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ABSTRACT

Diffusion and flow-based models have enabled significant progress in generation
tasks across various modalities and have recently found applications in predictive
learning. However, unlike typical generation tasks that encourage sample diversity,
predictive learning entails different sources of stochasticity and requires sampling
consistency aligned with the ground-truth trajectory, which is a limitation we
empirically observe in diffusion models. We argue that a key bottleneck in learning
sampling-consistent predictive diffusion models lies in suboptimal predictive ability,
which we attribute to the entanglement of condition understanding and target
denoising within shared architectures and co-training schemes. To address this,
we propose Foresight Diffusion (ForeDiff), a framework for predictive diffusion
models that improves sampling consistency by decoupling condition understanding
from target denoising. ForeDiff incorporates a separate deterministic predictive
stream to process conditioning inputs independently of the denoising stream, and
further leverages a pretrained predictor to extract informative representations that
guide generation. Extensive experiments on robot video prediction and scientific
spatiotemporal forecasting show that ForeDiff improves both predictive accuracy
and sampling consistency over strong baselines, offering a promising direction for
predictive diffusion models.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., [2015; [Song & Ermon, 2019} |Ho et al., 2020; [Song et al.,
2020) and flow-based models (Lipman et al., [2023; |Liu et al., 2023} |Albergo & Vanden-Eijnden,
2023)) are a class of generative models that has achieved state-of-the-art across a wide range of tasks
and modalities, including image (Dhariwal & Nichol, [2021), video (Ho et al., 2022)), and cross-modal
generation (Saharia et al., [2022} |Singer et al., 2022; Rombach et al., [2022)). Owing to their ability
to model complex and multimodal distributions, diffusion models have recently been adopted for
predictive learning (Voleti et al., 2022} |Chen et al., 2023} |Gao et al., 2023)) within the conditional
generation framework, where they serve as spatiotemporal predictors to learn real-world dynamics
and generate future trajectories conditioned on past observations.

Although both require high-fidelity stochastic outputs,
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prediction) aims to infer physically coherent futures
from partial observations, where stochasticity stems
mainly from incomplete or partial observational in-
formation. Thus, predictive models, though require
stochastic outcomes, prioritize per-sample accuracy
and therefore should ensure sampling consistency to a
certain extent, which refers to the ability to produce concentrated, low-variance samples under identi-
cal conditions such that all the generated samples could closely align with ground-truth trajectories.
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Figure 2: Aligning model stochasticity with task demands. (Left) Generative tasks usually favor
diversity, making diffusion models ideal as they produce varied samples. (Middle) In contrast,
predictive learning requires a balance between generation and prediction, and vanilla diffusion
models demonstrate unsatisfactory sampling consistency. (Right) Foresight Diffusion achieves a
midpoint between highly stochastic generative models and fully deterministic models, making it
well-suited for predictive learning.

The specific demand of sampling consistency challenges the employment of diffusion models to
predictive learning, which are prone to issues such as hallucinations, weak conditioning, and sample
imperfection (Aithal et al., |2024; Dhariwal & Nichol, [2021)). As illustrated in Figure m although
vanilla diffusion models outperform traditional auto-regressive models in terms of best-case as well
as average performance, they exhibit higher sample variance and heavier worst-case tails that are
undesirable for predictive learning. This highlights a fundamental mismatch between vanilla diffusion
models and the requirements of predictive learning, and consequently there remains a need for
sampling-consistent diffusion models that effectively balance stochasticity and determinism.

To address these challenges, we propose Foresight Diffusion (ForeDiff), a framework designed to
enhance the sampling consistency of predictive diffusion models by decoupling condition under-
standing from the denoising process. Diffusion models typically exhibit suboptimal predictive ability
compared to deterministic approaches, as condition understanding and target denoising are entangled
within shared architectures and co-training schemes, which impairs effective condition understanding
and may finally lead to diverse but unfaithful samples relative to the ground truth. Instead of directly
applying a conventional conditional diffusion model, ForeDiff introduces a separate deterministic
stream that processes condition inputs independently of the stochastic denoising stream. Further-
more, it leverages a pretrained deterministic predictor to extract informative representations, thereby
improving the model’s predictive ability. Experiments across multiple modalities demonstrate that
ForeDiff significantly improves both predictive performance and sampling consistency.

Our contributions are summarized as follows:

* We revisit diffusion models in the context of predictive learning, a task intrinsically different
from conventional content generation, and identify their sampling consistency issues.

* We attribute the consistency issues of diffusion models to the entanglement of condition
understanding and target denoising within shared architectures and co-training schemes.

* We propose Foresight Diffusion, a framework that improves sampling consistency by
decoupling condition understanding and incorporating a pretrained deterministic predictor.

» Extensive experiments and analyses on video prediction and spatiotemporal forecasting
demonstrate that ForeDiff achieves superior predictive accuracy and sampling consistency.
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2 PRELIMINARIES

Denoising-based generative models typically build on a forward process that progressively corrupts
clean data samples with increasing amounts of noise. By default, we consider the simplest linear
interpolation scheme (Lipman et al.,[2023}; [Liu et al.,|2023)) which has been widely used due to its
analytical tractability and connections to optimal transport. The forward process is expressed as the
linear interpolation between a clean sample xg ~ ¢(x) and standard Gaussian noise € ~ A/(0,):

x; = (1—t)xo +te, te€]0,]1] (1)

To recover the data distribution, we learn to reverse this process by training a neural network vg(x¢, t)
to approximate the time-dependent velocity field (or its reparameterizations). The training objective,
known as conditional flow matching, is formulated as:

Loaosty (8) = Exg e [Va(x1,1) = (€ = x0)|I] @
At inference time, samples are generated by integrating the learned velocity field backward in time:
Xi—At = X — Vo(Xy, ) At 3)

starting from a Gaussian noise sample x; ~ N (0, I) and progressing toward ¢ = 0. This framework
naturally extends to conditional generation by introducing conditioning variables c into the model,
resulting in a conditional velocity field vy (x¢, ¢, ¢), where ¢ guides the generative dynamics.

3 METHOD

3.1 DIFFUSION MODELS FOR PREDICTIVE LEARNING

Predictive learning is fundamentally a stochastic task. We formulate it as a conditional generation
problem, where s =910 denotes a sequence of past visual observations and c represents a potential
perturbation to the environment (e.g., actions or goals) (Agarwal et al.,|2025). The objective of a
predictive model is to approximate the conditional distribution of future frames p(s'*® | s79+10 ¢),
which is inherently unknown and must be learned from data.

To reduce computational cost, we adopt the widely used latent diffusion paradigm (Rombach et al.,
2022), which compresses the frames into a lower-dimensional latent space using a pretrained
autoencoder composed of an encoder E and a decoder D. The past and future frames are en-
coded as z7 910 = F(s7O+1:0) and 215 = E(s'*%), respectively. Denoting x = z'*® and
y = {z= 9710 c}, the learning objective becomes modeling the conditional distribution p(x|y). We
focus on predictive diffusion models, which—as described in Section @—learn a conditional denoiser
vy (Xt,y,t) that takes as input both the condition y and a noisy version of the target x;.
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Figure 3: Comparison between predictive diffusion models and existing baselines on RoboNet dataset.
(a) Vanilla diffusion achieves competitive FVD with significantly fewer parameters, demonstrating
high model efficiency. (b) Vanilla diffusion performs well on best and average LPIPS, but suffers from
higher worst-case error, highlighting poor sampling consistency. (c¢) Vanilla diffusion underperforms
a deterministic predictor in absence of noisy targets, revealing its limited predictive ability.
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Predictive diffusion models are efficient, accurate, but not consistent. We evaluate the perfor-
mance of predictive diffusion models in comparison to existing baselines, including auto-regressive
and mask-based architectures (Wu et al., 2024} |Gupta et al.| 2023). We adopt a video-adapted DiT,
shown in Figure ff{a), as our vanilla diffusion model, and assess its performance using two standard
metrics: Fréchet Video Distance (FVD) for distributional similarity, and LPIPS for perceptual sample-
level quality (Unterthiner et al.| 2018} [Zhang et al., 2018). Figure [3a| presents a scatter plot comparing
model size and FVD, while LPIPS scores under best-case, average, and worst-case conditions are
reported in Figure [3b} Our key findings are summarized below:

* Despite having a smaller model size and no pretraining, the vanilla diffusion model outper-
forms baseline models in FVD, best-case LPIPS, and average LPIPS, demonstrating strong
efficiency and accuracy for predictive learning.

* However, under worst-case LPIPS, the diffusion model underperforms iVideoGPT. Together
with the results in Figure[I] this suggests a lack of sampling consistency, i.e., insufficient
concentration of plausible outputs under the same condition.

These results reveal a critical limitation of predictive diffusion models: although exhibiting strong best-
case performance with compact architectures, they lack robust conditional control during generation,
leading to significant variability across samples. As a result, evaluating models only by best-case
performance—as commonly done in prior works (Voleti et al., 2022; [Yu et al., [2023} [Wu et al.
2024)—can be misleading. Therefore, we report average metrics throughout the remainder of the
paper unless otherwise specified.

3.2 OBSERVATIONS

To further explore the sampling inconsistency behavior in predictive diffusion models, we investigate
their predictive ability, i.e., how well the model understands condition inputs (e.g., visual observations
and actions) and predicts future trajectories based on the task’s underlying dynamics. To assess
how much the model relies solely on y during denoising, we consider the special case at ¢t = 1
(corresponding to ¢ = T under notations in DDPM (Ho et al.,2020)), where x; ~ N (0,1) contains
no signal and thus contributes no useful information, which introduces the following lemm:

Lemma 3.1. For a diffusion model as defined in Section |2} by reparameterizing the output as
Xo(x¢,t,y) = x¢ — t-vo(xy, t,y) (Karras et al.| 2022), an ideal diffusion model at t = 1 minimizes:

£Plfed<9|7f = 1) = Exo,y,e ["5(9(67 1;Y> - XOHg} 3 4

where the noise € is independent of both x, and'y. Furthermore, a diffusion model minimizing Eq. ()
reduces to a similar architectured deterministic predictor f¢ minimizing the following objective:

Lacwer(€) = By [1fe(y) = ol3] )

This lemma conveys two insights. First, evaluating performance at ¢ = 1 provides a reasonable
proxy for assessing the predictive ability of a diffusion model, as the model must rely entirely on
y while discarding the irrelevant input €. Second, the predictive ability of a diffusion model is
inherently bounded and is possible to be equivalent to that of a deterministic model. To empirically
test whether the diffusion model can reach this upper bound, we train a ViT-based deterministic model
fe, shown in Figure b), with an architecture analogous to the diffusion model. We then compare
its performance to the diffusion model evaluated with a single-step inference at ¢ = 1. The results,
shown in Figure [3c| reveal that the diffusion model underperforms its deterministic counterpart in
both latent and pixel space, verifying its limited predictive ability relative to its potential.

Discussion. Such observation indicates that the suboptimal predictive ability of diffusion models
stems from the entanglement between condition understanding and target denoising due to the nature
of diffusion models to train on various . This entanglement constrains condition understanding by
factors of both architecture and training. From the architecture perspective, network parameters must
simultaneously learn both condition understanding of y and target denoising of x;, and this dual-role

'Proof is referred to Appendix



Under review as a conference paper at ICLR 2026

(a) Vanilla Diffusion
Timestep t 7 7 7 1

1

1

1

1

1

1

! n

DiT DIT DIT DIT Diffusion | 1 |ﬂ Vit ViT ViT ViT Deferministic
™ Block |~ Block  Block  Block I " Block _~ Block  Block  Block Prediction

-

1

1

1

1

(b) Deterministic Prediction

| ——
Condition Noised
target

Condition

(¢) Foresight Diffusion backbone (d) Foresight Diffusion
(ForeDiff-zero) — Predictive ability (ForeDiff)

, Vil ViT @—» Vit Vit
I 5 |_ Block * Block

1
1
1
1
! \
1 i
| |
| : Pred Deterministic i
el Block ~ Block : Head Prediction !
i
Condition 1 Condition H
! i
1 —a
1
1
. 1
1
| ¢
1
1
1
1
1
1

\
Pretraining stage only

— Generative ability

Noised target

MLP DiT DiT DiT Diffusion MLP DiT DiT DiT Diffusion
Fusion ~* Block ~* Block | Block ” Fusion | * Block | Block  Block

Noised target
i 1 i

t t t

Timestep t Timestep t

Figure 4: Overview of Foresight Diffusion. (a) Vanilla diffusion jointly processes condition and
noisy target, limiting its predictive ability. () A Deterministic model focuses solely on condition
understanding and achieves better predictive performance. (c) ForeDiff-zero introduces a separate
predictive stream to isolate condition understanding from noise. (d) ForeDiff further adopts a two-
stage scheme: it pre-trains the predictive stream, then freezes its representations to guide generation.

constraint can limit the model’s ability to fully exploit the condition information. From the training
perspective, the presence of x; as an informative input introduces a shortcut, making it easier for the
model to rely on generative priors from x; rather than precise task-specific dynamics from y.

3.3 FORESIGHT DIFFUSION

Previous observations suggest that shared architectures and co-training schemes of condition y and
noisy target x; limit the predictive ability of diffusion models, due to the need to simultaneously
balance condition understanding and target denoising. To address these limitations, we introduce a
simple yet effective framework that enhances predictive ability through architectural decoupling and
improved training scheme.

Architecture. Building on architectures of vanilla diffusion models, we propose an architectural
extension that integrates decoupled deterministic blocks for processing the condition y independently
of x;. This design forms the Foresight Diffusion backbone (ForeDiff-zero), illustrated in Figure dc),
which separates the model into two distinct streams, the predictive stream and the generative stream,
aiming to focus on y and x; respectively. The predictive stream is composed of deterministic ViT
blocks, while the generative stream follows the standard DiT-based denoising process. Formally,
let M denote the number of ViT blocks and N the number of DiT blocks. The process can then be
formulated as:

go = PatchEmbed(
hy = PatchEmbed(
hisy = DiT;(hs,t), i

y), gi = ViTi(gi-1), i=1,..., M,
Xt)a hl = FU.SiOn(ho,gM,t), (6)
=1,...,N, v = OutHead(hp 7).

When M = 0, ForeDiff-zero reduces to vanilla conditional diffusion, where the fusion operates
directly on the raw condition: h; = Fusion(hg, PatchEmbed(y), t).

Unlike vanilla diffusion models, which ingest both y and x; at the initial point of a shared network,
ForeDiff-zero processes the condition solely within its predictive stream and passes the resulting
informative representation g, instead of y to the generative stream. Since the predictive stream is
entirely agnostic to x;, its parameters are fully dedicated to understanding y, thereby mitigating the
architectural entanglement that limits the predictive ability.

Training scheme. To further ensure that the ViT blocks in the predictive stream effectively acquire
predictive ability instead of learning static representation, in addition to the end-to-end training
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scheme of ForeDiff-zero, we further enhance Foresight Diffusion (ForeDiff) by adopting a two-stage
training scheme demonstrated in Figure [d(d). In the first stage, the predictive stream is trained as
a standalone deterministic predictor. Inspired by the strong predictive ability of the deterministic
model f, discussed in Section ForeDiff trains the predictive stream by adding a prediction head
PredHead to form the architecture of f¢, which is defined by f¢(y) = PredHead(gas), and train it
using the prediction loss in Eq. (3). In the second stage, we freeze the pretrained predictive stream
and remove the PredHead module. The resulting internal representation g,, computed by the frozen
ViT blocks, is then used as the conditioning input to train the generative stream.

We treat the predictive and generative streams as two independent models, denoted by Pe and Gy,
respectively. Each stage is optimized with one of the following loss functions:

Laver = Exyy [1Pey) =003

Lgenoise = Exo,y.et |:HG9(Xt7 Pg/(Y)at) - (6 - XO)H;} >

where P/ refers to the predictive stream excluding the PredHead module. This ensures that the
information guiding generation are derived from the learned predictive representations, rather than
the final outputs of the predictor. By combining architectural decoupling with dedicated predictive
pretraining, ForeDiff leverages a deterministic predictor as a preparatory module for conditional
generation. The design enables the model to “foresee” contextually rich representations, thereby
enhancing predictive ability and improving both generation accuracy and sampling consistency.

(N

4 EXPERIMENTS

We evaluate Foresight Diffusion in comparison to conventional conditional diffusion baselines
across a range of tasks, covering both (action-conditioned) robot video prediction and scientific
spatiotemporal forecasting. We adopt the same model architecture across all tasks, with the only
difference being the condition information provided to the model. The model components follow the
standard configurations of ViT (Dosovitskiy et al.,|2020) and DiT (Peebles & Xiel 2023) (or SiT (Ma
et al.,|2024))) blocks. Unless otherwise specified, we use 6 ViT blocks in the predictive stream and 12
DiT blocks in the generative stream. Additional implementation details are provided in Appendix [B]

4.1 ROBOT VIDEO PREDICTION

Setup. We begin by evaluating on RoboNet (Dasari et al.,|2019) and RT-1 (Brohan et al.|[2022), two
real-world video datasets widely used for assessing general video prediction performance. RoboNet
contains 162k videos collected from 7 robots operating in diverse environments. Following previous
works (Babaeizadeh et al., 2021} [Wu et al.| [2024), the task is to predict 10 future frames given 2
past frames together with actions. RT-1 consists of 87k videos from 13 robots performing hundreds
of real-world tasks. Here, the objective is to predict 14 future frames conditioned on 2 past frames
and the corresponding instructions. All video frames are resized to 64 x 64 pixels for both datasets.
We evaluate model performance using widely adopted metrics including FVD (Unterthiner et al.,
2018)), PSNR (Huynh-Thu & Ghanbari, 2008), SSIM (Wang et al., 2004), and LPIPS (Zhang et al.,
2018). In addition, we introduce STDpsngr, STDssiv, and STDy pips, defined as the standard deviation
of metric values across multiple generated samples, to numerically represent sampling consistency,
where smaller values indicate more consistent predictions. See Appendix [C|for computation details.

Table 1: Robot video prediction results on RoboNet and RT-1 datasets. SSIM and LPIPS scores are
scaled by 100 for convenient display.

Dataset Method FVD \l/ PSNR T SSIM T LPIPS \L STDPSNR \L STDSSIM \L STDLPIPS \L
Vanilla Diffusion  53.8 27.1 88.2 5.65 0.66 1.33 0.65

RoboNet ForeDiff-zero 52.7 27.2 88.4 5.54 0.68 1.36 0.66
ForeDiff 51.5 27.4 88.8 5.25 0.37 0.70 0.35
Vanilla Diffusion  11.7 30.4 93.6 3.79 0.97 1.11 0.53

RT-1 ForeDiff-zero 11.1 30.7 93.9 3.60 0.95 1.03 0.50
ForeDiff 12.0 31.2 94.4 3.42 0.38 0.33 0.17
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Figure 5: Visualization of results on RoboNet dataset (zoom in for details). In vanilla diffusion
models, the pink shovel (left) appears distorted, while the toy object (right) collapses entirely. In
contrast, ForeDiff produces more structurally plausible and visually coherent outputs.
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Figure 6: Visualization of results on RT-1 dataset (zoom in for details). Compared with vanilla
diffusion, ForeDiff more accurately predicts the brightness of background and the position of robots.

Results. We present the experimental results in Table[T] ForeDiff outperforms vanilla diffusion in
each dataset, showing not only an improvement in accuracy (PSNR, LPIPS, etc.) but a significant
reduction in standard deviation (STD), which demonstrates its suitability for sampling-consistent
predictive learning. Moreover, there is no notable difference between ForeDiff-Zero and vanilla
diffusion in terms of STD, suggesting that the improved sampling consistency primarily stems from
the deterministic pretraining procedure. The qualitative comparisons in Figures [5] and [f] further
highlight the superior predictive ability of ForeDiff.

Since post-training strategies such as classifier-free ) o )
guidance (CFG) (Ho & Salimans, [2022) can also im- Table 2: Robot video prediction results with
prove performance and consistency, we investigate their CFG on RoboNet.

relationship with our approach. Specifically, we evalu-

ate the effect of applying CFG during inference to both ~ Model Metric w/o w/ CFG
vanilla diffusion and ForeDiff, shown in[2} Our obser- Vanilla Diffusion  LPIPS  5.65 5.7
vations are twofold: (1) the improvement brought by  goreDiff LPIPS 525 5.05
CFG on vanilla diffusion remains limited compared to  Vanilla Diffusion STDipps 0.65  0.49
using ForeDiff, and (2) ForeDiff operates orthogonally  ForeDiff STDipwes 0.35  0.24

to CFG and can be effectively combined with it.

Finally, we compare ForeDiff with prior methods using their evaluation settings, where metrics
are reported on the best of 100 samples (Top-1). As shown in Table 3] ForeDiff achieves competi-
tive performance even without accounting for its advantages in consistency, further confirming its
effectiveness in predictive learning.

4.2  SCIENTIFIC SPATIOTEMPORAL FORECASTING

Setup. We then evaluate our method on HeterNS (Li et al} 2021} [Zhou et al. [2025), which is
generated from simulations of heterogeneous 2D Navier-Stokes equations. Each sequence in HeterNS
contains 20 frames with a resolution of 64 x 64, where each pixel represents the vorticity of turbulence
at the corresponding space. The task is to predict the latter 10 frames based on the first 10 frames. L2
and relative L2 are reported according to previous works (Li et al., 2021}, [Zhou et al., 2025).

Results. We present the experimental results in Table[d ForeDiff achieves a much lower relative
L2 error compared to ForeDiff-Zero, and both significantly outperform vanilla diffusion. These
results suggest that incorporating deterministic blocks and pre-training them individually contribute
to improved performance, demonstrating the applicability of ForeDiff for physical scenarios. Figure[7]
illustrates the qualitative advantage of ForeDiff through visual comparisons.
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Table 3: Addition results compared with baselines on
RoboNet dataset. Metrics are reported on the best of Table 4: Scientific spatiotemporal forecast-
100 samples. LPIPS and SSIM scores are scaled by 100  ing results on HeterNS dataset. Metrics

for convenient display. are scaled by 100 for convenient display.

Method FVD| PSNRT SSIM1 LPIPS | .
Method L2 | Relative L2 |

MaskViT 1335 232 805 42 —
SVG (2019) 1232 239 878 6.0 Vanilla Diffusion 1.73 1.50
GHVAE (2021 952 247  89.1 3.6 ForeDiff-zero ~ 1.03 0.83
FitVid (2021) 625 282 893 24 ForeDiff 0.19 0.18
iVideoGPT 632 278  90.6 4.9
ForeDiff 515 282 904 45
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Figure 7: Visualization of results on HeterNS dataset. As the simulation progresses, predictions from
vanilla diffusion deviate increasingly, whereas ForeDiff maintains consistently accurate predictions.

4.3 ANALYSIS

For clarity, we report simplified results here, focusing on key trends. Complete numerical results
across datasets and variants are provided in Appendix |D|as a quantitative supplement.

Effect of PredHead module. We investigate whether ForeDiff benefits more from the predictive
ability of the ViT stream, represented by its learned internal features, or its explicit prediction outputs.
To this end, we conduct an ablation where the DiT stream is conditioned on PredHead outputs
instead of internal representations used in the standard ForeDiff. As shown in Figure[8a conditioning
on PredHead outputs leads to reduced model performance, which supports our hypothesis that the
learned predictive representations, rather than the explicit prediction outputs, are more beneficial to
the generative process.

Effect of ViT block number. To assess the extent of predictive ability required to benefit the
generative process, we vary the number of ViT blocks M in the predictive stream from M = 0 (i.e.,
vanilla diffusion) to M = 12, while keeping the number of DiT blocks in the generative stream fixed.
As shown in Figure[8b] adding a moderate number of ViT blocks noticeably improves performance,
but further increasing M yields diminishing gains. This suggests that the predictive ability required to
assist a fixed generative backbone can be achieved with minimal overhead, and that even a lightweight
deterministic auxiliary module can provide meaningful improvements.

Effect of design beyond parameter scaling. We further validate that the performance gains of
ForeDiff are attributable to its architectural design rather than the simple scaling of parameters. To
isolate the effect of parameter scaling, we extend the vanilla diffusion model to 18 DiT blocks to match
the total number of layers used in ForeDiff, and compare its performance with both ForeDiff-Zero and
ForeDiff under identical ViT/DiT block configurations. We also evaluate the standalone deterministic
predictive stream used in ForeDiff. As shown in Figure[8c| ForeDiff outperforms both the extended
vanilla diffusion model and the deterministic stream by a substantial margin. These results indicate
that the combination of deterministic prediction and conditional diffusion contributes synergistically,
highlighting the effectiveness of the proposed hybrid architecture for predictive learning.



Under review as a conference paper at ICLR 2026

6.0 ForeDiff Fo.24 6.0 vanilla 18
B ForeDiff (Head outputs) I default 1.6 Vanilla Diffusion
5.5 Fo.22 55 °
S 14
504 Lo20 504 .g 12 Vanilla Diffusio.n (extended)
175) > E o Deterministic Prediction
= Lois.2 = 454 &’ b ForeDiff-zero
=] 5 08
— < — %‘v
40 Fo.16 A% 4.0 5 06
54
\s T 04
33 014 ForeDiff
02 °
3.0 0.12 3.0 00
6 12 18
RoboNet RT-1 HeterNS 036 912 0.3 6 9 12 ViT/DiT block numbers
RoboNet RT-1
(a) Effect of PredHead. (b) Effect of #ViT block. (c) Effect beyond parameter scaling.

Figure 8: Ablation studies. (a) Conditioning on PredHead outputs leads to degraded performance.
(b) Increasing #ViT block improves accuracy, but further blocks yield diminishing gains. (c¢) ForeDiff
outperforms both an extended vanilla diffusion and the standalone deterministic predictor.

5 RELATED WORK

Predictive Learning. Diffusion models have been widely adopted for predictive learning. Earlier
approaches have explored architectural design for incorporating signals within the conditional
generation framework, including concatenation- and modulation-based fusion (Voleti et al., 2022; Ho
et al.| 2022; Blattmann et al.l [2023)) with U-Net backbones, scalable multi-modal transformer-based
architectures (OpenAl, |2024; Yang et al.,|2024)) and domain-specific architectures (Gao et al.| [2023]).
Beyond diffusion-based approaches, various frameworks have been proposed for predictive tasks,
including RNN-based (Shi et al.| 2015} |Villegas et al., 2019; Wang et al.,2022), auto-regressive (Yan
et al., 2021 Wu et al.l 2024)), and mask-based (Gupta et al., 2023} |Yu et al.l |2023) methods. As
concluded in Section 3.1} diffusion models serve as strong baselines but tend to exhibit greater sample
variability compared to these non-diffusion counterparts. This observation motivates our focus on
enhancing sampling consistency in predictive diffusion models.

Diffusion models as components. While many approaches employ diffusion models in an end-to-
end manner, recent studies have integrated them as components within broader architectures. For
example, |Li et al.|(2024) and [Liu et al.| (2025) incorporate diffusion losses for image mask reconstruc-
tion and auto-regressive time-series forecasting, respectively, thereby leveraging the generative ability
in a modular way. By comparison, Foresight Diffusion positions the diffusion model as the central
component, enhances its consistency within the generation framework while assigning deterministic
modules an auxiliary role tailored for condition understanding in prediction tasks.

Sampling methods. Beyond standard sampling strategies as Eq. (3)), prior work has introduced
post-training techniques to address imperfections in diffusion model learning, including classi-
fier (Dhariwal & Nichol, [2021) or classifier-free (Ho & Salimans, 2022) guidance, initial noise
manipulation (Ahn et al., 2024; Zhou et al.| [2024) and inference-time scaling (Ma et al., [2025).
While effective for enhancing sample quality or conditioning, these methods serve as complementary
post-hoc techniques alongside existing architectures, operating orthogonally to ForeDiff.

6 CONCLUSION

We proposed Foresight Diffusion (ForeDiff), a framework that improves sampling consistency in
predictive diffusion models by decoupling condition understanding from target denoising. Through
a hybrid architecture that separates predictive and generative processes, and a two-stage training
scheme that leverages pretrained deterministic predictors, ForeDiff overcomes key limitations of
vanilla diffusion models—particularly their suboptimal predictive ability and high sample variance.
Extensive experiments across real-world robot video prediction and scientific forecasting demonstrate
that ForeDiff achieves superior accuracy and significantly enhanced sampling consistency, marking a
step toward more reliable and controllable predictive diffusion models.



Under review as a conference paper at ICLR 2026

REFERENCES

Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
for physical ai. arXiv, 2025.

Donghoon Ahn, Jiwon Kang, Sanghyun Lee, Jaewon Min, Minjae Kim, Wooseok Jang, Hyoungwon
Cho, Sayak Paul, SeonHwa Kim, Eunju Cha, et al. A noise is worth diffusion guidance. arXiv
preprint arXiv:2412.03895, 2024.

Sumukh K Aithal, Pratyush Maini, Zachary Lipton, and J Zico Kolter. Understanding hallucinations
in diffusion models through mode interpolation. In NeurIPS, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
In ICLR, 2023.

Mohammad Babaeizadeh, Mohammad Taghi Saffar, Suraj Nair, Sergey Levine, Chelsea Finn, and
Dumitru Erhan. Fitvid: Overfitting in pixel-level video prediction. arXiv, 2021.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
CVPR, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. Rt-1: Robotics transformer for real-world control at scale. arXiv, 2022.

Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang,
Dahua Lin, Yu Qiao, and Ziwei Liu. Seine: Short-to-long video diffusion model for generative
transition and prediction. In /CLR, 2023.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning. In
CoRL, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In NeurIPS,
2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In /CLR, 2020.

Zhihan Gao, Xingjian Shi, Boran Han, Hao Wang, Xiaoyong Jin, Danielle Maddix, Yi Zhu, Mu Li,
and Yuyang Bernie Wang. Prediff: Precipitation nowcasting with latent diffusion models. In
NeurlPS, 2023.

Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martin-Martin, and Li Fei-Fei.
Maskvit: Masked visual pre-training for video prediction. In /CLR, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In NeurIPS, 2022.

10



Under review as a conference paper at ICLR 2026

Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of psnr in image/video quality
assessment. In Electronics letters, 2008.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NeurlIPS, 2022.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. In NeurIPS, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
In ICLR, 2021.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In ICML, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In ICLR, 2023.

Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
Mingsheng Long. Sundial: A family of highly capable time series foundation models. In ICLR,
2025.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In ECCV, 2024.

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

OpenAl. Sora: Video generation models as world simulators. |https://openai.com/
research/video—generation—-models—as—-world-simulators, 2024. Accessed:

2024-04-01.
William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In NeurIPS, 2022.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional Istm network: A machine learning approach for precipitation nowcasting. In
NeurlPS, 2015.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. In ICLR, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In /CLR, 2020.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv,
2018.

11


https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

Under review as a conference paper at ICLR 2026

Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V Le, and Honglak Lee.
High fidelity video prediction with large stochastic recurrent neural networks. In NeurIPS, 2019.

Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video diffusion
for prediction, generation, and interpolation. In NeurIPS, 2022.

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, S Yu Philip, and Mingsheng
Long. Predrnn: A recurrent neural network for spatiotemporal predictive learning. In TPAMI,
2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. In 77P, 2004.

Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei, and Chelsea Finn. Greedy hierarchical
variational autoencoders for large-scale video prediction. In CVPR, 2021.

Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye Hao, and Mingsheng Long.
ivideogpt: Interactive videogpts are scalable world models. In NeurlIPS, 2024.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vg-vae and transformers. In CVPR, 2021.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv, 2024.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In CVPR, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Hang Zhou, Yuezhou Ma, Haixu Wu, Haowen Wang, and Mingsheng Long. Unisolver: Pde-
conditional transformers are universal pde solvers. In ICML, 2025.

Zikai Zhou, Shitong Shao, Lichen Bai, Shufei Zhang, Zhigiang Xu, Bo Han, and Zeke Xie. Golden
noise for diffusion models: A learning framework. arXiv preprint arXiv:2411.09502, 2024.

12



Under review as a conference paper at ICLR 2026

A PROOF OF LEMMA

In this section we present the proof of Lemma|3.1

Proof. The proof is structured in three parts: (1) X reparameterization, (2) the e-agnostic property of
the optimal solution X4, and (3) the reduction to a deterministic prediction model f¢ in practice.

Starting from definition Xg(x¢,t,y) = x; — t - vg(Xy, t,y) with x;, = (1 — ¢)xg + te, it holds that

Lorea(0) = Exy et [0 (x2,1,y) = (=0 + €3]

= Exo,y,e,t

Xo(X¢,1,y) — X Xo — Xy ?
t t |,

L. 2
= Ex0,y,e,t th ||X9(Xt7t»y) - X02:| )

and by letting t = 1 we arrive
Lorea(Olt = 1) = Bxyiye [[%0(x1,1,5) = %0l13] = Expye [I%o(e,1,5) = 03]

Since € is independent to both network input y and target x, the involvement of € contributes no
information in case of ¢ = 1, which matches the fact that € is sampled randomly.

Further notice the bias-variance decomposition
N 2 5 2
Exyye | IRo(e, 1) = %ol] = Ey | |Eclo(e 1,3)] — By o]
+ Delfole 1.y)] + Dyl
By the convexity of the {5 loss, there exists €y (y) satisfying

|%o(€0(y), 1,y) — Exo\y[XO]HE < ||Ee([%o(e, 1,y)] — Ex0|y[XOH|§'

Therefore,

Lt (01t = 1) 2 By | [BelRo(e: 1.9)] = By bl + By bl

> Ey {Hﬁe(eo(Y)» Ly) - E"O'y[XO]Hz + Dx0|y[XO]]

—Euy U\mo(y),l,y) xOHz],

i.e., the loss of diffusion models at ¢ = 1 is bounded by that of a certain deterministic model
f(y) =%o¢(eo(y), 1,y) which minimizes the following objective:

Lacter = Bxyy [[11(¥) = 0ll3].

Finally we prove that the inequalities can become an equalities in practical network architectures,
which requires X¢(€1,1,y) = Xq(€2,1,y) for any €1, €2. Considering the first layer to process €
as We + b, it is sufficient to set the weight T to zero values, and further by setting b and 1 as new
network parameters, Xg(€1, 1,y) can be reduced into a deterministic model f¢, completing the proof.

O
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B IMPLEMENTATION DETAILS

We adopt the widely used latent diffusion paradigm, which operates in a compressed latent space
and relies on a pretrained autoencoder consisting of an encoder and a decoder. The autoencoder
downsamples the input by a factor of 4 x 4 and maps it to a latent representation with 3 channels.
All prediction and denoising operations are performed in this latent space. The autoencoder archi-
tecture follows the standard design of Stable Diffusion (Rombach et al., [2022)), and dataset-specific
architectural and training details are summarized in Table 5]

Table 5: Architecture and training details of the pretrained autoencoder for each dataset.

RoboNet RT-1 HeterNS
Parameters 55M
Resolution 64 x 64
Input channels 3 3 1
Latent channels 3
Down blocks 3
Down layers per block 2
Down channels [128, 256, 512]
Mid block attention True
Up blocks 3
Up layers per block 2
Up channels [512, 256, 128]
Normalization GroupNorm
Norm groups 32
Activation SiLU
Training steps 5x 108 3x10% 3x106
Discriminator start step 5x 104

Batch size 16

Learning rate 4x107°
LR schedule Constant
Optimizer AdamW

Our main model follows the DiT (Peebles & Xiel[2023)) and ViT (Dosovitskiy et al.;,|2020) architecture
families, using a unified design across all tasks. We adopt ViT-S and DiT-S configurations for the
predictive and generative streams, respectively. Patch embeddings are extracted using a minimal
PatchEmbed module that partitions inputs into non-overlapping 2 x 2 patches, followed by a linear
projection. Sinusoidal positional encodings are used, with embedding dimensions partitioned in a
3:3:2 ratio among the two spatial axes and the temporal axis. Detailed block settings are shown in
Table@ All models are trained using the AdamW optimizer with a constant learning rate of 1 x 10~4
and dataset-specific training steps (see Appendix [C).

Table 6: Architecture settings for ViT-S and DiT-S blocks used in ForeDiff.

ViT-S (predictive stream) DiT-S (generative stream)

Number of blocks 6 12
Hidden size 384 384

MLP ratio 4.0 4.0
Attention heads 6 6
Positional encoding ~ Sinusoidal Sinusoidal
Normalization LayerNorm AdalLN
Activation SiLU SiLU

To construct the conditioning input, we follow the masking-based strategy introduced in prior
work (Blattmann et al.,[2023). Specifically, a temporal binary mask m € {0, 1}°+% is defined over
the full sequence s~“1% to indicate which frames are observed (condition) and which are to be
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predicted (target), where O and .S denote the numbers of observed and future frames, respectively.
After encoding the full sequence into the latent space via z = F(s~O11:%) ¢ R(O+S)xCxHXW,
we apply the mask m along the temporal axis by computing Z.,nq = m - z, where the mask is
broadcast across spatial and channel dimensions. To make the temporal structure explicit, we further
concatenate the binary mask itself (channel-wise) to the masked latent z,,4, and feed the result into
the predictive stream.

When additional conditioning inputs such as actions or goals c are available (e.g., in RoboNet and
RT-1), we directly concatenate them with the masked latent z.,,q along the channel axis. This enables
the model to jointly reason over visual history and auxiliary task-specific signals.

Overall, this masking-based design supports a unified conditioning mechanism for both video-
only and video+action tasks. The masked latent input, along with any auxiliary information (e.g.,
actions), is processed by the predictive stream to produce intermediate features g, which serve as
conditioning signals for the generative stream.

To inject this condition information into the generative stream, we use a lightweight Fusion module
composed of an adaptive layer normalization (AdaLN) layer followed by a two-layer MLP with
GELU activation. The fusion operation is defined as:

h; = MLP(AdaLN([ho; gar). 1)), (8)

where h denotes the noisy target, g, is the output of the predictive stream (prior to the PredHead
module), and ¢ is the diffusion timestep. We first concatenate hy and g, apply AdaLLN conditioned
on t, and then pass the normalized features through the MLP to obtain the fused representation.

C EXPERIMENTAL SETUP

We evaluate ForeDiff on three benchmark datasets covering both real-world and simulated spa-
tiotemporal dynamics: RoboNet (Dasari et al.}2019), RT-1 (Brohan et al.| 2022)), and HeterNS (Li
et al.l 2021} [Zhou et al., [2025). This section provides additional details on dataset setups, task
configurations, and evaluation metrics. All experiments are conducted in a single NVIDIA-A100
40G GPU.

RoboNet. RoboNet is a large-scale real-world video dataset for vision-based robotic manipulation,
consisting of approximately 162,000 trajectories collected across seven different robot platforms
from four institutions. Each trajectory includes RGB video frames and associated action sequences,
all represented in a unified end-effector control space. The dataset captures a wide range of variations
in robot embodiment (e.g., Sawyer, Kuka, Franka), gripper design, camera viewpoints, surfaces, and
lighting conditions.

Following prior works (Babaeizadeh et al.,[2021; |Wu et al., [2024), we resize all frames to 64 x 64
and predict 10 future frames based on 2 observed frames and corresponding actions. All models
are trained on RoboNet for 1 x 106 steps with a batch size of 16. We report PSNR, SSIM, LPIPS,
and FVD as evaluation metrics. In addition, we compute standard deviation (STD) across multiple
samples to quantify sampling consistency.

RT-1. RT-1 is a large-scale real-world robotics dataset comprising over 130,000 episodes collected
from a fleet of 13 mobile manipulators performing diverse manipulation tasks in office kitchen
environments. Each episode includes an RGB video sequence, a natural language instruction, and
the executed robot actions. The dataset covers over 700 distinct tasks involving object interaction,
long-horizon manipulation, and routine execution.

We formulate the prediction task by conditioning on 2 observed frames and a task instruction, and
predicting the next 14 frames. All frames are resized to 64 x 64. Training on RT-1 is conducted for
5 x 10° steps with a batch size of 16, and the evaluation protocol matches that of RoboNet, using
PSNR, SSIM, LPIPS, FVD, and STD of these metrics across samples.

HeterNS. HeterNS is a synthetic dataset generated by numerically solving the two-dimensional
incompressible Navier—Stokes equations in vorticity formulation over a periodic domain. The
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governing system is defined as:
ow(zx,t) + u(z,t) - Vw(x,t) = vAw(x,t) + f(x), x € (0,1)%, t € (0,T], (9a)
V -u(z,t) =0, z€(0,1)2 tel0,T], (9b)
w(z,0) = wo(x), z € (0,1)2 (9¢)

where w is the vorticity field, u is the divergence-free velocity field recovered via the stream function
1 satisfying Ay = —w, v is the viscosity coefficient, and f(z) is a time-invariant external forcing
term.

To construct a diverse collection of PDE instances, we vary two key physical parameters: the viscosity
v and the structure of the forcing term f(z). Specifically, the training set is constructed from a
Cartesian grid of parameter configurations:

re{lx107°, 1x107% 1 x 1073}, f(z) € {5 distinct variants},
yielding a total of 3 X 5 = 15 unique PDE settings.

Among the forcing terms, three are defined as:
f(z) = 0.1 (sin(wy (1 + x2)) + cos(wam(z1 + x2))),
with frequency pairs (w1,ws) € {(2,2), (2,4), (4,4)}. The fourth variant is defined as:
f(z) = 0.1 (sin(2m(z1 — x2)) 4 cos(2m(x1 — z2))),

and the fifth as:
f(z) = 0.1 (sin(2m (2] + 23)) — cos(2m (2] + 23))) .

These five variants cover a range of spatial patterns, including directional, cross-diagonal, and radially
symmetric forcings.

For each of the 15 configurations, we simulate 1000 trajectories, resulting in a total of 15,000 samples.
Each trajectory consists of 20 vorticity fields at a spatial resolution of 64 x 64. The prediction task
involves forecasting the final 10 frames given the first 10 as context. Each model is trained for 5 x 10°
steps using a batch size of 16.

Evaluation metrics. We adopt a suite of evaluation metrics to assess model performance across
multiple dimensions, including visual quality, perceptual fidelity, predictive accuracy, and sampling
consistency. These include PSNR, SSIM, LPIPS, FVD, Relative L2, and STD, described as follows:

* Peak Signal-to-Noise Ratio (PSNR) (Huynh-Thu & Ghanbari, |2008)) quantifies the ratio be-
tween the maximum possible pixel intensity and the distortion introduced by reconstruction
errors. It is defined in logarithmic scale (dB) and commonly used to evaluate frame-wise
reconstruction quality. A higher PSNR value indicates less pixel-level distortion and better
fidelity to the original ground truth frame.

* Structural Similarity Index Measure (SSIM) (Wang et al.| 2004)) measures perceptual
similarity by comparing luminance, contrast, and structural information between images.
Unlike PSNR, SSIM better correlates with human visual perception. The SSIM score ranges
from -1 to 1, where 1 denotes perfect structural similarity. For better readability, we scale
SSIM scores by a factor of 100 in all reported results.

* Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., [2018)) evaluates
perceptual similarity using deep features extracted from a pretrained neural network (e.g.,
VGG or AlexNet). It computes the L2 distance between feature representations of two
images, capturing differences beyond pixel values. Lower LPIPS values indicate better
perceptual quality. Similar to SSIM, LPIPS scores are multiplied by 100 for display.

* Fréchet Video Distance (FVD) (Unterthiner et al.,[2018) extends the Fréchet Inception
Distance (FID) to video generation by considering temporal dynamics. It compares the
distributions of real and generated videos in a feature space extracted from a pretrained
video recognition model. FVD is sensitive to both spatial quality and temporal consistency,
making it a strong indicator of overall generative performance.
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* Relative L2 Distance (L1 et al., [2021)) captures normalized regression error in pixel or
field-level prediction tasks. It is computed as:

£ — 2|2
]l

where & and x denote the prediction and ground truth, respectively. A lower relative L2
value implies that the model produces more accurate outputs with respect to both magnitude
and structure. This metric is particularly suited for scientific forecasting tasks such as fluid
dynamics.

Relative L2 =

)

» Standard Deviation (STD) of metrics is used to evaluate sampling consistency across
multiple generations from the same condition. For each condition input (e.g., past frames
and action/instruction), we generate /N samples (typically N = 100), compute a chosen
metric M (e.g., PSNR, SSIM, LPIPS) for each sample, and calculate the standard deviation

of these scores. Let ./\/l(li), e ,Mg\i,) denote the metric values for the i-th condition, the
per-condition standard deviation is:

N N
) 1 . N2 o 1 )
STD® = | =S (MY — M), where MO = =5~ Mm%
NH ( ’ ) N

The final STD score is then averaged over all C' conditions:
1 &
STD = — ) STD®.

Lower STD indicates that the model produces more consistent outputs across stochastic
samples, reflecting stronger reliability under the same input condition.

D MORE EXPERIMENTAL RESULTS

This section provides the full numerical results corresponding to the analyses discussed in Section[4.3]
While the main paper focuses on reporting key trends and visualizations, the tables below include
complete metric values across datasets and variants, serving as a quantitative supplement.

In addition, we include the extended experiments covering: (i) the effect of architectural decoupling,
(ii) the sensitivity of ForeDiff to predictor quality, (iii) the necessity of the two-stage training scheme,
and (iv) calibration-oriented evaluation (CRPS, NLL, and coverage curves). These results further
support the conclusions drawn in the main text.

Effect of PredHead module. Table[7]reports the full numerical results for the PredHead ablation
across all datasets.

Table 7: Ablation results on the PredHead module. Across datasets, removing PredHead consis-
tently improves both perceptual and pixel-wise metrics. SSIM, LPIPS, L2, and Relative L2 are scaled
by 100.

Dataset ~ Method FVD| PSNR{ SSIMt LPIPS |
RoboNet ForeDiff 51.5 27.4 88.8 5.25
ForeDiff (with PredHead)  53.7 27.3 88.7 5.35
RT-1 ForeDiff 12.0 31.2 94.4 3.42
ForeDiff (with PredHead) 12.4 31.0 94.1 3.60
Dataset ~ Method L2 Relative L2 |
ForeDiff 0.19 0.18
HeterNS  poreDiff (with PredHead) 0.23 0.20

Effect of ViT block number. Table 8] presents detailed results of varying the number of predictive
(ViT) blocks, while keeping the number of generative (DiT) blocks fixed.
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Table 8: Effect of varying ViT block number (denoted by M) on performance, with DiT blocks fixed
to 12. Adding a moderate number of predictive blocks improves performance, while further increases
yield diminishing returns. SSIM and LPIPS are scaled by 100.

Dataset ~ Method FVD| PSNR{ SSIMt LPIPS |
M=0 (vanilla) ~ 53.8 27.1 88.2 5.65
M=3 533 27.1 88.3 5.51

RoboNet Ms=6 (default)  51.5 27.4 88.8 5.25
M=9 50.8 275 89.0 5.17
M=12 52.1 275 89.1 5.14
M=0 (vanilla)  11.7 30.4 93.6 3.79
M=3 11.8 31.0 94.2 3.49

RT-1 M=6 (default) 120 312 94.4 3.42
M=9 124 313 94.4 341
M=12 124 313 94.4 3.41

Effect of design beyond parameter scaling. Table[9]provides the complete quantitative results for
the ablation study on HeterNS dataset, used to isolate the effect of architectural design from mere
parameter scaling.

Table 9: ForeDiff clearly outperforms both deterministic-only and extended vanilla diffusion models,
confirming that its improvements stem from architectural design rather than model size alone. Metrics
are scaled by 100.

Method L2 ] Relative L2 |
Deterministic Prediction 1.06 0.97
Vanilla Diffusion 1.73 1.50
Vanilla Diffusion (extended) 1.29 1.14
ForeDiff-Zero 1.03 0.83
ForeDiff 0.19 0.18

Effect of architectural decoupling. We examine whether training-scheme decoupling alone,
without architectural separation, is sufficient to disentangle condition understanding from target
denoising. To this end, we first trained a diffusion model exclusively at timestep ¢ = 1, enabling it
to mimic the behavior of a deterministic predictor (see Lemma @, and then fine-tuned it across
all timesteps with uniform weighting. We refer to this variant as training-only decoupling, since
its architecture remains unchanged while the training procedure is modified through pretraining at
t = 1 followed by fine-tuning. Table [I0]reports the quantitative results on RoboNet. Such pretraining
improves sampling consistency but still falls short of ForeDiff in both consistency and overall quality,
most notably yielding worse FVD than vanilla diffusion. These findings align with our discussion in
Section3.2] showing that parameter sharing between condition understanding and target denoising
imposes an unavoidable dual-role constraint, thereby further validating the necessity of our joint
decoupling design.

Table 10: Effect of architectural decoupling. Results comparing (1) Vanilla Diffusion, (2) Vanilla Dif-
fusion with training-only decoupling (pretraining at t = 1 followed by fine-tuning across timesteps),
and (3) ForeDiff with both training- and architectural decoupling.

Method FVD J, PSNR T SSIM T LPIPS l/ STDPSNR J, STDSSIM \L STDLPIPS J,
Vanilla Diffusion 53.8 27.1 88.2 5.65 0.66 1.33 0.65
+ Pretraining att{ =1  58.2 27.3 88.5 5.53 0.51 0.98 0.48
ForeDiff 51.5 274 88.8 5.25 0.37 0.70 0.35

Sensitivity to predictor quality. To assess how sensitive ForeDiff is to the quality of the predictive
stream, we retrained the generative stream using predictive streams saved at 0.5M and 0.8M iterations
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(instead of the final 1.0M model). Table[IT]reports the quantitative results on RoboNet. Interestingly,
even 50% of the predictor’s training already provides clear improvements over vanilla diffusion, and
the 0.8M predictor performs even slightly better than our default 1.0M configuration. This suggests
two things:

* ForeDiff does not place strict requirements on predictor quality. Even a not-fully-converged
predictor produces sufficiently structured intermediate representations to yield substantial
gains.

* The default 1.0M predictor may be mildly overfitted; more careful tuning could unlock
additional gains. However, to minimize implementation complexity and ensure consistency
across datasets, we deliberately adopt a single, unified configuration without fine-grained
tuning.

Table 11: Sensitivity to predictor quality. ForeDiff’s two-stage design yields consistent improvements
and imposing no critical requirements on the predictive pretraining phase.

Method FVD l, PSNR T SSIM T LPIPS \l, STDpsnr \L STDssmm \l, STDypips \L
Vanilla Diffusion 53.8 27.1 88.2 5.65 0.66 1.33 0.65
ForeDiff-zero 52.7 27.2 88.4 5.54 0.68 1.36 0.66
ForeDiff (predictive stream at 0.5M) 51.5 27.2 88.6 5.35 0.48 0.91 0.45
ForeDiff (predictive stream at 0.8M) 509  27.3 88.8 5.26 0.39 0.74 0.37
ForeDiff (predictive stream at 1M) 51.5 27.4 88.8 5.25 0.37 0.70 0.35

Necessity of two-stage training. We believe that jointly training the full architecture with a com-
posite loss but not two-stage will reintroduces the entanglement problem that ForeDiff is designed to
resolve. When the predictive and generative objectives are optimized simultaneously, gradients from
the denoising loss interfere with the formation of stable foresight representations in the predictive
stream, while the continuously shifting predictor prevents the generative stream from reliably extract-
ing information from its intermediate representations. This coupling counteracts the core motivation
behind our two-stage scheme.

To validate this empirically, we implemented the joint training variant using Lioint = Ldenoise + AMdeters
and trained models on RoboNet with A = 0.1 and A = 1. The results in Table [I2l reveal a clear
pattern. With A = 0.1, joint training brings only mild gains, but both the overall fidelity and the
reduction of sample variance remain noticeably weaker than ForeDiff. Increasing the weight to A = 1
strengthens variance suppression but begins to harm generative quality, as reflected by the increased
FVD—showing that the predictive and generative gradients start to interfere with one another. In
contrast, the full ForeDiff design consistently achieves the strongest performance across all metrics,
indicating that only the two-stage architectural and training decoupling can simultaneously stabilize
predictive representations and support effective denoising.

Table 12: Necessity of two-stage training. While joint training can offer mild gains, it ultimately
converges to a compromised middle ground. The two-stage decoupled design of ForeDiff remains the
most effective and stable solution for leveraging deterministic foresight while preserving diffusion’s
generative strengths.

Method FVD l, PSNR T SSIM T LPIPS \l/ STDPSNR J, STDSSIM J/ STDLPIPS \l,
Vanilla Diffusion 53.8 27.1 88.2 5.65 0.66 1.33 0.65
ForeDiff-zero 52.7 27.2 88.4 5.54 0.68 1.36 0.66
+ joint training (A =0.1) 51.6 27.3 88.6 5.40 0.66 1.29 0.63
+ joint training (A = 1) 52.7 27.3 88.6 5.36 0.48 0.92 0.44
ForeDiff 51.5 27.4 88.8 5.25 0.37 0.70 0.35

Calibration-oriented evaluation. To further verify ForeDiff’s reduced variability corresponds to
better probabilistic modeling, rather than just collapsing to a single mode, we computed calibration-
oriented metrics including CRPS, NLL and coverage curves, as shown in Table [I3] and Figure [9]
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We observe that ForeDiff achieves lower CRPS and NLL, indicating that the samples become both
more consistent and better calibrated. In other words, ForeDiff’s reduced variance is not due to mode
collapse but to more accurate conditional alignment. For coverage, vanilla diffusion appears closer to
the ideal y = x line, but this largely arises from inflated uncertainty: when the conditional mean is
biased, a larger variance (directly reflected by larger STD) artificially improves coverage. In contrast,
ForeDiff yields narrower yet better-centered predictive distributions, leading to lower CRPS/NLL
and more faithful calibration.

Table 13: Calibration evaluation. ForeD- 'r— —— 1 T verine biteson
iff achieves improvement in both consis- ForeDiff ForeDiff
tency and sample/distribution similarity, | Hdeal i Hdeal
confirming that ForeDiff enhances pre-
dictive reliability without collapsing to a

single deterministic mode.
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RTL poreDiff 0.0128 -1.19

Figure 9: Coverage calibration curves.

E LIMITATIONS AND FUTURE WORK

While Foresight Diffusion demonstrates improvements in both predictive accuracy and sampling
consistency, several avenues remain open for further exploration and could inspire future work:

Lack of large-scale validation. We did not perform large-scale experiments involving substantially
larger models or training datasets. This choice is primarily due to the substantial computational cost
of scaling diffusion models, which often exceeds the capacity of academic research teams. Despite
this, our setup follows established practices in prior work, and we believe the proposed method
provides a fair and meaningful evaluation under moderate-scale settings. Importantly, our approach
introduces algorithmic innovations that are orthogonal to scaling laws: ForeDiff does not alter the
underlying generative paradigm, and thus its benefits should be complementary to improvements
from scaling. A systematic study of scaling remains a valuable direction for future work.

Focus on DiT-based architectures. Our experiments focus on DiT-based diffusion backbones,
which currently represent the state of the art in video modeling and offer a natural foundation
for validating new ideas. Nevertheless, ForeDiff is not tied to DiT-specific components; its de-
sign—decoupling condition understanding from denoising—should in principle extend to alternative
backbones such as CNN- or hybrid-based diffusion models. Exploring these directions may further
broaden the applicability of our approach.

Scope restricted to diffusion models. This study centers on predictive diffusion models, which
currently achieve state-of-the-art results on standard benchmarks. While alternative model families
(e.g., auto-regressive or energy-based models) have demonstrated strengths in specific aspects,
diffusion remains the most competitive framework in terms of overall predictive quality. Our work
enhances diffusion further by improving both accuracy and consistency, ensuring it does not lag
behind other approaches in robustness. We expect that the key insights of ForeDiff—particularly the
disentanglement of condition understanding and target denoising—may generalize beyond diffusion,
and extending similar architectural and training decoupling strategies to other generative paradigms
is an exciting avenue for future research.

Taken together, these limitations highlight promising directions for scaling, architectural diversity,
and model family generalization, which we hope will guide future advances in consistent predictive
modeling.
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