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ABSTRACT

This paper extends the traditional Optimal Transport (OT) to the Consistent Optimal
Transport (COT), which accommodates more than two measures while maintaining
transport consistency. The problem is formulated by minimizing the transport
costs between pairs of measures and enforcing cycle-consistency among them. We
introduce both the Monge and Kantorovich formulations of COT and derive an
approximate solution through the addition of entropic and consistency regulariza-
tion. An iterative projection algorithm, RCOT-Sinkhorn, is developed to enhance
the Sinkhorn algorithm. In the visual multi-point matching task, our COT solver
directly employs the cosine distance between learned point features from existing
graph matching neural networks as the pairwise cost, achieving significant improve-
ment in learning multiple matchings without further feature training. Additionally,
based on COT, we present a new formulation for the Travelling Salesman Problem
(TSP), termed TSP-COT. Regularization is used to relax the optimization, and the
modified RCOT-Sinkhorn algorithm is applied to obtain the probability matrix of
TSP routing. A post-process search method is then utilized to determine the TSP
routes, and experiments validate the superiority of our approach. The code will be
made available.

1 INTRODUCTION

Figure 1: Consistent Optimal Transport
(COT): three probability measures α, β, γ,
COT satisfies T1#α = β, T2#β =
γ, T3#γ = α, and the cycle-consistency
constraints X = T3(T2(T1(X))) given X
sampled from α.

Optimal transport (OT) (Peyre & Cuturi, 2019), as a
fundamental mathematical tool, has been widely applied
in numerous machine learning domains to learn the op-
timal transportation between source and target proba-
bility measures, including domain adaptation (Tzeng
et al., 2017; Cui et al., 2018), generative models (Ar-
jovsky et al., 2017), network design (Xu & Cheng, 2023),
self-supervised contrastive learning (Caron et al., 2020;
Shi et al., 2023), and long-tail recognition (Peng et al.,
2021; Shi et al., 2024) etc. However, in many real-world
scenarios, the traditional OT, which primarily focuses
on transportation between two distributions, often falls
short of handling complex situations involving multiple
distributions like point matching (Wang et al., 2023).
This limitation has spurred the need for a generalized
form of OT to handle multiple distributions problems.

In this paper, we introduce the Consistent Optimal Trans-
port (COT), which extends the capabilities of OT by accepting more than two measures as input
with transport consistency. As illustrated in Fig. 1, the case considers three probability measures
and it seeks to minimize the cost of three transportations while ensuring cycle-consistency among
measures: specifically given a set X sampled from the probability measure α, the transportation
mappings T1, T2, T3 satisfy the condition X = T3 ◦ T2 ◦ T1(X). Following this setting, in this
paper we propose Monge and Kantorovich formulations for COT, considering the challenges posed
by cycle-consistency constraints in solving the problems. Specifically, we introduce the entropic
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regularization transforming the hard cycle-consistency constraint into a regularizer in the objective
function. The resulting regularized version of COT, can be approximately and efficiently solved using
our proposed algorithms called RCOT-Sinkhorn, which adopt the matrix-vector iterative method to
solve it. We provide empirical experiments on visual multi-point matching task. We first compute
a certain node-to-point distance e.g. cosine distance using the learned node feature from graph
matching networks (e.g. (Wang et al., 2021))1 and adopt RCOT-Sinkhorn for the inference in these
neural matching model, which shows a great improvement without more training on the features.

Furthermore, based on COT, we discover a side product: a new and easily comprehensible formulation
for the Travelling Salesman Problem (TSP), which we refer to as TSP-COT. In this formulation,
we construct closed-loop circuits for TSP using the cycle-consistency constraint. To compute an
approximate solution for TSP-COT, the regularized approach involves obtaining the approximated
probability matrix referred to as a heatmap in the research literature related to TSP. We utilize a
post-process search method (i.e. Monte Carlo Tree Search (MCTS) (Fu et al., 2021)) on the heatmap,
leading to competitive results. In conclusion, we make the following contributions:

1) We generalize OT to the marginal consistent case called Consistent Optimal Transport (COT),
which solves multiple transportation mappings between measures while trying to ensure cycle-
consistency among these mappings. Both its Monge and Kantorivich matching formulations are
developed.

2) We model the COT problem by adopting entropic and cycle-consistency regularization, and propose
an iterative approximate Sinkhorn algorithm named RCOT-Sinkhorn. We apply the RCOT-Sinkhorn
algorithm to multi-point matching task and the competitive experimental results show the superiority
of our methods.

3) We introduce a new formulation for the Travelling Salesman Problem called TSP-COT, in which
we incorporate cycle-consistency to capture the loop constraint. We use the regularized TSP-COT
formulation to compute the probability matrix of TSP for efficient search and the post-process search
method (MCTS (Fu et al., 2021)) is applied to get the solution. The experiment shows the competitive
results of our method.

2 RELATED WORKS AND PRELIMINARIES

Optimal Transportation. Given two probability measures α and β supported on X and Y , the
Monge formulation of Optimal Transportation (Monge, 1781) aims to find a mapping T : X → Y
that minimizes:

min
T

{
∫
X
c(x, T (x))dα(x) : T#α = β} (1)

where c(·, ·) is the cost function and the push-forward measure β = T#α means the satisfaction
β(S) = α(x ∈ X : T (x) ∈ S}), for an arbitrary set S ⊂ Y . The Monge problem is exactly not
easy to calculate and an optimal T might not exists, and a popular improvement is the Kantorovich
relaxation (Kantorovich, 1942) which seeks the coupling P instead. Specifically, for the discrete case,
we assume α =

∑n
i=1 aiδxi

and β =
∑m

j=1 bjδyj
where ({xi}, {yj}) are the locations from (X ,Y),

and (a,b) are probability vectors. Then the Kantorovich problem finds the coupling P, specified as

min
P∈U(a,b)

⟨C,P⟩ =
∑
ij

CijPij , (2)

where U(a,b) = {P ∈ R+
nm|P1m = a,P⊤1n = b} and C is the cost matrix defined by the diver-

gence between {xi}ni=1 and {yj}mj=1. This minimization can link to the linear program (Bertsimas &
Tsitsiklis, 1997) but the calculation speed is really slow for high dimensions. Entropic regularization
(Cuturi, 2013) is one of the simple yet efficient methods for solving OT problems:

min
P∈U(a,b)

⟨C,P⟩ − ϵH(P), (3)

where the entropic regularization H(P) = −⟨P, logP− 1m×n⟩. Note ϵ > 0 is the regularization
coefficient. It can be solved by Sinkhorn iterations by vector-matrix multiplication (Cuturi, 2013).

1They embed the structure into node features hence the output is node-wise features suitable in our setting.
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Multi-marginal Optimal Transport. (MMOT) Instead of coupling two histograms (a,b) in
Kantorovich problem, the multi-marginal optimal transportation couples K histograms (ak)Kk=1 by
solving the following multi-marginal transport (Abraham et al., 2017):

min
P∈U((ak)k)

⟨C,P⟩ =
∑
k

nk∑
ik=1

Ci1,i2,...,iKPi1,i2,...,iK (4)

where Ci1,i2,...,iK is n1 × · · · × nK cost tensor and the valid coupling set U((ak)k) is defined as

{P ∈ R+
n1×n2...nK

|∀k,∀ik,
∑
l ̸=k

nl∑
il=1

Pi1,...,iK = akik}. (5)

MMOT and our COT both deal with multiple distributions. However, the multi-marginal OT primarily
emphasizes learning the joint coupling among more than two distributions, whereas our focus is
on learning the coupling between adjacent pairs of a series of distributions and maintaining cycle-
consistency constraints among these couplings. And MMOT is a generalized form that indeed presents
difficulties when it comes to solving specific problems. When attempting to solve a particular problem
using MMOT, it is required to define a specific cost (e.g. P160 in (Peyré et al., 2019)) and thus adds
complexity. While the cost in COT is defined between adjacent pairs of a series of distributions and
does not necessitate an additional, separate definition.

Cycle-Consistency for Visual Point Matching (PM) (Sarlin et al., 2020; Sun et al., 2021). The
idea of cycle consistency is widely considered in learning and vision. For example, it is applied
in multiple graph matching (Wang et al., 2021; Bernard et al., 2019; Tourani et al., 2023), image
matching (Sun et al., 2023; Bernard et al., 2019), and shape matching (Bhatia et al., 2023; Bernard
et al., 2019). These multiple matching instances with cycle-consistency in various fields motivate us
to investigate whether multiple transportation can be performed with cycle-consistent constraints in
the Optimal Transport problem. Thus, in this paper, we elaborate on the concept of cycle-consistency
in OT and introduce the definition of COT in Sec.3.1. Visual PM is a prominant area in vision
that aims to find optimal point correspondences between images, with wide applications, such as
3D structure estimation and camera pose estimation. Graph matching (GM) (Caetano et al., 2009)
builds upon PM and treats the point sets as graphs, aiming to find the optimal node correspondences
between graph-structured data. GM can be typically formulated as Lawler’s Quadratic Assignment
Problem (LAP) (Crama & Spieksma, 1992), which is known to be NP-hard and requires expensive
and complex solvers. Recent works (Wang et al., 2019; Yu et al., 2019) have focused on learning
node features using supervised or unsupervised loss functions. In this paper, our main focus is
on multi-point matching (Swoboda et al., 2019), where we utilize the trained models (Wang et al.,
2019) to extract point features and perform inference on testing data, which emphasizes the cycle-
consistency among multiple images, enabling more robust and accurate matching results. Traditional
methods apply cycle-consistency only to the model’s loss function to enhance feature learning on the
training set, while not utilizing cycle-consistency during inference on the test set. In contrast, our
method employs a training-free approach that assumes consistency is satisfied on the test set, using
this prior information to improve performance during inference.

Travelling Salesman Problem. In recent years, there has been a surge of interest in leveraging
machine learning techniques to address the Travelling Salesman Problem (TSP). The most advanced
state-of-the-art methods do not generate the solution directly but instead output a heatmap to indicate
the probability of an edge being part of the ground truth routes. Various search methods are utilized to
obtain the final solution. The approaches for heatmap (i.e. probability matrix for routing) generation
can be categorized into supervised learning, unsupervised learning, and reinforcement learning.
Supervised methods, such as GCN (Joshi et al., 2019) and ATT-GCN (Fu et al., 2021), utilize labeled
TSP instances to generate heatmaps. Similarly, DIFUSCO (Sun & Yang, 2023) employs diffusion
models for heatmap construction, while T2TCO (Li et al., 2024) enhances these maps using learned
distributions for gradient-based searches. Unsupervised learning methods, like UTSP (Min et al.,
2024), train models without explicit labels, focusing on identifying Hamiltonian cycles through
Scattering Attention Graph Neural Networks (SAGs). Reinforcement learning strategies, including
those advanced by DIMES (Qiu et al., 2022), optimize sampling efficiency within reinforcement
frameworks. As for search methods based on generated heatmaps, greedy algorithms remain prevalent,
ranking edges based on their probability scores and adding them iteratively without causing conflicts
(Graikos et al., 2022). Monte Carlo Tree Search (MCTS) (Fu et al., 2021), known for its robustness,
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simulates multiple scenarios to refine the path continuously. Additionally, local search techniques
like 2-opt (Croes, 1958) offer further refinements by swapping edge pairs to improve route efficiency.
Amidst this landscape, (Xia et al., 2024) proposed SoftDist, a method that stands out due to its
simplicity and effectiveness. By applying the softmax function to the distance matrix and MCTS as
the post-process method, SoftDist generates competitive results compared with many complex ML
models. In this paper, we attempt to improve SoftDist from an optimization perspective, which can
be viewed as an entropic regularized Optimal Transport with row normalization constraints. And
building upon COT, a new optimization-based matrix iteration algorithm is proposed to compute a
new heatmap for enhancing the simple SoftDist.

3 CONSISTENT OPTIMAL TRANSPORT

We begin by presenting the Monge and Kantorovich formulations for Consistent Optimal Transport
(COT) in Sec. 3.1. Then, we introduce regularized terms as incorporated into COT, leading to the
development of the iterative Sinkhorn algorithm (called RCOT-Sinkhorn Algorithm) in Sec. 3.2.
Lastly, in Sec. 3.3, we leverage the principles of COT to devise a novel formulation of the Travelling
Salesman Problem (TSP) that highlights the theoretical potential of COT.

3.1 THE MONGE AND KANTOROVICH FORMULATION OF COT

COT’s Monge Formulation. We first assume K probability measures (αk)
K
k=1 supported on the

space (Xk)
K
k=1. For simplicity, we define that XK+1 = X1 and αK+1 = α1. Then COT aims to find

mappings (Tk)
K
k=1 where Tk : Xk → Xk+1 by optimizing the objective function, i.e.,

min
(Tk)k∈C((αk)k)

∑
k

∫
Xk

ck(x, Tk(x))dαk(x), (6)

where ck(·, ·) is the cost function for the space (Xk,Xk+1). The constraint C((αk)k) is specified:
C((αk)k) = {(Tk)

K
k=1|(Tk)#αk = αk+1,∀k;TK ◦TK−1 ◦ · · · ◦T2 ◦T1(X) = X,∀X ⊂ X1}, (7)

where (Tk)#αk = αk+1 is the push-forward operation from measure αk to αk+1 satisfying
αk+1(B ∈ Xk+1) = αk(x ∈ Xk|Tk(x) ∈ B) for any measurable set B. And ∀X ⊂ X1, the
equality TK ◦ TK−1 ◦ . . . T2 ◦ T1(X) = X is the cycle-consistency constraint that enforces the final
transport results aligning to the original one beginning at points in X1. Naturally, we can get the
measure α1(X) = α1(TK ◦ · · · ◦ T1(X)). Note the cycle-consistency starts from α1 and one can
also formulate the COT’s Monge problem starting from α2, α3, . . . , αK . For the calculation, the
COT’s Monge formulation encounters difficulties like those of traditional Monge OT and the solution
may even not exist in discrete cases. Hence for COT, we only consider the discrete case that various
points in different domain need to get the matching with cycle-consistency constraints.

COT’s Kantorovich Relaxation for Matching. Here, we discuss the discrete case of COT, where
there are N points to be matched in each space (Xk)

K
k=1, ensuring that the matching satisfies cycle-

consistency constraints. Let’s assume that the measures are represented by αk =
∑N

i=1 δxk
i
, where

xk
i denotes the location of the i-th point in the space Xk. In the multi-matching scenario, the goal of

COT is to find K doubly stochastic matrices (Pk)
K
k=1, where Pk is the coupling matrix that satisfies:

min
(Pk)k

K∑
k=1

⟨Ck,Pk⟩, s.t. Pk1N = 1N , P⊤
k 1N = 1N ,

K∏
k=1

Pk = I, Pk ∈ {0, 1}N×N , ∀k (8)

Here, I represents the identity matrix, and 1N denotes a column vector with all elements equal to 1.
The constraints

∏K
k=1 Pk = I aim to ensure cycle-consistency. Specifically, given the points in Xk,

we consider Pk as the transition from Xk to Xk+1 with the matrix Pk satisfying the matching between
the points xk

i and xk+1
j if (Pk)ij = 1. Note that (Pk)

K
k=1 are permutation matrices and proof is given

in Appendix A. Similarly, with the transition matrix PkPk+1, we can know the matching between
the points xk

i and xk+2
j if (PkPk+1)ij = 1. Thus we can view the transition matrix

∏K
k=1 Pk as

the transportation X1 to XK+1 and
∏K

k=1 Pk = I is the constraints for cycle-consistency. However,
Eq. 8 is no longer a linear programming due to the constraints of cycle-consistency. For efficiency,
we propose the regularized COT, which allows to derive an matrix-vector iterative algorithm for
obtaining approximate solutions.
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Figure 2: Illustration of transport solutions P1, P2, and P3, along with the cycle-consistency matrix
P1P2P3, based on three given histograms. The histograms on the left correspond to α1, α2, and α3,
while the middle histograms represent the couplings from α1 to α2, α2 to α3, and α3 to α1. Finally,
the rightmost matrix denotes P1P2P3, which exhibits a close similarity to the identity matrix.

3.2 REGULARIZED COT AND THE RCOT-SINKHORN ALGORITHM

Due to the constraint
∏

k Pk = I, a straightforward idea is to relax the optimization using a
regularization term. This can be achieved by adopting the following optimization:

min
∀k,Pk∈U(ak,ak+1)

ERCOT =

K∑
k=1

⟨Ck,Pk⟩+ δ′D(Pk, I), (9)

where D(Pk, I) = ||Pk − I||2F and δ′ > 0 is the coefficient for cycle-consistent regularization. It
can be observed that this optimization problem, similar to solving the Gromov-Wasserstein (GW)
Distance, is a non-convex optimization. Taking inspiration from the methods used to solve the
Gromov-Wasserstein Distance, we further regularize the optimization using entropy regularization as
follows:

min
∀k,Pk∈U(ak,ak+1)

ERCOT − ϵ
∑
k

H(Pk), (10)

where H(·) is the entropic regularization with its cofficent ϵ. Two algorithms, namely RCOT-Sinkhorn
and RCOT-PGD, are proposed to solve this problem, which are defined in Algorithm 1 and Algorithm
2.

RCOT-Sinkhorn Algorithm. Following the algorithms proposed for approximating the computation
of GW in (Peyré et al., 2016), we use iteratively Sinkhorn’s algorithm to progressively compute a
stationary point of Eq. 10. Indeed, successive linearizations of the objective function lead to consider
the succession of updates

P
(l+1)
k = arg min

Pk∈U(ak,ak+1)
⟨C(l)

k ,Pk⟩ − ϵH(Pk). (11)

Note C
(l)
k = ∇ERCOT(P

(l)
k ) = Ck − δ′M

(l)
k where M

(l)
k is

Diag
(

1

ak

)(k−1∏
t1=1

P
(l)
t1

)⊤( K∏
t2=1

P
(l)
t2 − I

)(
K∏

t3=k+1

P
(l)
t3

)⊤

. (12)

Note Eq. 11 can be solved by Sinkhorn Algorithm, thus we can adopt the Sinkhorn iteratively for
the solution of RCOT. More proof details are given in Appendix B. Note the above iterations can be
interpreted as a mirror-descent scheme, in which the convergence is discussed in (Aubin-Frankowski
et al., 2022; Zhou et al., 2020) When δ′ = 0, the solution Pk degenerates into the vanilla entropic OT
and when δ′ > 0, (Pk)k tend to satisfy cycle-consistency. Note our RCOT-Sinkhorn IS presented
in Appendix B. As shown in Fig. 3, 6 points are sampled from three 2D-Gaussian distributions and
Euclidean distances are used as costs for computing couplings. Compared to the pair-wise Sinkhorn
algorithm, our RCOT-Sinkhorn achieves cycle-consistency results. Fig. 2 illustrates the transportation
results among more complex distributions. It is noteworthy that the left three histograms are sampled
from Gaussian mixture distributions, and the couplings can be computed using the RCOT-Sinkhorn
algorithm as shown in the middle three subfigures. As shown in the rightmost subfigure, the cycle-
consistency

∏K
k=1 Pk = I is almost satisfied.

5
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Figure 4: Example point matching results after applying P1, P2, P3 and P4 to the original point
set. The features are extracted using NMGM (Wang et al., 2021). We observe that the Sinkhorn
method fails to achieve cycle-consistency, while our RCOT-Sinkhorn method successfully maintains
cycle-consistency, resulting in the graph after applying P2 remaining identical to the original graph.

Figure 3: Multi-matching on 2-D points. Left:
result of pairly adopting the Sinkohrn algorithm;
Right: solutions of our RCOT-Sinkhorn Algo-
rithm 1. Our matching forms a closed loop,
whereas the pairwise Sinkhorn results do not.

Applications in Multi-point Matching. Here,
we apply the RCOT to the inference of the multi-
point matching model. We assume the existence
of multiple sets, each containing several point
features extracted from images by the trained
neural model. Our goal is to establish cycle-
consistent matches among these sets. Specifi-
cally, given K probability measures (αk)

K
k=1,

where αk =
∑N

i=1 δ
′
xk
i
, and xk

i represents the
point feature, we can define the cost Ck between
αk and αk+1. Then the inference during the test-
ing process can be formulated with Eq. 10. To
solve the optimization, we utilize the RCOT-
Sinkhorn algorithm to obtain predictions for the
testing data. Fig. 4 illustrates the inference re-
sults using Pairwise Sinkhorn and RCOT-Sinkhorn algorithms, where a neural matching model
(NMGM (Wang et al., 2021)) serves as the backbone. It can be observed that the coupling P2

generated by the pairwise Sinkhorn method contains a mismatch for two points at the rear of the
vehicle. However, our algorithms correct this misalignment and produce accurate matching. One
direct concern for multiple matching is the order of point sets in the matching process, as different
matching orders may affect the prediction results of RCOT-Sinkhorn or RCOT-PGD. In practice,
for K = 3, different selection orders are theoretically equivalent for RCOT. However, for K > 3,
different selection orders can indeed theoretically affect the prediction results of the RCOT algorithm
as shown in Tab. 5, Tab. 1 and Fig. 7. Nevertheless, based on existing experiments, it seems that
changing the order has little impact on the prediction results.

The setting of Hyper-parameters δ′ and ϵ. The traditional method of tuning hyper-parameters is
grid search, but this approach has a large computational cost and low efficiency. In situations where
the model itself has high computational requirements or when dealing with large-scale data, the
feasibility of using grid search is limited. Inspired by binary search, we proposed the method for
tuning the hyper-parameter in Algorithm 5. This method can achieve logarithmic convergence speed,
significantly reducing the computational load of tuning parameters.

3.3 A NEW COT-BASED TSP FORMULATION AND A HEATMAP-BASED SOLVING METHOD

From the multiple transportation view, we consider what if all the transportation is in the same space.
This means we can set that α = α1 = α2 = · · · = αK and then all probability measures share the
same locations and histograms, which leads to the same cost matrix (i.e. C = C1 = C2 = · · · = CK )
and coupling solutions (i.e. P = P1 = P2 = · · · = PK) for all transportation. Under this

6
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(a) SoftDist (b) Sinkhorn (c) Ours (d) LKH3

Figure 5: Comparisons on TSP. The left three adopt the greedy method on distance matrix, and
probability matrix with Sinkhorn and our Algorithm 2, respectively. The rightmost one is the strong
TSP solver LKH3 (Helsgaun, 2017). Our method performs competitively for heatmap generation.

assumption, the cycle-consistency is transformed into PK = I, which implies that each point returns
to its original location after transportation. This inspires us to draw a connection to TSP.

TSP involves K points with its distance matrix C to get the solution P ∈ {0, 1}K×K . Note we
assume the transport for points themselves is not allowed (i.e. (C)ii → ∞ and thus (P)ii = 0). We
apply the cycle-consistency view in COT to capture the closed-loop constraint, which forms a new
formulation (TSP-COT):

min
P∈{0,1}K×K

⟨C,P⟩ s.t. P1K = 1K , P⊤1 = 1, ⟨Pk, I⟩ = 0(∀k < K), PK = I. (13)

Note Pk is the k-th power of matrix P and the condition ⟨Pk, I⟩ = 0 for k < K is used to terminate
the consistency process before the final step, to ensure (Pk)ii = 0, which guarantees that the
probability of a travelling salesman starting from position i, taking k steps (k < K), and returning to
position i is zero. On the other hand, the condition (P)K = I is imposed to enforce cycle-consistency,
ensuring that (PK)ii = 1. It guarantees that the salesman returns to start. The optimization in Eq. 13
is no longer a Linear Program problem. Similar to that in Sec. 3.2, the entropic and closed-loop
regularization is employed for minimization:

min
P≥0

⟨C,P⟩ − ϵH(P) +
∑
k

δ′k||Pk − I||2F s.t. P1K = 1K , P⊤1K = 1K , (14)

where (δ′k)k are the regularization coefficients. We set δ′k < 0 for k < K to make (Pk)ii approach
0 for every k < K, and δ′K > 0 to make (Pk)ii approach 1. Note that Eq. 14 and the Gromov-
Wasserstein problem are both non-convex optimizations. To handle this, we employ linearizations of
the objective function, which allow us to consider updates

P(l+1) = arg min
P∈U(1K ,1K)

⟨C(l),P⟩ − ϵH(P), (15)

where

C(l) = C+M, M =

K∑
k=1

k−1∑
t=0

2δ′k(P
t)⊤(Pk − I)(Pk−1−t)⊤. (16)

Then we can obtain the approximate solution of TSP with the iterative Sinkhorn algorithm as proposed
in Algorithm 3 and details are given in Appendix C. However, unfortunately, Algorithm 3 can not
achieve the ideal closed-loop solution which may be due to the simple setting of δ′k and too many
regularized terms of closed-loop constraints.

In fact, our probability-based results on the other hand enable the selection of the TSP path from
a probabilistic perspective rather than relying solely on the traditional distance matrix. This shift
transforms TSP into a sampling problem, where the calculated probability matrix can be utilized. For
example, we can employ a greedy method, as described in Appendix C, to search for a closed-loop
path based on the probability matrix computed using Algorithm 2. In Fig. 5, 25 points are randomly
sampled as the locations and we compare the total cost based on greedy search using the Euclidean
distance matrix, Sinkhorn probability matrix, and our probability matrix calculated by Algorithm 2 in
Fig. 5 and find that our approach performs competitively.

Though our current method is still far from competing with strong classic TSP solvers like
LKH3 (Helsgaun, 2017), as shown in Fig. 5, it provides a new perspective for tackling the TSP, which
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Table 1: Comparison of different methods on Willow and Pascal VOC with Berkeley annotations.
Accuracy (ACC), Consistent rate (CR) and Consistent Accuracy (CACC) (%) are reported and our
RCOT-Sinkhorn or RCOT-PGD algorithms outperform in ACC, CR, and CACC evaluations.

Data Methods Three Point Sets Matching Four Point Sets Matching
ACC CR CACC ACC CR CACC

Willow

NMGM 91.02 93.76 84.28 92.74 96.34 84.44
NMGM-COT (ours) 92.30 99.72 88.28 93.04 99.78 85.90
PCA-GM 92.64 90.12 84.86 93.04 87.16 81.00
PCA-GM-COT (ours) 93.27 98.96 90.04 93.22 96.16 85.52
IPCA-GM 94.51 91.44 87.76 94.08 87.38 82.21
IPCA-GM-COT (ours) 95.06 95.00 90.31 94.60 92.22 85.57
CIE-H 93.08 84.72 82.88 93.04 80.86 78.48
CIE-H-COT (ours) 94.62 98.47 91.48 94.24 97.65 88.07

VOC

PCA-GM 68.14 66.64 45.28 70.49 61.31 40.53
PCA-GM-COT (ours) 68.74 82.69 51.63 70.60 63.74 41.54
IPCA-GM 69.83 69.02 48.94 71.33 63.92 43.92
IPCA-GM-COT (ours) 70.93 84.68 55.24 71.86 78.99 50.01
CIE-H 72.67 68.54 51.04 74.53 63.74 45.78
CIE-H-COT (ours) 73.52 83.57 57.65 75.40 76.41 51.60

involves converting the distance matrix into a probability matrix and searching for the optimal path
based on the probabilities2. In the probability matrix, the edge selection is based on global considera-
tions, which inherently provides an advantage over distance-based edge selection. Moreover, if an
improved algorithm can be developed to obtain the closed-loop probability solution in the future, we
would no longer need the sampling algorithm to determine the TSP path. This opens up possibilities
for efficiently solving large-scale TSP problems using matrix scaling methods via GPU computing.

Time Complexity Analysis. The time complexity of 3 is primarily reflected in Eq. 16, which
involves two nested loops, running O(K2) times. Inside each loop, there are operations involving
matrix exponentiation and matrix multiplication of order K. We can compute the matrix powers
using eigenvalue decomposition, which reduces the time complexity of computing matrix powers
within the loop to O(K3), which is the same as matrix multiplication. Therefore, the overall time
complexity of the algorithm is O(K5). Although our algorithm has a high time complexity, it is a
training-free approach. In comparison to retraining neural network parameters, our method holds
certain advantages.

Further discussions about COT are shown in Appendix H.

4 EXPERIMENTS

4.1 EXPERIMENTS ON VISUAL POINT MATCHING ACROSS SETS

We evaluate the task of keypoint matching on Pascal VOC dataset with Berkeley annotations (Ever-
ingham et al., 2010; Bourdev & Malik, 2009) and Willow Object Class dataset (Cho et al., 2013).
For the evaluation metric, the average accuracy (ACC) (Wang et al., 2021) can be regarded with
consistency matching view between two measures:

ACC =
1

N
⟨

2∏
k=1

P̂k ⊙Yk, IN ⟩ (17)

where P̂1 = P̂⊤
2 is the one-hot matching prediction of P1. Yk is the ground truth for Pk and ⊙

denotes element-wise matrix multiplication. Then we can extend the two measure evaluation to more
measure case. To evaluate matching results, we develop two metrics called Consistent Rate (CR)

2We believe that there is a potential of adapting our techniques to more combinatorial problems beyond TSP.
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Table 2: Comparison of different methods on TSP-200/500/750 datasets. The average tour length
(Length), the average performance gap (Gap) between the solution generated by Concorde and the
average inference time (Time) are reported. Baseline results are sourced from (Fu et al., 2021; Qiu
et al., 2022; Xin et al., 2021)

Method Type
TSP-200 TSP-500 TSP-750

Length Gap Time Length Gap Time Length Gap Time
Concorde Exact 10.72 0.00% 17.86M 16.58 0.00% 37.66M 20.09 0.00% 4.35H
LKH-3 Heuristic 10.72 0.00% 46.28M - - - 20.09 0.00% 2.57H

T2T SL+G 10.85 1.38% 3.45M - - - 20.85 3.81% 20.03M
T2T SL+G+2opt 10.75 0.47% 5.16M - - - 20.23 1.13% 18.83M
T2T SL+MCTS 10.72 0.10% 1.28H - - - 20.71 3.08% 14.55H
AM RL+S - - - 22.64 38.84% 15.64M - - -
AM RL+G - - - 20.02 20.99% 1.51M - - -
AM RL+BS - - - 19.53 18.03% 21.99M - - -

GNN SL+G 11.95 11.72% 1.23M - - - 23.12 15.58% 1.50M
GNN SL+G+2opt 10.90 1.80% 1.53M - - - 20.41 2.05% 2.12M
GNN SL+MCTS 10.73 0.30% 0.47H - - - 21.71 8.08% 3.61H

DIMES RL+G 12.45 16.38% 1.37M - - - 23.36 16.26% 1.59M
DIMES RL+MCTS 11.16 4.29% 0.52M 16.84 1.77% 2.64M 20.58 2.44% 5.42M
SoftDist MCTS 10.74 0.25% 1.23M 16.80 1.32% 1.67M 20.57 1.95% 3.7M

COT (ours) MCTS 10.74 0.23% 1.28M 16.78 1.21% 2.10M 20.47 1.92% 6.24M

and Consistent Accuracy (CACC) to assess the cycle-consistency effectiveness of the inference
method. These metrics are defined as follows:

CR =
1

N
⟨

K∏
k=1

P̂k, IN ⟩, CACC =
1

N
⟨

K∏
k=1

(P̂k ⊙Yk), IN ⟩ (18)

where P̂k is the one-hot matching prediction of Pk for the k−th point set to (k + 1)−th set. Note
CR refers to the accuracy of forming cycles via matching, while CACC represents the accuracy of
forming cycles where each feature point within the cycle is matched correctly.

Results. The results of visual matching task are summarized in Tab. 1. We use the previous
neural matching models, namely NMGM (Wang et al., 2021), PCA-GM (Wang et al., 2019), IPCA-
GM (Wang et al., 2020) and CIE-H (Yu et al., 2019)), as the backbone to evaluate our inference
algorithm. We compare RCOT-Sinkhorn and RCOT-PGD with (Munkres, 1957), EMD (Dantzig,
1949) and Sinkhorn Algorithm (Cuturi, 2013). As shown in Tab. 1, for the Willow dataset, our
methods outperform all other inference methods by ACC, CR and CACC evaluations. For the
experiments on Pascal VOC with Berkeley annotations, our RCOT-Sinkhorn outperforms others
across all backbones. Results for multiple (more than three) measures and order switching and the
details of hyper-parameters and running time are discussed in Tab 1.

4.2 EXPERIMENTS ON TRAVELLING SALESMAN PROBLEMS

We evaluate our algorithm on the Travelling Salesman Problem (TSP) using the TSP-200/500/750
datasets. Each dataset includes 128 instances. TSP instances are generated by sampling N nodes
uniformly from the unit square.

Evaluation Metrics and Baselines. We report the average tour length (Length), average performance
gap (Gap), and average inference latency time (Time). Length (lower is better) represents the average
length of the predicted tour for each graph in the test set. Gap (smaller is better) measures the
average relative performance gap in solution length compared to a baseline method. Time (shorter is
better) denotes the average clock time to generate solutions for each test instance, reported in seconds
(s), minutes (m), or hours (h). As for baselines, we evaluate Concorde (Applegate et al., 2006),
T2T (Li et al., 2024), GNN (Joshi et al., 2019), DIMES (Qiu et al., 2022), SoftDist (Xia et al., 2024),
etc. Based on the characteristics of these methods, we categorize them into three types: Solvers,
ML-based methods and Training-free methods.

Results. The results of TSP experiments are summarized in Tab. 2. Without additional training,
our algorithm can achieve performance superior to other models. Specifically, our COT algorithm
achieves a performance gap of 0.23% on TSP-200, 1.21% on TSP-500, and 1.92% on TSP-750 with
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only a slight increase in the heatmap generation time compared to SoftDist. Our method, compared
to DIMES, has clear advantages in terms of the quality of the optimal solutions. And as the problem
size increases, the gap in solving time between our method and the DIMES method is also narrowing.
Also, our method shares all the merits of SoftDist as mentioned by (Xia et al., 2024): compared with
learning-based methods, our method do not need a large labeled training dataset and training time
to make the methods work. Nonlearning-based methods can be easily applied to any dataset and
consistently produce acceptable routing paths.

Figure 6: Plot with log scaling on both the x-axis
(iterations) and y-axis (the norm difference be-
tween the updated and old matrices M in Alg.3
on TSP-200 dataset at each iteration).

Numerical Convergence Analysis. We vali-
date the convergence of Alg. 3 through experi-
ments on the TSP-200 dataset with log-log-plot
introduced in (Cortes et al., 1993). We plot a
log-log graph with the x-axis representing the
number of iterations and the y-axis representing
the norm difference between the updated and
old matrices M, ||Mold −Mnew||2F , at each iter-
ation, and plot the first-order and second-order
convergence line (convergence order and con-
vergence line are defined in Appendix F) on the
same graph. As shown in Fig. 6, our conver-
gence line (blue) is approximately parallel to the
first-order convergence line (orange), indicating
that our algorithm converges at the first order.
As for the analytic convengence, our algorithm
is equivalent to the projection of gradient de-
scent algorithm. The convergence proof related
to the our algorithm is discussed in (Peyré et al.,
2016).

4.3 MORE EXPERIMENTAL RESULTS

Experiments on Model Fusion Task. Following (Singh & Jaggi, 2020) that applies the OT (e.g.
Sinkhorn algorithm) for the model fusion task, we apply our RCOT-Sinkhorn algorithm for multi-
model fusion. We focus on exploring the benefits of fusing multiple models that only differ in
their parameter initializations (i.e., seeds). We study this in the context of networks e.g. MLP and
VGG11 which have been trained on MNIST and CIFAR10 respectively. Unlike the previous pairwise
Sinkhorn algorithm in (Singh & Jaggi, 2020), we apply our RCOT-Sinkhorn algorithm instead to get
the consistency among multiple models. The experiment results are given in Tab.3 and details about
our algorithm are given in Appendix D.

Ablation Study. We conduct ablation studies to determine the impact of some factors on the
effectiveness of our method, like switching the order of point sets, varying δ and ϵ in matching process
and applying Hungarian algorithm to P in Eq. 16. We switch the order of sets on Willow_3GM
(K = 3) and Willow_4GM (K = 4), and find that the results before and after switching the order
given in Tab. 4, 5 are almost the same. We vary δ and ϵ in visual matching experiments and the
results given in Tab.6 demonstrate the robustness of our method. In the TSP experiments, we attempt
to apply the Hungarian algorithm to P in Eq. 16 and find that the final results after tuning are almost
the same whether or not the Hungarian algorithm is used, but the optimal parameters are different.

5 CONCLUSION, LIMITATION AND FUTURE WORK

We have introduced a generalized form for Consistent Optimal Transport (COT), which enables trans-
portation among multiple measures while (softly) preserving cycle-consistent constraints. Besides,
we propose a new formulation of TSP based on TSP-COT, which helps the calculation of heatmap
for solving with regularization on TSP-COT. For the limitation, our RCOT-Sinkhorn introduces a
hyperparameter δ′ for tuning. Similarly, for the regularized TSP-COT, the number of hyperparameters
increases by K i.e. the number of measurements. For future work, we believe that a Schrödinger
bridge based on cycle-consistency would be a promising direction, which will be the focus of our
next efforts.
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APPENDIX

A PROOF OF (Pk)
K
k=1 BEING PERMUTATION MATRICES IN EQ. 8

Denote the (i, j) element in matrix Pk as p(k)ij . Suppose the elements of (Pk)
K
k=1 are in the general

range of (0,1). By Cauchy-Schwarz Inequality, the following equation holds and the equality holds if
and only if ∃l∗ s.t. p(k)il∗ p

(k+1)
l∗j = 1 and p

(k)
il p

(k+1)
lj = 0 ∀l ̸= l∗.

(PkPk+1)ij =

K∑
l=1

p
(k)
il p

(k+1)
lj ≤

K∑
k=1

(p
(k)
il )2

K∑
k=1

(p
(k+1)
lj )2 ≤ 1, k = 1, 2, . . . ,K (19)

If Pk is not a permutation matrix, the equality in Eq. 19 can not hold and thus the constraints∏K
k=1 Pk = I can not be satisfied. Thus (Pk)

K
k=1 are permutation matrices.

B LAGRANGIAN METHOD FOR REGULARIZED COT

We first give the derivation of Eq. 8. At first, given the minimization

min
(Pk)k:Pk∈U(ak,ak+1)

L1 =

K∑
k=1

⟨Ck,Pk⟩ − ϵ
∑
k

H(Pk)− δ′||
K∏

k=1

P̃k − I||2F , (20)

we can adopt the Lagrangian method to solve it. For each coupling Pk, we introduce (fk,gk) to the
constraints in U(ak,ak+1), i.e.

Pk1nk+1
= ak and (Pk)

⊤1nk
= ak+1, (21)

and then we can get the Lagrangian function as

L = L1 −
∑
k

(
⟨fk,Pk1nk+1

− ak⟩+ ⟨gk, (Pk)
⊤1nk

− ak+1⟩
)

(22)

We compute the partial derivative of L with respect to Pk as

∂L
∂Pk

= Ck + ϵ logPk − fk1
⊤ − 1g⊤

k − δ′Mk = 0, (23)

where Mk is specified as

Mk =
∂f

∂Pk
=

∂tr(Y ⊤Y )

∂Pk
=

∂||
K∏

k=1

P̃k − I||2F

∂Pk
. (24)

Here we set Y =
K∏

k=1

P̃k− I and f = tr(Y ⊤Y ) in Eq. 24. With the method given in (Hu, 2012), We

solve it by utilizing the relationship between matrix derivative and its partial derivatives. Specially,
we have

df = tr(dY ⊤Y ) + tr(Y ⊤dY ) = tr(2Y ⊤dY ) = tr(
∂f⊤

∂Y
dY ), (25)
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Algorithm 1: RCOT-Sinkhorn: Iterative Sinkhorn-based Algorithm for Regularized COT

Input: Cost Matrices (Ck)
K
k=1 and histograms (ak)Kk=1, iteration number L

Output: the couplings (P(L−1)
k )Kk=1

Initialize M
(0)
k = 0nk,nk+1

for all k
for l = 0, 1, . . . , L− 1 do

for k = 1, 2, . . . ,K do
P

(l)
k = Sinkhorn(Ck − δ′M

(l)
k ,ak,ak+1)

P̃
(l)
k = P

(l)
k ⊘ ak

end for
Calculate (M

(l+1)
k )k by Eq. 12 with (P̃

(l)
k )k

end for

Algorithm 2: RCOT-PGD: Projected Gradient based Algorithm for Regularized COT

Input: Cost Matrices (Ck)
K
k=1 and histograms (ak)Kk=1, iteration number L

Output: the couplings (P(L−1)
k )Kk=1

Initialize M
(0)
k = 0nk,nk+1

for all k
for l = 0, 1, . . . , L− 1 do

for k = 1, 2, . . . ,K do
Kproj = P

(l)
k−1 ⊙ e(−τ(Ck−δ′M

(l)
k )+ϵ logP

(l))
k−1

P
(l)
k = Proj(Kproj,a

k,ak+1)

P̃
(l)
k = P

(l)
k ⊘ ak

end for
Calculate (M

(l+1)
k )k by Eq. 12 with (P̃

(l)
k )k

end for

then it is satisfied that ∂f⊤

∂Y = 2Y ⊤. For the matrix Pk, we have

df = tr(
∂f⊤

∂Y
d

K∏
t=1

P̃t)

= tr(

K∏
t3=k+1

P̃t3

∂f⊤

∂Y

k∏
t1=1

P̃t1Diag
(

1

ak

)
dPk)

= tr(2

K∏
t3=k+1

P̃t3(

K∏
t2=1

P̃t2 − I)⊤
k∏

t1=1

P̃t1Diag
(

1

ak

)
dPk)

= tr(

(
2Diag

(
1

ak

)
(

k∏
t1=1

P̃t1)
⊤(

K∏
t2=1

P̃t2 − I)(

K∏
t3=k+1

P̃t3)
⊤

)⊤

dPk)

(26)

thus we have

Mk = 2Diag
(

1

ak

)(k−1∏
t1=1

P̃t1

)⊤( K∏
t2=1

P̃t2 − I

)(
K∏

t3=k+1

P̃t3

)⊤

. (27)

According to Eq. 23, we have

Pk = Diag(efk/ϵ)e(−Ck+δ′Mk)/ϵDiag(egk/ϵ) (28)

and the iterative Sinkhorn algorithm can be used with the constraints given in Eq. 21.
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C MORE DETAILS IN TSP-COT

C.1 LAGRANGIAN METHOD FOR REGULARIZED TSP-COT

For the minimization of regularized TSP-COT, we have

min
P

L2 = ⟨C,P⟩ − ϵH(P) +
∑
k

δ′k||Pk − I||2F

s.t. P1K = 1K , P⊤1K = 1K .

(29)

Lagrangian methods are used to solve it here. Introducing the duals (f ,g) to the constraints P1K =
1K ,P⊤1K = 1K , we can get the Lagrangian function

L = L2 − ⟨f ,P1K − 1K⟩ − ⟨g,P⊤1K − 1K⟩. (30)

Then we can compute the partial derivative of L with respect to P as

∂L
∂P

= C+ ϵ logP− f1⊤ − 1g⊤ +M = 0, (31)

where M is specified as

M =
∑
k

δ′k
∂||Pk − I||2F

∂P

=

K∑
k=1

k−1∑
t=0

2δ′k(P
t)⊤(Pk − I)(Pk−1−t)⊤.

(32)

To prove that, we define fk = tr(Y ⊤Y ) = ||Pk − I||2F where Y = Pk − I, then

dfk = tr
(
2Y ⊤dY

)
= tr(

k−1∑
t=0

∂f⊤
k

∂Y
(PtdPPk−1−t))

= tr(

k−1∑
t=0

Pk−1−t ∂f
⊤
k

∂Y
PtdP )

= tr

(2 k−1∑
t=0

(Pt)⊤(Pk − I)(Pk−1−t)⊤

)⊤

dP

 ,

(33)

Thus we have
∂fk
∂P

=

k−1∑
t=0

2(Pt)⊤(Pk − I)(Pk−1−t)⊤. (34)

So we can get that

M =
∑
k

δ′k
∂fk
∂P

=

K∑
k=1

k−1∑
t=0

2δ′k(P
t)⊤(Pk − I)(Pk−1−t)⊤. (35)

According to 31, we can the solution form

P = Diag(ef/ϵ)e−(C+M)/ϵDiag(eg/ϵ). (36)

Thus the iterative Sinkhorn algorithm can be applied for calculation.

C.2 GREEDY METHOD FOR SEARCHING WITH PROBABILITY MATRIX

With a known probability matrix calculated by Sinkhorn or Algorithm 3, we can apply the Algorithm 4
to get the TSP path.
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Algorithm 3: Probability Matrix Calculation for Regularized TSP-COT.
Input: Cost Matrix C and iteration number L
Output: the coupling P(L)

Initialize M (0) = 0K×K

for l = 0, 1, . . . , L do
P(l) = Sinkhorn(C+M (l))
Calculate M (l+1) by Eq. 16 with P = P(l)

end for

Algorithm 4: Greedy search using probability matrix to get the TSP path
Input: the coupling P
Output: the path tour

Initialize tour = []
i, j = where(P == P.max())
P[i, :] = P[:, j] = P[:, i] = 0
k = j
tour.append(i)
tour.append(j)
for m = 1, . . . , n− 2 do
i, j = k,where(P[k, :] == P[k, :].max())
P[i, :] = P[:, j] = 0
k = j
tour.append(j)

end for

D EXPERIMENTS ON MODEL FUSION

COT for Multi-model fusion. Following (Singh & Jaggi, 2020) that applies the OT for model fusion
task, we apply our RCOT-Sinkhorn algorithm instead of the previous pairwise Sinkhorn algorithm in
(Singh & Jaggi, 2020) for multi-model fusion. Without loss of generality, here we consider fusing
three models. Assume W

(l,l−1)
k is the weight matrix for model k (k = 1, 2, 3) between layer l and

l − 1, and Ŵ
(l,l−1)
k (k = 2, 3) is the modified weights with alignments P̃l−1

1 , P̃l−1
3 before layer l:

Ŵ
(l,l−1)
2 = W

(l,l−1)
2 (P̃

(l−1)
1 )⊤, Ŵ

(l,l−1)
3 = W

(l,l−1)
3 P̃

(l−1)
3 . (37)

Then we can get the weight alignments for W̃(l,l−1)
2 and W̃

(l,l−1)
3 to W

(l,l−1)
1 by

W̃
(l,l−1)
2 = P̃l

1Ŵ
(l,l−1)
2 ,W̃

(l,l−1)
3 = (P̃l

3)
⊤Ŵ

(l,l−1)
3 , (38)

where P̃l
1 is the alignment from model 1 to model 2 and P̃l

3 is the alignment from model 3 to model
1 for layer l calculated by RCOT-Sinkhorn. Finally, we get the parameter matrix of the fused model:

W
(l,l−1)
F =

1

3

(
W

(l,l−1)
1 + W̃

(l,l−1)
2 + W̃

(l,l−1)
3

)
. (39)

Initializing l = 2 and updating Ŵ
(l,l−1)
k and W̃

(l,l−1)
k (k=2,3) by varying l, we can get the fused

model’s parameter matrices {W(l,l−1)
F } for predictions.

Besides, previous fusion methods are mostly based on different initialization or networks with the
same task and loss. Here, we attempt to fuse models with different training methods. We combine
models trained using standard training, Mixup (Zhang et al., 2017), and adversarial training (Shafahi
et al., 2019), and examine the differences in their clean accuracy and robust accuracy results. The
results are given in Tab. 3.

E GAP-GUIDED ADAPTIVE PREDICTIONS BY CALCULATING ADAPTIVE VALUE

The λ in the algorithm can be replaced with the parameters that need to be adjusted (such as δ′ and ϵ).
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Table 3: Fusing standard training, mixup training and adversarial models on VGG11, along
with the Top-1 accuracy of finetuning the fused models on CIFAR10. The PGD (Madry et al.,
2017) model trained here and the attack employed for obtaining robust accuracy both utilize l2-PGD
(PGD attack bounded with l2 norm), with the perturbation size 8.0/255, which is also used for robust
accuracy.

ACC MA MB MC Model Fusion without Fine-tuning Standard Fine-tuning Mixup Fine-tuning PGD Fine-tuning
(ST) (Mixup) (PGD) PREDICTION VANILLA OTfusion Ours VANILLA OTfusion Ours VANILLA OTfusion Ours VANILLA OTfusion Ours

Clean 90.49 92.30 89.24 91.54 42.48 90.21 89.88 89.71 89.88 89.96 89.67 89.66 90.40 89.88 89.86 90.62
Robust 30.76 49.84 73.73 / 29.66 30.57 30.68 29.95 30.63 31.84 49.04 51.60 52.36 50.15 50.75 53.07

Figure 7: Example point matching results after applying P1, P2, P3 and P4 to the original point set
when switching the second and third set. Compared to Fig. 4, the image order is switched.

Algorithm 5: gap-guided adaptive predictions by calculating adaptive value
Input: the performance gap between COT (with λ = x) and Concorde: gap(x)
Output: the adaptive value x∗

1 Initialize: x1 = 0.001, x2 = 0.01, δ = 0.0001andϵ = 0.0001
2 calculate dgap1 = gap(x1 + δ)− gap(x1)
3 calculate dgap2 = gap(x2 + δ)− gap(x2)
/* Here we can check that dgap1·dgap2 < 0 */

4 x̄ = (x1 + x2)/2
5 while x2 − x1 > ϵ do
6 calculate dgapm = gap(x̄+ δ)− gap(x̄)
7 if dgam1·dgapm<0 then
8 x2 = x̄
9 dgap2 =dgapm

10 else if dgam2·dgapm<0 then
11 x1 = x̄
12 dgap1 =dgapm
13 else
14 break
15 end
16 x̄ = (x1 + x2)/2
17 end
18 the adaptive variable x∗ = x̄

F DEFINITION OF CONVERGENCE ORDER AND CONVERGENCE LINE

Suppose {pn}∞n=0 is a sequence that converges to p, and for each n, pn ̸= p. If there exists positive
constant λ and α such that

lim
n→∞

|pn+1 − pn|
|pn − p|α

= λ

then the sequence {pn}∞n=0 converges to p at order α, and the corresponding constant λ is referred to
as the asymptotic error constant.
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To validate the convergence order of {pn}∞n=0, we plot the α-order convergence line log(|pn−pn−1|α)
and log(|pn+1 − pn|) on the same graph. Then {pn}∞n=0 converging at order α is equivalent to the
α-order convergence line being parallel to the line of log(|pn+1 − pn|).

G MORE EXPERIMENTAL RESULTS

Table 4: The results for the case of three measures (K=3 ) when switching the order on
Willow_3GM with IPCA-GM as backbone.

Willow_3GM with IPCA-GM ACC CACC CR

RCOT-Sinkhorn : A→B, B→C, C→A 0.9506 0.9031 0.9500
RCOT-Sinkhorn : A→C, C→B, B→A 0.9459 0.8974 0.9477

Table 5: The results for the case of four measures (K=4) when switching the second and third
set order on Willow_4GM with IPCA-GM as backbone.

Willow_4GM with IPCA-GM ACC CACC CR

RCOT-Sinkhorn without switching 0.9453 0.8592 0.9240
RCOT-Sinkhorn with switching the order 0.9460 0.8557 0.9222

Table 6: Ablation study for visual matching experiments by varying δ and ϵ.

δ ϵ ACC CACC CR

0.001 1e-9 0.9412 0.8767 0.9158
0.001 1e-10 0.9412 0.8767 0.9158
0.01 1e-9 0.9442 0.8967 0.9475

0.001 1e-11 0.9412 0.8767 0.9158
0.01 1e-10 0.9442 0.8967 0.9475
0.01 1e-11 0.9442 0.8967 0.9475
0.1 1e-9 0.9382 0.9087 0.9951
0.1 1e-10 0.9382 0.9087 0.9951
0.1 1e-11 0.9382 0.9087 0.9951

H FURTHER DISCUSSIONS

H.1 THE EXISTENCE OF A SOLUTION TO MONGE FORMULATION IN EQ. 6

A solution to the Monge formulation in Eq. 6 does exist. We can consider a feasible solution as
follows: assume that {t1, t2, . . . , tK−1} are the solutions of the original MMOT problem. Then,
given x ∈ X1 and y = TK−1TK−2 · · ·T1(x), we can set x = TK(y). In this way, it satisfies the
conditions and thus is a feasible solution.

H.2 THE CONNECTION BETWEEN MMOT AND COT

Take the case when K = 3 as an example. In MMOT, the formulation is given by
minX

∑
ijk CijkXijk, s.t.

∑
ij Xijk = 1,

∑
ik Xijk = 1,

∑
jk Xijk = 1.

While in COT, the formulation is given by min
∑

k⟨Dk, Pk⟩, s.t. ∀k, Pk1K = 1K , PT
k 1K = 1K ,

and P1P2P3 = I.

Let Cijk = D1ij + D2jk + D3ik. Then, the objective function of MMOT can be written as∑
ijk(D1ij+D2jk+D3ik)Xijk, which, through algebraic manipulation, equals

∑
ij D1ij

∑
k Xijk+∑

jk D2jk

∑
i Xjk +

∑
ik D3ik

∑
j Xik.
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By introducing the notations
∑

k Xijk = P1ij ,
∑

i Xijk = P2jk, and
∑

j Xijk = P3ik, the objective
function is transformed into min

∑
k⟨Dk, Pk⟩, which clearly exhibits the COT form.

When K > 3, the MMOT can also be transformed into COT by using a similar method. This
shows that, under specific definitions and transformations of the cost matrices and variables, MMOT
can be related to COT in a structured way. Although MMOT deals with a higher-dimensional
tensor involving all distributions leading to high computational costs, our COT, through this demon-
strated connection, can leverage certain aspects of MMOT’s framework while maintaining its own
computational efficiency and applicability in the targeted problems.

H.3 DEPENDENCE ON THE ORDER OF MEASURES α IN COT FORMULATIONS

It is obvious that the order of measures has no impact when K < 3. For K = 3, 4, as shown in 4.3,
the results before and after switching the order of measures are almost the same, demonstrating that
the order of measures has little impact on the results for K = 3, 4.

It is important to note that in both the datasets we utilized and the majority of practical applications
within our research domain, the value of K typically does not exceed 4. This practical constraint im-
plies that the scenarios we are primarily concerned with are well-covered by our existing experimental
setup.

H.4 THE DEGREE OF SATISFACTION OF CYCLE-CONSISTENCY

We use Consistent Rate (CR) defined in Eq. 18 to assess the degree of satisfaction of cycle-consistency
in Table 1. The closer CR is to 100%, the better cycle-consistency is achieved.
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