Under review as a conference paper at ICLR 2022

EFFICIENT REINFORCEMENT LEARNING
EXPERIMENTATION IN PYTORCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) has proved successful at solving challenging
environments but often requires long training times and very many samples. Fur-
thermore, advancing artificial intelligence requires to easily prototype new methods,
yet avoiding impractically slow experimental turnaround times. To this end, we
present a PyTorch-based library for RL with a modular design that allows com-
posing agents based on three components types: actors, storages and algorithms.
Additionally, the definition of synchronous and asynchronous architectures is per-
mitted with flexibility and independence of the components. We present several
standard use-cases of the library and showcase its potential by obtaining the highest
to-date test performance on the Obstacle Tower Unity3D challenge environment.
In summary, we believe that this work helps accelerate experimentation of new
ideas, simplifying research and enabling to tackle more challenging RL problems.

1 INTRODUCTION

In modern reinforcement Learning (RL) research, agents are usually implemented as a combination
of multiple interacting, heterogeneous algorithmic components (e.g. data buffers, neural networks,
training loss, etc.). In addition, RL relies heavily on empirical experimentation both to solve new
environments and to test new research ideas. Consequently, investigating how to solve nontrivial
environments with current methods sometimes becomes a painstakingly slow process.

Modular code bases are critical for deep RL research because many RL components are extensions
of others proposed in previous works. Furthermore, individual components are easier to read,
understand and modify, facilitating code reuse and therefore more reliable performance comparisons
between methods and easier reproducibility. Composable agents are the best option to enable method
experimentation. In this work we present a PyTorch-based (Paszke et al.,|2019) RL library designed
to address these issues and help accelerate RL experimentation. Agents are defined by selecting
and combining different independent and replaceable RL components. Components can be reused
in different agents and new components can be easily designed or extended and combined with
those already available without any need to change the library internal code. As a result, this RL
library allows for a simplified definition of RL agents and fast prototyping of new methodological RL
components.

The poor resource efficiency of most RL methods stems from the fact that its original problem
formulation is based on the single-threaded execution of operations with heterogeneous computation
patterns. To accelerate RL training times, in recent years numerous methods have been conceived
around the idea of relaxing this constraint by parallelizing individual operations and decoupling the
execution of consecutive operations into different processes, allowing both higher resource efficiency
and the ability to distribute computational workload across multiple machines (Recht et al., 2011}
Mnih et al., 2016} [Espeholt et al., | 2018; Wijmans et al., 2019} Heess et al.,[2017; [Horgan et al., | 2018)).
In order to accelerate method development, this RL library frees practitioners from the burden of
implementing their own scalable architectures, and provides a reliable manner to run RL agents in
distributed regimes. This approach enables agent comparisons without worrying about performance
differences being caused by quirks in different standalone implementation of distributed components.
Furthermore, we provide the flexibility to define multiple distributed schemes that can be coupled
with any RL agent. Organizations behind recent important contributions such as OpenAl (OpenAl,
2018) and DeepMind (Silver et al.,2018) use their own internal, scalable RL frameworks which are

Under review as a conference paper at ICLR 2022

all distributed and offer the possibility to separate sampling, gradient computations and policy updates
both in time and hardware. Unfortunately, these libraries are largely proprietary. It is indicative that
two recent Unity3D challenges in RL, Animal Olympics (Crosby et al.| |2019) and Obstacle Tower
Challenge (Juliani et al.| 2019) were won by people who developed custom RL implementations
instead of using any available library.

The remainder of the paper is organized as follows. An overview of the most relevant related work is
presented in Section 2. In section 3 we detail the design choices and describe its main components.
Following, some interesting use-cases are presented in section 4. More specifically, subsection 4.1
explores the possibilities offered within the computational budget of a single machine, subsection
4.2 investigates the scalability of multiple distributed training schemes, and finally, subsection 4.3
demonstrates a practical application by reaching the state-of-the-art agent performance results on the
Obstacle Tower Unity3D challenge environment (Juliani et al., [2019).

2 RELATED WORK

A relatively large number of reinforcement learning libraries has been proposed to help with the
challenges of implementing, training and testing the set of existing RL methods and their constantly
increasing number of improvements (Gauci et al.l [2018]; (Castro et al.| 2018} [Loon et al.l [2019;
Schaarschmidt et al., 2019; Dhariwal et al., 2017; (Caspi et al., 2017; | Kuhnle et al., [2017).

Some of these libraries focus on single-threaded implementations and do not consider distributed
training (Dhariwal et al.L[2017;|Castro et al., 2018 [Caspi et al.,|2017; |[Kuhnle et al.,[2017). We provide
both local training, which can be useful to debug method components, and distributed training. More
importantly, the library allows the switch from one option to the other with minimal changes in the
training script and no changes in the agent components.

Some other libraries offer scalability. However, they often rely on communication between inde-
pendent program replicas, and require specific additional code to coordinate them (Schaarschmidt
et al.,|2019; Loon et al., 2019; |[Espeholt et al., [2018; [Falcon, [2019). While this programming model is
efficient to scale supervised and unsupervised deep learning, where training has a relatively constant
compute pattern bounded only by GPU power, it is not ideal for RL. In RL, different operations can
have very diverse resource and time requirements, often resulting in CPU and GPU capacity being
underexploited during alternated periods of time. Conversely, we break down the training process
into sub-tasks and uses independent compute units called Workers to execute them. Workers have
access to separate resources within the same cluster and define hierarchical communications patterns
among them, enabling coordination from a logically centralised script. This approach, while very
flexible, requires a programming model allowing to easily create and handle Workers with defined
resource boundaries. We currently use Ray (Moritz et al.||2018)) for that purpose.

Libraries such as RLIib (Liang et al.,|2017) and RLgraph (Schaarschmidt et al.l 2019) use Ray to
obtain highly efficient distributed reinforcement learning implementations, with logically centralized
control, task parallelism and resource encapsulation. However, both RLIib and RLgraph advocate for
high level implementations, creating agents with single function calls that accept many parameters
and handle the instantiation of method components "under the hood". This design choice makes
sure method components match, preventing errors and allowing for a more general use of their RL
APIs but difficult code understanding and method experimentation. We aim to allow for composable
agents, using RL core components such as the rollout buffer, the algorithm or the actor model as
building blocks. Besides the components already implemented, new components can be created and
combined for experimentation without the need to change the library code or anything else in the
train script. While this approach requires a deeper knowledge on the field to make sure the selected
components work well together, it is much more convenient for research.

Probably the closest work to the one presented in this paper is ACME (Hoffman et al.,[2020) from
DeepMind, which also focuses on simplifying research with composable agents while allowing
these agents to scale. It also allows to run agents both as a single-threaded process or in distributed
regimes using the same core modules. However, ACME does not specifically distinguish between all
possible distributed architectures, fully decoupling the construction of the RL agent from the choice
of a distributed architecture used to scale. Furthermore, up to the best of our knowledge ACME’s
distributed components are proprietary code and have not been open sourced, restricting it in practice
to the serial case.

Under review as a conference paper at ICLR 2022

Table 1: Currently implemented RL components

Description Policy
Algorithm A2C: Advantage Actor-Critic (Mnih et al.[|[2016) on
DDQN: Double Deep Q-Learning (Van Hasselt et al., 2016) off
PPO: Proximal Policy Optimization (Schulman et al., 2017) on
DDPG : Deep Deterministic Policy Gradient (Lillicrap et al., 2015 off

TD3: Twin Delayed Deep Deterministic Policy Gradient (Fujimoto et al.;[2018)) | off
MPO: Maximum a Posteriori Policy Optimisation (Abdolmaleki et al.,[2018]) off

SAC: Soft Actor-Critic (Haarnoja et al., 2018)) off

Actor OnPolicyActor: actor class for on-policy RL agents (Montague} [1999) on
OffPolicyActor: actor class for off-policy RL agents (Montaguel [1999) off

Storage VanillaOnPolicyBuffer: minimal data storage component for on-policy on

algorithms (Sutton et al.,|2000)
ReplayBuffer: minimal data storage component for off-policy algorithms (Mnih| | off

et al.l[2015)
GAEBuffer: data storage component with Generalized Advantage Estimation on
(Schulman et al., [2015)
VTraceBuffer: data storage component with V-Trace correction (Espeholt et al., | on
2018)
NStepBuffer: multi-step leaning replay buffer (Hessel et al., [2018) off
PERBuffer: Prioritized Experience Replay buffer (Andrychowicz et al., 2017b) | off
EREBuffer: Emphasizing Recent Experience replay buffer (Wang & Ross| off
2019)
HERBuffer: Hindsight Experience Replay buffer (Andrychowicz et al.,[2017a) | off
Envs OpenAl gym environments (Brockman et al., 2016 -

Obstacle Tower Unity3D challenge environment (Juliani et al.,|2019) -
Animal Olympics Unity3D challenge environment (Crosby et al.,2019) -
Habitat environment (Savva et al.||[2019) -

Trifinger Real Robot Challenge environment (Wiithrich et al., [2020) -

3 EFFICIENT REINFORCEMENT LEARNING

We present a library for efficient reinforcement learning experimentation. It is designed to enable
simple construction of RL agents, which can subsequently be executed both in local settings or in
parameterizable distributed regimes using the exact same agent building blocks. In this section we
discuss how RL agent can be defined, we will motivate the need for a flexible and simple module to
define training architectures and we will detail how this module, called Scheme, works.

3.1 RL AGENTS

The main constituents of RL agents can be selected from a pool of options, and the resulting set of
components can be seamlessly combined to construct a working RL agent. Each component can be
selected independently of the rest and any specific component can be replaced by other candidates of
the same type, resulting in a different agent but precluding execution errors.

We distinguish between three types of agent components implemented as different Python classes,
the combination of which creates a complete RL agent: the Actor, which implements the deep neural
networks used as function approximators and provides the methods to update them and to generate
predictions (most notably, but not exclusively, next action predictions), the Storage, which handles the
storage, processing, and retrieval of environment transitions data, and the Algorithm, which manages
loss and gradient computations from data. With one instance of each component, a single-threaded
Worker can fully define the logic of modern RL methods. Our initial release includes multiple
components of each type from recent RL literature, listed in Table [I]and also displayed in Figure
We find it more convenient for code simplicity to distinguish between on-policy and off-policy
components due to the fundamental underlying methodological differences of these two families
of RL approaches (Montague, [1999), and simply construct agents of each family with different
components.

Under review as a conference paper at ICLR 2022

New components can be created and combined with already existing ones as they are rooted in
Python abstract superclasses defining all methods requiring implementation by any subclass to ensure
correct functionality. Following a modular paradigm, already existing components are derived from
these superclasses, which are backed by rich code documentation to facilitate new implementations.
Already implemented components can also serve as a superclass to new ones, facilitating code reuse
and reducing development time. Experimenting with different neural network architectures is also
easy. The Actor superclass requires all its descendants to accept PyTorch neural networks as an
optional input parameters, to be used to extract features from environment data. Finally, a special
type of component called VecEny allows to stack multiple independent environments into a single
vectorized environment to make more efficient use of computing resources during inference time.
To do that VecEnv requires to be provided with a function allowing to create individual copies of
the environment under consideration. Therefore training can be both vectorized and distributed for
maximum resource efficiency.

Finally, as further detailed in sections 3.1 and 3.2, we aim also at facilitating research with distributed
training architectures. Training in distributed regimes can require RL components to be instantiated
multiple times in different processes. To that end, instead of directly creating single copies of each
component, we use functions allowing to spawn component instances in every process requiring them.
We refer to such functions as component factories, since they can be called to create identical copies
of individual components. A component factory can be generated for any given agent component,
including VecEnv, via their class method called create_factory, inherited from all superclasses to
ensure package consistency. Working with component factories is the critical strategy allowing us to
flexibly define a large spectrum of distributed architectures in clusters of arbitrary size.

3.2 DISTRIBUTED TRAINING

Single-Threaded
On-| polu;y

R C P S A
a) RLAgem B o x| x|
[x | x| |
APPO
C P S A
8 x| x| |
es IREINEY
\ DPPO /DDPPO
R C P S A
e Ix| x| |
o [Ix x| |
CIMPI\I‘I;A ? & I\SPE-XA
R [x] x|
G x| x| |
\ / RAPID
tors c P S A
. 4 N EINEY
1o | sorases S N rara
// \ async RAPID
c P S A
R |Ix| x|
G| x| x|

Figure 1: (a) Design trees of agents. (b) A non-exhaustive set of distributed training schemes used
by popular RL agents and easily configurable. Execution of Rollouts collection (R) and Gradient
computation (G) tasks can be either Centralised (C, executed only in 1 Worker) or Parallelized
(P), and either Synchronous (S) or Asynchronous (A). Scheme component allows to define training
architectures.

Deep RL algorithms are generally based on the repeated execution of three sequentially ordered opera-
tions: rollout collection, gradient computation and policy update. In single-threaded implementations,
all operations are executed within the same process and training speed is limited by the performance
that the slowest operation can achieve with the resources available on a single machine. Furthermore,
these algorithms do not have regular computation patterns, i.e. while rollout collection is generally
limited by CPU capacity, gradient computation is often GPU bounded, causing an inefficient use of
the available resources.

Under review as a conference paper at ICLR 2022

To alleviate computational bottlenecks, a more convenient programming model consists on breaking
down training into multiple independent and concurrent computation units called compute actors
or simply actors, with access to separate resources and coordinated from a higher-level script. To
prevent any confusion with the Acfor component in our RL agents, we refer to these compute units as
Workers in the remainder of the paper. Even within the computational budget of a single machine,
this solution enables a more efficient use of compute resources at the cost of slightly asynchronous
operations. Furthermore, if Workers can communicate across a distributed cluster, this approach
allows to leverage the combined computational power of multiple machines.

A Worker-based software solution offers two main design possibilities that define implementable
training schemes: 1) Any operation can be parallelized, executing it simultaneously across multiple
Worker replicas. 2) Coordination between consecutive operations can be synchronous or asyn-
chronous. In other words, it is possible to decouple two consecutive operations by running them in
different Workers that never remain idle and coordinate asynchronously, achieving higher resource
efficiency. Thus, specifying which operations are parallelized and which operations are asynchronous
defines the training schemes that we can implement. Note that single-threaded implementations are
nothing but a particular case in which any operation is parallelized or executed asynchronously.

3.3 ADJUSTABLE TRAINING ARCHITECTURES

The creation and coordination of Workers is managed via the Ray (Moritz et al., 2018) distributed
framework. Distributed training schemes achieve shorter training times but at the cost of some
deviation from the original problem formulation. Common consequences of such deviations are
the introduction of policy lag (Espeholt et al.,[2018} Babaeizadeh et al.,|2016; Mnih et al., 2016), a
situation in which the policy version used for data collection is delayed by some updates with respect
to the policy version used for gradient computations, or gradient asynchrony (Mnih et al., [2016;
Stooke & Abbeel, 2018), when a similar delay happens between the policy version used for gradient
computation and the policy version to which the gradients are applied. Additionally, some schemes
also alter the effective value of the batch size (Heess et al., 2017; Wiymans et al., 2019; OpenAl,
2018). That makes choosing the most appropriate architecture for each experiment a sometimes
challenging problem. While some RL agents can be in principle more robust than others to the
deviations introduced by distributed schemes, generally it is still necessary to better understand how
different algorithms, environments, and policy architectures behave when scaled under different
training architectures. Furthermore, it is possible to develop methodological improvements to mitigate
these sorts of problems. For example, (Espeholt et al.l 2018) proposed an algorithmic solution called
V-Trace to mitigate the brittleness of on-policy algorithms to policy lag. To facilitate rapid and
flexible experimentation in distributed settings, we completely separate the definition of the RL agent
from that of the training architecture.

A component called Scheme is provided that allows to define the training architecture and handles
its instantiation, whether working on a single machine or in a cluster. More specifically, the Scheme
class allows specifying how many Workers should be allocated to sample data from the environment,
and how many Workers should be assigned to compute model gradients from the collected data to
perform neural networks updates. Additionally, the CPU, GPU and memory resources assigned to
individual Workers of each class can also be specified, as well as their synchronicity. If coordinated
synchronously, Workers will wait until the preceding operation has finished to commence a new
task and also wait for all other Workers to finish their ongoing parallel tasks before sending on their
outputs. In the specific case of gradient Workers, synchronous coordination also means that gradients
from all Workers will be averaged and jointly applied to the neural networks. Alternatively, Workers
coordinated asynchronously never remain idle, constantly executing tasks and passing results on to
the next stage, updating their version of the networks between tasks in an asynchronous manner.

Note that the Scheme class does not allow to specify the number of Workers performing model update
operations. Each update Worker is associated with a trained model. Under this paradigm, defining
multiple update Workers means training multiple agent models at the same time. While that is done
in some RL methods and we hope to support it in the future, our initial release focuses on training
individual agents, so we limit architectures to contain a single local update Worker. Nonetheless,
the Scheme components allows executing coordinated updates in a distributed manner as in DDPPO
(Heess et al.;|2017), a configuration option that can also be specified via the Scheme module. Note
that this can sometimes be convenient for training speed, but does not alter the RL optimization

Under review as a conference paper at ICLR 2022

a) BoxingNoFrameskip-v4

EnduroNoFrameskip-v4

4 6
N. steps (M)

IceHockeyNoFrameskip-v4

4 6
N. steps (M)

StarGunnerNoframeskip-v4

40000

35000

30000

25000

20000

15000

10000

5000

o 2 H

4 6
N. steps (M)

single-Threaded (447.3 FPS) RAPID (532.8 FPS)

o

nC RAPID (569.3 FPS)

4 6 8 10
N steps (M)

IMPALA / APEX (5211 FPS) —— APPO (452.5 FPS)

2000

1000

~1000 1/

AntBulletEnv-v0

4
Time (h)

HalfCheetahBulletEnv-v0

—— APPO (455.3 FPS)

DPPO (423.5 FPS)

Time (h)

IMPALA / APEX (535.0 FPS)
async RAPID (555.6 FPS)

RAPID (527.8 FPS)
single-Threaded (152.5 FPS)

Figure 2: Experimental results on Atari 2600 (a) and Pybullet (b) environments with different
distributed training schemes. We train each scheme 3 times, with different random seeds and with
random weight initialization, and plot the mean training curve. Plots were smoothed using a moving
average with window size of 100 points.

problem with respect to the default centralized update option, in which the update Worker itself
updates model parameters and subsequently broadcasts them to all gradient Workers. In addition,
the DDPPO architecture also proposes a preemption mechanism in which straggling data collection
Workers are forced to end early once a percentage of the other Workers finish collecting experience.
This option is also available in our architectures.

Figure [Ip shows how some of the possible configurations of Scheme correspond to architectures used
by several popular RL methods. These methods are associated with specific sets of agent components,
but we name them only to refer to the underlying distributed scheme they use. Note that these
architectures are no longer bound to a fixed set of agent components i.e. DPPO (Heess et al., 2017)
underlying distributed scheme can be used, for example, to train a SAC-based agent instead of a
PPO-based agent. The training process itself is managed by yet another class named Learner. The
Learner class takes the Scheme, the target number of steps to train and, optionally, a path where to
store the training logs as inputs and allows to define the training loop.

4 EXPERIMENTS

4.1 SINGLE MACHINE BENCHMARKS IN CONTINUOUS AND DISCRETE DOMAINS

We first validate the library on several experiments on a number of Atari 2600 games from the Arcade
Learning Environment (Bellemare et al., [2013)). We combine a PPO-based agent with GAE with
several architecture configurations including a Single-Threaded scheme and other schemes presented
in Figure [Ib and named after the original agents that introduced them. We opt for serializing
operations and keep the number of collection and gradient Workers to 1, with the idea to test if
training speed arises solely from decoupling operations. We measure training speed as the number of
environment frames being processed, on average, in one second of clock time, or Frames-Per-Second
(FPS). DPPO architecture is not tested since, when operation are not parallelized, this scheme is
equivalent to a single threaded implementation. RAPID and IMPALA / APEX architectures are also
equivalent under these circumstances, but for IMPALA / APEX we use a Storage agent component
implementing V-Trace (Espeholt et al.,[2018) to test the policy lag correction effect it has on a PPO
agent (the original IMPALA agent uses an A2C (Mnih et al.,2016) algorithmic component).

We fix all hyperparameters to be equal to the experiments presented in (Schulman et al., [2017),
the original work presenting PPO, and use the same policy network topologies. We process the
environment observations following (Mnih et al.,|2015) and train each architecture three times on each

FPS.

Under review as a conference paper at ICLR 2022

1200

1000

P
Ga

1 2 3 4 H 1 2 3 4 H 1 2 3 4 H
cluster nodes # cluster nodes # cluster nodes.

DPPO DDPPO IMPALA —8— APPO RAPID async RAPID single-Threaded

Figure 3: Scaling Performance with multiple machines. Frames-per-Second (FPS), Policy Lag
(PL) and Gradient Asynchroy (GA) of different training schemes in increasingly large clusters. We
do not plot curves that remain constant to 0 as cluster size increases.

environment under consideration with randomly initialized policy weights every time. In (Schulman
et al.| 2017) the authors used vectors of 8 environments to collect multiple rollouts in parallel. We do
the same and use a different seed for each environment. Results are presented in Figure 2h.

Our single-threaded agents, and most of our other agents, present training curves close to those from
(Schulman et al., [2017). Notably, even withing the exact same computational budget, by moving
from a completely sequential execution of operations (single-threaded) to a completely asynchronous
one (async Rapid), we achieve a speed increase of over 25% , from 447,34 FPS to 569,29 FPS. We
also observe, for a few environment and agent cases, deviations with respect to the reference training
curves. Whether this depends on the environment itself, on the policy architecture or on the chosen
hyperparameters or a combinations of all factors is unclear. In addition, our agent using V-Trace,
IMPALA / APEX, seems to perform better than RAPID in most environments, but not in all of them.

We also validate the library on several experiments on a number of PyBullet (Coumans & Bail, [2017)
environments. It is common for RL agent to be bounded by single GPU memory, even when the
machine has RAM memory and CPU resources available. Therefore, we design an experiment to test
speed increases in a single machine using multiple GPU’s. We use an off-policy agent composed of
our SAC, ReplayBuffer and OffPolicyActor components and configure all architectures to have 4 data
collection Workers. We configure the Scheme class to allow fitting 2 Workers to each GPU, whether
collection or gradient Workers. We define a single gradient Worker for all architectures except
for RAPID and its gradient asynchronous version, async RAPID, with 2. In any case, 3 GPU are
sufficient to fit the training architecture. We train each architecture 3 times in each environment under
consideration for 8h, using 3 different random environment seeds and random parameter initialization
in each case. Results are displayed in Figure 2b. Hyperparameters can be found in the supplementary
material. We observe faster convergence to similar or superior reward values compared to the
single-threaded experiment in almost all the cases. As the sole exception, architectures that introduce
gradient asynchrony do not seem to improve the single-threaded training for the AntBulletEnv-v0,
yet they do so for the HalfCheetahBulletEnv-v0 environment. Additionally, all architectures achieve
training speed increases between 2.77 and 3.64 times that of the baseline.

4.2 SCALING TO SOLVE COMPUTATIONALLY DEMANDING ENVIRONMENTS

The rest of our experiments were conducted in the Obstacle Tower Unity3D challenge environment
(Juliani et al., 2019), a procedurally generated 3D world where an agent must learn to navigate an
increasingly difficult set of floors (up to 100) with varying lightning conditions and textures. Each
floor can contain multiple rooms, and each room can contain puzzles, obstacles or keys enabling to
unlock doors. The number and arrangement of rooms in each floor for a given episode can be fixed
with a seed parameter. This environment is far more complex than the previously tested and requires
a significantly more data only to start solving the initial rooms.

We design our second experiment to test the capacity of our implementations to accelerate training
processes in increasingly large clusters. We benchmark the FPS, the average policy lag (PL) and the
average gradient asynchrony (GA) when training a PPO-based on-policy agent in clusters composed
of 1 to 5 machines. We experiment with the same training scheme as in the previous section, but
also include DDPPO. For DDPPO we set a preemption threshold of 0.8, meaning that once 80% of

Floor

Under review as a conference paper at ICLR 2022

the parallel data collection Workers have finished their task, the straggling Workers are forced to
early stop their task and training proceeds. Agent hyperparameters are held constant throughout the
experiment. For each specific cluster size and training scheme combination, we select the number
of collection and gradient Workers that maximise the training speed. We used machines with 32
CPUs and 3 GPUs, model GeForce RTX 2080 Ti. We could use two GPUs to obtain similar results if
the environment instances could be executed in an arbitrarily specified device. However, currently
Obstacle Tower Unity3D challenge instances run by default in the primary GPU device, and thus we
decide to devote it exclusively to this task. Our results are plotted in Figure 3]

4.3 ACHIEVING STATE-OF-THE-ART PERFORMANCE ON OBSTACLE TOWER UNITY3D
CHALLENGE ENVIRONMENT

rolling max train rolling min train —— rolling avg train —— testscore ---- Obstacle Tower Unity3D challenge environment winner score

o 50 100 150 200 250 300 330 400 450 500 550
Num steps (M)

Figure 4: Train and test curves on the Obstacle tower Unity3D challenge environment. We use
a rolling window size of size 20 to plot the maximum and the minimum obtained scores during
training, and a window of size 250 for the training mean. A video recording of the best policy is
available at https://youtu.be/L442rrVnDr4

In our last experiment we train a RL agent on the Obstacle Tower Unity3D environment over a
cluster with 64 CPU cores and 6 GPUs and compare it against the state-of-the-art, obtained during
the challenge competition organized by Unity Technologies upon the environment release. We train
an agent on a fixed set of seeds [0, 100) for approximately 11 days and test its behaviour on seeds
1001 to 1005, a procedure designed by the authors of the challenge to evaluate weak generalization
capacities of RL agents (Juliani et al.| [2019). The obstacle environment consists on navigating a
series of rooms connected by one or more doors. The action space is discrete (e.g. move forward,
turn right, jump, move back, etc). The observation is an image of 84x84x3, no map is available.
From floors 1-5 the only task is to be able to navigate rooms towards the next floor (see Figure [Sh).
There is a time limit which is extended every time a floor is completed. Time balls are available
along the way to marginally extend time as well. When a floor is passed the environment returns a
+1 reward, intermediate doors are given a smaller reward. The reward structure is therefore quite
sparse. There can be closed rooms where the player needs to navigate back to the previous room and
pass another door. From floors 5 to 10, some doors are closed and require a key which can be picked
up somewhere (see Figure[5p). Sometime the key are on the ground but sometime picking the key
requires coordinated movements to jump up moving platforms or stairs. From floors 10-15 a box
needs to be pushed over a platform on the ground in order to open doors (see Figure [5k). Both the
position of the box and platform are random and can be in any room in the floor, so the player needs
to navigate there first. This level was only solved by two participants in the original challenge. Above
15, the player can also fall into holes and die, texture of the walls can change and rooms can become
very complex (see Figure [5ld). The Obstacle environment has several difficulties which means that a
direct use of PPO would lead to an average floor of just around 5.

We define an on-policy agent composed of our PPO, GAEBuffer and OnPolicyActor components, and
use VecEnv to define environment vectors of size 16. We use a RAPID-like scheme as it offers high
training speed while keeping PL and GA metrics low and stable. However, we observe low sensibility
to the increase of these metrics in The Obstacle Tower Unity3D environment. We use 4 gradient

https://youtu.be/L442rrVnDr4

Under review as a conference paper at ICLR 2022

Figure 5: Obstacle tower Unity3D challenge environment.

Workers and 8 collection Workers. We use the network architecture proposed in (Espeholt et al.|
2018) but we initialize its weights according to Fixup (Zhang et al.,|2019). We end our network with
a gated recurrent unit (GRU) (Cho et al.,[2014)) with a hidden layer of size 256 neurons. Gradients
are computed using Adam optimizer (Kingma & Bal [2014)), with a starting learning rate of 4e-4
decayed by a factor of 0.25 both after 100 million steps and 400 million steps. The value coefficient,
the entropy coefficient and the clipping parameters of the PPO algorithm are set to 0.2, 0.01 and 0.15
respectively. We use a discount factor gamma of 0.99. Furthermore, the horizon parameters is set to
800 steps and rollout collections are parallelized using environment vectors of size 16. Gradients are
computed in minibatches of size 1600 for 2 epochs. Finally we use generalized advantage estimation
(Schulman et al.l 2015)) lambda of 0.95. We use frame skip 2 and frame stack 4. We restart each new
episode at a randomly selected floor between 0 and the higher floor reached in the previous episode.
During training we restart each new episode at a randomly selected floor between 0 and the higher
floor reached in the previous episode and regularly save policy checkpoints to evaluate progression of
test performance. Test performance is measured as the highest averaged score on the five test seeds
obtained after 5 attempts, due to some intrinsic randomness in the environment.

Key to solving the environment to higher floors is to provide a denser reward structure. Given the
complexity of the tasks, it is still surprising the simplicity of these rewards. The extrinsic reward
upon the agent completing a floor is 41, and +0.1 is provided for opening doors, solving puzzles,
or picking up keys. We additionally reward the agent with intrinsic reward: an extra +1 to pick up
keys, +0.002 if a box is in its field of view, +0.001 if a platform is in its field of view, +1.5 to place
the boxes on the platform. We use a simple color detection on the observation image to classify if
the box or the platform are in view. We also reduce the action set from the initial 54 actions to 6
(rotate camera in both directions, go forward, and go forward while turning left, turning right or
jumping). The code of our training script is provided in the supplementary material. This simple set
of modifications are capable to reach the state-of-the-art by brute force sampling of the environment
for hundreds of million of steps.

The maximum average test score is 23.6, which supposes a significant improvement with respect to
19.4, the previous state-of-the-art obtained by the winner of the competition. Our final results are
presented in Figure @] showing that we are also consistently above 19.4. A video recording of our
model performance is available at https://youtu.be/L442rrVnDr4, showing that the agent reached
high levels of skill after being trained with over 500 million frames of experience. The source code is
made available, including the reward shaping strategy and the resulting model in the code repository.
It is impressive that the agent can solve these tasks without any imitation learning, only by itself. On
the contrary, the previous state-of-the-art used extensively trajectory demonstrations.

5 CONCLUSION

We present and release a modular codebase for fast deep RL research that allows agent composability.
In the present paper, we demonstrate that the implementations provided in it are reliable and can
run in clusters, enabling further research on accelerated RL. We also show experiments can be
flexibly implemented with minimal code, with RL agents that can be assembled from independent and
extendable components. We believe that our library can be used as a tool to do research dealing with
more challenging and complex RL environments than popular current benchmarks. The performance
is further highlighted by achieving the highest to-date test score on the Obstacle Tower Unity3D
challenge environment.

https://youtu.be/L442rrVnDr4

Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our results, the supplementary material includes a list of the hyper-
parameter values as well as the training scripts used in all our experiments. The complete code
to reproduce the experiments is included in the github repository of the library, which will be dis-
closed upon acceptance to prevent breaking anonymity, together with the online documentation.
These resources also provide detailed information about package installation and the complete list of
dependencies of the python environment used to run the experiments.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in neural information processing systems, pp. 5048-5058, 2017a.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. arXiv
preprint arXiv:1707.01495, 2017b.

Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Reinforcement
learning through asynchronous advantage actor-critic on a gpu. arXiv preprint arXiv:1611.06256,
2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement learning coach, December
2017. URL https://doi.org/10.5281/zenodo.1134899.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G Belle-
mare. Dopamine: A research framework for deep reinforcement learning. arXiv preprint
arXiv:1812.06110, 2018.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation in robotics, games
and machine learning, 2017.

Matthew Crosby, Benjamin Beyret, and Marta Halina. The animal-ai olympics. Nature Machine
Intelligence, 1(5):257-257, 2019.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. [https:
//github.com/openai/baselines, 2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

WA Falcon. Pytorch lightning. GitHub. Note: https://github. com/williamFalcon/pytorch-lightning
Cited by, 3, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587-1596. PMLR, 2018.

10

https://doi.org/10.5281/zenodo.1134899
https://github.com/openai/baselines
https://github.com/openai/baselines

Under review as a conference paper at ICLR 2022

Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary Kaden, Vivek
Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. Horizon: Facebook’s open source
applied reinforcement learning platform. arXiv preprint arXiv:1811.00260, 2018.

T. Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. ArXiv,
abs/1812.05905, 2018.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286, 2017.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, et al. Acme: A research
framework for distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in
vision, control, and planning. arXiv preprint arXiv:1902.01378, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce: a tensorflow li-
brary for applied reinforcement learning. Web page, 2017. URL https://github.com/
tensorforce/tensorforce.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E
Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv preprint arXiv:1712.09381, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Keng Wah Loon, Laura Graesser, and Milan Cvitkovic. Slm lab: A comprehensive benchmark
and modular software framework for reproducible deep reinforcement learning. arXiv preprint
arXiv:1912.12482, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937, 2016.

P Read Montague. Reinforcement learning: an introduction, by sutton, rs and barto, ag. Trends in
cognitive sciences, 3(9):360, 1999.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework
for emerging {Al} applications. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), pp. 561-577, 2018.

OpenAl. Openai five. https://blog.openai.com/openai-five/, 2018.

11

https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
https://blog.openai.com/openai-five/

Under review as a conference paper at ICLR 2022

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pp- 8024-8035, 2019.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information processing systems,
pp. 693-701, 2011.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9339-9347, 2019.

Michael Schaarschmidt, Sven Mika, Kai Fricke, and Eiko Yoneki. RLgraph: Modular Computation
Graphs for Deep Reinforcement Learning. In Proceedings of the 2nd Conference on Systems and
Machine Learning (SysML), April 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140-1144, 2018.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. arXiv
preprint arXiv:1803.02811, 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057-1063, 2000.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Che Wang and Keith Ross. Boosting soft actor-critic: Emphasizing recent experience without
forgetting the past. arXiv preprint arXiv:1906.04009, 2019.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames.
arXiv, pp. arXiv—1911, 2019.

Manuel Wiithrich, Felix Widmaier, Felix Grimminger, Joel Akpo, Shruti Joshi, Vaibhav Agrawal,
Bilal Hammoud, Majid Khadiv, Miroslav Bogdanovic, Vincent Berenz, et al. Trifinger: An
open-source robot for learning dexterity. arXiv preprint arXiv:2008.03596, 2020.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

12

	Introduction
	Related work
	Efficient reinforcement learning
	RL Agents
	Distributed Training
	Adjustable Training Architectures

	Experiments
	Single machine benchmarks in continuous and discrete domains
	Scaling to solve computationally demanding environments
	Achieving state-of-the-art performance on Obstacle tower Unity3D challenge environment

	Conclusion
	Reproducibility Statement

