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ABSTRACT

Test-time scaling has emerged as an effective strategy to enhance image genera-
tion quality by repeatedly generating multiple images and selecting optimal out-
puts. However, such best-of-N schemes essentially rely on blind resampling with
different random seeds, lacking the ability to incrementally refine errors based on
previously correct generations. Some improved approaches rely on external ver-
ifiers to identify textual errors and feed them back to the model for refinement.
However, they do not support targeted modifications with image consistency, and
introduce further computational overhead. In this work, to address these limita-
tions, we propose Self-Correction at Test-time (SCoT), a novel framework that
equips generative models with internal self-assessment and targeted revision ca-
pabilities. Specifically, SCoT is trained to preserve the correctly generated regions
while autonomously modifying only erroneous parts, eliminating the need for ex-
ternal guidance. This self-reflective mechanism enhances visual consistency, and
unlocks the model’s potential capacity for prompt-guided correction. SCoT im-
proves over the baseline by up to 0.25, substantially surpassing prior methods,
providing a more reliable, efficient, and user-aligned approach to high-quality im-
age generation.

1 INTRODUCTION

Humans have a natural drive for self-expression. When inspired, we mentally construct scenes and
aspire to render them vividly so as to communicate and interact with others. Generative models, by
exploiting their learned knowledge of data manifolds, provide a means to synthesize high-quality
images according to user specifications. However, the generated results are not always accurate;
errors in object placement, attributes, or other details may fail to meet user expectations. To address
this issue, users typically resort to generating multiple samples with different random seeds, or iter-
atively adjusting the initial prompts they intend to express, in the hope that the model will eventually
produce the desired result. As this process is largely governed by randomness, users may, after nu-
merous unguided attempts, still be unable to achieve their intended outcomes and are thus compelled
to give up. This inherent inefficiency undermines reliability and introduces a barrier to the broader
deployment and acceptance of such technology.

How can we make the outputs of generative models more reliable and more likely to meet user ex-
pectations? The core challenge lies in the model’s limited ability to understand its own generations.
A key question, therefore, is how to enable the model to develop self-understanding and to revise its
outputs in a purposeful and directed manner.

Recent advances in image generation models, such as diffusion and transformer frameworks (Pee-
bles & Xie, 2023 |Esser et al., 2024 a;|Labs, 2024; |Esser et al., 2024b)), have demonstrated remarkable
capabilities in producing high-quality visual content. However, the quality of generated images is
often sensitive to the choice of random seeds and inference trajectories. To mitigate this, existing
test-time scaling methods typically rely on multiple sampling attempts (Xie et al.,|2025)) or external
verifiers to recognize errors (Li et al. |2025)). While effective to some extent, these approaches suf-
fer from several limitations: they often require blind exploration of new seeds, frequently alter the
overall image layout, disrupt visual consistency, and introduce additional computational overhead.

In fact, these limitations fundamentally come from the inability of existing methods to autonomously
identify and correct errors. Current approaches lack intrinsic mechanisms enabling models to inter-
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Figure 1: Overview of our method. Our method embeds judgment and reasoning into the generative
model, thereby activating its inherent capacity for understanding and self-correction. After training,
our method demonstrates robust generalization to real images and diverse prompt domains.

nally evaluate their outputs and selectively modify specific image regions. Instead of relying on
external signals or brute-force resampling, we argue that a more promising direction is to stimulate
the model’s own reflective reasoning capacity. A generative model inherently encodes rich knowl-
edge of both prompts and images, yet this capacity has not been systematically exploited as a source
of self-corrective potential.

Motivated by this, we propose Self-Correction at Test-time (SCoT), a novel framework that equips
generative models with an internal capacity for self-assessment and selective revision during infer-
ence. Unlike conventional approaches that indiscriminately resample entire images, SCoT identifies
erroneous regions and precisely modifies them, preserving already accurate content. This targeted
self-correction removes reliance on external verifiers, substantially enhancing visual consistency and
computational efficiency, while effectively unlocking the model’s inherent reflective capabilities.

Compared to prior methods, SCoT offers several distinctive advantages. First, it maintains visual and
structural consistency by retaining correct regions across iterations. Second, it significantly reduces
unnecessary sampling and computation by focusing modifications only where needed. Third, it
provides a novel perspective on exploring a model’s internal understanding and generative potential,
highlighting its ability to self-correct and refine outputs autonomously.

Overall, SCoT introduces a new paradigm for test-time inference in image generation, emphasizing
self-reflective, localized, and visually consistent modifications. On the GenEval benchmark, our
method improves over the baseline by up to 0.25, substantially surpassing all other approaches. For
tasks that require deeper image understanding, such as relative position and attribution binding, our
method delivers much greater improvements.

2 RELATED WORK

Generative models. Research on generative models spans multiple paradigms. GANs (Brock,
2018 |Goodfellow et al.,|2014; |Karras| [2019) pioneered high-fidelity image synthesis but suffer from
unstable training. VAEs (Kingma, 2013) improve stability but often generate blurry outputs. Au-
toregressive models (Tian et al., |2024; |Sun et al.| 2024) capture rich dependencies by sequentially
predicting tokens, though their autoregressive nature incurs prohibitive costs for high-resolution
images. Diffusion models (Ho et al., |2020; [Sohl-Dickstein et al., 2015} [Song et al., 2020b)) have
recently become the leading framework, offering both stability and high quality. A number of ex-
tensions (Song et al., |2020aj Nichol et al., 2021} Ye et al.| [2023; Zhang et al., |2023)) further enhance
them by improving controllability and sampling efficiency.

Image modification. Image modification has been approached using both training-free and
instruction-based methods. Traditional methods like SDEdit (Meng et al.l 2021} can directly adjust
images conditioned on the input prompt. In addition, there exist other training-free methods such as
Prompt-to-Prompt (Hertz et al} [2022), MasaCtrl (Cao et al. |2023) and Plug-and-Play (Tumanyan
et al., 2023). They manipulate images by carefully controlling internal features during different
generation forward, but are cumbersome and not fully end-to-end. Most instruction-based models
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Figure 2: Constructing positive—negative pairs. (a) We first collect negative images and correspond-
ing negative reasons from object detectors. (b) Then we analyze negative examples and use GPT-40
to generate editing prompts. (c) After that, FLUX.1-Kontext-dev model is employed to generate
corresponding corrected images. Those images are further filtered.

(Brooks et al |, [2023; [Labs et al.|,[2025; [Wu et al| [2025)), are typically trained on large-scale datasets
with editing instructions. Differently, our method directly exploits the model’s ability to reason upon
positive and negative cases conditioned on the original prompt, thereby enabling correction without
any editing prompts, providing a feedforward end-to-end solution.

Test-time scaling. Prior works on test-time scaling typically rely on generating multiple candidates
and reranking (Ma et al} 2025} [Singhal et al, 2025}, Xie et al.,2025), which improves image quality
at the cost of computation and consistency. Another line of research explores iterative refinement

et al.l 2025}, [Wu et al., 2024; [Wang et al., 2024}, [Yu et al., [2023)), where models or auxiliary systems
progressively improve outputs, but such methods often require external verifiers or user guidance.

Related efforts on image editing and consistency preservation (Brooks et al., 2023}, [Labs et all}
[2025}, [Wu et al} 2025}, [Tian et al.| 2024) can constrain modifications, yet they generally depend on

conditioning signals or prompt engineering.

In contrast, our proposed SCoT framework requires neither an external verifier to identify textual
errors nor additional editing prompts. It enables the model to self-assess and selectively modify
only the necessary regions. After training, our method demonstrates inference, maintaining global
consistency while improving quality. This highlights a new direction for leveraging models’ intrinsic
self-judgment in scaling generative performance.

3 METHOD

We aim to elicit the intrinsic ability of the model to self-evaluate and correct. Inspired by
(2023), we formulate this as a supervised learning task involving two main stages: (1) con-
structing positive—negative training pairs by pairing mismatched prompts with images before and
after correction (Section [3.1] Fig. 2); and (2) training a self-correcting model on this generated
dataset without any external error signals (Section [3.2] Fig.[T)). Although trained solely on synthetic
image pairs, our method demonstrates strong generalization capabilities, effectively transferring to
real images and diverse prompt domains. See Fig. [T] for an overview of our method.

3.1 GENERATING A TRAINING DATASET

To promote self-correction under test-time scaling, it is essential to construct high-quality training
data. A critical component is the integration of incorrect images as negatives, which serve to estab-
lish positive—negative pairs and guide the model toward a deeper understanding of what constitutes
good and poor generations, as shown in Fig 2]
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3.1.1 CONSTRUCTING POSITIVE—NEGATIVE PAIRS.

We leveraged the 78.5k image—feedback pairs released in Reflect-DiT (Li et al.,[2025) to construct
our training dataset. These prompts are constructed from GenEval templates, with those appearing
in the test set filtered out. In detail, there are approximately 3.9k prompts in Reflect-DiT, and
each is associated with 20 generated images that include both positive and negative examples, and
corresponding feedback is obtained from object detectors (Ghosh et al., | 2023).

Based on this, we conduct an analysis of negative examples, empirically select the most effec-
tive editing prompt for each error type, and construct the corresponding instructions. Next, GPT-
4o (Hurst et al.||2024) is used under these instructions to generate editing prompts for each negative
image, conditioned on the image’s original prompt and object-detector feedback. Using this editing
prompt, we adopt FLUX.1-Kontext-dev (Labs et al., [2025) to generate the corresponding corrected
image. We then select the images that are successfully corrected and apply image quality metrics for
further filtering, yielding 14.8k aligned positive—negative pairs. The process of rectifying prompt-
violating generated images is presented in Fig.

3.1.2 ANALYSIS ON THE GENERATION PIPELINE

Note that this process is highly labor-intensive, and it underscores the practical challenges users
face when using generative models. Without built-in self-evaluation and correction, the model
leaves users to assess whether generated images meet their expectations, identify specific incon-
sistencies, and craft appropriate editing prompts, followed by iteratively refining and testing these
editing prompts until the desired result is achieved.

We argue that the root cause lies in the lack of prompt—image reasoning capability within the gen-
erative model, leaving generation and understanding disjointed rather than mutually reinforcing. To
tackle this problem, we explore activating the model’s intrinsic evaluation and self-correction capa-
bilities. We provide a detailed description of our model in the following Section Moreover, in
order to help the model better distinguish between positive and negative examples, we augmented
the positive—negative pairs with an additional 30% of purely positive pairs.

As depicted in Fig. |1} our model exhibits a new level of capability in understanding images and
prompts. It requires neither an external verifier to identify errors nor additional editing prompts.
Given an incorrect image as a condition, SCoT can comprehend and rectify mismatches with the
prompt by itself, and then output the corrected image directly. For images that already conform to
the prompt, it preserves all details and outputs them almost unchanged. Despite being trained on
generated image pairs, our method generalizes well to real images and diverse prompt domains.

3.2 SELF-CORRECTION MODEL

We use our generated data to train a model that is capable of Self-Correction at Test time (SCoT)
without additional feedback. Following Reflect-DiT (Li et al., |2025), we utilize SANA-1.0-
1.6B (Xie et al.l 2024)) as the base model due to its relatively small size, low inference cost, and
fast sampling speed, making it well-suited for inference-time scaling that involves generating many
samples per prompt.

3.2.1 FULLY PRESERVE IMAGE INFORMATION

Flow-based methods (Lipman et al., 2022} Liu et al., |2022} [Xie et al., [2024) regard the denoising
process as probability density flow, modeling the vector field u;(x) with a neural network:

Lrn =K p(a) [Hvt(x) - Ut@)”é] Q)

where p;(x) represents the probability density path,  ~ p;(x) and ¢ ~ UJ[0, 1]. In text-to-image
generation scenarios, the model with parameters 6 receives the time step ¢, text prompt Cp, and
noisy image features X as input, and outputs the corresponding velocity vg(-) at that moment.

Subsequently, many methods introduced image conditions C7 into generative models, aiming to
provide finer-grained spatial guidance (Zhang et al., 2023} |Ye et al., 2023 Brooks et al.l 2023}, |Tan
et al., 2024; 2025; |Labs et al., [2025)) or to enable the model to perform test-time reflection based
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Figure 3: Architecture of SCoT. In our model, both the image condition C and the noisy image input
X are processed by the VAE encoder to fully preserve image information. To align the features of
the image condition with the noisy image input, both are passed through the Linear-DiT blocks. We
embed information-sharing mechanisms within both linear and cross attention.

on previously generated images (L1 et al., 2025). Among these, the most common method for
extracting information from the image condition C7 is to use an extra pre-trained image encoder,
for instance, the CLIP (Radford et al., [2021) or SigL.IP (Zhai et al.,|2023)) image encoder, to obtain
image representations. However, due to the limitations of the pre-trained image encoder and the
discrepancy between the encoder’s embedding space and the feature space of noisy image inputs,
this approach results in a significant loss of image condition information, as further illustrated in
Section. 4.2

Since our approach requires the model to reason over and partially rectify the input image while
ensuring consistency across other regions, it is crucial to maximize the preservation of image con-
dition information. To this end, we use a fully consistent approach to extract and embed both the
image condition and the noisy input, as shown in Fig.[3] In our model, both the image condition C;
and the noisy image input X are processed by the VAE encoder, mapped into the latent space, and
represented as C7 € RV and X" € RV*?, Similarly, the original text prompt is fed through the
text model to extract its feature embedding C: € R4, Here, d denotes the embedding dimension,
while N and M represent the number of image and text tokens, respectively.

3.2.2 INCORPORATING IMAGE CONDITION

We adjusted the model architecture to better incorporate image condition, as depicted in Fig.[3] The
original SANA model is composed of stacked Linear-DiT blocks, each including linear-attention,
cross-attention, and a feed-forward network. To align the features of the image condition with the
noisy image input, both are passed through the Linear-DiT blocks.

And for more effective interaction with the image condition, we embed information-sharing mech-
anisms within both linear and cross attention. Before entering the linear attention, the two features
C" and X" are concatenated, enabling interaction through self-attention. Subsequently, in the cross-
attention module, inspired by |Ye et al.| (2023)), we introduce an additional interaction branch for
image condition, which runs in parallel with the original text condition branch, as shown in Fig. 3]

More specifically, hidden image tokens are projected into queries ) via the multi-head attention
mechanism. In the standard text condition branch, text embeddings are similarly mapped to key K1
and value V. To incorporate image conditions, we further introduce a newly designed projection
module, parameterized by W}, and W, to map image condition tokens into a space that facilitates
conditional understanding and propagation. After that, we can get projected image conditions K
and V;. The outputs of both cross-attention branches are then aggregated to form the final cross-
attention result for the image, as:

QK7 QK[
Vd Vd

Moreover, to further enhance reflective integration between image and text conditions, the image
condition tokens are allowed to interact with text tokens prior to entering the dual-branch cross-

MHA (X", Ch C") = Softmax( )Wr + Softmax( Wi )
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Table 1: Results on the GenEval benchmark. Our method achieves the highest overall score 0.91,
surpassing all other approaches. Relative to Reflect-DiT and SFT, our approach exhibits a substan-
tially higher performance. { models are fine-tuned on the same training data. I SANA-1.5 results
are reported from the original paper.

Generator Params | Overall | Single Two Counting Color Position Attribution
SDXL(Podell et al.|[2023) 2.6B 0.55 098 0.74 0.39 0.85 0.15 0.23
DALLE 3(Betker et al.||2023) - 0.67 096 0.87 0.47 0.83 0.43 0.45
SD3(Esser et al.|[2024a) 8B 0.74 099 094 0.72 0.89 0.33 0.60
Flux.1-Dev(Labs|2024) 12B 0.68 099 0.85 0.74 0.79 0.21 0.48
Playground v3(Liu et al.|[2024) - 0.76 099 095 0.72 0.82 0.50 0.54
SANA-1.5-4.8B Pre (Xie et al.|[2025) I 4.8B 0.72 099 0.85 0.77 0.87 0.34 0.54
+ Best-0f-2048 I 4.8B 0.80 099 0.88 0.77 0.90 0.47 0.74
SANA-1.0-1.6B (Xie et al.|[2024) 1.6B 0.66 099 0.77 0.62 0.88 0.21 0.47
+ SFT (Best-of-20) 1 1.6B 0.87 1.00 098 0.83 0.91 0.81 0.70
+ Reflect-DiT (N=20) 1.6B+0.1B| 0.81 098 0.96 0.80 0.88 0.66 0.60
+ Reflect-DiT (N=20) 1.6B+0.1B| 0.78 099 0091 0.74 0.88 0.66 0.55
+ Ours (Best-of-20) 1.6B+0.2B| 091 1.00 1.00 0.86 0.95 0.90 0.77
(A vs Baseline) - +0.25 +0.01 +0.23 +0.24  +0.07 +0.69 +0.30

attention mapping. Additionally, since prior studies (Islam et al. 2020; [Xie et al., 2021), both
theoretical and empirical, suggest that applying 3 x 3 convolutions with zero padding implicitly
embeds positional information, SANA removes Positional Embedding and utilizes the positional
bias inherent in convolution to convey position information. To maintain this positional inductive
bias within the Mix-FFN, we do not incorporate interaction inside the convolutional layer.

As illustrated in ControlNet (Zhang et al., [2023)), zero-initialization allows for the gradual injection
of image condition information. Following this idea, we initialize W), and W, to zero. Our model
is initialized with the released weights of SANA-1.0-1.6B, thereby preserving its native generative
capacity. As shown in Fig. [3| parameters of the image and text encoders remain frozen, while
other modules are updated during fine-tuning. We adopt the SANA training objective, with a 0.1
probability of dropping the image condition during training.

4 EXPERIMENTS
4.1 SETUP

Implementation details. We build our method upon SANA-1.0-1.6B (Xie et al.| 2024)), which is
a high-efficiency flow-based model for image generation. We train our model with a batch size of 16
and employ the Prodigy optimizer (Mishchenko & Defazio, [2024) with safeguard warmup and bias
correction enabled, and a weight decay of 0.01. Experiments were executed on 4 NVIDIA H100
GPUs (80 GB each), with the model trained for 60,000 iterations, finishing in one day.

Baselines. Through self-correction on produced outputs, our model adapts naturally to test-time
scaling, eliminating the need for an additional Vision Language Model (VLM) to provide textual
feedback as used in prior work (Li et al., |2025). Our method establishes a novel paradigm for self-
reflection in inference. Therefore, we first compare different approaches in the test-time scaling
stage, such as Reflect-DiT (Li et al., 2025) and naive best-of-N sampling. Next, to assess our
method’s one-step self-correction under the original prompt, we test it against both classic and
cutting-edge image-modifying models (Meng et al.l 2021} Brooks et al., [2023; [Labs et al., 2025
Wu et al.| [2025)), further highlighting its uniqueness and performance.

4.2 BASELINE COMPARISONS

In this section, we comprehensively evaluate the effectiveness of our proposed method by comparing
it against multiple baseline approaches, conducting both quantitative and qualitative analyses within
the test-time scaling setting.
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Figure 4: Visualization results on the GenEval test set. Our method can leverage previously gen-
erated images as conditions to guide corrective attempts. Compared to Reflect-DiT, our approach
achieves a deeper understanding of the image, selectively identifying regions requiring correction
while preserving other areas, thereby enabling more purposeful and targeted improvements.

4.2.1 QUANTITATIVE COMPARISON

The results on the GenEval benchmark (Ghosh et al., [2023)) are summarized in Tab. m For a fair
evaluation, we retrain Reflect-DiT on our dataset, indicated by . Additionally, the original SANA
model is fine-tuned on the same data, and we compare our results with the best-of-N outcomes
obtained after fine-tuning. For each randomly generated result from the base model, we perform a
single step of self-correction. Moreover, to provide a rigorous comparison, we strictly limit the total
number of generation runs in the best-of-N evaluation, i.e., a maximum of N pipeline executions.
To be consistent with Reflect-DiT’s evaluation, the metrics based on SANA-1.0-1.6B are computed
using the single best output out of max 20 generation runs.

As shown in Tab. [T] our method achieves the highest overall score (0.91) under max 20 generation
runs, surpassing all other approaches, including the SANA-1.5-4.8B variant, which has more than
3% parameters and employs best-of-2048 sampling. And our method outperforms the baseline by
as much as 0.25. Moreover, relative to Reflect-DiT, our approach exhibits a substantially higher
performance (0.91 vs. 0.78). When compared with the best-of-20 approach after SFT, our method
yields greater benefits with only half of the randomly generated images. More importantly, for
tasks that require deeper image understanding, such as relative position and attribution binding, our
method delivers substantially greater improvements. This demonstrates that our SCoT method can
effectively activate the generative model’s deep understanding of images. Accurate generation relies
on such comprehension, and fostering their interaction leads to mutual reinforcement.

4.2.2 QUALITATIVE COMPARISON

Fig. @] presents visual results of different methods on the GenEval test set. It can be observed that,
whether before or after SFT, multiple-sampling results rely purely on random attempts. In contrast,
self-reflection methods, such as Reflect-DiT and our method, can leverage previously generated
images as conditions to guide corrective attempts.
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Table 2: Correction results on the GenEval benchmark. We achieves the best one-step correction
performance. Moreover, our method exhibits the highest CLIP-Image similarity with the original
image, highlighting its ability to preserve fine details and structural consistency.

Generator ‘ Params GenEval t CLIP-I11
SANA-1.0-1.6B (Xie et al.|[2024) 1.6B 0.66 -
InstructPix2Pix (Brooks et al.|[2023) 0.9B 0.53 0.91
FLUX.1-Kontext-dev (Labs et al..[2025) 12B 0.72 0.95
OmniGen2 (Wu et al.}|[2025) 4B 0.73 0.93

+ Ours (Self-Correction) 1.6B + 0.2B 0.76 0.96

However, Reflect-DiT cannot modify images continuously while preserving correct regions, such as
adjusting the bed color while preserving scene layout. In contrast, our method can continuously alter
specific regions while maintaining the scene structure, such as changing the bed color and adding
a pink phone without affecting the room layout. Furthermore, in the second case, our approach
exhibits prompt-guided self-reasoning capability, allowing the model to identify the absent tie on its
own, without relying on an external VLM to indicate the error textually, as is required in Reflect-DiT.

Compared to Reflect-DiT, our approach achieves a deeper understanding of the image, selectively
identifying regions requiring correction while preserving other areas, thereby enabling more pur-
poseful and targeted improvements. More visualization results can be seen in the Appendix. [Al

4.3 MORE RESULTS

Since our method also involves image modification, we compare it against representative image-
editing approaches, including SDEdit (Meng et al.| 2021)), InstructPix2Pix (Brooks et al., [2023),
OmniGen2 (Wu et al., [2025)), and FLUX.1-Kontext-dev (Labs et al., |2025)).

4.3.1 QUANTITATIVE COMPARISON

Most existing image editing models are trained on large-scale datasets of editing instructions. Dif-
ferently, our method directly exploits the model’s ability to reason upon positive and negative cases
against the given prompt, thereby enabling correction without any editing prompts. In Tab. 2] we
compare results on the GenEval benchmark, where images generated by the SANA base model are
refined 1 step conditioned on the original prompt.

As shown in Tab. 2] while recent image editing models are capable of partial corrections when
conditioned solely on the image prompt, their corrections remain suboptimal. In contrast, our ap-
proach achieves the best one-step correction performance, substantially surpassing all baselines and
reaching 0.76. Moreover, our method attains the highest CLIP-Image similarity with the original
image, highlighting its ability to preserve fine details and structural consistency while leveraging
prompt-based reasoning for targeted modifications.

4.3.2 QUALITATIVE COMPARISON

Fig. [5]illustrates the visual comparison with other image editing baselines. Traditional methods like
SDEdit can directly adjust images conditioned on the input prompt. We implement SDEdit based
on SD1.5 (Rombach et al., |2022). It can be observed that both SDEdit and InstructPix2Pix exhibit
limitations in adding missing objects or correcting the relative positions of objects. Moreover, these
methods often lead to distortions in layout or inconsistencies in global style.

For the recent image editing model OmniGen2, we evaluate its performance under the original
prompt. The results reveal that, when guided only by the raw prompt, OmniGen2 can sometimes fail
to realize specific modifications (e.g., changing the color of an orange). And the fine details are not
well preserved, such as modifications to the car’s outer surface. In comparison, our method keeps
both the main subject and surrounding context intact, leveraging the original prompt to perform
autonomous, reflective corrections of areas inconsistent with the prompt, without requiring designed
editing prompts. Additionally, while trained on synthetic data, it generalizes well to real images,
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Figure 5: Visual comparison with other image editing baselines. Our method generalizes well to
real images, highlighting its ability to learn transferable reflective reasoning skills.

SANA-1.0-1.6B  w/o self-attn ~ w/o cross-attn

Figure 6: Ablation on interaction structure.

highlighting the model’s ability to learn transferable reflective reasoning skills. More visualization
results can be seen in the Appendix. [A]

4.4  ABLATIONS

Interaction structure. We explored the interaction design of the model and found that whether
interactions are missing in the self-attention or in the cross-attention layers, the model tends to
struggle with maintaining the overall layout or the consistency of the main object, as shown in
Fig. |6l Therefore, performing sufficient interactions in both is a more appropriate approach.

Integration of negative examples. We investigated the effectiveness of introducing negative ex-
amples. In Fig.[d] the SFT baseline is trained solely on positive examples. As shown, this limitation
prevents the model from exhibiting self-correction capabilities. The comparison demonstrates that
incorporating negative-positive pairs better stimulates the model to perform prompt-guided reflec-
tive reasoning and autonomous correction. We hypothesize that this is because introducing nega-
tive—positive pairs offers crucial contrastive signals, which provide important guidance for bridging
image understanding and generation. Moreover, in Tab. [[] compared to best-of-20 sampling under
SFT, our method achieves superior results with only half the number of randomly generated images,
highlighting that fewer but more targeted interventions can outperform brute-force randomness. This
not only improves efficiency but also offers users a more focused and satisfactory experience by re-
ducing unnecessary trial-and-error.

5 CONCLUSION

We presented Self-Correction at Test-time (SCoT), a framework that enables generative models to
autonomously assess and refine their outputs during inference. By leveraging inherent knowledge
of prompts and images, SCoT activates self-reflective reasoning to selectively correct erroneous
regions while preserving correct structures. Extensive experiments show that SCoT outperforms
existing baselines in fidelity, structural consistency, and prompt-aligned corrections. Our approach
highlights the latent self-correction potential of generative models and opens new avenues for more
reliable, user-aligned, high-fidelity image synthesis.
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680 Figure 7: More visualization results on the GenEval test set.

Multiple sampling

Reflect-DiT SFT
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Prompt: a photo of an orange giraffe and a white baseball glove.

681

%2 A MORE RESULTS

683

684 Here, we provide additional visualization results of our model, including comparisons with test-time
685 scaling and image editing models, as shown in Fig. [7]and Fig.[§] We observe that our model can
686 adjust the giraffe’s color without altering the gloves’ appearance. In contrast to conventional image
687 editing methods, it enables precise modifications to object binding and relative attributes, while
688 also supporting the insertion of additional objects with specific properties. On real-world images,
689 it demonstrates stronger detail preservation, for instance, retaining the chair behind the vase and
690 maintaining the spatial arrangement of the baseball bat and the book.

691

%92 B LLM USAGE
693
694 In this work, we use ChatGPTElto polish our sentences and check grammar. In our experiments, we

695 also leverage the GPT-40 large model as a tool to generate editing prompts for the dataset.
696

697
698
699
700
701

'https://chatgpt.com/
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Figure 8: More visual comparison with other image editing baselines.
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