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ABSTRACT

Sequential reasoning in agent systems has been significantly advanced by large
language models (LLMs), yet existing approaches face limitations. Reflection-
driven reasoning relies solely on knowledge in pretrained models, limiting perfor-
mance in novel scenarios, while experience-assisted reasoning often depends on
external experiences and lacks clear principles for selecting representative experi-
ences. We address these limitations by proposing COPS (Cross-Task Experience
Sharing), a generalizable algorithm that enhances sequential reasoning by cross-
task experience sharing and selection. In detail, COPS leverages agents’ experi-
ences on previous tasks, selecting distribution-matched experiences via a provable
pessimism-based strategy to maximize utility while minimizing risks from distri-
bution shifts. Extensive experimental results on benchmarks like Alfworld, Web-
shop, and HotPotQA demonstrate that COPS consistently outperforms state-of-
the-art baselines, with superior sample efficiency suitable for resource-constrained
scenarios. Theoretically, we show that the performance of our algorithm depends
on both the quality of the pretrained LLM and the matching between the agent’s
task-dependent trial distribution and that generated by the LLM. Our work bridges
the gap between existing sequential reasoning paradigms and validates the effec-
tiveness of leveraging cross-task experiences, shedding light on the potential to
improve agents’ generalization and adaptability across diverse tasks. Our codes
are released at this link.

1 INTRODUCTION

Burgeoning agent systems driven by advanced large language models (LLMs, (Devlin et al., 2019;
Brown et al., 2020; OpenAI, 2023; Hu et al., 2024a)) have demonstrated remarkable capabilities in
solving complex tasks through sequential reasoning (Qin et al., 2024; Hao et al., 2023; Huang et al.,
2024; Chen et al., 2024b;a; Li et al., 2023a). These agent systems employ two typical sequential
reasoning paradigms: reflection-driven reasoning and experience-assisted reasoning. Reflection-
driven reasoning leverages a model’s internal capabilities through methods such as reflection (Shinn
et al., 2024), long-term rollouts (Zhou et al., 2023), or chain-of-thought (CoT) reasoning (Wei et al.,
2022). While this approach capitalizes on the knowledge within the pre-trained model, it faces
notable limitations. Specifically, relying solely on existing knowledge in the pre-trained model to
generate rationales restricts the model’s performance when encountering novel scenarios. Moreover,
there is an increased risk of hallucinations, where internal reasoning may lead to plausible but in-
correct responses (Huang et al., 2023). These challenges highlight the need for integrating external
experiences to enhance the agent’s sequential reasoning capabilities.

In contrast, experience-assisted sequential reasoning utilizes retrieval-based methods that enable the
agent to interact with a memory bank of experiences, allowing the model to overcome knowledge
cutoffs, personalize responses, and reduce hallucinations. However, these experiences are often
manually curated or sourced from expert models (Raparthy et al., 2023), which is resource-intensive
and poses scalability issues. Additionally, experience-assisted reasoning often lacks clear principles
for selecting representative examples (Kagaya et al., 2024), potentially underutilizing the value of
past experiences. These limitations bring us to a critical research question:

Can agent systems enhance sequential reasoning by sharing and selecting cross-task experiences?
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Figure 1: A brief illustration of COPS, which fully leverages agents’ cross-task experiences to en-
hance sequential reasoning by sharing and selecting distribution-matched experiences from previous
task trajectories.

To address this question, we propose COPS (Cross-Task Experience Sharing), a theoretically
grounded algorithm that empowers agent systems through cross-task experience sharing and selec-
tion. COPS demonstrates its generalizability by working effectively in both settings: utilizing fully
external experiences in the offline setting and leveraging completely self-derived experiences in the
online setting. By utilizing representative cross-task experiences, COPS enables agents to improve
performance on new, complex sequential reasoning tasks. Our key contributions are summarized as
follows:

• We introduce COPS, a method that fully leverages agents’ cross-task experiences to enhance
sequential reasoning by selecting distribution-matched experiences from previous task trajecto-
ries. Central to our approach is a theoretically grounded experience selection strategy based on
the pessimism principle, which aims to maximize the utility of successful, representative experi-
ences while minimizing risks associated with distribution shifts from out-of-distribution samples.
Notably, COPS is agnostic to the agent’s base model, task type, experience sources, and imple-
mentation framework, making it easy-to-use and generalizable across various settings.

• Experimentally, we validate COPS on key benchmarks such as Alfworld (Shridhar et al., 2020),
Webshop (Yao et al., 2022a), and HotPotQA (Yang et al., 2018). COPS consistently outper-
forms state-of-the-art experience-assisted reasoning approaches like RAP (Kagaya et al., 2024)
and reflection-driven reasoning methods, like Reflexion (Shinn et al., 2024) and LATS (Zhou
et al., 2023). Moreover, COPS demonstrates superior sample efficiency compared to resource-
intensive methods like LATS, making it highly suitable for resource-constrained scenarios. These
results showcase COPS’s effectiveness in practical applications.

• Theoretically, we show that in both offline and online settings, the performance of our pessimism-
based algorithm depends on both the quality of the pre-trained LLM and the matching between the
cross-task experience distribution decided by the trials selected by the agent, and a task-dependent
experience distribution denoted by the LLM. Our findings shed light on general strategies for
designing efficient experience sharing and selction algorithms and offer a comprehensive under-
standing of COPS’s effectiveness across different scenarios.

Notations We denote by [n] the set {1, . . . , n}. For two positive sequences {an} and {bn} with
n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn
holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that
an ≥ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We
use (xi)

n
i=1 to denote sequence (x1, ..., xn), and we use {xi}ni=1 to denote the set {x1, ..., xn}.

We use DH(p, q) =
√

1/2 ·
∫
(
√
p−√q)2 to denote the Hellinger distance. We use DTV(p, q) =

1/2 ·
∫
|p − q| to denote the Total variation distance. We use χ2(p, q) =

∫
p2/q − 1 to denote

2
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Algorithm 1 COPS: Cross-Task Experience Sharing

Require: Language model LLM(·|·), memory bank D = {τ1, . . . , τn}, decoder Dec, distance met-
ric d, memory size k, maximum sequence length H .

1: Receive initial state s1, receive state-sampled experience τs1 through decoder τs1 ∼ Dec(·|s1).

2: Set the probability p̂ ∈ ∆(D) as in (2.3), which approximately maximizes the following:

p̂ = argmax
p∈∆(D)

Eτ∼p[r(τ)− d(τ, τ s1)]. (2.1)

3: Repeatedly retrieve trials τ1, . . . , τk ∼ p̂.
4: Concate τ1, . . . , τk into one trajectory T = τ1| . . . |τk, set h← 1.
5: while NOT SUCCESS and h < H do
6: Obtain action ah ∼ LLM(·|T , sh), set sh+1 ← sh|ah, h← h+ 1.
7: end while

the chi-square distance. For two sentences a and b, we use a|b to denote the sentence formed by
concatenating a and b.

2 METHODOLOGY

2.1 PRELIMINARY

We consider a sequential decision-making scenario, consisting of a task space M, a state space S,
and an action space A. The state s ∈ S is defined as a descriptive sentence representing the history
of the current task. For example: “You are in the middle of a room. Please find a path to reach
the apple.” The action a ∈ A is a solution to the task, such as: “Move right. The apple is on the
table.” The agent interacts with the environment through trials. At the beginning of each trial, a task
M is randomly drawn from the task space, M ∼ PM. The agent then observes an initial state s1,
sampled from the initial state distribution, s1 ∼ PM

0 . At each step h, the agent makes a decision
ah based on the current state sh, and the next state is updated as sh+1 = sh|ah. The agent either
successfully completes the task or continues generating actions until reaching the maximum number
of interactions H between the agent and the environment. We define an experience τ as a complete
trial, i.e., τ = sh, where h ≤ H is the final step of the current trial. The reward r(sh) denotes how
effectively the experience solves the task, with 0 ≤ r(sh) ≤ 1.

In this work, we assume access to a large language model (LLM) to assist in decision-making. We
represent the LLM as LLM(a|·), a conditional distribution of actions given the input sequence.

2.2 PROPOSED METHOD

We introduce our proposed method, COPS, based on distribution matching. COPS operates on a
trial-wise basis, making it suitable for both the offline setting, where the agent has access to an exter-
nal static dataset containing experiences, and the online setting, where the agent gathers experiences
through interactions with the environment. Suppose our agent is at the start of a trial with an initial
state s1 ∼ PM

0 . We introduce the key components of COPS as follows.

Memory Bank The agent has access to a memory bank D containing experiences, either from a
pre-collected dataset (offline) or from previous experiences (online). We do not impose restrictions
on D, meaning that experiences in D exhibit great diversity. Specifically, an experience τ ∈ D may
correspond to different tasks M or to varying solution strategies for the same task. Our goal is to
develop a strategy for retrieving experiences from D that assist in decision-making for the current
task.

Cross-Task Experience Sharing COPS utilizes an external module called the decoder, denoted
as Dec in Line 1. In general, the decoder outputs a task-dependent distribution of experiences
conditioned on the initial state s1, reflecting how the LLM would solve the task M associated with
s1 without explicit instructions. With the decoder’s help, the agent’s goal is to find a probability
distribution p̂ over all experiences in D that satisfies:

3
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p̂ = argmax
p∈∆(D)

Eτ∼p[r(τ)]− d(p, Dec(·|s1)), (2.2)

where d is a metric over distributions. Intuitively, (2.2) is similar to the pessimism principle, com-
monly used in offline RL literature (Jin et al., 2021). The goal of p̂ is to maximize the expected
reward while keeping the distribution close to the one decoded by Dec. Importantly, p̂ supports the
cross-task setting, as it does not restrict its support to experiences from the same task as s1. For a
given in-context memory size k, COPS repeatedly samples experiences τ1, . . . , τk from p̂, as shown
in Line 3.

Execution Planning Let T = τ1| . . . |τk represent the experience collection containing τ1, . . . , τk.
Starting from the initial state s1, the agent executes actions step-by-step, where each action ah is
drawn from the LLM’s distribution, conditioned on both the experience collection and the current
state:

ah ∼ LLM(·|T , sh).
In the online setting, after completing a trial, the agent updates the memory bank D by adding the
new experience for future use.

Implementation Details Here we discuss several implementation details for COPS. First, in prac-
tice, directly computing the distance d(p, Dec(·|s1)) between distributions in (2.2) is computation-
ally intractable. Therefore, we use an empirical approximation to translate the distance between
distributions into the distance between experiences drawn from those distributions, as shown in
(2.1). Second, we specify the choice of Dec. The decoder outputs an experience τs1 from D that
starts with the same initial state s1. If multiple such experiences exist, we select the most recent
one. This τs1 naturally reflects the behavior of the LLM for solving the task starting from s1 with-
out intervention. Third, we discuss how to approximately solve (2.1) since enumerating all possible
distributions in ∆(D) is computationally inefficient. Specifically, we define the distance function d
and approximately solve p̂ as follows:

d(τ, τ ′) := c · cos(e(τ), e(τ ′)), p̂(τ) ∝ r(τ) · exp(−d(τ, τ s1)), (2.3)

where c ≥ 0 is a hyperparameter, “cos” denotes the cosine function, and e is an embedding function
that maps a language sentence to a high-dimensional Euclidean space. In practice, we use e as a
language embedding model (e.g., gte-Qwen2 7b (Li et al., 2023b)). This approach favors select-
ing successful experiences from D with probabilities proportional to the inverse distance from the
current initial state s1. The hyperparameter c in (2.3) controls the influence of relative distances:
when c = 0, the method uniformly samples successful experiences from D, and as c → ∞, it
deterministically selects the experience closest to τs1 .

3 EXPERIMENTS SETUP

In this section, we present our experimental study evaluating the practical performance of COPS
on real-world LLMs, specifically the Llama 3.1 models (Dubey et al., 2024). Our results show that
COPS achieves state-of-the-art (SOTA) performance in both task success rate and sample efficiency,
surpassing existing baselines to the best of our knowledge. A detailed description of our prompt for-
mulation is provided in Appendix L. Notably, COPS is both simple to implement and generalizable
across different environments: for each trial, the selected experiences are straightforwardly added to
the prompts, requiring no manual modifications.

This prompting strategy offers two distinct advantages: first, it significantly boosts sequential rea-
soning performance by incorporating cross-task experiences, outperforming reflection-driven meth-
ods like Reflexion. Second, the prompts across trials share a substantial prefix, which maximizes the
effectiveness of prefix-caching mechanisms in modern LLM-serving systems (Zheng et al., 2023),
leading to significant efficiency improvements over RAP (Kagaya et al., 2024).

Benchmarks We evaluate our algorithms on three representative benchmarks: Alfworld (Shridhar
et al., 2020), Webshop (Yao et al., 2022a), and HotPotQA (Yang et al., 2018). In these benchmarks,
agents strive to solve problems in limited number of trials, enabling cross-trial and cross-task expe-
rience sharing. In Alfworld, agents are provided with a specific task description within a simulated
household environment, interacting through predefined actions and receiving feedback in the form

4
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of textual descriptions. In Webshop, the agent must locate a product that matches user specifications
from a catalog of over one million items, interacting with the HTML page and search engine while
receiving limited product information per trial. In HotPotQA, the agent answers complex questions
requiring specific knowledge, using Wikipedia to retrieve relevant articles. In all benchmarks, the
reward function r(τ) is defined as 1 if the agent successfully completes the task and 0 otherwise.

LLM Selection We conduct our entire experiment with the widely-used Llama 3.1 series of models
(Dubey et al., 2024), in consideration of their superior benchmark performance and the sustainability
of open-weight LLM ecosystems. Specifically, our experiments are conducted with Llama 3.1 8b
Instruct and Llama 3.1 70b Instruct on NVIDIA A6000 and A100 GPUs. We use gte-Qwen2 7b
Instruct (Li et al., 2023b) as our embedding model. We use SGLang (Zheng et al., 2023) as our
LLM-serving engine for its SOTA serving performance and prefix-caching mechanism.

Baselines We compare COPS with three representative baselines: Reflexion (Shinn et al., 2024),
RAP (Kagaya et al., 2024), and LATS (Zhou et al., 2023). In Reflexion, the agent try to solve
the task in each environment over multiple trials until it succeeds. After each failed attempt, the
LLM agent reflects on its unsuccessful trajectory and saves this reflection in its memory. For each
subsequent trial, the agent is provided with up to three recent reflections from the same task. In
RAP, at each stage within a trial, the agent is presented with the top-k search results of trajectory
fragments as in-context demonstrations. In LATS, the agent utilizes a tree-structured search to
explore multiple reasoning and action rationales at each trial. When it encounters failed rationales,
the agent generates reflections on its mistakes and integrates these insights into its decision-making
process for future trials.

4 RESULTS AND ANALYSIS

In this section, we demonstrate that COPS outperforms all baselines across all benchmarks and
model sizes, considering both sample efficiency and task success rate. Detailed performance illus-
trations over multiple trials are presented in Figure 2.

Table 1: Performance comparison of Reflex-
ion, RAP, and COPS on Alfworld benchmark
using Llama3.1 8b and 70b models.

Algorithm Performance
Llama3.1 8b Llama3.1 70b

Reflexion1 86 94
RAP 70 93

COPS 94 100

Alfworld Benchmark Table 2 and Figures 2(a),
2(d) illustrate the comparison between COPS, Re-
flexion, and RAP on the Alfworld benchmark.
The values represent the success rate after 10 tri-
als across 134 tasks. When using the smaller
Llama 3.1 8b model, COPS reaches a success
rate of 94%, significantly surpassing both Reflex-
ion (86%) and RAP (70%). This result is partic-
ularly noteworthy because Reflexion requires the
much larger Llama 3.1 70b model to achieve sim-
ilar performance, highlighting superior effective-
ness of COPS. This demonstrates COPS’s ability
to achieve state-of-the-art performance even with limited computational resources and less capable
models, offering a clear advantage over other algorithms. Furthermore, when scaling to the larger
Llama 3.1 70b model, COPS achieves a perfect success rate of 100%. These results emphasize that
COPS scales effectively, consistently outperforming the baselines across model sizes. Although
RAP also leverages an in-context demonstrations retrieval mechanism, it lacks an effective expe-
riences selection algorithm, thus noticeably underperforms COPS. Additionally, it is important to
note that RAP manually splits the agent’s planning trajectory into multiple stages for each trial, and
these split methods are specific to each benchmark and must be manually tailored. This signifi-
cantly increases implementation complexity and introduces scalability issues. In contrast, COPS
efficiently reuses successful experiences by directly placing them in the prompts, without requir-
ing benchmark-specific modifications, making it a more practical and flexible solution. As a result,
COPS not only surpasses the baselines in performance but also offers out-of-the-box usability by
eliminating the need for manual intervention.

1The original codebase of Reflexion struggles to perform on most tasks with the smaller Llama3.1 8b model.
This is primarily because the model tends to repeat the same action, leading to task failure. To mitigate this,
we introduced a resampling mechanism to enhance Reflexion performance, which activates when the model
begins to repeat actions. This modification significantly improved Reflexion’s performance.
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Webshop Benchmark2 Table 2 and Figures 2(b), 2(e) compare the performance of COPS with all
baseline algorithms on the Webshop benchmark, measured in terms of success rate. The values
indicate the success rate over 50 products, with each algorithm evaluated through 10 trials per prod-
uct. For the smaller Llama 3.1 8b model, COPS achieves a success rate of 50%, outperforming
the next best competitor, RAP, by a substantial absolute improvement of 8%. When scaling to the
larger Llama 3.1 70b model, the performance gain of COPS becomes even more pronounced, with
a success rate of 56%. This marks a 14% absolute improvement over RAP.

Table 2: Performance comparison of Reflex-
ion, RAP, LATS, and COPS on Webshop
benchmark using Llama3.1 8b and 70b mod-
els.

Algorithm Performance
Llama3.1 8b Llama3.1 70b

Reflexion 30 30
RAP 42 42
LATS 24 32
COPS 50 56

To ensure a fair comparison across the baselines,
we modified the LATS baseline by reducing the
width of the search tree and limiting the number
of trajectory iterations. This adjustment ensures
that the running time spent on each baseline is
approximately equal. Even with these changes,
LATS still exhibits significantly lower sample ef-
ficiency. Specifically, the total number of tokens
generated by Llama 3.1 8b in LATS (1,555,365 to-
kens) is nearly five times greater than that in COPS
(314,336 tokens). Further details can be found in
Table 4 in Appendix C. This discrepancy in token
usage highlights the inefficiency of current search-
tree-based algorithms. In contrast, COPS demon-
strates much better efficiency and performance under the same inference constraints.

Table 3: Performance comparison of Reflex-
ion, LATS, and COPS on HotPotQA bench-
mark using Llama3.1 8b and 70b models.

Algorithm Performance
Llama3.1 8b Llama3.1 70b

Reflexion 56 61
LATS 55 64
COPS 63 65

HotPotQA Benchmark Table 3 and Figures 2(c),
2(f) illustrate the comparison between COPS, Re-
flexion, and LATS on the HotPotQA benchmark,
conducted on 100 question-answering (QA) tasks.
The values in the table represent the success rates,
with each algorithm being tested over 10 trials.
As evidenced by the results, COPS consistently
achieves superior performance relative to both Re-
flexion and LATS across all model sizes. The ad-
vantage of COPS is particularly evident when us-
ing the smaller Llama 3.1 8b model, where COPS
achieves a success rate of 63%, outperforming Re-
flexion and LATS by substantial absolute improvements of 7% and 8%, respectively. Moreover,
even when scaled up to the larger Llama 3.1 70b model, COPS continues to gain stronger per-
formance. In this setting, COPS reaches a success rate of 65%, surpassing Reflexion by 4% and
LATS by 1%. Note that both Reflexion and LATS baselines demonstrate a significant performance
gap when shifting from smaller to larger model, while the results for COPS is relatively consistent
and maintains the performance edge throughout different sizes of models. This demonstrates that
COPS’s principled cross-task experience sharing mechanism also excels in tasks requiring complex
reasoning.

Conclusion3 Our experiments across Alfworld, Webshop, and HotPotQA demonstrate that COPS
consistently outperforms state-of-the-art baselines in both task success rate and sample efficiency.
Notably, COPS achieves superior performance even with smaller models like Llama 3.1 8b, high-
lighting its efficiency and practicality for resource-constrained scenarios. These results validate
the effectiveness of leveraging principled cross-task experiences sharing through our theoretically
grounded selection strategy, confirming that COPS enhances sequential reasoning capabilities across
diverse tasks and model sizes.

2We observed that scaling up the model sizes for Reflexion and RAP on the Webshop benchmark did not
result in significant improvements. This observation aligns with the original findings of Reflexion (Shinn et al.,
2024, Appendix B.1) and RAP (Kagaya et al., 2024, Table 2), which suggest that these models tend to converge
on local minima that require highly creative strategies to overcome.

3We also conduct ablation studies on tuning key hyperparameters of COPS in Appendix B, providing prac-
tical guidance for hyperparameter selection for optimal performance of COPS.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Trials

0

20

40

60

80

Su
cc

es
s r

at
e 

(p
er

ce
nt

ag
e)

Reflexion
RAP
CoPS

(a) Alfworld (Llama3.1 8b)
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(b) Webshop (Llama3.1 8b)
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(c) HotPotQA (Llama3.1 8b)
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(d) Alfworld (Llama3.1 70b)
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Figure 2: Comparative evaluation of COPS, Reflexion, RAP, and LATS across three benchmarks:
Alfworld, Webshop, and HotPotQA. The figures illustrate the success rates for both the smaller
Llama 3.1 8b and larger Llama 3.1 70b models, averaged over 10 trials.

5 THEORETICAL FRAMEWORK OF EXPERIENCE-ASSISTED AGENTS

In this section, we develop the theoretical framework to demonstrate the effectiveness of COPS.
For simplicity, we analyze our algorithm in a bandit setting, where the maximum number of steps
for each experience is H = 1. Slightly different from the formulation in Section 2, we define an
experience as τ = s|a|r, consisting of an initial state s, an action a, and its reward r = r(s, a).

We introduce additional notations for clarity in our analysis. Let T = τ1|τ2| . . . denote the experi-
ence collection. The length of T is denoted by |T |, i.e., T = (τ1, ..., τ|T |). We use Tt to represent
the first t steps of the experience collection, i.e., Tt = τ1| . . . |τt. For any experience collection T ,
we assume |T | ≤ T . We define T as the space of all trajectories, and Tt as the space of trajectories
of length t. We denote a general algorithm as Alg(·|·, ·, ·) : M × T × S → ∆(A), which takes as
input a task M ∈ M, an experience collection T ∈ T, and a state s ∈ S, and outputs a distribution
over actions a ∈ A. Note that some algorithms may not use the task M as input, in which case
we write Alg(·|·, ·). We denote PM,Alg

t as the distribution over the first t steps of an experience
collection under task M and algorithm Alg. For an algorithm Alg that takes M, T , s as input, we
define its posterior average as Alg(·|T , s) = EM∼PM(·|T ′=T ,s′=s)[Alg(·|M, T ′, s′)], which is the
best Bayesian approximation of Alg given the experience collection T and current state s.

5.1 LLM PRETRAINING

We begin by describing the pretraining process for the LLM. Let Algθ̂(·|T , s) : T × S → ∆(A)

represent an LLM agent that outputs a distribution over A, where θ̂ ∈ Θ is the parameter of the
LLM, Θ denotes the whole parameter space. We assume that there exists a pretraining dataset
Dpre = {T 1, . . . , T npre}, with |T i| = T − 1. Following the pretraining setup in Lin et al. (2023), we
assume two algorithms: a context algorithm, AlgC(·|·, ·) : T× S→ ∆(A), and an expert algorithm,
AlgE(·|·, ·, ·) : M × T × S → ∆(A). In general, the context algorithm provides a “natural” action
based on the experience collection and current state, while the expert algorithm provides a more
informed action, given the task information, experience collection, and current state. Since the
expert algorithm has access to task information M, it typically produces better actions than the
context algorithm.

We now describe the pretraining process. To generate an experience collection T = τ1| . . . |τT−1 ∈
Dpre, we first sample a task M ∼ PM. For each experience τi, the state is sampled from the initial
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state distribution si ∼ PM
0 , the action is sampled using the context algorithm ai ∼ AlgC(·|Ti−1, si),

and the reward is given by ri = r(si, ai). After generating the experience collection, we col-
lect expert feedback ā1, . . . , āT−1 for each step of T , using the expert algorithm, where āi ∼
AlgE(·|M, Ti−1, si). Repeating this process npre times produces the trajectories T i and expert
actions āi1, . . . , ā

i
T−1 for i ∈ [npre]. Finally, we pretrain the LLM Algθ̂ by solving the following

maximum likelihood estimation problem:

θ̂ ← argmax
θ∈Θ

npre∑
i=1

T∑
t=1

logAlgθ(ā
i
t|T i

t−1, s
i
t).

For the remainder of this paper, we use Algθ̂ to represent our LLM. Below, we present several
standard assumptions for analyzing Algθ̂.
Definition 5.1 (Lin et al. 2023). Let Θ be the set of parameters of the LLM, Algθ. We call Θ0 ⊆ Θ
a ρ-cover of Θ with respect to Algθ if, for any θ ∈ Θ, there exists θ0 ∈ Θ0 such that

∀s ∈ S, t ∈ [T ], T ∈ Tt−1, ∥ logAlgθ(·|T , s)− logAlgθ0
(·|T , s)∥∞ ≤ ρ.

We denote N (ρ) = |Θ0| as the ρ-covering number of Algθ.

Next assumption assumes that, the best approximation between the trained LLM and the posterior
average of the expert algorithm, AlgE , can be bounded by some constant.
Assumption 5.2 (Lin et al. 2023). There exists θ∗ ∈ Θ and a model capacity error ϵreal > 0 such
that

∀t ∈ [T ], logE
M∼PM,s∼PM

0 ,T ∼PM,AlgC
t−1 ,ā∼AlgE(·|T ,s)

[
AlgE(ā|T , s)
Algθ∗(ā|T , s)

]
≤ ϵreal.

Finally, we make assumptions for the decoder Dec introduced in Algorithm 1. We assume access
to a class of decoders Dect : S → ∆(Tt) that maps the state s to a distribution over the space of
t number of experiences, capable of estimating the distribution PM,AlgC

t (T ), which represents the
task-dependent experience distribution offered by LLM.
Assumption 5.3. For the decoder Dect : S → ∆(Tt), there exists a decoder coefficient CDec > 1
such that for any t ∈ [T ], T ∈ Tt−1,M ∈ M and s ∼ PM

0 , we have

1

C2
Dec

≤ Dect−1(T |s)
PM,AlgC
t−1 (T )

≤ C2
Dec.

5.2 ALGORITHM ANALYSIS

We consider the same offline setting as in Section 2. Suppose we have an offline dataset D, and
the agent is given an initial state s. We formalize the experience selection problem as a distribu-
tion selection problem, where the agent has access to a candidate set of distributions, denoted by
P = {P1(·|·, ·), . . . ,P|P|(·|·, ·)} ⊆ 2TT−1×S→∆(TT−1). Each element in this set represents a map-
ping from the dataset D and the current state s to a distribution over trajectories T of length T − 1.
In general, each Pi can be interpreted as the distribution over all possible combinations of T − 1

experiences from the dataset D. The agent’s goal is to select a distribution P̂s from P that mini-
mizes the suboptimality gap, which quantifies the performance difference between the best possible
strategy and the strategy selected by the agent, as measured by the expert algorithm:

SubOpt(P̂s) := EM∼PM,s∼PM
0

[
max
P̂∈P

ET ∼P̂,a∼AlgE(·|T ,s)
r(s, a)− ET ∼P̂s,a∼AlgE(·|T ,s)

r(s, a)

]
.

(5.1)

We propose OFFLINECOPS in Algorithm 2, which is an experience collection-based version of
COPS. The core idea of OFFLINECOPS mirrors that of COPS: the agent seeks to find experience
collection that maximize the reward while minimizing the distributional shift from the experience
collection of the current task, denoted by LLM. Given the test state s, OFFLINECOPS first runs the
decoder to obtain a distribution DecT−1(·|s), which approximates PM,AlgC

t−1 . Then, OFFLINECOPS

8
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Algorithm 2 OFFLINECOPS

Require: LLM Algθ̂(·|·, ·), candidate experience collection distribution P , pretraining error param-
eter ϵpretrain, task decoder Dec, offline dataset D.

1: Receive test state s, decode the distribution DecT−1(·|s).
2: Select P̂s from P that maximizes the following:

P̂s = argmax
P̂∈P

E T ∼P̂(·|D,s),
a∼Alg

θ̂
(·|T ,s)

r(s, a)− ϵpretrain

√
1 + χ2(P̂(·|D, s), DecT−1(·|s)). (5.2)

3: Generate T s ∼ P̂s and obtain a ∼ Algθ̂(·|T
s, s).

applies the pessimism principle, as in (2.2). The selected distribution P∗ ∈ P aims to identify a
distribution that produces an experience collection which maximizes the reward given the actions
provided by the LLM, while staying close to the decoded distribution DecT−1(·|s). To measure the
distributional distance, we employ the χ2-distance. Similar to the hyperparameter c in COPS, OF-
FLINECOPS introduces a hyperparameter ϵpre to balance the trade-off between maximizing reward
and satisfying the regularity condition imposed by DecT−1(·|s).
We have the following theorem to characterize the performance of OFFLINECOPS.
Theorem 5.4. By setting

ϵpretrain = CDecT ·
√
5 · T log(N (1/(npreT )2)T ) · npre

−1 + Tϵreal,

and denote P∗,s = argmaxP̂∈P ET ∼P̂(·|D,s),a∼AlgE(·|T ,s)
r(s, a), we have the following bound with

probability at least 1− 2/T :

SubOpt(P̂s) ≤ 2CDecϵpretrainEM∼PM,s∼PM
0

√
1 + χ2(P∗,s(·|D, s),PM,AlgC

T−1 (·)).

Proof. See Appendix A.1.

Theorem 5.4 provides several insights into why COPS achieves superior performance and how ex-
perience selection should be tailored under different circumstances:

• The final suboptimality gap of the selected distribution P∗,s depends on the decoder coefficient
CDec and the pretraining error parameter ϵpre. This implies that for a more powerful LLM, the
selected experience distribution P∗,s will be closer to the optimal distribution. Meanwhile, the
dependence of PM,AlgC

T−1 suggests that the task-dependent experience collection distribution offered
by LLM serves as a strong regularizer to select the optimal retrieval strategy.

• The optimal choice of the pretraining error parameter ϵpre is influenced by the decoder coefficient
CDec, the number of pretraining trajectories in the pretraining set npre, and the model capacity
error ϵreal. In general, for a more powerful LLM, where npre is large and ϵreal is small, our theorem
suggests that the agent should focus more on aligning the selected experience collection distribu-
tion P∗,s with the decoder distribution Dec. This aligns with our observations in Section B, where
smaller models, such as LLaMA 3.1 8b, are more sensitive to the choice of the hyperparameter c.

Due to the space limit, we leave the algorithm and analysis for the online setting to Appendix A.2.

6 RELATED WORK

6.1 LLM-POWERED AGENTS

In recent years, there has been a significant surge in research focused on LLM-powered agents
(Chen et al., 2024b;a; Chan et al., 2023). React (Yao et al., 2022b) laid the foundation for much
of the subsequent work on LLM agents, particularly those based on in-context learning (ICL). The
most relevant studies to COPS include (Shinn et al., 2024; Kagaya et al., 2024; Zhou et al., 2023;
Raparthy et al., 2023). In (Kagaya et al., 2024), a retrieval process for selecting in-context demon-
strations was proposed. However, their approach depends on frequent embedding queries during
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the planning stage, leading to inefficiency issues even in smaller LLM settings. Additionally, RAP
manually splits the agent’s planning trajectory into multiple stages for each trial, with benchmark-
specific tailoring, significantly increases implementation complexity and raises scalability concerns.
(Zhou et al., 2023) introduced a Tree-of-Thought (ToT) approach (Yao et al., 2024), incorporating
backpropagation and a valuation process. However, their approach demonstrated poor sample effi-
ciency, making it less suited for real-world agent settings where opportunities for trial and error are
limited. Similarly, (Liu et al., 2023) integrated value-based search into a theoretical framework, but
faced similar challenges with sample efficiency. (Feng et al., 2024) explored fine-tuning for specific
LLM agent tasks, achieving good performance but with high computational costs. Lastly, (Raparthy
et al., 2023) utilized high-quality experiences as ICL demonstrations for sequential reasoning. Al-
though achieving remarkable performance, these experiences are introduced from external RL sys-
tems, which is resource-intensive and poses scalability issues. O3D (Xiao et al., 2024) is also highly
related to COPS, which introduces an offline learning framework that leverages skill discovery and
knowledge distillation to enhance cross-task generalization without requiring fine-tuning, excelling
in offline settings and diverse domains. In contrast, COPS addresses cross-task experience selection
using a pessimism-based strategy to mitigate distribution shifts, enabling dynamic adaptation and
superior sample efficiency even in resource-constrained environments.

6.2 IN-CONTEXT DEMONSTRATIONS SELECTION

The selection of demonstrations for ICL has been widely studied. (Wang et al., 2024b) approached
in-context demonstration selection from a Bayesian perspective, explicitly constructing a latent vari-
able for the selection process. However, their analysis did not account for the pre-trained knowledge
distribution, and their results were primarily empirical. (Yan et al., 2023) investigated the impact
of repetition in in-context demonstrations, conducting controlled experiments to assess how repeti-
tions in pre-trained knowledge influence results. (Scarlatos & Lan, 2023) developed a reinforcement
learning framework to select in-context examples, while (Voronov et al., 2024) examined the impact
of prompt formatting on in-context learning performance. Additionally, (Shum et al., 2023) intro-
duced an automatic CoT augmentation and selection method for ICL example datasets. (Hu et al.,
2024b) analyzed the scaling of in-context demonstrations from a theoretical standpoint, deriving
general statistical bounds while accounting for pre-training errors. However, their focus was primar-
ily on CoT in general ICL settings, not on the specific challenges faced by LLM agents interacting
with environments and requiring feedback for optimization.

6.3 THEORY OF AGENTS

Several works have advanced the theoretical understanding of LLM agents. (He et al., 2024) ex-
plored the statistical theory of LLM agents through the lens of Bayesian aggregated imitation learn-
ing. (Lin et al., 2023) provided a theoretical analysis of transformers within the context of in-context
reinforcement learning. (Wang et al., 2024a) examined the training and generalization of transform-
ers for sequential reasoning, drawing parallels between transformer behavior and online learning
algorithms. (Sumers et al., 2023) offered a cognitive perspective on LLM agents, while (Park et al.,
2024) investigated the regret of LLM agents in sequential reasoning tasks, contributing both theo-
retical and empirical insights that inform COPS’s development.

7 CONCLUSION

In this paper, we introduced COPS (Cross-Task Experience Sharing), a theoretically grounded algo-
rithm that empowers agent systems with cross-task experiences sharing. Using a pessimism-based
strategy to select relevant experiences, COPS maximizes utility while minimizing the risks of distri-
bution shifts. Our experiments on benchmarks like Alfworld, Webshop, and HotPotQA demonstrate
that COPS outperforms state-of-the-art methods in both success rates and sample efficiency. Theo-
retically, we show that our algorithm’s performance depends on the LLM’s pre-trained quality and
the matching between the cross-task experience distribution decided by the trials selected by the
agent, and a task-dependent experience distribution denoted by the LLM, providing insights for
improving experience retrieval methods.

4We demonstrate the limitations of COPS in Appendix J due the page constraints.
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A ADDITIONAL DETAILS IN SECTION 5

A.1 PROOF OF THEOREM 5.4

We prove Theorem 5.4 here. First, we need the following lemmas.
Lemma A.1 (Lemma 20, Lin et al. 2023). With probability at least 1− δ, we have

E
M∼PM,s∼PM

0 ,T ∼PM,AlgC
T−1

[ T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
≤ 5 ·

T log(N (1/(npreT )
2)T/δ)

npre
+ Tϵreal,

where the covering number N is defined in Definition 5.1, ϵreal is defined in Assumption 5.2.

Next lemma is used to provide a per-state guarantee for the generalization error.
Lemma A.2. Let event E be defined as

E
T ∼PM,AlgC

T−1

[ T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
≤ mc

[
c ·

T log(δ−1N (1/(npreT )
2)T )

npre
+ Tϵreal

]
,

where ϵreal is defined in Assumption 5.2. Then we have P(E) ≥ 1− 1/mc − δ.

Proof. By Markov inequality, we have that with probability at most 1/mc,

E
T ∼PM,AlgC

T−1

[ T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]

≥ mc · EM∼PM,s∼PM
0 ,T ∼PM,AlgC

T−1

[ T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
.

Meanwhile, by Lemma A.1, we know that with probability at most δ, we have

E
M∼PM,s∼PM

0 ,T ∼PM,AlgC
T−1

[ T∑
t=1

DH
2(AlgE(·|Tt−1, s),Algθ̂(·|Tt−1, s))

]
≥ c ·

T log(δ−1 · N (1/(npreT )
2)T )

npre
+ Tϵreal.

Therefore, by the union bound, we have P(E) ≥ 1− δ − 1/mc.

Now we begin to prove Theorem 5.4.

Proof. We following the proof steps in Lin et al. (2023). We suppose that the event E denoted in
Lemma A.2 holds. We first bound the difference of reward by the difference between their distribu-
tion distance. Let P̂ be an arbitrary distribution over T . Then we have

ET ∼P̂(·)|Ea∼AlgE(·|T ,s)
r(s, a)− Ea∼Alg

θ̂
(·|T ,s)r(s, a)|

≤ ET ∼P̂(·)DTV(AlgE(·|T , s),Algθ̂(·|T , s))

≤ ET ∼P̂(·)DH(AlgE(·|T , s),Algθ̂(·|T , s)), (A.1)

the first inequality holds due to the fact |r| ≤ 1 and the property of TV distance, the second one
holds since DTV ≤ DH. Starting from (A.1) we have

ET ∼P̂DH(AlgE(·|T , s),Algθ̂(·|T , s))

= E
T ∼PM,AlgC

T−1

DH(AlgE(·|T , s),Algθ̂(·|T , s)) ·
P̂(T )

PM,AlgC
T−1 (T )

14
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≤
√√√√√E

T ∼PM,AlgC
T−1

DH
2(AlgE(·|T , s),Algθ̂(·|T , s))︸ ︷︷ ︸

I1

·

√√√√√√E
T ∼PM,AlgC

T−1

(
P̂(T )

PM,AlgC
T−1 (T )

)2

︸ ︷︷ ︸
I2

, (A.2)

where the first inequality holds due to Cauchy-Schwarz inequality. For I1, we use Lemma A.1.
Notice that the length of |T | = T − 1 and the definition of ϵpretrain, we have

I1 ≤ (ϵpretrain/CDec)
2. (A.3)

For I2, by the definition of χ2 distance, we have

I2 = ET ∼P̂
P̂(T )

PM,AlgC
T−1 (T )

= ET ∼P̂
P̂(T )

DecT−1(T |s)
· DecT−1(T |s)
PM,AlgC
T−1 (T )

≤ C2
Dec[1 + χ2(P̂(·), DecT−1(·|s))]. (A.4)

where the inequality holds due to Assumption 5.3. Substituting (A.3) and (A.4) into (A.2), and
substituting (A.2) into (A.1), we have

|ET ∼P̂,a∼AlgE(·|T ,s)
r(s, a)− ET ∼P̂,a∼Alg

θ̂
(·|T ,s)r(s, a)|

≤ ϵpretrain

√
1 + χ2(P̂(·), DecT−1(·|s)), (A.5)

holds for any P̂ ∈ P . Finally, we have

ET s∼P̂s(·|D,s),a∼AlgE(·|T s,s)
r(s, a)

≥ ET s∼P̂s(·|D,s),a∼Alg
θ̂
(·|T s,s)r(s, a)− ϵpretrain

√
1 + χ2(P̂s(·|D, s), DecT−1(T |s))

≥ ET s∼P∗,s(·|D,s),a∼Alg
θ̂
(·|T s,s)r(s, a)− ϵpretrain

√
1 + χ2(P∗,s(·|D, s), DecT−1(T |s)),

≥ ET s∼P∗,s(·|D,s),a∼AlgE(·|T s,s)
r(s, a)− 2ϵpretrain

√
1 + χ2(P∗,s(·|D, s), DecT−1(T |s)),

≥ ET s∼P∗,s(·|D,s),a∼AlgE(·|T s,s)
r(s, a)− 2ϵpretrainCDec

√
1 + χ2(P∗,s(·|D, s),PM,AlgC

T−1 (·)),

where the first inequality holds due to (A.5), the second one holds due to the selection rule of P̂s,
the third one holds due to (A.5) and the last one holds due to Assumption 5.3. This concludes our
proof.

A.2 ONLINE ALGORITHM

We also consider an analysis for a variant of OFFLINECOPS to the online setting. Here, let P =
{P1(·|·, ·), . . . ,P|P|(·|·, ·)} ⊆ 2Tt−1×S→∆(Tt−1) which includes mappings that map an experience
collection Tt−1 and a test state s to a distribution over Tt−1. Each Pi can be thought as a strategy
to pick the experience collection that depends on the past observations. At step t, we have history
Ht−1 = {s1, a1, r1, . . . , st−1, at−1, rt−1}. Then the agent receives st ∼ PMt

0 , where Mt ∼ PM.
Then the agent selects Pt by some algorithm and samples Tt−1 ∼ Pt(·|Ht−1, st). Then the agent
takes the action at ∼ Algθ̂(·|Tt−1, st). Her goal is to minimize the following regret:

RegretT :=
T∑

t=1

E
Mt∼PM,st∼PMt

0

[
max
Pi∈P

ETt−1∼Pi(·|Ht−1),

ā∼AlgE(·|Tt−1,st)

r(st, ā)− E Tt−1∼Pt(·|Ht−1),

at∼AlgE(·|Tt−1,st)

r(st, at)

]
.

(A.6)

We propose the algorithm ONLINECOPS in Algorithm 3. Similar to OFFLINECOPS, ONLINECOPS
adapts an decoder that takes the current state as its input and outputs a distribution of the experience
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collection T , which aims to estimate the LLM output distribution PMt,AlgC

t−1 . Unlike OFFLINECOPS,
the optimization goal of ONLINECOPS in (A.7) is similar to the optimistic principle that originates
from the online decision-making problems (Abbasi-Yadkori et al., 2011), which aims to maximize
both the reward and the distribution distance between the decoder distribution Dect−1 and the se-
lected one P̂t. Meanwhile, note that the selected experience collection distribution only depends on
the past history Ht−1, which is small in the early stage of the online decision-making process. We
have the following theorem to demonstrate the theoretical guarantee of ONLINECOPS.
Algorithm 3 ONLINECOPS

Require: LLM Algθ̂(·|·, ·), candidate experience collection distribution P , pretraining error param-
eter ϵpretrain, task decoder Dec.

1: LetH0 = ∅.
2: for t = 1, . . . , T do
3: Generate Mt ∼ PM, receive st ∼ PMt

0 , decode Dect−1(·|st)
4: Select P̂t from P that maximizes the following:

P̂t = argmax
P̂∈P

ET ∼P̂(·|Ht−1,st),
a∼Alg

θ̂
(·|T ,st)

r(st, a) + ϵpretrain

√
1 + χ2(P̂(·|Ht−1, st), Dect−1(·|st)). (A.7)

5: Generate T ∼ P̂t(·|Ht−1, st) and obtain at ∼ Algθ̂(·|T , st) and rt = r(st, at), set Ht =
Ht−1 ∪ (st, at, rt).

6: end for
Theorem A.3. By setting

ϵpretrain = CDec · T 2 ·

√
5 ·

T log(N (1/(npreT )2)T 2)

npre
+ Tϵreal,

and denote P∗,t = argmaxP̂∈P ETt−1∼P̂(·|Ht−1,st),

ā∼AlgE(·|Tt−1,st)

r(st, ā), we have the following bound holds with

probability at least 1− 2/T :

RegretT ≤ 2CDecϵpretrain

T∑
t=1

√
1 + χ2(P∗,t(·|Ht−1, st),PMt,AlgC

t−1 (·)).

Proof. Suppose we are at step t and we condition on all past history Ht−1 =
(s1, a1, r1, . . . , st−1, at−1, rt−1).

Let Mt be the task at t step and st be the state observed. Then with probability at least 1−1/mc−δ,
the following event Et holds:

E
T ∼PMt,AlgC

t−1

[
DH

2(AlgE(·|Tt−1, st),Algθ̂(·|Tt−1, st))

]
≤ mc

[
c ·

T log(δ−1N (1/(npreT )
2)T 2)

npre
+ Tϵreal

]
,

Now following (A.2) in the proof of Theorem 5.4, we still have

ET ∼P̂|Ea∼AlgE(·|T ,st)
r(s, a)− Ea∼Alg

θ̂
(·|T ,st)r(s, a)|

≤
√√√√√E

T ∼PMt,AlgC
t−1

DH
2(AlgE(·|T , st),Algθ̂(·|T , st))︸ ︷︷ ︸

I1

·

√√√√√√E
T ∼PMt,AlgC

t−1

(
P̂(T )

PMt,AlgC
t−1 (T )

)2

︸ ︷︷ ︸
I2

(A.8)

Then following Lemma A.2, under event Et, we have

I1 ≤ (ϵpretrain/CDec)
2, ϵpretrain/CDec = T 2 ·

√
c ·

T log(N (1/(npreT )2)T 2)

npre
+ Tϵreal.
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For I2, similar to (A.4), we have

I2 ≤ C2
Dec[1 + χ2(P̂(·), Dect−1(·|st))].

Therefore, we have for any P̂,

|ET ∼P̂(·|Ht−1,st),a∼AlgE(·|T ,st)
r(st, a)− ET ∼P̂(·|Ht−1,st),a∼Alg

θ̂
(·|T ,st)

r(st, a)|

≤ ϵpretrain

√
1 + χ2(P̂(·|Ht−1, st), Dect−1(·|st)). (A.9)

Taking union bound and let mc = T 2, δ = 1/T 2, then we get E1, ..., ET hold with probability at
least 1− 2/T . Next we bound the suboptimal gap at t step as follows:

ET t−1∼P̂t(·|Ht−1,st),a∼AlgE(·|T t−1,st)
r(st, a)

≤ ET t−1∼P̂t(·|Ht−1,st),

a∼Alg
θ̂
(·|T t−1,st)

r(st, a) + ϵpretrain

√
1 + χ2(P̂t(·|Ht−1, st), Dect−1(·|st))

≤ ET t−1∼P∗,t(·|Ht−1,st),

a∼Alg
θ̂
(·|T t−1,st)

r(st, a) + ϵpretrain
√
1 + χ2(P∗,t(·|Ht−1, st), Dect−1(·|st))

≤ ET t−1∼P∗,t(·|Ht−1,st),

a∼AlgE(·|T t−1,st)

r(st, a) + 2ϵpretrain
√
1 + χ2(P∗,t(·|Ht−1, st), Dect−1(·|st))

≤ ET t−1∼P∗,t(·|Ht−1,st),

a∼AlgE(·|T t−1,st)

r(st, a) + 2CDecϵpretrain

√
1 + χ2(P∗,t(·|Ht−1, st),PMt,AlgC

t−1 (·)), (A.10)

where the first inequality holds due to (A.9), the second one holds due to the optimism principle, the
third one holds due to (A.9), and the last one holds due to Assumption 5.3. Taking summation of
(A.10) from 1 to T concludes our proof.

Similar to Theorem 5.4 for the offline setting, Theorem A.3 also shares the following insights.

• The regret is controlled by the difference between the best experience collection generated distri-
bution P∗,t and the experience collection distribution induced by the contextual algorithm at t-th
step. Therefore, the best strategy overall is to select trajectories from the history Ht−1 that can
approximates the current task well to avoid the distribution shift.

• With a more powerful LLM, the ϵpretrain will be smaller, which means the selected experience
collection can approximatethe best selection better.

B ABLATION STUDY

In this section, we analyze how two key hyperparameters affect the performance of COPS: the
scaling factor c in Equation (2.3) and the number of in-context experiences k placed at the beginning
of prompts. We conducted experiments on the Alfworld benchmark using both Llama 3.1 8b and
Llama 3.1 70b models.

For the scaling factor c, we tested four settings: c = 0, 1, 5 and 10, while keeping the number of
in-context experiences fixed at k = 5 (see Figures 3(a) and 3(b)). Our findings indicate that for
smaller models like Llama 3.1 8b, a small but non-zero value of c (e.g., c = 1) generally yields
better performance (Figure 3(a)). This suggests that moderate scaling effectively balances model
adaptability and robustness on less capable models.

Regarding the number of in-context experiences k, we evaluated values ranging from 1 to 10, setting
c = 0 (see Figures 3(c) and 3(d)). We observed that performance improves as k increases up to
k = 3, after which it plateaus for both model sizes. This result indicates that while increasing the
in-context experience size enhances performance to a point, adding more than three experiences may
not offer substantial gains.

Our ablation study reveals that tuning key hyperparameters in COPS is crucial for optimal perfor-
mance. Specifically, for smaller models, a small but non-zero scaling factor c (e.g., c = 1) effectively
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Figure 3: Performance impact of hyperparameters c (scaling factor) and k (number of in-context
experiences) on the Alfworld benchmark for both Llama 3.1 8b and Llama 3.1 70b models.

balances adaptability and robustness. Additionally, increasing the number of in-context experiences
k enhances performance up to k = 3, beyond which additional experiences offer minimal gains.
These insights provide practical guidance for hyperparameter selection, ensuring that COPS can be
efficiently deployed across various settings to maximize its sequential reasoning capabilities.

C MORE EXPERIMENT DETAILS

In this section, we provide additional details on our experiments in Section 4. The tables included
below outline the token counts and hyperparameter settings that were used throughout the evaluation
process.

Table 4: Token generation count for each of the Webshop experiments. It’s worth noticing that for
each model the LATS token generation count is at least 5 times to COPS.

Algorithm Reflexion RAP LATS COPS
Llama3.1 8b 159131 107504 1555365 314336
Llama3.1 70b 125406 109245 1058752 113849

Table 5: Hyperparameter settings (k and c) for different benchmarks and model sizes.

Benchmark Alfworld Webshop HotPotQA
Llama3.1 8b k = 5, c = 5 k = 5, c = 0 k = 5, c = 5

Llama3.1 70b k = 5, c = 5 k = 5, c = 0 k = 5, c = 0

D QUALITY OF DEMONSTRATIONS

In our realistic implementation of COPS, we only utilized successful tractors following other related
works. However, in our theoretical analysis, we use the measurement we designed in equation 2.2,
which considers both the successful and failed trajectories and calculates the similarity between the
experience and our current task. However, in realistic implementation, the trajectories that gain high
similarity scores are successful, thus we only utilize successful trajectories due to limited compute
budgets.

This brings concerns about the impact of suboptimal demonstrations, for which, we conducted an
ablation study on the Alfworld benchmark, comparing top-k and bottom-k successful trajectories
ranked by the similarity score. The results are shown in Table 6.

Table 6: Performance comparison of using top-k and bottom-k successful trajectories as demonstra-
tions on Alfworld benchmark using Llama3.1 8B Instruct.

Retrieval Method Performance (Success Rate %)
Top-5 93.6± 1.0

Bottom-5 83.0± 3.9
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These results in Table 6 demonstrate that the quality of retrieved demonstrations significantly affects
performance, with top-k successful trajectories outperforming bottom-k successful trajectories by a
substantial margin. This underscores the importance of selecting high-quality trajectories.

E REPEATED EXPERIMENTS

To demonstrate the robustness of COPS, we use multiple seeds to run COPS on all three bench-
marks. The repeated experiment results are shown in Table 7.

Benchmark Model Mean Std

HotpotQA 8B 53.6 1.5
70B 62.8 1.3

Webshop 8B 47.2 1.6
70B 51.2 2.7

Alfworld 8B 93.6 1.0
70B 100.0 0.0

Table 7: Mean and standard deviation results of LLaMA 3.1 Instruct model on three benchmarks.

The results presented in Table 7 demonstrate the robustness of COPS across multiple runs and
benchmarks. For example, on the Alfworld benchmark with the LLaMA 3.1 70B model, our method
consistently achieved perfect scores (100.0 ± 0.0), highlighting its stability. On other benchmarks
such as HotpotQA and Webshop, the relatively low standard deviations further validate the consis-
tency of our approach, even under varied experimental conditions. These findings underscore the
reliability and robustness of COPS, reinforcing its applicability to diverse real-world scenarios.

F PERFORMANCE ON CLOSE-SOURCED MODELS

We add additional experiments to evaluate the performance of COPS based on SOTA close-sourced
GPT and Claude models. The detailed performance is shown in Table 8. From the results, we find
that COPS works well with these close-sourced models and achieves reasonably high performance
compared with open-source models.

Table 8: Performance comparison of COPS on different benchmarks using GPT and Claude family
models.

Model Alfworld Webshop HotPotQA
GPT-4o 100 56 67

Claude 3.5-Sonnet 100 58 66

G IMPACT OF CROSS-TASK EXPERIENCES

COPS utilized cross-task experiences to boost the performance of LLM agents. This brings concerns
about whether COPS can achieve similar performance just using the experiences from the failed
trajectories of the same task. While leveraging single-task experience might seem ideal, practical
scenarios often necessitate relying on experiences from relevant but distinct tasks, which introduces
additional challenges. To address this concern, we conducted an ablation study comparing the per-
formance of COPS with and without cross-task experience on the Alfworld benchmark. The results
are shown in Table 9.
Table 9: Impact of cross-task experience on performance (success rate) using the Alfworld bench-
mark with Llama 3.1 8B Instruct.

Method Success Rate %
with cross-task experience 94
only same-task experience 57
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These results clearly demonstrate the significant contribution of cross-task experience to perfor-
mance improvement, with a nearly twofold increase in success rate compared to using only same-
task experience.

H IMPACT OF RETRIEVAL METHODS

In our main results, COPS utilized semantic search (semantic embedding model and distance-based
retrieval) to retrieve cross-task experiences. This raises concerns about the impact of the retrieval
methods. To evaluate the impact of the memory retrieval method, we conduct an ablation study on
the AlfWorld benchmark with the llama 3.1 8b Instruct model. The results are summarized in Table
10.
Table 10: Performance comparison of different experiences retrieval strategies of COPS on Alf-
World benchmark. The experiments are repeated 5 times and reported in mean + std style.

Retrieval Method Success Rate %
Semantic Search (embedding model) 93.6± 1.0
Keyword-Based (BM25) 94.1± 1.2
Hybrid (BM25 + Short Summarization Embedding) 91.3± 1.4

These results indicate that semantic search and keyword-based approaches perform comparably
well, whereas the hybrid approach shows a slight performance drop, potentially due to the added
complexity of combining methods.

I IMPACT ON MEMORY SIZE

In our initial experiments, we assumed a sufficiently large memory bank and did not model forget-
ting, which ignored the importance of memory managing and forgetting mechanisms, especially for
long-term agent deployment. To address this concern, we conducted a new ablation study on the Alf-
world benchmark with varying memory sizes to evaluate the system’s robustness under constrained
memory conditions.

In our main results, we retained all trajectories from different trials and conducted experience re-
trieval across the entire memory bank. For this ablation, we introduced a fixed memory size and
implemented a dynamic forgetting mechanism, where low-scored experiences were discarded once
the memory capacity was reached. The results are summarized in Table 11.

Table 11: Performance evaluation under constrained memory sizes on AlfWorld benchmark. Note
that our main result sets memory size to 10, as it corresponds to 10 trials. Therefore, our main results
do not discard any experiences. In our ablation study, we run COPS for 50 trials, thus for sizes 5
and 10 in the ablation study, experiences were dynamically discarded when the memory limit was
exceeded.

Memory Size Performance (Success Rate %)
50 95.6± 2.7
10 94.0± 1.1
5 87.2± 0.8

The results demonstrate that COPS maintains robust performance even with constrained memory
sizes, with only a slight drop in success rate when the memory size is reduced from 50 to 10. This
indicates that our experience selection strategy is effective even under memory limitations. However,
as expected, significant reductions in memory size (e.g., to 5) lead to performance degradation due
to more aggressive forgetting of potentially useful experiences. These findings highlight the adapt-
ability of COPS to resource-constrained scenarios while also emphasizing the trade-offs introduced
by limited memory capacity.

J LIMITATIONS

While COPS shows clear improvements over existing methods, it has several limitations. Its effec-
tiveness heavily depends on the quality and diversity of the experiences in the memory bank, mean-
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ing that outdated or poorly aligned experiences can reduce its performance. Additionally, COPS
is sensitive to hyperparameters like the scaling factor and the number of in-context experiences,
which may require time-consuming tuning that doesn’t always generalize well across different tasks
or models. Finally, the theoretical guarantees we provide also rely on assumptions about the accu-
racy of the decoder and specific pre-training properties of the LLM, which may not always hold in
real-world scenarios.

K FUTURE WORK

Looking ahead, several research directions could further improve COPS.4 These include developing
adaptive hyperparameter tuning methods, exploring dynamic memory management to keep expe-
riences relevant, and adding ways to assess experience quality. Additionally, adapting COPS for
multi-agent systems and integrating it with reinforcement learning could enable collaborative learn-
ing and continuous performance improvement. Pursuing these areas will help LLM agents handle
even more complex sequential reasoning tasks.

L PROMPT TEMPLATE

Our prompt framework is designed with the considerations of simplicity, efficiency, and general-
izability. Moreover, we aim to leverage the high-performing long-context capabilities of modern
LLMs ((Dubey et al., 2024)) to a maximal degree. In one sentence to describe our prompting
philosophy: previous success trajectories are seen by the agent as experiences it has gone through
in the same trial. As an example from the Alfworld experiment, a in-context demonstration is insert
into the prefix of the agent’s prompt as follows:

[User] Interact with a household to solve a task. Here are a few examples.
You are in the middle of a room. Looking quickly around you, you see a cabinet 13, a cabinet
12, a cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5, a
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 1, a diningtable
1, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a
sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: put a hot apple in fridge.

[Assistant] think: To solve the task, I need to find and take an apple, then heat it with
microwave, then put it in fridge.

[User] OK.

[Assistant] think: First I need to find an apple. An apple is more likely to appear in fridge (1),
diningtable (1), coffeetable (1), drawer (1), cabinet (1-13), garbagecan (1). I can check one by
one, starting with fridge 1.

[User] OK.

[Assistant] go to fridge 1

[User] The fridge 1 is closed.

[experience detail omitted]

[Assistant] go to fridge 1

[User] The fridge 1 is open. In it, you see a cup 1, and a egg 1.

[Assistant] put apple 1 in/on fridge 1

[User] You put the apple 1 in/on the fridge 1.
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[more in-context experiences]

[User] Examples finished. Here is the task:
You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 5,
a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 3, a
countertop 2, a countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a
stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: put a saltshaker in drawer.

[Assistant] think: To solve the task, I need to find and take a saltshaker, then put it in/on a
drawer.

[real trial begins]
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