The length of T is denoted by |T |, i.e., T = (τ1, ..., τ|T |). We use Tt to represent
the first t steps of the experience collection, i.e., Tt = τ1| . . . |τt. For any experience collection T ,
we assume |T | ≤ T . We define T as the space of all trajectories, and Tt as the space of trajectories
of length t. We denote a general algorithm as Alg(·|·, ·, ·) : M × T × S → ∆(A), which takes as
input a task M ∈ M, an experience collection T ∈ T, and a state s ∈ S, and outputs a distribution
over actions a ∈ A. Note that some algorithms may not use the task M as input, in which case
we write Alg(·|·, ·). We denote PM,Alg

t as the distribution over the first t steps of an experience
collection under task M and algorithm Alg. For an algorithm Alg that takes M, T , s as input, we
define its posterior average as Alg(·|T , s) = EM∼PM(·|T ′=T ,s′=s)[Alg(·|M, T ′, s′)], which is the
best Bayesian approximation of Alg given the experience collection T and current state s.

5.1 LLM PRETRAINING

We begin by describing the pretraining process for the LLM. Let Algθ̂(·|T , s) : T × S → ∆(A)

represent an LLM agent that outputs a distribution over A, where θ̂ ∈ Θ is the parameter of the
LLM, Θ denotes the whole parameter space. We assume that there exists a pretraining dataset
Dpre = {T 1, . . . , T npre}, with |T i| = T − 1. Following the pretraining setup in Lin et al. (2023), we
assume two algorithms: a context algorithm, AlgC(·|·, ·) : T× S→ ∆(A), and an expert algorithm,
AlgE(·|·, ·, ·) : M × T × S → ∆(A). In general, the context algorithm provides a “natural” action
based on the experience collection and current state, while the expert algorithm provides a more
informed action, given the task information, experience collection, and current state. Since the
expert algorithm has access to task information M, it typically produces better actions than the
context algorithm.

We now describe the pretraining process. To generate an experience collection T = τ1| . . . |τT−1 ∈
Dpre, we first sample a task M ∼ PM. For each experience τi, the state is sampled from the initial

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

state distribution si ∼ PM
0 , the action is sampled using the context algorithm ai ∼ AlgC(·|Ti−1, si),

and the reward is given by ri = r(si, ai). After generating the experience collection, we col-
lect expert feedback ā1, . . . , āT−1 for each step of T , using the expert algorithm, where āi ∼
AlgE(·|M, Ti−1, si). Repeating this process npre times produces the trajectories T i and expert
actions āi1, . . . , ā

i
T−1 for i ∈ [npre]. Finally, we pretrain the LLM Algθ̂ by solving the following

maximum likelihood estimation problem:

θ̂ ← argmax
θ∈Θ

npre∑
i=1

T∑
t=1

logAlgθ(ā
i
t|T i

t−1, s
i
t).

For the remainder of this paper, we use Algθ̂ to represent our LLM. Below, we present several
standard assumptions for analyzing Algθ̂.
Definition 5.1 (Lin et al. 2023). Let Θ be the set of parameters of the LLM, Algθ. We call Θ0 ⊆ Θ
a ρ-cover of Θ with respect to Algθ if, for any θ ∈ Θ, there exists θ0 ∈ Θ0 such that

∀s ∈ S, t ∈ [T], T ∈ Tt−1, ∥ logAlgθ(·|T , s)− logAlgθ0
(·|T , s)∥∞ ≤ ρ.

We denote N (ρ) = |Θ0| as the ρ-covering number of Algθ.

Next assumption assumes that, the best approximation between the trained LLM and the posterior
average of the expert algorithm, AlgE , can be bounded by some constant.
Assumption 5.2 (Lin et al. 2023). There exists θ∗ ∈ Θ and a model capacity error ϵreal > 0 such
that

∀t ∈ [T], logE
M∼PM,s∼PM

0 ,T ∼PM,AlgC
t−1 ,ā∼AlgE(·|T ,s)

[
AlgE(ā|T , s)
Algθ∗(ā|T , s)

]
≤ ϵreal.

Finally, we make assumptions for the decoder Dec introduced in Algorithm 1. We assume access
to a class of decoders Dect : S → ∆(Tt) that maps the state s to a distribution over the space of
t number of experiences, capable of estimating the distribution PM,AlgC

t (T), which represents the
task-dependent experience distribution offered by LLM.
Assumption 5.3. For the decoder Dect : S → ∆(Tt), there exists a decoder coefficient CDec > 1
such that for any t ∈ [T], T ∈ Tt−1,M ∈ M and s ∼ PM

0 , we have

1

C2
Dec

≤ Dect−1(T |s)
PM,AlgC
t−1 (T)

≤ C2
Dec.

5.2 ALGORITHM ANALYSIS

We consider the same offline setting as in Section 2. Suppose we have an offline dataset D, and
the agent is given an initial state s. We formalize the experience selection problem as a distribu-
tion selection problem, where the agent has access to a candidate set of distributions, denoted by
P = {P1(·|·, ·), . . . ,P|P|(·|·, ·)} ⊆ 2TT−1×S→∆(TT−1). Each element in this set represents a map-
ping from the dataset D and the current state s to a distribution over trajectories T of length T − 1.
In general, each Pi can be interpreted as the distribution over all possible combinations of T − 1

experiences from the dataset D. The agent’s goal is to select a distribution P̂s from P that mini-
mizes the suboptimality gap, which quantifies the performance difference between the best possible
strategy and the strategy selected by the agent, as measured by the expert algorithm:

SubOpt(P̂s) := EM∼PM,s∼PM
0

[
max
P̂∈P

ET ∼P̂,a∼AlgE(·|T ,s)
r(s, a)− ET ∼P̂s,a∼AlgE(·|T ,s)

r(s, a)

]
.

(5.1)

We propose OFFLINECOPS in Algorithm 2, which is an experience collection-based version of
COPS. The core idea of OFFLINECOPS mirrors that of COPS: the agent seeks to find experience
collection that maximize the reward while minimizing the distributional shift from the experience
collection of the current task, denoted by LLM. Given the test state s, OFFLINECOPS first runs the
decoder to obtain a distribution DecT−1(·|s), which approximates PM,AlgC

t−1 . Then, OFFLINECOPS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 OFFLINECOPS

Require: LLM Algθ̂(·|·, ·), candidate experience collection distribution P , pretraining error param-
eter ϵpretrain, task decoder Dec, offline dataset D.

1: Receive test state s, decode the distribution DecT−1(·|s).
2: Select P̂s from P that maximizes the following:

P̂s = argmax
P̂∈P

E T ∼P̂(·|D,s),
a∼Alg

θ̂
(·|T ,s)

r(s, a)− ϵpretrain

√
1 + χ2(P̂(·|D, s), DecT−1(·|s)). (5.2)

3: Generate T s ∼ P̂s and obtain a ∼ Algθ̂(·|T
s, s).

applies the pessimism principle, as in (2.2). The selected distribution P∗ ∈ P aims to identify a
distribution that produces an experience collection which maximizes the reward given the actions
provided by the LLM, while staying close to the decoded distribution DecT−1(·|s). To measure the
distributional distance, we employ the χ2-distance. Similar to the hyperparameter c in COPS, OF-
FLINECOPS introduces a hyperparameter ϵpre to balance the trade-off between maximizing reward
and satisfying the regularity condition imposed by DecT−1(·|s).
We have the following theorem to characterize the performance of OFFLINECOPS.
Theorem 5.4. By setting

ϵpretrain = CDecT ·
√
5 · T log(N (1/(npreT)2)T) · npre

−1 + Tϵreal,

and denote P∗,s = argmaxP̂∈P ET ∼P̂(·|D,s),a∼AlgE(·|T ,s)
r(s, a), we have the following bound with

probability at least 1− 2/T :

SubOpt(P̂s) ≤ 2CDecϵpretrainEM∼PM,s∼PM
0

√
1 + χ2(P∗,s(·|D, s),PM,AlgC

T−1 (·)).

Proof. See Appendix A.1.

Theorem 5.4 provides several insights into why COPS achieves superior performance and how ex-
perience selection should be tailored under different circumstances:

• The final suboptimality gap of the selected distribution P∗,s depends on the decoder coefficient
CDec and the pretraining error parameter ϵpre. This implies that for a more powerful LLM, the
selected experience distribution P∗,s will be closer to the optimal distribution. Meanwhile, the
dependence of PM,AlgC

T−1 suggests that the task-dependent experience collection distribution offered
by LLM serves as a strong regularizer to select the optimal retrieval strategy.

• The optimal choice of the pretraining error parameter ϵpre is influenced by the decoder coefficient
CDec, the number of pretraining trajectories in the pretraining set npre, and the model capacity
error ϵreal. In general, for a more powerful LLM, where npre is large and ϵreal is small, our theorem
suggests that the agent should focus more on aligning the selected experience collection distribu-
tion P∗,s with the decoder distribution Dec. This aligns with our observations in Section B, where
smaller models, such as LLaMA 3.1 8b, are more sensitive to the choice of the hyperparameter c.

Due to the space limit, we leave the algorithm and analysis for the online setting to Appendix A.2.

6 RELATED WORK

6.1 LLM-POWERED AGENTS

In recent years, there has been a significant surge in research focused on LLM-powered agents
(Chen et al., 2024b;a; Chan et al., 2023). React (Yao et al., 2022b) laid the foundation for much
of the subsequent work on LLM agents, particularly those based on in-context learning (ICL). The
most relevant studies to COPS include (Shinn et al., 2024; Kagaya et al., 2024; Zhou et al., 2023;
Raparthy et al., 2023). In (Kagaya et al., 2024), a retrieval process for selecting in-context demon-
strations was proposed. However, their approach depends on frequent embedding queries during

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the planning stage, leading to inefficiency issues even in smaller LLM settings. Additionally, RAP
manually splits the agent’s planning trajectory into multiple stages for each trial, with benchmark-
specific tailoring, significantly increases implementation complexity and raises scalability concerns.
(Zhou et al., 2023) introduced a Tree-of-Thought (ToT) approach (Yao et al., 2024), incorporating
backpropagation and a valuation process. However, their approach demonstrated poor sample effi-
ciency, making it less suited for real-world agent settings where opportunities for trial and error are
limited. Similarly, (Liu et al., 2023) integrated value-based search into a theoretical framework, but
faced similar challenges with sample efficiency. (Feng et al., 2024) explored fine-tuning for specific
LLM agent tasks, achieving good performance but with high computational costs. Lastly, (Raparthy
et al., 2023) utilized high-quality experiences as ICL demonstrations for sequential reasoning. Al-
though achieving remarkable performance, these experiences are introduced from external RL sys-
tems, which is resource-intensive and poses scalability issues. O3D (Xiao et al., 2024) is also highly
related to COPS, which introduces an offline learning framework that leverages skill discovery and
knowledge distillation to enhance cross-task generalization without requiring fine-tuning, excelling
in offline settings and diverse domains. In contrast, COPS addresses cross-task experience selection
using a pessimism-based strategy to mitigate distribution shifts, enabling dynamic adaptation and
superior sample efficiency even in resource-constrained environments.

6.2 IN-CONTEXT DEMONSTRATIONS SELECTION

The selection of demonstrations for ICL has been widely studied. (Wang et al., 2024b) approached
in-context demonstration selection from a Bayesian perspective, explicitly constructing a latent vari-
able for the selection process. However, their analysis did not account for the pre-trained knowledge
distribution, and their results were primarily empirical. (Yan et al., 2023) investigated the impact
of repetition in in-context demonstrations, conducting controlled experiments to assess how repeti-
tions in pre-trained knowledge influence results. (Scarlatos & Lan, 2023) developed a reinforcement
learning framework to select in-context examples, while (Voronov et al., 2024) examined the impact
of prompt formatting on in-context learning performance. Additionally, (Shum et al., 2023) intro-
duced an automatic CoT augmentation and selection method for ICL example datasets. (Hu et al.,
2024b) analyzed the scaling of in-context demonstrations from a theoretical standpoint, deriving
general statistical bounds while accounting for pre-training errors. However, their focus was primar-
ily on CoT in general ICL settings, not on the specific challenges faced by LLM agents interacting
with environments and requiring feedback for optimization.

6.3 THEORY OF AGENTS

Several works have advanced the theoretical understanding of LLM agents. (He et al., 2024) ex-
plored the statistical theory of LLM agents through the lens of Bayesian aggregated imitation learn-
ing. (Lin et al., 2023) provided a theoretical analysis of transformers within the context of in-context
reinforcement learning. (Wang et al., 2024a) examined the training and generalization of transform-
ers for sequential reasoning, drawing parallels between transformer behavior and online learning
algorithms. (Sumers et al., 2023) offered a cognitive perspective on LLM agents, while (Park et al.,
2024) investigated the regret of LLM agents in sequential reasoning tasks, contributing both theo-
retical and empirical insights that inform COPS’s development.

7 CONCLUSION

In this paper, we introduced COPS (Cross-Task Experience Sharing), a theoretically grounded algo-
rithm that empowers agent systems with cross-task experiences sharing. Using a pessimism-based
strategy to select relevant experiences, COPS maximizes utility while minimizing the risks of distri-
bution shifts. Our experiments on benchmarks like Alfworld, Webshop, and HotPotQA demonstrate
that COPS outperforms state-of-the-art methods in both success rates and sample efficiency. Theo-
retically, we show that our algorithm’s performance depends on the LLM’s pre-trained quality and
the matching between the cross-task experience distribution decided by the trials selected by the
agent, and a task-dependent experience distribution denoted by the LLM, providing insights for
improving experience retrieval methods.

4We demonstrate the limitations of COPS in Appendix J due the page constraints.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pp. 2312–2320, 2011.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proceedings of NeurIPS 2020, 2020.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=EHg5GDnyq1.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Peiyuan Feng, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, and Hang
Li. Agile: A novel framework of llm agents. arXiv preprint arXiv:2405.14751, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Jianliang He, Siyu Chen, Fengzhuo Zhang, and Zhuoran Yang. From words to actions: Unveiling the
theoretical underpinnings of llm-driven autonomous systems. arXiv preprint arXiv:2405.19883,
2024.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024a.

Xinyang Hu, Fengzhuo Zhang, Siyu Chen, and Zhuoran Yang. Unveiling the statistical foundations
of chain-of-thought prompting methods. arXiv preprint arXiv:2408.14511, 2024b.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira Ki-
nose, Koki Oguri, Felix Wick, and Yang You. Rap: Retrieval-augmented planning with contextual
memory for multimodal llm agents. arXiv preprint arXiv:2402.03610, 2024.

11

https://openreview.net/forum?id=EHg5GDnyq1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023a.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023b.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled framework for autonomous llm agents with provable sample
efficiency. arXiv preprint arXiv:2309.17382, 2023.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have regret? a
case study in online learning and games. arXiv preprint arXiv:2403.16843, 2024.

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li,
Wanxiang Che, and Philip S Yu. Large language models meet nlp: A survey. arXiv preprint
arXiv:2405.12819, 2024.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gen-
eralization to new sequential decision making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

Alexander Scarlatos and Andrew Lan. Reticl: Sequential retrieval of in-context examples with
reinforcement learning. arXiv preprint arXiv:2305.14502, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Kashun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with
chain-of-thought from labeled data. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 12113–12139, 2023.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive archi-
tectures for language agents. arXiv preprint arXiv:2309.02427, 2023.

Anton Voronov, Lena Wolf, and Max Ryabinin. Mind your format: Towards consistent evaluation
of in-context learning improvements. arXiv preprint arXiv:2401.06766, 2024.

Hanzhao Wang, Yu Pan, Fupeng Sun, Shang Liu, Kalyan Talluri, Guanting Chen, and Xiaocheng
Li. Understanding the training and generalization of pretrained transformer for sequential decision
making. arXiv preprint arXiv:2405.14219, 2024a.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are latent variable models: Explaining and finding good demonstrations for in-
context learning. Advances in Neural Information Processing Systems, 36, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuchen Xiao, Yanchao Sun, Mengda Xu, Udari Madhushani, Jared Vann, Deepeka Garg, and Sum-
itra Ganesh. O3d: Offline data-driven discovery and distillation for sequential decision-making
with large language models, 2024. URL https://arxiv.org/abs/2310.14403.

12

https://arxiv.org/abs/2310.14403

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jianhao Yan, Jin Xu, Chiyu Song, Chenming Wu, Yafu Li, and Yue Zhang. Understanding in-context
learning from repetitions. arXiv preprint arXiv:2310.00297, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language
models using sglang. arXiv preprint arXiv:2312.07104, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS IN SECTION 5

A.1 PROOF OF THEOREM 5.4

We prove Theorem 5.4 here. First, we need the following lemmas.
Lemma A.1 (Lemma 20, Lin et al. 2023). With probability at least 1− δ, we have

E
M∼PM,s∼PM

0 ,T ∼PM,AlgC
T−1

[T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
≤ 5 ·

T log(N (1/(npreT)
2)T/δ)

npre
+ Tϵreal,

where the covering number N is defined in Definition 5.1, ϵreal is defined in Assumption 5.2.

Next lemma is used to provide a per-state guarantee for the generalization error.
Lemma A.2. Let event E be defined as

E
T ∼PM,AlgC

T−1

[T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
≤ mc

[
c ·

T log(δ−1N (1/(npreT)
2)T)

npre
+ Tϵreal

]
,

where ϵreal is defined in Assumption 5.2. Then we have P(E) ≥ 1− 1/mc − δ.

Proof. By Markov inequality, we have that with probability at most 1/mc,

E
T ∼PM,AlgC

T−1

[T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]

≥ mc · EM∼PM,s∼PM
0 ,T ∼PM,AlgC

T−1

[T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
.

Meanwhile, by Lemma A.1, we know that with probability at most δ, we have

E
M∼PM,s∼PM

0 ,T ∼PM,AlgC
T−1

[T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
≥ c ·

T log(δ−1 · N (1/(npreT)
2)T)

npre
+ Tϵreal.

Therefore, by the union bound, we have P(E) ≥ 1− δ − 1/mc.

Now we begin to prove Theorem 5.4.

Proof. We following the proof steps in Lin et al. (2023). We suppose that the event E denoted in
Lemma A.2 holds. We first bound the difference of reward by the difference between their distribu-
tion distance. Let P̂ be an arbitrary distribution over T . Then we have

ET ∼P̂(·)|Ea∼AlgE(·|T ,s)
r(s, a)− Ea∼Alg

θ̂
(·|T ,s)r(s, a)|

≤ ET ∼P̂(·)DTV(AlgE(·|T , s),Algθ̂(·|T , s))

≤ ET ∼P̂(·)DH(AlgE(·|T , s),Algθ̂(·|T , s)), (A.1)

the first inequality holds due to the fact |r| ≤ 1 and the property of TV distance, the second one
holds since DTV ≤ DH. Starting from (A.1) we have

ET ∼P̂DH(AlgE(·|T , s),Algθ̂(·|T , s))

= E
T ∼PM,AlgC

T−1

DH(AlgE(·|T , s),Algθ̂(·|T , s)) ·
P̂(T)

PM,AlgC
T−1 (T)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

≤
√√√√√E

T ∼PM,AlgC
T−1

DH
2(AlgE(·|T , s),Algθ̂(·|T , s))︸ ︷︷ ︸

I1

·

√√√√√√E
T ∼PM,AlgC

T−1

(
P̂(T)

PM,AlgC
T−1 (T)

)2

︸ ︷︷ ︸
I2

, (A.2)

where the first inequality holds due to Cauchy-Schwarz inequality. For I1, we use Lemma A.1.
Notice that the length of |T | = T − 1 and the definition of ϵpretrain, we have

I1 ≤ (ϵpretrain/CDec)
2. (A.3)

For I2, by the definition of χ2 distance, we have

I2 = ET ∼P̂
P̂(T)

PM,AlgC
T−1 (T)

= ET ∼P̂
P̂(T)

DecT−1(T |s)
· DecT−1(T |s)
PM,AlgC
T−1 (T)

≤ C2
Dec[1 + χ2(P̂(·), DecT−1(·|s))]. (A.4)

where the inequality holds due to Assumption 5.3. Substituting (A.3) and (A.4) into (A.2), and
substituting (A.2) into (A.1), we have

|ET ∼P̂,a∼AlgE(·|T ,s)
r(s, a)− ET ∼P̂,a∼Alg

θ̂
(·|T ,s)r(s, a)|

≤ ϵpretrain

√
1 + χ2(P̂(·), DecT−1(·|s)), (A.5)

holds for any P̂ ∈ P . Finally, we have

ET s∼P̂s(·|D,s),a∼AlgE(·|T s,s)
r(s, a)

≥ ET s∼P̂s(·|D,s),a∼Alg
θ̂
(·|T s,s)r(s, a)− ϵpretrain

√
1 + χ2(P̂s(·|D, s), DecT−1(T |s))

≥ ET s∼P∗,s(·|D,s),a∼Alg
θ̂
(·|T s,s)r(s, a)− ϵpretrain

√
1 + χ2(P∗,s(·|D, s), DecT−1(T |s)),

≥ ET s∼P∗,s(·|D,s),a∼AlgE(·|T s,s)
r(s, a)− 2ϵpretrain

√
1 + χ2(P∗,s(·|D, s), DecT−1(T |s)),

≥ ET s∼P∗,s(·|D,s),a∼AlgE(·|T s,s)
r(s, a)− 2ϵpretrainCDec

√
1 + χ2(P∗,s(·|D, s),PM,AlgC

T−1 (·)),

where the first inequality holds due to (A.5), the second one holds due to the selection rule of P̂s,
the third one holds due to (A.5) and the last one holds due to Assumption 5.3. This concludes our
proof.

A.2 ONLINE ALGORITHM

We also consider an analysis for a variant of OFFLINECOPS to the online setting. Here, let P =
{P1(·|·, ·), . . . ,P|P|(·|·, ·)} ⊆ 2Tt−1×S→∆(Tt−1) which includes mappings that map an experience
collection Tt−1 and a test state s to a distribution over Tt−1. Each Pi can be thought as a strategy
to pick the experience collection that depends on the past observations. At step t, we have history
Ht−1 = {s1, a1, r1, . . . , st−1, at−1, rt−1}. Then the agent receives st ∼ PMt

0 , where Mt ∼ PM.
Then the agent selects Pt by some algorithm and samples Tt−1 ∼ Pt(·|Ht−1, st). Then the agent
takes the action at ∼ Algθ̂(·|Tt−1, st). Her goal is to minimize the following regret:

RegretT :=
T∑

t=1

E
Mt∼PM,st∼PMt

0

[
max
Pi∈P

ETt−1∼Pi(·|Ht−1),

ā∼AlgE(·|Tt−1,st)

r(st, ā)− E Tt−1∼Pt(·|Ht−1),

at∼AlgE(·|Tt−1,st)

r(st, at)

]
.

(A.6)

We propose the algorithm ONLINECOPS in Algorithm 3. Similar to OFFLINECOPS, ONLINECOPS
adapts an decoder that takes the current state as its input and outputs a distribution of the experience

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

collection T , which aims to estimate the LLM output distribution PMt,AlgC

t−1 . Unlike OFFLINECOPS,
the optimization goal of ONLINECOPS in (A.7) is similar to the optimistic principle that originates
from the online decision-making problems (Abbasi-Yadkori et al., 2011), which aims to maximize
both the reward and the distribution distance between the decoder distribution Dect−1 and the se-
lected one P̂t. Meanwhile, note that the selected experience collection distribution only depends on
the past history Ht−1, which is small in the early stage of the online decision-making process. We
have the following theorem to demonstrate the theoretical guarantee of ONLINECOPS.
Algorithm 3 ONLINECOPS

Require: LLM Algθ̂(·|·, ·), candidate experience collection distribution P , pretraining error param-
eter ϵpretrain, task decoder Dec.

1: LetH0 = ∅.
2: for t = 1, . . . , T do
3: Generate Mt ∼ PM, receive st ∼ PMt

0 , decode Dect−1(·|st)
4: Select P̂t from P that maximizes the following:

P̂t = argmax
P̂∈P

ET ∼P̂(·|Ht−1,st),
a∼Alg

θ̂
(·|T ,st)

r(st, a) + ϵpretrain

√
1 + χ2(P̂(·|Ht−1, st), Dect−1(·|st)). (A.7)

5: Generate T ∼ P̂t(·|Ht−1, st) and obtain at ∼ Algθ̂(·|T , st) and rt = r(st, at), set Ht =
Ht−1 ∪ (st, at, rt).

6: end for
Theorem A.3. By setting

ϵpretrain = CDec · T 2 ·

√
5 ·

T log(N (1/(npreT)2)T 2)

npre
+ Tϵreal,

and denote P∗,t = argmaxP̂∈P ETt−1∼P̂(·|Ht−1,st),

ā∼AlgE(·|Tt−1,st)

r(st, ā), we have the following bound holds with

probability at least 1− 2/T :

RegretT ≤ 2CDecϵpretrain

T∑
t=1

√
1 + χ2(P∗,t(·|Ht−1, st),PMt,AlgC

t−1 (·)).

Proof. Suppose we are at step t and we condition on all past history Ht−1 =
(s1, a1, r1, . . . , st−1, at−1, rt−1).

Let Mt be the task at t step and st be the state observed. Then with probability at least 1−1/mc−δ,
the following event Et holds:

E
T ∼PMt,AlgC

t−1

[
DH

2(AlgE(·|Tt−1, st),Algθ̂(·|Tt−1, st))

]
≤ mc

[
c ·

T log(δ−1N (1/(npreT)
2)T 2)

npre
+ Tϵreal

]
,

Now following (A.2) in the proof of Theorem 5.4, we still have

ET ∼P̂|Ea∼AlgE(·|T ,st)
r(s, a)− Ea∼Alg

θ̂
(·|T ,st)r(s, a)|

≤
√√√√√E

T ∼PMt,AlgC
t−1

DH
2(AlgE(·|T , st),Algθ̂(·|T , st))︸ ︷︷ ︸

I1

·

√√√√√√E
T ∼PMt,AlgC

t−1

(
P̂(T)

PMt,AlgC
t−1 (T)

)2

︸ ︷︷ ︸
I2

(A.8)

Then following Lemma A.2, under event Et, we have

I1 ≤ (ϵpretrain/CDec)
2, ϵpretrain/CDec = T 2 ·

√
c ·

T log(N (1/(npreT)2)T 2)

npre
+ Tϵreal.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For I2, similar to (A.4), we have

I2 ≤ C2
Dec[1 + χ2(P̂(·), Dect−1(·|st))].

Therefore, we have for any P̂,

|ET ∼P̂(·|Ht−1,st),a∼AlgE(·|T ,st)
r(st, a)− ET ∼P̂(·|Ht−1,st),a∼Alg

θ̂
(·|T ,st)

r(st, a)|

≤ ϵpretrain

√
1 + χ2(P̂(·|Ht−1, st), Dect−1(·|st)). (A.9)

Taking union bound and let mc = T 2, δ = 1/T 2, then we get E1, ..., ET hold with probability at
least 1− 2/T . Next we bound the suboptimal gap at t step as follows:

ET t−1∼P̂t(·|Ht−1,st),a∼AlgE(·|T t−1,st)
r(st, a)

≤ ET t−1∼P̂t(·|Ht−1,st),

a∼Alg
θ̂
(·|T t−1,st)

r(st, a) + ϵpretrain

√
1 + χ2(P̂t(·|Ht−1, st), Dect−1(·|st))

≤ ET t−1∼P∗,t(·|Ht−1,st),

a∼Alg
θ̂
(·|T t−1,st)

r(st, a) + ϵpretrain
√
1 + χ2(P∗,t(·|Ht−1, st), Dect−1(·|st))

≤ ET t−1∼P∗,t(·|Ht−1,st),

a∼AlgE(·|T t−1,st)

r(st, a) + 2ϵpretrain
√
1 + χ2(P∗,t(·|Ht−1, st), Dect−1(·|st))

≤ ET t−1∼P∗,t(·|Ht−1,st),

a∼AlgE(·|T t−1,st)

r(st, a) + 2CDecϵpretrain

√
1 + χ2(P∗,t(·|Ht−1, st),PMt,AlgC

t−1 (·)), (A.10)

where the first inequality holds due to (A.9), the second one holds due to the optimism principle, the
third one holds due to (A.9), and the last one holds due to Assumption 5.3. Taking summation of
(A.10) from 1 to T concludes our proof.

Similar to Theorem 5.4 for the offline setting, Theorem A.3 also shares the following insights.

• The regret is controlled by the difference between the best experience collection generated distri-
bution P∗,t and the experience collection distribution induced by the contextual algorithm at t-th
step. Therefore, the best strategy overall is to select trajectories from the history Ht−1 that can
approximates the current task well to avoid the distribution shift.

• With a more powerful LLM, the ϵpretrain will be smaller, which means the selected experience
collection can approximatethe best selection better.

B ABLATION STUDY

In this section, we analyze how two key hyperparameters affect the performance of COPS: the
scaling factor c in Equation (2.3) and the number of in-context experiences k placed at the beginning
of prompts. We conducted experiments on the Alfworld benchmark using both Llama 3.1 8b and
Llama 3.1 70b models.

For the scaling factor c, we tested four settings: c = 0, 1, 5 and 10, while keeping the number of
in-context experiences fixed at k = 5 (see Figures 3(a) and 3(b)). Our findings indicate that for
smaller models like Llama 3.1 8b, a small but non-zero value of c (e.g., c = 1) generally yields
better performance (Figure 3(a)). This suggests that moderate scaling effectively balances model
adaptability and robustness on less capable models.

Regarding the number of in-context experiences k, we evaluated values ranging from 1 to 10, setting
c = 0 (see Figures 3(c) and 3(d)). We observed that performance improves as k increases up to
k = 3, after which it plateaus for both model sizes. This result indicates that while increasing the
in-context experience size enhances performance to a point, adding more than three experiences may
not offer substantial gains.

Our ablation study reveals that tuning key hyperparameters in COPS is crucial for optimal perfor-
mance. Specifically, for smaller models, a small but non-zero scaling factor c (e.g., c = 1) effectively

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Trials

50

60

70

80

90

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

c=0
c=1
c=5
c=10

(a) Llama3.1 8b

0 2 4 6 8
Trials

86
88
90
92
94
96
98

100

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

c=0
c=1
c=5
c=10

(b) Llama3.1 70b

2 4 6 8 10
In-context experiences

84

86

88

90

92

94

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

CoPS

(c) Llama3.1 8b

2 4 6 8 10
In-context experiences

96

97

98

99

100

Su
cc

es
s r

at
e

(p
er

ce
nt

ag
e)

CoPS

(d) Llama3.1 70b

Figure 3: Performance impact of hyperparameters c (scaling factor) and k (number of in-context
experiences) on the Alfworld benchmark for both Llama 3.1 8b and Llama 3.1 70b models.

balances adaptability and robustness. Additionally, increasing the number of in-context experiences
k enhances performance up to k = 3, beyond which additional experiences offer minimal gains.
These insights provide practical guidance for hyperparameter selection, ensuring that COPS can be
efficiently deployed across various settings to maximize its sequential reasoning capabilities.

C MORE EXPERIMENT DETAILS

In this section, we provide additional details on our experiments in Section 4. The tables included
below outline the token counts and hyperparameter settings that were used throughout the evaluation
process.

Table 4: Token generation count for each of the Webshop experiments. It’s worth noticing that for
each model the LATS token generation count is at least 5 times to COPS.

Algorithm Reflexion RAP LATS COPS
Llama3.1 8b 159131 107504 1555365 314336
Llama3.1 70b 125406 109245 1058752 113849

Table 5: Hyperparameter settings (k and c) for different benchmarks and model sizes.

Benchmark Alfworld Webshop HotPotQA
Llama3.1 8b k = 5, c = 5 k = 5, c = 0 k = 5, c = 5

Llama3.1 70b k = 5, c = 5 k = 5, c = 0 k = 5, c = 0

D QUALITY OF DEMONSTRATIONS

In our realistic implementation of COPS, we only utilized successful tractors following other related
works. However, in our theoretical analysis, we use the measurement we designed in equation 2.2,
which considers both the successful and failed trajectories and calculates the similarity between the
experience and our current task. However, in realistic implementation, the trajectories that gain high
similarity scores are successful, thus we only utilize successful trajectories due to limited compute
budgets.

This brings concerns about the impact of suboptimal demonstrations, for which, we conducted an
ablation study on the Alfworld benchmark, comparing top-k and bottom-k successful trajectories
ranked by the similarity score. The results are shown in Table 6.

Table 6: Performance comparison of using top-k and bottom-k successful trajectories as demonstra-
tions on Alfworld benchmark using Llama3.1 8B Instruct.

Retrieval Method Performance (Success Rate %)
Top-5 93.6± 1.0

Bottom-5 83.0± 3.9

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

These results in Table 6 demonstrate that the quality of retrieved demonstrations significantly affects
performance, with top-k successful trajectories outperforming bottom-k successful trajectories by a
substantial margin. This underscores the importance of selecting high-quality trajectories.

E REPEATED EXPERIMENTS

To demonstrate the robustness of COPS, we use multiple seeds to run COPS on all three bench-
marks. The repeated experiment results are shown in Table 7.

Benchmark Model Mean Std

HotpotQA 8B 53.6 1.5
70B 62.8 1.3

Webshop 8B 47.2 1.6
70B 51.2 2.7

Alfworld 8B 93.6 1.0
70B 100.0 0.0

Table 7: Mean and standard deviation results of LLaMA 3.1 Instruct model on three benchmarks.

The results presented in Table 7 demonstrate the robustness of COPS across multiple runs and
benchmarks. For example, on the Alfworld benchmark with the LLaMA 3.1 70B model, our method
consistently achieved perfect scores (100.0 ± 0.0), highlighting its stability. On other benchmarks
such as HotpotQA and Webshop, the relatively low standard deviations further validate the consis-
tency of our approach, even under varied experimental conditions. These findings underscore the
reliability and robustness of COPS, reinforcing its applicability to diverse real-world scenarios.

F PERFORMANCE ON CLOSE-SOURCED MODELS

We add additional experiments to evaluate the performance of COPS based on SOTA close-sourced
GPT and Claude models. The detailed performance is shown in Table 8. From the results, we find
that COPS works well with these close-sourced models and achieves reasonably high performance
compared with open-source models.

Table 8: Performance comparison of COPS on different benchmarks using GPT and Claude family
models.

Model Alfworld Webshop HotPotQA
GPT-4o 100 56 67

Claude 3.5-Sonnet 100 58 66

G IMPACT OF CROSS-TASK EXPERIENCES

COPS utilized cross-task experiences to boost the performance of LLM agents. This brings concerns
about whether COPS can achieve similar performance just using the experiences from the failed
trajectories of the same task. While leveraging single-task experience might seem ideal, practical
scenarios often necessitate relying on experiences from relevant but distinct tasks, which introduces
additional challenges. To address this concern, we conducted an ablation study comparing the per-
formance of COPS with and without cross-task experience on the Alfworld benchmark. The results
are shown in Table 9.
Table 9: Impact of cross-task experience on performance (success rate) using the Alfworld bench-
mark with Llama 3.1 8B Instruct.

Method Success Rate %
with cross-task experience 94
only same-task experience 57

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

These results clearly demonstrate the significant contribution of cross-task experience to perfor-
mance improvement, with a nearly twofold increase in success rate compared to using only same-
task experience.

H IMPACT OF RETRIEVAL METHODS

In our main results, COPS utilized semantic search (semantic embedding model and distance-based
retrieval) to retrieve cross-task experiences. This raises concerns about the impact of the retrieval
methods. To evaluate the impact of the memory retrieval method, we conduct an ablation study on
the AlfWorld benchmark with the llama 3.1 8b Instruct model. The results are summarized in Table
10.
Table 10: Performance comparison of different experiences retrieval strategies of COPS on Alf-
World benchmark. The experiments are repeated 5 times and reported in mean + std style.

Retrieval Method Success Rate %
Semantic Search (embedding model) 93.6± 1.0
Keyword-Based (BM25) 94.1± 1.2
Hybrid (BM25 + Short Summarization Embedding) 91.3± 1.4

These results indicate that semantic search and keyword-based approaches perform comparably
well, whereas the hybrid approach shows a slight performance drop, potentially due to the added
complexity of combining methods.

I IMPACT ON MEMORY SIZE

In our initial experiments, we assumed a sufficiently large memory bank and did not model forget-
ting, which ignored the importance of memory managing and forgetting mechanisms, especially for
long-term agent deployment. To address this concern, we conducted a new ablation study on the Alf-
world benchmark with varying memory sizes to evaluate the system’s robustness under constrained
memory conditions.

In our main results, we retained all trajectories from different trials and conducted experience re-
trieval across the entire memory bank. For this ablation, we introduced a fixed memory size and
implemented a dynamic forgetting mechanism, where low-scored experiences were discarded once
the memory capacity was reached. The results are summarized in Table 11.

Table 11: Performance evaluation under constrained memory sizes on AlfWorld benchmark. Note
that our main result sets memory size to 10, as it corresponds to 10 trials. Therefore, our main results
do not discard any experiences. In our ablation study, we run COPS for 50 trials, thus for sizes 5
and 10 in the ablation study, experiences were dynamically discarded when the memory limit was
exceeded.

Memory Size Performance (Success Rate %)
50 95.6± 2.7
10 94.0± 1.1
5 87.2± 0.8

The results demonstrate that COPS maintains robust performance even with constrained memory
sizes, with only a slight drop in success rate when the memory size is reduced from 50 to 10. This
indicates that our experience selection strategy is effective even under memory limitations. However,
as expected, significant reductions in memory size (e.g., to 5) lead to performance degradation due
to more aggressive forgetting of potentially useful experiences. These findings highlight the adapt-
ability of COPS to resource-constrained scenarios while also emphasizing the trade-offs introduced
by limited memory capacity.

J LIMITATIONS

While COPS shows clear improvements over existing methods, it has several limitations. Its effec-
tiveness heavily depends on the quality and diversity of the experiences in the memory bank, mean-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ing that outdated or poorly aligned experiences can reduce its performance. Additionally, COPS
is sensitive to hyperparameters like the scaling factor and the number of in-context experiences,
which may require time-consuming tuning that doesn’t always generalize well across different tasks
or models. Finally, the theoretical guarantees we provide also rely on assumptions about the accu-
racy of the decoder and specific pre-training properties of the LLM, which may not always hold in
real-world scenarios.

K FUTURE WORK

Looking ahead, several research directions could further improve COPS.4 These include developing
adaptive hyperparameter tuning methods, exploring dynamic memory management to keep expe-
riences relevant, and adding ways to assess experience quality. Additionally, adapting COPS for
multi-agent systems and integrating it with reinforcement learning could enable collaborative learn-
ing and continuous performance improvement. Pursuing these areas will help LLM agents handle
even more complex sequential reasoning tasks.

L PROMPT TEMPLATE

Our prompt framework is designed with the considerations of simplicity, efficiency, and general-
izability. Moreover, we aim to leverage the high-performing long-context capabilities of modern
LLMs ((Dubey et al., 2024)) to a maximal degree. In one sentence to describe our prompting
philosophy: previous success trajectories are seen by the agent as experiences it has gone through
in the same trial. As an example from the Alfworld experiment, a in-context demonstration is insert
into the prefix of the agent’s prompt as follows:

[User] Interact with a household to solve a task. Here are a few examples.
You are in the middle of a room. Looking quickly around you, you see a cabinet 13, a cabinet
12, a cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5, a
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 1, a diningtable
1, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a
sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: put a hot apple in fridge.

[Assistant] think: To solve the task, I need to find and take an apple, then heat it with
microwave, then put it in fridge.

[User] OK.

[Assistant] think: First I need to find an apple. An apple is more likely to appear in fridge (1),
diningtable (1), coffeetable (1), drawer (1), cabinet (1-13), garbagecan (1). I can check one by
one, starting with fridge 1.

[User] OK.

[Assistant] go to fridge 1

[User] The fridge 1 is closed.

[experience detail omitted]

[Assistant] go to fridge 1

[User] The fridge 1 is open. In it, you see a cup 1, and a egg 1.

[Assistant] put apple 1 in/on fridge 1

[User] You put the apple 1 in/on the fridge 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

[more in-context experiences]

[User] Examples finished. Here is the task:
You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 5,
a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 3, a
countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a
stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: put a saltshaker in drawer.

[Assistant] think: To solve the task, I need to find and take a saltshaker, then put it in/on a
drawer.

[real trial begins]

22

	Introduction
	Methodology
	Preliminary
	Proposed method

	Experiments Setup
	Results and Analysis
	Theoretical Framework of Experience-Assisted Agents
	LLM Pretraining
	Algorithm analysis

	Related work
	LLM-powered Agents
	In-context Demonstrations Selection
	Theory of Agents

	Conclusion
	Additional details in Section 5
	Proof of Theorem 5.4
	Online Algorithm

	Ablation Study
	More experiment details
	Quality of Demonstrations
	Repeated Experiments
	Performance on close-sourced models
	Impact of Cross-Task Experiences
	Impact of Retrieval Methods
	Impact on Memory Size
	Limitations
	Future Work
	Prompt template

