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ABSTRACT

The Conformer has become the most popular encoder model for automatic speech
recognition (ASR). It adds convolution modules to a Transformer to learn both
local and global dependencies. In this work we describe a faster, more memory-
efficient, and better-performing Transformer, called Zipformer. Modeling changes
include: 1) a U-Net-like encoder structure where middle stacks operate at lower
frame rates; 2) reorganized block structure with more modules, within which we
re-use attention weights for efficiency; 3) a modified form of LayerNorm called
BiasNorm allows us to retain some length information; 4) new activation functions
SwooshR and SwooshL work better than Swish. We also propose a new optimizer,
called ScaledAdam, which scales the update by each tensor’s current scale to keep
the relative change about the same, and also explictly learns the parameter scale.
It achieves faster convergence and better performance than Adam. Extensive ex-
periments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the
effectiveness of our proposed Zipformer over other state-of-the-art ASR models.
Our code is publicly available at https://github.com/k2-fsa/icefall.

1 INTRODUCTION

End-to-end models have achieved remarkable success in automatic speech recognition (ASR). An
effective encoder architecture that performs temporal modeling on the speech sequence plays a vital
role in end-to-end ASR models. A most prominent example is Conformer (Gulati et al., 2020),
which combines the advantages of the convolutional neural network (CNN) models (Zhang et al.,
2017; Li et al., 2019; Kriman et al., 2020) and Transformer models (Dong et al., 2018; Karita et al.,
2019; Zhang et al., 2020b). By integrating CNN into Transformer (Vaswani et al., 2017), Conformer
is able to extract both local and global dependencies on speech sequences, and achieves state-of-the-
art performance in ASR.

In this work, we propose a faster, more memory-efficient, and better-performing Transformer as
ASR encoder, called Zipformer. First, unlike Conformer that operates on the sequence at a constant
frame rate, Zipformer adopts a U-Net-like (Ronneberger et al., 2015) structure, which consists of
multiple stacks downsamping the sequence to various lower frame rates. Second, we re-design the
block structure, which is equipped with more modules like two Conformer blocks, and reuses the
attention weights for efficiency. We propose BiasNorm as a simpler replacement of LayerNorm,
which allows for retaining length information in normalization. We also replace Swish with our
new activation functions SwooshR and SwooshL to achieve better results. In addition, we devise a
parameter-scale-invariant version of Adam, called ScaledAdam, which scales the update by the cur-
rent parameter scale and also explicitly learns the parameter scale. Compared to Adam, ScaledAdam
enables faster convergence and better performance.

Extensive experiments are conducted on LibriSpeech, Aishell-1, and WenetSpeech datasets, and
results demonstrate the effectiveness of the proposed modeling and optimization-related innovations.
Zipformer achieves state-of-the-art results on all three datasets. It is worth mentioning that Zipformer
is the first model ever to achieve results comparable to those reported in the Conformer paper on
the LibriSpeech dataset (these results have proved difficult for others to reproduce). In terms of
efficiency, Zipformer converges faster during training and speeds up the inference by more than
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50% compared to previous studies while requiring less GPU memory. We perform detailed ablation
studies to investigate the contribution of individual components.

2 RELATED WORK

Model architecture. Deep convolution architectures have been applied to end-to-end ASR (Zhang
et al., 2017; Li et al., 2019). Follow-up works explore improvements by using depthwise separable
convolutions (Howard et al., 2017) for efficiency (Kriman et al., 2020), and incorporating squeeze-
and-excitation module (Hu et al., 2018) to capture longer context (Han et al., 2020). Inspired by
the success of Transformer (Vaswani et al., 2017) in natural language processing (NLP) field, some
works adapt Transformer to speech applications (Dong et al., 2018; Karita et al., 2019; Zhang et al.,
2020b; Wang et al., 2020; Zhang et al., 2020a). Compared to CNN, the remarkable benefit of
Transformer is that it can learn global dependencies based on self-attention, which is essential for
speech processing task. By integrating convolution into Transformer, Conformer (Gulati et al., 2020)
gains powerful capability of modeling both local and global contextual information, and outperforms
all previous ASR models.

Recent works explore architecture changes on Conformer to further reduce the computational cost
and improve the recognition performance. Squeezeformer (Kim et al., 2022) adopts a temporal
U-Net structure in which the middle modules operate at half frame rates, and also redesigns the
block structure to make it similar to the standard Transformer block (Vaswani et al., 2017). Branch-
former (Peng et al., 2022) incorporates parallel branches to model various ranged context, in which
one branch captures the local context with convolutional gating multi-layer perceptron (MLP), while
the other branch learns long-range dependencies with self-attention. E-Branchformer (Kim et al.,
2023) further improves Branchformer by enhancing the branch merging mechanism by convolution-
based module.

Zipformer shares similar ideas about temporal downsampling as the previous work Squeezeformer.
However, compared to the fixed downsampling ratio in Squeezeformer, Zipformer operates at differ-
ent downsampling ratios at different encoder stacks and uses much more aggressive downsampling
ratios in the middle encoder stacks. In addition to the modeling differences, our work also focuses on
optimization-related changes including a new optimizer ScaledAdam, which are shown to improve
convergence in the experiments.

End-to-end framework. Connectionist temporal classification (CTC) (Graves et al., 2006) is one
of the earliest frameworks for end-to-end ASR, but its performance is limited by the frame indepen-
dent assumption. To this end, a hybrid architecture that integrates attention-based encoder-deocder
(AED) (Chan et al., 2015) in CTC (Watanabe et al., 2017) (CTC/AED) is proposed to improve
the performance. Neural transducer (Graves, 2012), commonly known as RNN-T, addresses the
frame independence assumption using a label decoder and a joint network and becomes a popular
framework due to its superior performance. Recently, various approaches such as pruning (Kuang
et al., 2022; Wang et al., 2023; Mahadeokar et al., 2021) or batch-splitting (Kuchaiev et al., 2019)
are proposed to accelerate the training speed and reduce memory usage of neural transducers.

3 METHOD

3.1 DOWNSAMPLED ENCODER STRUCTURE

Figure 1 presents the overall architecture of the proposed Zipformer model. Different from Con-
former (Gulati et al., 2020) that processes the sequence at a fixed frame rate of 25Hz, Zipformer
uses a U-Net-like structure learning temporal representation at different resolutions in a more effi-
cient way. Specifically, given the acoustic features with frame rate of 100Hz, the convolution-based
module called Conv-Embed first reduces the length by a factor of 2, resulting in a 50Hz embedding
sequence. The obtained sequence is then fed into 6 cascaded stacks to learn temporal representa-
tion at frame rates of 50Hz, 25Hz, 12.5Hz, 6.25Hz, 12.5Hz, and 25Hz, respectively. Except for the
first stack, the other stacks all adopt the downsampled structures, processing the sequence at lower
frame rates. The frame rate between stacks is consistently 50Hz. Different stacks have different
embedding dimensions, and the middle stacks have larger dimensions. The output of each stack is
truncated or padded with zeros to match the dimension of the next stack. The final encoder output
dimension is set to the maximum of all stacks’ dimensions. Specifically, if the last stack output has
the largest dimension, it is taken as the encoder output; otherwise, it is concatenated from differ-
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Figure 1: Overall architecture of Zipformer.
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Figure 2: (Left): Zipformer block structure. (Right): Non-Linear Attention module structure.

ent pieces of stack outputs, taking each dimension from the most recent output that has it present.
Finally, a Downsample module converts the sequence to 25Hz, resulting in the encoder output.

Conv-Embed. In Conv-Embed we use three 2-D convolutional layers with time× frequency strides
of 1 × 2, 2 × 2, and 1 × 2, and output channels of 8, 32, and 128, respectively. Subsequently,
we utilize one ConvNeXt layer (Liu et al., 2022) similar to Nextformer (Jiang et al., 2022), which
is composed of a depth-wise convolution with kernel size of 7 × 7, a point-wise convolution with
384 output channels, a SwooshL activation function (described in Section 3.4), and a point-wise
convolution with 128 output channels. Residual connection is applied on the ConvNeXt module.
Finally, a linear layer followed by a BiasNorm (described in Section 3.3) is used to adjust the feature
dimension to match the first stack.

Downsampled stacks. In the downsampled stacks, the pairwise Downsample and Upsample mod-
ules perform symmetric scaling down and scaling up in sequence length, respectively, using almost
the simplest methods. For example, with a factor of 2, the Downsample module averages every 2
frames with 2 learnable scalar weights (after softmax normalization), and the Upsample module just
repeats each frame twice. After downsampling, it employs the stacking Zipformer blocks (described
in Section 3.2) for temporal modeling at lower frame rates. Finally, it utilizes the Bypass module
(described in Section 3.2) to combine the stack input and stack output in a learnable way.

3.2 ZIPFORMER BLOCK

Conformer block consists of four modules: feed-forward, Multi-Head Self-Attention (MHSA), con-
volution, and feed-forward. MHSA learns global context by two steps: computing attention weights
using the dot-product operation and aggregating different frames with these attention weights. How-
ever, MHSA typically accounts for a large computational cost, since above two steps both require
quadratic complexity with respect to the sequence length. Hence, we decompose MHSA into two
individual modules according to above two steps: Multi-Head Attention Weight (MHAW) and Self-
Attention (SA). This change allows to perform the attention computation twice more efficiently in
each block by using one MHAW module and two SA modules. In addition, we propose a new module
called Non-Linear Attention (NLA) to make full use of the computed attention weights to capture
the global information.

As illustrated in Figure 2 (Left), Zipformer block is equipped with about twice the depth of the
Conformer block (Gulati et al., 2020). The main motivation is to allow the re-use of the attention
weights to save time and memory. Specifically, the block input is first fed into an MHAW module,
which calculates the attention weights and shares them with an NLA module and two SA modules.
Meanwhile, the block input is also fed into a feed-forward module followed by the NLA module.
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Then it applies two module groups, each consisting of SA, convolution, and feed-forward. Finally, a
BiasNorm (described in Section 3.3) is used to normalize the block output. In addition to the regular
residual connections using adding operation, each block utilizes two Bypass modules to combine the
block input and the module outputs, placed in the middle and end of the block. Note that different
from regular Transformer models (Vaswani et al., 2017), we don’t use normalization layer such
as LayerNorm (Ba et al., 2016) for each module to periodically prevent activations from becoming
either too large or too small, since our proposed ScaledAdam optimizer is able to learn the parameter
scales (described in Section 3.5).

Non-Linear Attention. Figure 2 (Right) presents the NLA structure. It also leverages the pre-
computed attention weights from MHAW to aggregate the embedding vectors over the time axis,
which is similar to SA. Specifically, it first projects the input with 3 linear layers to A, B, and C,
each being of 3/4 input dimension. The module output is linear(A ⊙ attention(tanh(B) ⊙ C)),
where ⊙ denotes the element-wise multiplication, attention represents matrix-multiplying on the
time axis by a single head of previously computed attention weights, and the linear layer recovers
the dimension to the same as the input.
Bypass. The Bypass module learns channel-wise scalar weights c to combine the module input x
and module output y: (1 − c) ⊙ x + c ⊙ y. In training, we initially limit the values of c in range
of [0.9, 1.0] and then change the minimum to 0.2 after 20000 steps. We found that making modules
“straight-through” at the beginning (i.e. allowing very little bypass) helps model convergence..

3.3 BIASNORM

Conformer (Gulati et al., 2020) utilizes LayerNorm (Ba et al., 2016) to normalize the module acti-
vations. Given x with D channels, LayerNorm is formulated as:

LayerNorm(x) =
x− E[x]√
Var[x] + ϵ

⊙ γ + β. (1)

Specifically, it first computes the mean E[x] and the standard-deviation
√
Var[x] for normalizing,

scaling the vector length to
√
D. Then it uses the learnable channel-wise scale γ and bias β for

transformation, which helps to adjust the size of activations and balance the relative contributions of
specific modules. However, we observe that the trained Conformer using LayerNorm suffers from
two problems: 1) It sometimes sets one channel to a large constant value, e.g. 50. We argue that it
aims to “defeat” the LayerNorm which fully removes the vector length, functioning as a very large
value so that length information could be retained after normalization. 2) Some modules (typically
feed-forward or convolution) are “dead” as they have extremely small output values, e.g., 10−6.
We argue that early in training, the un-trained modules are not useful so they are “turned off” by
the LayerNorm scale γ approaching zero. If the scale γ oscillates around zero, the inconsistent
sign constantly reverses the gradient directions back-propagating to the modules. Because of the
inconsistent gradient sign, the modules never learn anything useful, since this is a bad local optimum
which is hard to escape because of the dynamics of stochastic gradient descent-like updates.
To address above problems, we propose the BiasNorm which is intended to be a simpler replacement
of LayerNorm. Specifically, BiasNorm is formulated as:

BiasNorm(x) =
x

RMS[x− b]
· exp(γ), (2)

where b is the learnable channel-wise bias, RMS[x − b] is the root-mean-square value taken over
channels, and γ is a scalar. We first remove the operation of mean subtraction since it is a waste of
time unless it follows a non-linearity. The bias b serves as the large constant value which allows to
retain the vector length information after normalization. Since the scale exp(γ) is always positive,
it avoids the gradient oscillation problem.

3.4 SWOOSHR AND SWOOSHL ACTIVATION FUNCTIONS

Conformer (Gulati et al., 2020) adopts Swish (Ramachandran et al., 2017) activation function with
the following formula:

Swish(x) = x · (1 + exp(−x))−1. (3)
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In this work, we propose two new activation functions respectively called SwooshR and SwooshL as
replacements of Swish:

SwooshR(x) = log(1 + exp(x− 1))− 0.08x− 0.313261687,

SwooshL(x) = log(1 + exp(x− 4))− 0.08x− 0.035.
(4)

In SwooshR, the offset 0.313261687 is to make it pass through the origin; in SwooshL, the offset
0.035 was tuned, which slightly outperformed the value exactly making the curve pass through the
origin. We present the curves of Swish, SwooshR, and SwooshL in Appendix Section A.2. SwooshL
is roughly a right shifted version of SwooshR. Note that the suffix “L” or “R” represents whether the
left or right zero-crossing is at or around x = 0. Similar to Swish, SwooshR and SwooshL have lower
bounds and are non-monotonic. Compared to Swish, the most striking difference is that SwooshR
and SwooshL have non-vanishing slopes for negative inputs, which helps to escape from situations
where the input is always negative and prevents the denominator term in Adam-type updates from
getting dangerously small. When replacing Swish with SwooshR, we observe that the modules with
bypass connections, such as feed-forward and ConvNeXt, tend to learn a large negative bias in
the preceding linear layer to learn “normally-off” behavior. Therefore, we use SwooshL for these
“normally-off” modules and use SwooshR for convolution modules and the rest of Conv-Embed.

3.5 SCALEDADAM OPTIMIZER

We propose a parameter-scale-invariant version of Adam (Kingma & Ba, 2014) called ScaledAdam,
which enables faster convergence and better performance. ScaledAdam scales each parameter’s
update proportional to the scale of that parameter, and also explicitly learns the parameter scale.
Algorithm 1 in Appendix Section A.1.1 presents the pseudo-code of the ScaledAdam.
Let f(θ) be the loss function that we aim to minimize, which is differentiable w.r.t. the learnable
parameter θ. At each step t, Adam computes the parameter gradient gt = ∇θf(θt−1), and updates
the first moment mt = β1 ·mt−1+(1−β1)·gt and the second moment vt = β2 ·vt−1+(1−β2)·g2

t
of gradients, where β1, β2 ∈ [0, 1) are coefficients used to compute the moving averages. The
parameter update ∆t at step t is formulated as:

∆t = −αt ·
√

1− βt
2

1− βt
1

· mt√
vt + ϵ

, (5)

where αt is the learning rate typically specified by an external schedule,
√

1−βt
2

1−βt
1

is the bias-correction
term, and ϵ = 10−8. Whilst Adam is invariant to gradient scale of each parameter, we argue that
it still suffers from two limitations: 1) The update ∆t in Equation 5 does not take into account
the parameter scale (denoted as rt−1). Considering the relative parameter change ∆t/rt−1, Adam
might cause learning in relative terms too slowly for parameters with large scales, or too fast for
parameters with small scales. 2) It is difficult to learn the parameter scale directly, as the direction of
growing or shrinking the parameter tensor is a very specific direction in a large-dimensional space.
It’s particularly difficult to shrink a parameter, since each gradient step gt adds noise which tends to
grow the parameter norm.
Scaling update. To keep the relative change ∆t/rt−1 over parameters of varying scales about the
same, we scale the update ∆t in Equation 5 by the parameter scale rt−1:

∆′
t = −αt · rt−1 ·

√
1− βt

2

1− βt
1

· mt√
vt + ϵ

. (6)

We compute the parameter scale rt−1 as the root-mean-square value RMS[θt−1]. Because the
ScaledAdam update is less prone to divergence than Adam, we use a learning rate schedule called
Eden that does not have a long warm-up period; we also use absolutely larger learning rate values
because the parameter RMS value is normally much less than one.
Learning parameter scale. To explicitly learn the parameter scale, we treat it as a regular parameter
to be learned, as if we have factored each parameter as θ = r ·θ′, and we are doing gradient descent
on the parameter scale r and the underlying parameter θ′. Let h be the gradient of the parameter
scale r, at step t we get ht = ∇rf(θt−1) = gt · θ′

t−1. Since Adam is nearly invariant to changes in
the gradient scale, for simplicity we replace this with ht = gt ·(rt−1⊙θ′

t−1) = gt ·θt−1. Following
the Adam algorithm, we maintain the first moment nt = β1 · nt−1 + (1 − β1) · ht and the second
moment wt = β2 ·wt−1+(1−β2) ·h2

t of the scale gradients ht. The parameter change on θ caused
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by updating parameter scale from rt−1 to rt is ∆′
t,r = (rt − rt−1) ⊙ θ′

t−1. Similar to Equation 6,
we also integrate the parameter scale rt−1 into the update ∆′

t,r:

∆′
t,r = −η · αt · rt−1 ·

√
1− βt

2

1− βt
1

· nt√
wt + ϵ

⊙ θ′
t−1

= −η · αt ·
√
1− βt

2

1− βt
1

· nt√
wt + ϵ

⊙ θt−1.

(7)

where η is a scaling factor on learning rate αt, and we found that setting η = 0.1 helps to stabilize
the training. Now the update ∆′

t is replaced with ∆′
t,r + ∆′

t, which amounts to adding an extra
gradient term in the direction of growing or shrinking each parameter. This also allows to simplify
the network structure by removing most of normalization layers in our Zipformer Block (described in
Section 3.2), since the modules now can easily learn to scale the activations in a suitable range. One
similar method called weight normalization (Salimans & Kingma, 2016) decouples the parameter
norm from its direction to speed up the convergence. It replaces each parameter with two parameters,
respectively specifying the direction and the magnitude. However, ScaledAdam learns the parameter
scales by adding an extra update term ∆′

t,r, which makes writing the modeling code simpler.
Eden schedule. The proposed Eden learning rate schedule is formulated as:

αt = αbase ·

(
t2 + α2

step

α2
step

)−0.25

·

(
e2 + α2

epoch

α2
epoch

)−0.25

· linear(αstart, twarmup, t). (8)

Herein, t is the step index, e is the epoch index, αstep and αepoch respectively control the num-
ber of steps and number of epochs after which we start significantly decreasing the learning rate,
linear(αstart, twarmup, t) is a warmup scale increasing linearly from αstart to 1 over twarmup steps
and then staying constant at 1, αbase is the maximum value when setting αstart = 1, αwarmup = 0.
The reason for making Eden dependent on both the step index t and the epoch index e is to keep
the amount of parameter change after certain amount of training data (e.g., one hour) approximately
constant when we change the batch size, so the schedule parameters should not have to be re-tuned
if we change the batch size. Other versions of Eden replace the “epoch” parts of the formula with
some suitable measure of the amount of data seen. In this work, we use αbase = 0.045, αstart = 0.5,
and twarmup = 500.

Efficient implementation. To speedup the optimization in ScaledAdam, we group the parameters
into batches according to their shape and perform the computation batch by batch. Note that this
doesn’t affect the outcome. ScaledAdam just requires a little more memory than Adam to cache the
gradient moments nt and wt (in Equation 7) for the parameter scales.

4 EXPERIMENTS

4.0.1 EXPERIMENTAL SETUP

Architecture variants. We build our Zipformer variants with three model scales: small (Zipformer-
S), medium (Zipformer-M), and large (Zipformer-L). For the 6 encoder stacks, the numbers of at-
tention heads are set to {4,4,4,8,4,4}, the convolution kernel sizes are set to {31,31,15,15,15,31}. In
each attention head, the query dimension and value dimension are set to 32 and 12, respectively. For
the three feed-forward modules in each Zipformer block, the hidden dimensions in the first one and
the last one are 3/4 and 5/4 of that in the middle one. We adjust the layers numbers, the embedding
dimensions, and the hidden dimensions of the middle feed-forward in each stack to obtain different
model scales:

Table 1: Configuration of Zipformer at three different scales.

Scale layer-numbers embedding-dimensions feed-forward-dimensions

S {2,2,2,2,2,2} {192,256,256,256,256,256} {512,768,768,768,768,768}
M {2,2,3,4,3,2} {192,256,384,512,384,256} {512,768,1024,1536,1024,768}
L {2,2,4,5,4,2} {192,256,512,768,512,256} {512,768,1536,2048,1536,768}

Datasets. We perform experiments to compare our Zipformer with state-of-the-other models on
three open-source datasets: 1) LibriSpeech (Panayotov et al., 2015) which consists of about 1000
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hours of English audiobook reading; 2) Aishell-1 (Bu et al., 2017) which contains 170 hours of
Mandarin speech; 3) WenetSpeech (Zhang et al., 2022a) which consists of 10000+ hours of multi-
domain Mandarin speech.

Implementation details. We use Lhotse (Żelasko et al., 2021) toolkit for speech data preparation.
The model inputs are 80-dimension Mel filter-bank features extracted on 25ms frames with frame
shift of 10ms. Speed perturbation (Ko et al., 2015) with factors of 0.9, 1.0, and 1.1 is used to augment
the training data. SpecAugment (Park et al., 2019) is also applied during training. We use mixed
precision training for our Zipformer models. We also employ the activation constraints including
Balancer and Whitener to ensure training consistency and stability. The details of Balancer and
Whitener are presented in Appendix Section A.3. Pruned transducer (Kuang et al., 2022), a memory-
efficient version of transducer loss that prunes path with minor posterior is used as the training
objective. During decoding, beam search of size 4 with the constraint of emitting at most one symbol
per frame is employed (Kang et al., 2023). We don’t use external language models for rescoring,
since in this work we focus on improving the encoder model. We employ word-error-rate (WER)
and character error rate (CER) as evaluation metric for English and Mandarin datasets, respectively.
By default, all of our models are trained on 32GB NVIDIA Tesla V100 GPUs. For Librispeech
dataset, Zipformer-M and Zipformer-L are trained for 50 epochs on 4 GPUs, and Zipformer-S is
trained for 50 epochs on 2 GPUs. For Aishell-1 dataset, our models are trained for 56 epochs on 2
GPUs. For WenetSpeech dataset, our models are trained for 14 epochs on 4 GPUs.

4.0.2 COMPARISON WITH STATE-OF-THE-ART MODELS

In this section, we compare the proposed Zipformer with other state-of-the-art models.

LibriSpeech dataset. Table 2 shows the results on LibriSpeech test datasets for Zipformer and
other state-of-the-art models. For Conformer, we also list the WERs reproduced by us and other
open-source frameworks. Note that there is a performance gap between the open-source reproduced
Conformer and the original Conformer. Our Zipformer-S model achieves lower WERs than all vari-
ants of Squeezeformer while having much fewer parameters and floating point operations (FLOPs).
Our Zipformer-L outperforms Squeezeformer-L, Branchformer and our reproduced Conformer-L by
a large margin while saving over 50% FLOPs. Noticeably, when trained on 8 80G NVIDIA Tesla
A100 GPUs for 170 epochs, Zipformer-L achieves WERs of 2.00%/4.38% with sufficient computing
resources (last row), which is the first model to approach Conformer-L to the best of our knowledge.

We also compare the speed and memory usage between the proposed Zipfomer and other state-of-
the-art models. Figure 3 presents the comparison results in terms of averaged inference time and
peak memory usage in inference mode for batches of 30-second audios on an NVIDIA Tesla V100
GPU. The batch size is set to 30 to ensure all models do not have out of memory problems during in-
ference. In overall, Zipformer models achieves better trade-off between performance and efficiency
than other models. Especially for the large scale, Zipformer-L requires much less computation time
and memory than other counterparts.
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Figure 3: (Left) Averaged inference time and (Right) peak memory usage vs. WER comparison
for different models. The WER is averaged on LibriSpeech test-clean and test-other. Averaged
inference time and peak memory usage are reported for the encoders in inference mode for batches
of 30-second audios with batch size of 30 on a single NVIDIA Tesla V100 GPU.
Aishell-1 dataset. Table 3 shows the CERs on Aishell-1 dataset. Compared to the Conformer model
implemented in ESPnet toolkit, our Zipformer-S achieves better performance with fewer parameters.
Scaling up the model leads to lower WERs, and Zipformer-M/L outperform all other models.
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Table 2: WER(%) comparison between different models on LibriSpeech dataset. We also in-
clude the number of parameters and FLOPs of encoder for a 30s input audio measured with Deep-
Speed (Rasley et al., 2020). ∗Trained with 8 80G NVIDIA Tesla A100 GPUs for 170 epochs.

Model Type Params (M) GFLOPs test-clean (%) test-other (%)

Squeezeformer-XS (Kim et al., 2022) CTC 9.0 18.2 3.74 9.09
Squeezeformer-S (Kim et al., 2022) CTC 18.6 33.7 3.08 7.47
Squeezeformer-SM (Kim et al., 2022) CTC 28.2 47.6 2.79 6.89
Squeezeformer-M (Kim et al., 2022) CTC 55.6 88.4 2.56 6.50
Squeezeformer-ML (Kim et al., 2022) CTC 125.1 183.3 2.61 6.05
Squeezeformer-L (Kim et al., 2022) CTC 236.3 333.7 2.47 5.97

E-Branchformer-B (Kim et al., 2023) CTC/AED 41.1 78.1 2.49 5.61
Branchformer (Peng et al., 2022) CTC/AED 116.2 238.3 2.4 5.5
E-Branchformer-L (Kim et al., 2023) CTC/AED 148.9 284.4 2.14 4.55

Conformer-S (Gulati et al., 2020) transducer 10.3 − 2.7 6.3
Conformer-M (Gulati et al., 2020) transducer 30.7 − 2.3 5.0
Conformer-L (Gulati et al., 2020) transducer 118.8 − 2.1 4.3
Conformer in WeNet (Zhang et al., 2022b) CTC/AED 121.3 − 2.66 6.53
Conformer in ESPnet (Miyazaki et al., 2023) CTC/AED 113.2 − 2.29 5.13

Conformer-S pruned transducer 9.8 29.1 3.75 9.24
Conformer-M pruned transducer 28.4 77.0 2.96 7.11
Conformer-L pruned transducer 122.5 294.2 2.46 5.55

Zipformer-S pruned transducer 23.3 40.8 2.42 5.73
Zipformer-M pruned transducer 65.6 62.9 2.21 4.79
Zipformer-L pruned transducer 148.4 107.7 2.06 4.63
Zipformer-L∗ pruned transducer 148.4 107.7 2.00 4.38

WenetSpeech. Table 4 presents the experimental results on WenetSpeech dataset. Again, our Zip-
former-M and Zipformer-L outperform all other models on Test Net and Test Meeting test sets. With
only one third of the parameters, our Zipformer-S yields lower WERs than Conformer models.

Table 3: CER(%) comparison between different models on Aishell-1 dataset.

Model Params (M) Type Dev Test

Conformer in ESPnet (Watanabe et al., 2018) 46.2 CTC/AED 4.5 4.9
Conformer in WeNet (Yao et al., 2021) 46.3 CTC/AED − 4.61
E-Branchformer in ESPnet (Watanabe et al., 2018) 37.9 CTC/AED 4.2 4.5
Branchformer (Peng et al., 2022) 45.4 CTC/AED 4.19 4.43

Zipformer-S 30.2 pruned transducer 4.4 4.67
Zipformer-M 73.4 pruned transducer 4.13 4.4
Zipformer-L 157.3 pruned transducer 4.03 4.28

Table 4: CER(%) comparison between different models on WenetSpeech dataset.

Model Params (M) Type Dev Test Net Test Meeting

Conformer in ESPnet (Watanabe et al., 2018) 116.9 CTC/AED 9.70 8.90 15.90
Conformer in WeNet (Yao et al., 2021) 116.9 CTC/AED 8.88 9.70 15.59

Conformer-MoE(16e) (You et al., 2022) 425 CTC/AED, MoE 7.67 8.28 13.96
Conformer-MoE(32e) (You et al., 2022) − CTC/AED, MoE 7.49 7.99 13.69
Conformer-MoE(64e) (You et al., 2022) − CTC/AED, MoE 7.19 8.36 13.72

Zipformer-S 32.3 pruned transducer 7.96 8.6 13.97
Zipformer-M 75.9 pruned transducer 7.32 7.61 12.35
Zipformer-L 160.9 pruned transducer 7.29 7.24 12.06

4.0.3 ABLATION STUDIES

We perform ablation experiments on LibriSpeech dataset to investigate the effect of each proposed
functional technique. With Zipformer-M as the base model, we make one change each time while
keeping the others untouched. Table 5 presents the experimental results.
Encoder structure. We remove the temporal downsampling structure from Zipformer and use
Conv-Embed with downsampling rate of 4 like Conformer. The resulting model has 12 Zipformer
blocks with a constant embedding dimension of 512 and has more parameters than the base model.
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Table 5: Ablation studies for Zipformer-M, including encoder structure, block structure, normaliza-
tion layer, activation function and optimizer.

Ablation Params (M) test-clean (%) test-other (%)

Zipformer-M 65.6 2.21 4.79

Encoder structure
No temporal downsampling 94.2 2.23 5.09

Block structure
Double Conformer-style blocks 73.9 2.18 4.95
No NLA 58.7 2.16 4.97
No NLA, no attention weights sharing 60.9 2.20 5.10
No Bypass 65.5 2.25 4.86

Normalization layer
LayerNorm 65.6 2.29 4.97

Activation function
Only SwooshR 65.5 2.32 5.21
Swish 65.5 2.27 5.37

Optimizer
Adam 65.6 2.38 5.51

Experimental results in Table 5 show that the resulting model without the downsampled structure
yields higher WERs on both test set. It indicates that the temporal downsampling structure for
efficiency does not cause information loss, but facilitates the modeling capacity with less parameters.

Block structure. As each Zipformer block has roughly twice modules as a Conformer block, we
replace each Zipformer block in the base model with two Conformer blocks stacked together. This
leads to 0.16% absolute WER reduction on test-other even with a larger model size, suggesting
the benefits of Zipformer block structure. Removing either NLA or Bypass leads to performance
degradation. If we further remove the attention weights sharing mechanism after removing NLA, the
model has slightly more parameters and slower inference speed, but the WERs are not improved.
We hypothesize that the two attention weights inside one Zipformer block are quite consistent and
sharing them does not harm the model.

Normalization layer. Replacing BiasNorm with LayerNorm in Zipformer leads to WER drops
of 0.08% and 0.18% on test-clean and test-other, respectively. It indicates the advantage of the
proposed BiasNorm which allows to retain some length information in normalization.

Activation function. When using only SwooshR for all modules in Zipformer, the WER drops
by 0.11% and 0.42% on test-clean and test-other, respectively, which validates the effectiveness
of particularly using SwooshL for the “normally-off” modules. Employing Swish leads to more
performance degradation, which indicates the advantage of SwooshR over Swish.

Optimizer. When using Adam to train Zipformer, we have to apply BiasNorm for each module in
Zipformer block to avoid model divergence, since Adam cannot learn the scale of each parameter
to adjust the module activations like ScaledAdam. We try different learning rate factors (denoted
as αbase) for ScaledAdam (0.025, 0.035, 0.045, 0.055) and Adam (2.5, 5.0, 7.5, 10.0) separately.
Following (Gulati et al., 2020), the learning rate schedule for Adam is αt = αbase · 512−0.5 ·
min(t−0.5, t · 10000−1.5). Figure A.2 in Appendix Section A.1.2 presents the averaged WERs on
test-clean and test-other at different epochs as well as the learning rates at different steps. We
show the best results of ScaledAdam with αbase = 0.045 and Adam with αbase = 7.5 in Table 5.
ScaledAdam outperforms Adam by 0.17% and 0.72% on test-clean and test-other, respectively. The
results indicate that ScaledAdam enables faster convergence and better performance than Adam.

5 CONCLUSION

In this work, we present the Zipformer, which serves as an efficient ASR encoder. It has an U-
Net-like encoder structure, which downsamples the sequence to various lower frame rates. The
re-designed block structure equipped with more modules reuses the computed attention weights for
efficiency. It also employs the new normalization method BiasNorm, as well as the new activation
functions SwooshR and SwooshL. Meanwhile, the proposed optimizer ScaledAdam enables faster
convergence and better performance. Extensive experiments on LibriSpeech, Aishell-1 and Wenet-
Speech datasets have demonstrated the effectiveness of the proposed Zipformer.
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A APPENDIX

A.1 SCALEDADAM OPTIMIZER

A.1.1 SCALEDADAM ALGORITHM.

Algorithm 1 ScaledAdam Algorithm. RMS refers to root-mean-square function. g2t refers to gt⊙gt.
αt is controlled by Eden learning rate schedule. Good default settings are β1 = 0.9, β2 = 0.98, η =
0.1, and ϵ = 10−8.

Require: learning rate αt; exponential decay rates for the moment estimates β1, β2 ∈ [0, 1); scaling
factor on the learning rate for parameter scale η; objective function f(θ) with parameters θ; initial
parameter θ0.
t← 0 ▷ Initialize step.
m0 ← 0,v0 ← 0 ▷ Initialize first and second moment of parameter gradient.
n0 ← 0, w0 ← 0 ▷ Initialize first and second moments of parameter scale gradient.
r0 ← RMS(θ0) ▷ Initialize parameter scale.
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) ▷ Get parameter gradient.
ht ← gt · θt−1 ▷ Get parameter scale gradient.
rt−1 ← RMS(θt−1) ▷ Update the parameter scale.
mt = β1 ·mt−1 + (1− β1) · gt ▷ Update first moment of parameter gradient.
vt = β2 · vt−1 + (1− β2) · g2

t ▷ Update second moment of parameter gradient.

∆′
t = −αt · rt−1 ·

√
1−βt

2

1−βt
1
· mt√

vt+ϵ ▷ Compute parameter change.
nt ← β1 · nt−1 + (1− β1) · ht ▷ Update first moment of parameter scale gradient.
wt ← β2 · wt−1 + (1− β2) · h2

t ▷ Update second moment of parameter scale gradient.

∆′
t,r ← −η · αt ·

√
1−βt

2

1−βt
1
· nt√

wt+ϵ ⊙ θt−1 ▷ Compute parameter change by updating
parameter scale.

θt ← θt−1 +∆′
t +∆′

t,r ▷ Update parameter.
end while

A.1.2 COMPARISON BETWEEN SCALEDADAM AND ADAM.
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Figure A.2: Comparison between ScaledAdam and Adam in terms of: (Left) averaged WER on
LibriSpeech test-clean and test-other at different epochs; (Right) learning rate at different steps.
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A.2 ACTIVATION FUNCTIONS
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Figure A.3: The activation functions: Swish, SwooshR, and SwooshL.

A.3 ACTIVATION CONSTRAINTS

Table 6: Ablation studies of activation constraints for Zipformer-M on LibriSpeech dataset. All
models are trained for 40 epochs.

Ablation test-clean (%) test-other (%)

Zipformer-M 2.21 4.91
No Balancer 2.23 4.97
No Whitener 2.25 5.15
No Balancer, No Whitener 2.25 5.07

To ensure consistency in training and avoid badly trained modules, we propose the Balancer and
the Whitener, which regularize the activations in a memory-efficient way. In forward pass, they are
no-ops; in backward pass, they compute the gradients of the additional losses putting constraints on
the activations g′, and add that to the origin activation gradients g: g = g + g′. The placements
of Balancer and Whitener may not seem to follow any very clear rules. They are generally applied
when encountering specific instances of not-normally-trained models or model divergence. We first
locate the abnormality to a specific module and then add the Balancer or Whitener to fix it.

A.3.1 BALANCER

Two failure modes commonly observed from the channel-wise statistical distribution are: 1) the
issue of activation values becoming excessively large or small can give rise to instability during
the training process, particularly when employing mixed precision training; 2) a significant number
of “dead” neurons, whose outputs consistently remain negative, was observed upon examining the
channel-wise statistics prior to the application of the non-linear activation function within the feed-
forward modules. Balancer solves these issues by enforcing four constraints on each channel: lower
and upper bounds of the mean value of absolute values, denoted as amin and amax; minimum and
maximum proportion of positive values, denoted as pmin and pmax respectively. Given the activation
x, intuitively we have E[x] ∝ λ, where λ represents the proportion of positive values. Due to the
non-differentiable nature of positive value counting operation, a shifted version of Gaussian error
function erf is introduced in order to approximate the mapping between E[x] ∈ (−∞,∞) and λ ∈
[0, 1] by 2 · erf(x)− 1, the inverse function of which can be approximated using fpos→E/

√
Var(x) =

arctanh(2x− 1)/(
√
π · log 2) without loss of generality. µmin = fpos→E/

√
Var(pmin) and µmax =

fpos→E/
√
Var(pmax) can be further derived from the approximation. Following the same Gaussian

assumption, the RMS is given by
∫∞
−∞

σ2
√
2π

e−
1
2 (x−µ)2 abs(x)dx, where µ and σ2 refer to the mean

and variance of the Gaussian distribution. It can be approximated using fabs→RMS(x) =
√

π/2 · x
when µ→ 0. Thus rmin = fabs→RMS(amin) and rmax = fabs→RMS(amax) can be further derived.

14



Published as a conference paper at ICLR 2024

Specifically, the additional loss Lbalancer conditioned on these constraints is defined as:

LRMS = | log(min(max(RMS[x], rmax), rmin)/RMS[x])|,

LE/
√
Var = |E[x]/

√
Var[x]− clamp(E[x]/

√
Var[x], µmin, µmax)|,

Lbalancer = LRMS + LE/
√
Var,

(9)

where the statistics RMS[x], E[x], and
√

Var[x] are calculated in each channel. Before adding the
additional gradient g′ = ∇xLbalancer to the original activation gradient g, g′ is scaled to g′ =
g′ · α/RMS[g′] · |g|. Herein, α is used to prevent g′ from overwhelming g, and the per-element
magnitude |g| is used to prevent the model from concentrating its “fixes” to the data distribution in
frames with small gradients such as the padding frames. We set α = 0.04 in this work.

A.3.2 WHITENER

Another failure mode on activations is that for the feature covariance, one or a few eigenvalues
are dominating while others are extremely small. This tends to happen in a model that is about
to diverge. Whitener encourages a more informative output distribution, by restricting the feature
covariance after mean subtraction to have less unequal eigenvalues. Specifically, for output x ∈
RN×D with N frames of D-dimensional features, we first compute the covariance matrix C =
(x−E[x])T (x−E[x]), where C ∈ RD×D, and E[x] is per-channel mean. The auxiliary loss which
measures the whiten metric Lwhiten is defined as:

Lwhitener = (
∑
i

λ2
i /D)/(

∑
i

λi/D)2 = (
∑
i

∑
j

C2
i,j/D)/(

∑
i

Ci,i/D)2, (10)

where λ = {λ1, . . . , λD} are the eigenvalues of the covariance matrix C. To keep the original
activation gradient g dominant after adding the additional gradient g′ = ∇xLwhitener, g′ is scaled
to g′ = g′ · α/ℓ2(g′) · ℓ2(g), where ℓ2 denotes the L2 norm, and α is set to 0.01. The modification
g = g + g′ is done only when the whiten metric Lwhiten is above a certain value wmin to prevent
the model from learning pathological activation distributions. We usually set wmin to 10.

A.3.3 ABLATION STUDIES.

We perform ablation experiments on LibriSpeech dataset to validate the effect of Balancer and
Whitener. Table 6 presents the experimental results. All models are trained for 40 epochs. Removing
Balancer does not lead to obvious change on model performance. However, it would increase the
risk of model divergence without the value range constraints especially when employing mixed
precision training. Removing Whitener results in 0.04% and 0.24% WER reduction on test-clean
and test-other, respectively. This indicates that restricting the feature covariance to have less unequal
eigenvalues in Whitener can boost performance.

A.4 EXPERIMENTS ON LIBRISPEECH DATASET

A.4.1 TRAINING CONFIGURATIONS OF ZIPFORMER MODELS

Before training, the Mel filter-bank features are per-computed and saved to disk. In training, we use
DynamicBucketingSampler in Lhotse toolkit (Żelasko et al., 2021) to form the batches, where the
batch size is determined dynamically given the constraint of the maximum total speech duration (in
seconds). Table 7 presents the training configurations of Zipformer models on LibriSpeech dataset
with speed perturbation with factors of 0.9, 1.0, and 1.1.

A.4.2 COMPARISON WITH STATE-OF-THE-ART MODELS

As an extension of Table 2, Table 8 adds the results on LibriSpeech dataset for Zipformer with
CTC and CTC/AED architectures respectively. For the Zipformer CTC/AED model, we use a 6-
layer Transformer as AED decoder, each layer with attention dimension of 512, attention heads
number of 8, and feed-forward hidden dimension of 2048. The Zipformer CTC models are trained
for 100 epochs while the Zipformer CTC/AED models are trained for 50 epochs. Detailed training
configurations are provided in Section A.4.1.
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Table 7: Training configurations of Zipformer models on LibriSpeech dataset.

Model Type Params (M) Max duration (s) GPUs Epochs Training time / epoch (m)

Zipformer-S CTC 22.1 1700 2 32G Tesla V100 100 86
Zipformer-M CTC 64.3 1400 4 32G Tesla V100 100 60
Zipformer-L CTC 147.0 1200 4 32G Tesla V100 100 76

Zipformer-S CTC/AED 46.3 1700 2 32G Tesla V100 50 105
Zipformer-M CTC/AED 90.0 1200 4 32G Tesla V100 50 67
Zipformer-L CTC/AED 174.3 1200 4 32G Tesla V100 50 84

Zipformer-S pruned transducer 23.3 1500 2 32G Tesla V100 50 87
Zipformer-M pruned transducer 65.6 1000 4 32G Tesla V100 50 69
Zipformer-L pruned transducer 148.4 1000 4 32G Tesla V100 50 80
Zipformer-L pruned transducer 148.4 2200 8 80G Tesla A100 200 18

For the CTC systems, Zipformer-M outperforms Squeezeformer-ML on both test sets with only
about half the number of parameters, and Zipformer-L also surpasses Squeezeformer-L by 0.27%
on test-other with fewer parameters. For CTC/AED systems, Zipformer-M outperforms Conformer
models and Branchformer, while Zipformer-L achieves comparable results with E-Branchformer-L.
Note that as presented in Figure 3, Zipformer-L is much more efficient than E-Branchformer-L.

Table 8: WER(%) comparison between different models on LibriSpeech dataset. We also in-
clude the number of parameters and FLOPs of encoder for a 30s input audio measured with Deep-
Speed (Rasley et al., 2020). ∗Trained with 8 80G NVIDIA Tesla A100 GPUs for 170 epochs.

Model Type Params (M) GFLOPs test-clean (%) test-other (%)

Squeezeformer-XS (Kim et al., 2022) CTC 9.0 18.2 3.74 9.09
Squeezeformer-S (Kim et al., 2022) CTC 18.6 33.7 3.08 7.47
Squeezeformer-SM (Kim et al., 2022) CTC 28.2 47.6 2.79 6.89
Squeezeformer-M (Kim et al., 2022) CTC 55.6 88.4 2.56 6.50
Squeezeformer-ML (Kim et al., 2022) CTC 125.1 183.3 2.61 6.05
Squeezeformer-L (Kim et al., 2022) CTC 236.3 333.7 2.47 5.97

E-Branchformer-B (Kim et al., 2023) CTC/AED 41.1 78.1 2.49 5.61
Branchformer (Peng et al., 2022) CTC/AED 116.2 238.3 2.4 5.5
E-Branchformer-L (Kim et al., 2023) CTC/AED 148.9 284.4 2.14 4.55

Conformer-S (Gulati et al., 2020) transducer 10.3 − 2.7 6.3
Conformer-M (Gulati et al., 2020) transducer 30.7 − 2.3 5.0
Conformer-L (Gulati et al., 2020) transducer 118.8 − 2.1 4.3
Conformer in WeNet (Zhang et al., 2022b) CTC/AED 121.3 − 2.66 6.53
Conformer in ESPnet (Miyazaki et al., 2023) CTC/AED 113.2 − 2.29 5.13

Conformer-S pruned transducer 9.8 29.1 3.75 9.24
Conformer-M pruned transducer 28.4 77.0 2.96 7.11
Conformer-L pruned transducer 122.5 294.2 2.46 5.55

Zipformer-S CTC 22.1 40.8 2.85 6.91
Zipformer-M CTC 64.3 62.9 2.51 6.02
Zipformer-L CTC 147.0 107.7 2.49 5.7

Zipformer-S CTC/AED 46.3 40.8 2.46 6.04
Zipformer-M CTC/AED 90.0 62.9 2.22 4.97
Zipformer-L CTC/AED 174.3 107.7 2.09 4.59

Zipformer-S pruned transducer 23.3 40.8 2.42 5.73
Zipformer-M pruned transducer 65.6 62.9 2.21 4.79
Zipformer-L pruned transducer 148.4 107.7 2.06 4.63
Zipformer-L∗ pruned transducer 148.4 107.7 2.00 4.38
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