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ABSTRACT

Diffusion and flow-based models have enabled significant progress in generation
tasks across various modalities and have recently found applications in predictive
learning. However, unlike typical generation tasks that encourage sample diversity,
predictive learning entails different sources of stochasticity and requires sampling
consistency aligned with the ground-truth trajectory, which is a limitation we
empirically observe in diffusion models. We argue that a key bottleneck in learning
sampling-consistent predictive diffusion models lies in suboptimal predictive ability,
which we attribute to the entanglement of condition understanding and target
denoising within shared architectures and co-training schemes. To address this,
we propose Foresight Diffusion (ForeDiff), a framework for predictive diffusion
models that improves sampling consistency by decoupling condition understanding
from target denoising. ForeDiff incorporates a separate deterministic predictive
stream to process conditioning inputs independently of the denoising stream, and
further leverages a pretrained predictor to extract informative representations that
guide generation. Extensive experiments on robot video prediction and scientific
spatiotemporal forecasting show that ForeDiff improves both predictive accuracy
and sampling consistency over strong baselines, offering a promising direction for
predictive diffusion models.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2020) and flow-based models (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden,
2023) are a class of generative models that has achieved state-of-the-art across a wide range of tasks
and modalities, including image (Dhariwal & Nichol, 2021), video (Ho et al., 2022), and cross-modal
generation (Saharia et al., 2022; Singer et al., 2022; Rombach et al., 2022). Owing to their ability
to model complex and multimodal distributions, diffusion models have recently been adopted for
predictive learning (Voleti et al., 2022; Chen et al., 2023; Gao et al., 2023) within the conditional
generation framework, where they serve as spatiotemporal predictors to learn real-world dynamics
and generate future trajectories conditioned on past observations.
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Figure 1: Kernel density estimation: LPIPS
distributions of generated samples. Shaded
areas represent estimated probability densi-
ties; dashed lines indicate sample means. A
lower LPIPS corresponds to better quality.

Although both require high-fidelity stochastic outputs,
predictive learning fundamentally differs from gen-
erative tasks in the nature of stochasticity. In gener-
ative tasks (e.g., text-to-image synthesis), the target
distribution corresponding to a certain text prompt is
inherently diverse, and models are designed to pursue
diversity, allowing imperfect or widely varying sam-
ples. In contrast, predictive learning (e.g., robot video
prediction) aims to infer physically coherent futures
from partial observations, where stochasticity stems
mainly from incomplete or partial observational in-
formation. Thus, predictive models, though require
stochastic outcomes, prioritize per-sample accuracy
and therefore should ensure sampling consistency to a
certain extent, which refers to the ability to produce concentrated, low-variance samples under identi-
cal conditions such that all the generated samples could closely align with ground-truth trajectories.
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Diffusion models for video prediction

Vanilla Diffusion
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Actions:
Rotate 15 degrees, 
move down, and …

Foresight Diffusion for
Predictive learning

. . .

Generative tasks Deterministic tasksPredictive learning

Diffusion models for image generation
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Figure 2: Aligning model stochasticity with task demands. (Left) Generative tasks usually favor
diversity, making diffusion models ideal as they produce varied samples. (Middle) In contrast,
predictive learning requires a balance between generation and prediction, and vanilla diffusion
models demonstrate unsatisfactory sampling consistency. (Right) Foresight Diffusion achieves a
midpoint between highly stochastic generative models and fully deterministic models, making it
well-suited for predictive learning.

The specific demand of sampling consistency challenges the employment of diffusion models to
predictive learning, which are prone to issues such as hallucinations, weak conditioning, and sample
imperfection (Aithal et al., 2024; Dhariwal & Nichol, 2021). As illustrated in Figure 1, although
vanilla diffusion models outperform traditional auto-regressive models in terms of best-case as well
as average performance, they exhibit higher sample variance and heavier worst-case tails that are
undesirable for predictive learning. This highlights a fundamental mismatch between vanilla diffusion
models and the requirements of predictive learning, and consequently there remains a need for
sampling-consistent diffusion models that effectively balance stochasticity and determinism.

To address these challenges, we propose Foresight Diffusion (ForeDiff), a framework designed to
enhance the sampling consistency of predictive diffusion models by decoupling condition under-
standing from the denoising process. Diffusion models typically exhibit suboptimal predictive ability
compared to deterministic approaches, as condition understanding and target denoising are entangled
within shared architectures and co-training schemes, which impairs effective condition understanding
and may finally lead to diverse but unfaithful samples relative to the ground truth. Instead of directly
applying a conventional conditional diffusion model, ForeDiff introduces a separate deterministic
stream that processes condition inputs independently of the stochastic denoising stream. Further-
more, it leverages a pretrained deterministic predictor to extract informative representations, thereby
improving the model’s predictive ability. Experiments across multiple modalities demonstrate that
ForeDiff significantly improves both predictive performance and sampling consistency.

Our contributions are summarized as follows:

• We revisit diffusion models in the context of predictive learning, a task intrinsically different
from conventional content generation, and identify their sampling consistency issues.

• We attribute the consistency issues of diffusion models to the entanglement of condition
understanding and target denoising within shared architectures and co-training schemes.

• We propose Foresight Diffusion, a framework that improves sampling consistency by
decoupling condition understanding and incorporating a pretrained deterministic predictor.

• Extensive experiments and analyses on video prediction and spatiotemporal forecasting
demonstrate that ForeDiff achieves superior predictive accuracy and sampling consistency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Denoising-based generative models typically build on a forward process that progressively corrupts
clean data samples with increasing amounts of noise. By default, we consider the simplest linear
interpolation scheme (Lipman et al., 2023; Liu et al., 2023) which has been widely used due to its
analytical tractability and connections to optimal transport. The forward process is expressed as the
linear interpolation between a clean sample x0 ∼ q(x) and standard Gaussian noise ϵ ∼ N (0, I):

xt = (1− t)x0 + tϵ, t ∈ [0, 1] (1)

To recover the data distribution, we learn to reverse this process by training a neural network vθ(xt, t)
to approximate the time-dependent velocity field (or its reparameterizations). The training objective,
known as conditional flow matching, is formulated as:

Lvelocity(θ) := Ex0,ϵ,t

[
∥vθ(xt, t)− (ϵ− x0)∥2

]
. (2)

At inference time, samples are generated by integrating the learned velocity field backward in time:

xt−∆t = xt − vθ(xt, t)∆t, (3)

starting from a Gaussian noise sample x1 ∼ N (0, I) and progressing toward t = 0. This framework
naturally extends to conditional generation by introducing conditioning variables c into the model,
resulting in a conditional velocity field vθ(xt, t, c), where c guides the generative dynamics.

3 METHOD

3.1 DIFFUSION MODELS FOR PREDICTIVE LEARNING

Predictive learning is fundamentally a stochastic task. We formulate it as a conditional generation
problem, where s−O+1:0 denotes a sequence of past visual observations and c represents a potential
perturbation to the environment (e.g., actions or goals) (Agarwal et al., 2025). The objective of a
predictive model is to approximate the conditional distribution of future frames p(s1:S | s−O+1:0, c),
which is inherently unknown and must be learned from data.

To reduce computational cost, we adopt the widely used latent diffusion paradigm (Rombach et al.,
2022), which compresses the frames into a lower-dimensional latent space using a pretrained
autoencoder composed of an encoder E and a decoder D. The past and future frames are en-
coded as z−O+1:0 = E(s−O+1:0) and z1:S = E(s1:S), respectively. Denoting x = z1:S and
y = {z−O+1:0, c}, the learning objective becomes modeling the conditional distribution p(x|y). We
focus on predictive diffusion models, which—as described in Section 2—learn a conditional denoiser
vθ(xt,y, t) that takes as input both the condition y and a noisy version of the target xt.
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(b) LPIPS for consistency analysis.
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Figure 3: Comparison between predictive diffusion models and existing baselines on RoboNet dataset.
(a) Vanilla diffusion achieves competitive FVD with significantly fewer parameters, demonstrating
high model efficiency. (b) Vanilla diffusion performs well on best and average LPIPS, but suffers from
higher worst-case error, highlighting poor sampling consistency. (c) Vanilla diffusion underperforms
a deterministic predictor in absence of noisy targets, revealing its limited predictive ability.
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Predictive diffusion models are efficient, accurate, but not consistent. We evaluate the perfor-
mance of predictive diffusion models in comparison to existing baselines, including auto-regressive
and mask-based architectures (Wu et al., 2024; Gupta et al., 2023). We adopt a video-adapted DiT,
shown in Figure 4(a), as our vanilla diffusion model, and assess its performance using two standard
metrics: Fréchet Video Distance (FVD) for distributional similarity, and LPIPS for perceptual sample-
level quality (Unterthiner et al., 2018; Zhang et al., 2018). Figure 3a presents a scatter plot comparing
model size and FVD, while LPIPS scores under best-case, average, and worst-case conditions are
reported in Figure 3b. Our key findings are summarized below:

• Despite having a smaller model size and no pretraining, the vanilla diffusion model outper-
forms baseline models in FVD, best-case LPIPS, and average LPIPS, demonstrating strong
efficiency and accuracy for predictive learning.

• However, under worst-case LPIPS, the diffusion model underperforms iVideoGPT. Together
with the results in Figure 1, this suggests a lack of sampling consistency, i.e., insufficient
concentration of plausible outputs under the same condition.

These results reveal a critical limitation of predictive diffusion models: although exhibiting strong best-
case performance with compact architectures, they lack robust conditional control during generation,
leading to significant variability across samples. As a result, evaluating models only by best-case
performance—as commonly done in prior works (Voleti et al., 2022; Yu et al., 2023; Wu et al.,
2024)—can be misleading. Therefore, we report average metrics throughout the remainder of the
paper unless otherwise specified.

3.2 OBSERVATIONS

To further explore the sampling inconsistency behavior in predictive diffusion models, we investigate
their predictive ability, i.e., how well the model understands condition inputs (e.g., visual observations
and actions) and predicts future trajectories based on the task’s underlying dynamics. To assess
how much the model relies solely on y during denoising, we consider the special case at t = 1
(corresponding to t = T under notations in DDPM (Ho et al., 2020)), where x1 ∼ N (0, I) contains
no signal and thus contributes no useful information, which introduces the following lemma1:
Lemma 3.1. For a diffusion model as defined in Section 2, by reparameterizing the output as
x̂θ(xt, t,y) = xt − t ·vθ(xt, t,y) (Karras et al., 2022), an ideal diffusion model at t = 1 minimizes:

Lpred(θ|t = 1) = Ex0,y,ϵ

[
∥x̂θ(ϵ, 1,y)− x0∥22

]
, (4)

where the noise ϵ is independent of both x0 and y. Furthermore, a diffusion model minimizing Eq. (4)
reduces to a similar architectured deterministic predictor fξ minimizing the following objective:

Ldeter(ξ) = Ex0,y

[
∥fξ(y)− x0∥22

]
. (5)

This lemma conveys two insights. First, evaluating performance at t = 1 provides a reasonable
proxy for assessing the predictive ability of a diffusion model, as the model must rely entirely on
y while discarding the irrelevant input ϵ. Second, the predictive ability of a diffusion model is
inherently bounded and is possible to be equivalent to that of a deterministic model. To empirically
test whether the diffusion model can reach this upper bound, we train a ViT-based deterministic model
fξ, shown in Figure 4(b), with an architecture analogous to the diffusion model. We then compare
its performance to the diffusion model evaluated with a single-step inference at t = 1. The results,
shown in Figure 3c, reveal that the diffusion model underperforms its deterministic counterpart in
both latent and pixel space, verifying its limited predictive ability relative to its potential.

Discussion. Such observation indicates that the suboptimal predictive ability of diffusion models
stems from the entanglement between condition understanding and target denoising due to the nature
of diffusion models to train on various t. This entanglement constrains condition understanding by
factors of both architecture and training. From the architecture perspective, network parameters must
simultaneously learn both condition understanding of y and target denoising of xt, and this dual-role

1Proof is referred to Appendix A.
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Figure 4: Overview of Foresight Diffusion. (a) Vanilla diffusion jointly processes condition and
noisy target, limiting its predictive ability. (b) A Deterministic model focuses solely on condition
understanding and achieves better predictive performance. (c) ForeDiff-zero introduces a separate
predictive stream to isolate condition understanding from noise. (d) ForeDiff further adopts a two-
stage scheme: it pre-trains the predictive stream, then freezes its representations to guide generation.

constraint can limit the model’s ability to fully exploit the condition information. From the training
perspective, the presence of xt as an informative input introduces a shortcut, making it easier for the
model to rely on generative priors from xt rather than precise task-specific dynamics from y.

3.3 FORESIGHT DIFFUSION

Previous observations suggest that shared architectures and co-training schemes of condition y and
noisy target xt limit the predictive ability of diffusion models, due to the need to simultaneously
balance condition understanding and target denoising. To address these limitations, we introduce a
simple yet effective framework that enhances predictive ability through architectural decoupling and
improved training scheme.

Architecture. Building on architectures of vanilla diffusion models, we propose an architectural
extension that integrates decoupled deterministic blocks for processing the condition y independently
of xt. This design forms the Foresight Diffusion backbone (ForeDiff-zero), illustrated in Figure 4(c),
which separates the model into two distinct streams, the predictive stream and the generative stream,
aiming to focus on y and xt respectively. The predictive stream is composed of deterministic ViT
blocks, while the generative stream follows the standard DiT-based denoising process. Formally,
let M denote the number of ViT blocks and N the number of DiT blocks. The process can then be
formulated as:

g0 = PatchEmbed(y), gi = ViTi(gi−1), i = 1, . . . ,M,

h0 = PatchEmbed(xt), h1 = Fusion(h0,gM , t),

hi+1 = DiTi(hi, t), i = 1, . . . , N, v̂ = OutHead(hN+1).

(6)

When M = 0, ForeDiff-zero reduces to vanilla conditional diffusion, where the fusion operates
directly on the raw condition: h1 = Fusion(h0,PatchEmbed(y), t).

Unlike vanilla diffusion models, which ingest both y and xt at the initial point of a shared network,
ForeDiff-zero processes the condition solely within its predictive stream and passes the resulting
informative representation gM instead of y to the generative stream. Since the predictive stream is
entirely agnostic to xt, its parameters are fully dedicated to understanding y, thereby mitigating the
architectural entanglement that limits the predictive ability.

Training scheme. To further ensure that the ViT blocks in the predictive stream effectively acquire
predictive ability instead of learning static representation, in addition to the end-to-end training

5
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scheme of ForeDiff-zero, we further enhance Foresight Diffusion (ForeDiff) by adopting a two-stage
training scheme demonstrated in Figure 4(d). In the first stage, the predictive stream is trained as
a standalone deterministic predictor. Inspired by the strong predictive ability of the deterministic
model fξ discussed in Section 3.2, ForeDiff trains the predictive stream by adding a prediction head
PredHead to form the architecture of fξ, which is defined by fξ(y) = PredHead(gM ), and train it
using the prediction loss in Eq. (5). In the second stage, we freeze the pretrained predictive stream
and remove the PredHead module. The resulting internal representation gM , computed by the frozen
ViT blocks, is then used as the conditioning input to train the generative stream.

We treat the predictive and generative streams as two independent models, denoted by Pξ and Gθ,
respectively. Each stage is optimized with one of the following loss functions:

Ldeter = Ex0,y

[
∥Pξ(y)− x0∥22

]
,

Ldenoise = Ex0,y,ϵ,t

[∥∥Gθ(xt, P
′
ξ(y), t)− (ϵ− x0)

∥∥2
2

]
,

(7)

where P ′
ξ refers to the predictive stream excluding the PredHead module. This ensures that the

information guiding generation are derived from the learned predictive representations, rather than
the final outputs of the predictor. By combining architectural decoupling with dedicated predictive
pretraining, ForeDiff leverages a deterministic predictor as a preparatory module for conditional
generation. The design enables the model to “foresee” contextually rich representations, thereby
enhancing predictive ability and improving both generation accuracy and sampling consistency.

4 EXPERIMENTS

We evaluate Foresight Diffusion in comparison to conventional conditional diffusion baselines
across a range of tasks, covering both (action-conditioned) robot video prediction and scientific
spatiotemporal forecasting. We adopt the same model architecture across all tasks, with the only
difference being the condition information provided to the model. The model components follow the
standard configurations of ViT (Dosovitskiy et al., 2020) and DiT (Peebles & Xie, 2023) (or SiT (Ma
et al., 2024)) blocks. Unless otherwise specified, we use 6 ViT blocks in the predictive stream and 12
DiT blocks in the generative stream. Additional implementation details are provided in Appendix B.

4.1 ROBOT VIDEO PREDICTION

Setup. We begin by evaluating on RoboNet (Dasari et al., 2019) and RT-1 (Brohan et al., 2022), two
real-world video datasets widely used for assessing general video prediction performance. RoboNet
contains 162k videos collected from 7 robots operating in diverse environments. Following previous
works (Babaeizadeh et al., 2021; Wu et al., 2024), the task is to predict 10 future frames given 2
past frames together with actions. RT-1 consists of 87k videos from 13 robots performing hundreds
of real-world tasks. Here, the objective is to predict 14 future frames conditioned on 2 past frames
and the corresponding instructions. All video frames are resized to 64× 64 pixels for both datasets.
We evaluate model performance using widely adopted metrics including FVD (Unterthiner et al.,
2018), PSNR (Huynh-Thu & Ghanbari, 2008), SSIM (Wang et al., 2004), and LPIPS (Zhang et al.,
2018). In addition, we introduce STDPSNR, STDSSIM, and STDLPIPS, defined as the standard deviation
of metric values across multiple generated samples, to numerically represent sampling consistency,
where smaller values indicate more consistent predictions. See Appendix C for computation details.

Table 1: Robot video prediction results on RoboNet and RT-1 datasets. SSIM and LPIPS scores are
scaled by 100 for convenient display.

Dataset Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ STDPSNR ↓ STDSSIM ↓ STDLPIPS ↓

RoboNet
Vanilla Diffusion 53.8 27.1 88.2 5.65 0.66 1.33 0.65
ForeDiff-zero 52.7 27.2 88.4 5.54 0.68 1.36 0.66
ForeDiff 51.5 27.4 88.8 5.25 0.37 0.70 0.35

RT-1
Vanilla Diffusion 11.7 30.4 93.6 3.79 0.97 1.11 0.53
ForeDiff-zero 11.1 30.7 93.9 3.60 0.95 1.03 0.50
ForeDiff 12.0 31.2 94.4 3.42 0.38 0.33 0.17
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Figure 5: Visualization of results on RoboNet dataset (zoom in for details). In vanilla diffusion
models, the pink shovel (left) appears distorted, while the toy object (right) collapses entirely. In
contrast, ForeDiff produces more structurally plausible and visually coherent outputs.

s = −1 s = 0 s = 2 s = 4 s = 6 s = 8 s = 10 s = 12 s = 14 s = −1 s = 0 s = 2 s = 4 s = 6 s = 8 s = 10 s = 12 s = 14RT-1

Ground 
Truth

ForeDiff Predictions

(Observations)
Vanilla Diffusion Predictions 

Figure 6: Visualization of results on RT-1 dataset (zoom in for details). Compared with vanilla
diffusion, ForeDiff more accurately predicts the brightness of background and the position of robots.

Results. We present the experimental results in Table 1. ForeDiff outperforms vanilla diffusion in
each dataset, showing not only an improvement in accuracy (PSNR, LPIPS, etc.) but a significant
reduction in standard deviation (STD), which demonstrates its suitability for sampling-consistent
predictive learning. Moreover, there is no notable difference between ForeDiff-Zero and vanilla
diffusion in terms of STD, suggesting that the improved sampling consistency primarily stems from
the deterministic pretraining procedure. The qualitative comparisons in Figures 5 and 6 further
highlight the superior predictive ability of ForeDiff.

Table 2: Robot video prediction results with
CFG on RoboNet.

Model Metric w/o w/ CFG

Vanilla Diffusion LPIPS 5.65 5.27
ForeDiff LPIPS 5.25 5.05
Vanilla Diffusion STDLPIPS 0.65 0.49
ForeDiff STDLPIPS 0.35 0.24

Since post-training strategies such as classifier-free
guidance (CFG) (Ho & Salimans, 2022) can also im-
prove performance and consistency, we investigate their
relationship with our approach. Specifically, we evalu-
ate the effect of applying CFG during inference to both
vanilla diffusion and ForeDiff, shown in 2. Our obser-
vations are twofold: (1) the improvement brought by
CFG on vanilla diffusion remains limited compared to
using ForeDiff, and (2) ForeDiff operates orthogonally
to CFG and can be effectively combined with it.

Finally, we compare ForeDiff with prior methods using their evaluation settings, where metrics
are reported on the best of 100 samples (Top-1). As shown in Table 3, ForeDiff achieves competi-
tive performance even without accounting for its advantages in consistency, further confirming its
effectiveness in predictive learning.

4.2 SCIENTIFIC SPATIOTEMPORAL FORECASTING

Setup. We then evaluate our method on HeterNS (Li et al., 2021; Zhou et al., 2025), which is
generated from simulations of heterogeneous 2D Navier-Stokes equations. Each sequence in HeterNS
contains 20 frames with a resolution of 64×64, where each pixel represents the vorticity of turbulence
at the corresponding space. The task is to predict the latter 10 frames based on the first 10 frames. L2
and relative L2 are reported according to previous works (Li et al., 2021; Zhou et al., 2025).

Results. We present the experimental results in Table 4. ForeDiff achieves a much lower relative
L2 error compared to ForeDiff-Zero, and both significantly outperform vanilla diffusion. These
results suggest that incorporating deterministic blocks and pre-training them individually contribute
to improved performance, demonstrating the applicability of ForeDiff for physical scenarios. Figure 7
illustrates the qualitative advantage of ForeDiff through visual comparisons.

7
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Table 3: Addition results compared with baselines on
RoboNet dataset. Metrics are reported on the best of
100 samples. LPIPS and SSIM scores are scaled by 100
for convenient display.

Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MaskViT (2023) 133.5 23.2 80.5 4.2
SVG (2019) 123.2 23.9 87.8 6.0
GHVAE (2021) 95.2 24.7 89.1 3.6
FitVid (2021) 62.5 28.2 89.3 2.4
iVideoGPT (2024) 63.2 27.8 90.6 4.9
ForeDiff 51.5 28.2 90.4 4.5

Table 4: Scientific spatiotemporal forecast-
ing results on HeterNS dataset. Metrics
are scaled by 100 for convenient display.

Method L2 ↓ Relative L2 ↓
Vanilla Diffusion 1.73 1.50
ForeDiff-zero 1.03 0.83
ForeDiff 0.19 0.18

s = −2 s = 0 s = 2 s = 4 s = 6 s = 8 s = 10 s = −2 s = 0 s = 2 s = 4 s = 6 s = 8 s = 10HeterNS

Ground 
Truth

Vanilla Diffusion Predictions 

ForeDiff Predictions

(Observations)

Vanilla Diffusion Predictions 
Residual

ForeDiff Predictions
Residual

Figure 7: Visualization of results on HeterNS dataset. As the simulation progresses, predictions from
vanilla diffusion deviate increasingly, whereas ForeDiff maintains consistently accurate predictions.

4.3 ANALYSIS

For clarity, we report simplified results here, focusing on key trends. Complete numerical results
across datasets and variants are provided in Appendix D as a quantitative supplement.

Effect of PredHead module. We investigate whether ForeDiff benefits more from the predictive
ability of the ViT stream, represented by its learned internal features, or its explicit prediction outputs.
To this end, we conduct an ablation where the DiT stream is conditioned on PredHead outputs
instead of internal representations used in the standard ForeDiff. As shown in Figure 8a, conditioning
on PredHead outputs leads to reduced model performance, which supports our hypothesis that the
learned predictive representations, rather than the explicit prediction outputs, are more beneficial to
the generative process.

Effect of ViT block number. To assess the extent of predictive ability required to benefit the
generative process, we vary the number of ViT blocks M in the predictive stream from M = 0 (i.e.,
vanilla diffusion) to M = 12, while keeping the number of DiT blocks in the generative stream fixed.
As shown in Figure 8b, adding a moderate number of ViT blocks noticeably improves performance,
but further increasing M yields diminishing gains. This suggests that the predictive ability required to
assist a fixed generative backbone can be achieved with minimal overhead, and that even a lightweight
deterministic auxiliary module can provide meaningful improvements.

Effect of design beyond parameter scaling. We further validate that the performance gains of
ForeDiff are attributable to its architectural design rather than the simple scaling of parameters. To
isolate the effect of parameter scaling, we extend the vanilla diffusion model to 18 DiT blocks to match
the total number of layers used in ForeDiff, and compare its performance with both ForeDiff-Zero and
ForeDiff under identical ViT/DiT block configurations. We also evaluate the standalone deterministic
predictive stream used in ForeDiff. As shown in Figure 8c, ForeDiff outperforms both the extended
vanilla diffusion model and the deterministic stream by a substantial margin. These results indicate
that the combination of deterministic prediction and conditional diffusion contributes synergistically,
highlighting the effectiveness of the proposed hybrid architecture for predictive learning.
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Figure 8: Ablation studies. (a) Conditioning on PredHead outputs leads to degraded performance.
(b) Increasing #ViT block improves accuracy, but further blocks yield diminishing gains. (c) ForeDiff
outperforms both an extended vanilla diffusion and the standalone deterministic predictor.

5 RELATED WORK

Predictive Learning. Diffusion models have been widely adopted for predictive learning. Earlier
approaches have explored architectural design for incorporating signals within the conditional
generation framework, including concatenation- and modulation-based fusion (Voleti et al., 2022; Ho
et al., 2022; Blattmann et al., 2023) with U-Net backbones, scalable multi-modal transformer-based
architectures (OpenAI, 2024; Yang et al., 2024) and domain-specific architectures (Gao et al., 2023).
Beyond diffusion-based approaches, various frameworks have been proposed for predictive tasks,
including RNN-based (Shi et al., 2015; Villegas et al., 2019; Wang et al., 2022), auto-regressive (Yan
et al., 2021; Wu et al., 2024), and mask-based (Gupta et al., 2023; Yu et al., 2023) methods. As
concluded in Section 3.1, diffusion models serve as strong baselines but tend to exhibit greater sample
variability compared to these non-diffusion counterparts. This observation motivates our focus on
enhancing sampling consistency in predictive diffusion models.

Diffusion models as components. While many approaches employ diffusion models in an end-to-
end manner, recent studies have integrated them as components within broader architectures. For
example, Li et al. (2024) and Liu et al. (2025) incorporate diffusion losses for image mask reconstruc-
tion and auto-regressive time-series forecasting, respectively, thereby leveraging the generative ability
in a modular way. By comparison, Foresight Diffusion positions the diffusion model as the central
component, enhances its consistency within the generation framework while assigning deterministic
modules an auxiliary role tailored for condition understanding in prediction tasks.

Sampling methods. Beyond standard sampling strategies as Eq. (3), prior work has introduced
post-training techniques to address imperfections in diffusion model learning, including classi-
fier (Dhariwal & Nichol, 2021) or classifier-free (Ho & Salimans, 2022) guidance, initial noise
manipulation (Ahn et al., 2024; Zhou et al., 2024) and inference-time scaling (Ma et al., 2025).
While effective for enhancing sample quality or conditioning, these methods serve as complementary
post-hoc techniques alongside existing architectures, operating orthogonally to ForeDiff.

6 CONCLUSION

We proposed Foresight Diffusion (ForeDiff), a framework that improves sampling consistency in
predictive diffusion models by decoupling condition understanding from target denoising. Through
a hybrid architecture that separates predictive and generative processes, and a two-stage training
scheme that leverages pretrained deterministic predictors, ForeDiff overcomes key limitations of
vanilla diffusion models—particularly their suboptimal predictive ability and high sample variance.
Extensive experiments across real-world robot video prediction and scientific forecasting demonstrate
that ForeDiff achieves superior accuracy and significantly enhanced sampling consistency, marking a
step toward more reliable and controllable predictive diffusion models.
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A PROOF OF LEMMA

In this section we present the proof of Lemma 3.1.

Proof. The proof is structured in three parts: (1) x̂ reparameterization, (2) the ϵ-agnostic property of
the optimal solution x̂θ, and (3) the reduction to a deterministic prediction model fξ in practice.

Starting from definition x̂θ(xt, t,y) = xt − t · vθ(xt, t,y) with xt = (1− t)x0 + tϵ, it holds that

Lpred(θ) = Ex0,y,ϵ,t

[
∥v̂θ(xt, t,y)− (−x0 + ϵ)∥22

]
= Ex0,y,ϵ,t

[∥∥∥∥ x̂θ(xt, t,y)− xt

t
− x0 − xt

t

∥∥∥∥2
2

]

= Ex0,y,ϵ,t

[
1

t2
∥x̂θ(xt, t,y)− x0∥22

]
,

and by letting t = 1 we arrive

Lpred(θ|t = 1) = Ex0,y,ϵ

[
∥x̂θ(x1, 1,y)− x0∥22

]
= Ex0,y,ϵ

[
∥x̂θ(ϵ, 1,y)− x0∥22

]
.

Since ϵ is independent to both network input y and target x0, the involvement of ϵ contributes no
information in case of t = 1, which matches the fact that ϵ is sampled randomly.

Further notice the bias-variance decomposition

Ex0,y,ϵ

[
∥x̂θ(ϵ, 1,y)− x0∥22

]
= Ey

[∥∥∥Eϵ[x̂θ(ϵ, 1,y)]− Ex0|y[x0]
∥∥∥2
2

+ Dϵ[x̂θ(ϵ, 1,y)] + Dx0|y[x0]

]

By the convexity of the ℓ2 loss, there exists ϵ0(y) satisfying∥∥x̂θ(ϵ0(y), 1,y)− Ex0|y[x0]
∥∥2
2
≤

∥∥Eϵ([x̂θ(ϵ, 1,y)]− Ex0|y[x0]
∥∥2
2
.

Therefore,

Lpred(θ|t = 1) ≥ Ey

[∥∥∥Eϵ[x̂θ(ϵ, 1,y)]− Ex0|y[x0]
∥∥∥2
2
+ Dx0|y[x0]

]
≥ Ey

[∥∥∥x̂θ(ϵ0(y), 1,y)− Ex0|y[x0]
∥∥∥2
2
+ Dx0|y[x0]

]
= Ex0,y

[∥∥∥x̂θ(ϵ0(y), 1,y)− x0

∥∥∥2
2

]
,

i.e., the loss of diffusion models at t = 1 is bounded by that of a certain deterministic model
f(y) = x̂θ(ϵ0(y), 1,y) which minimizes the following objective:

Ldeter = Ex0,y

[
∥f(y)− x0∥22

]
.

Finally we prove that the inequalities can become an equalities in practical network architectures,
which requires x̂θ(ϵ1, 1,y) = x̂θ(ϵ2, 1,y) for any ϵ1, ϵ2. Considering the first layer to process ϵ
as Wϵ+ b, it is sufficient to set the weight W to zero values, and further by setting b and 1 as new
network parameters, x̂θ(ϵ1, 1,y) can be reduced into a deterministic model fξ , completing the proof.
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B IMPLEMENTATION DETAILS

We adopt the widely used latent diffusion paradigm, which operates in a compressed latent space
and relies on a pretrained autoencoder consisting of an encoder and a decoder. The autoencoder
downsamples the input by a factor of 4× 4 and maps it to a latent representation with 3 channels.
All prediction and denoising operations are performed in this latent space. The autoencoder archi-
tecture follows the standard design of Stable Diffusion (Rombach et al., 2022), and dataset-specific
architectural and training details are summarized in Table 5.

Table 5: Architecture and training details of the pretrained autoencoder for each dataset.

RoboNet RT-1 HeterNS

Parameters 55M
Resolution 64× 64
Input channels 3 3 1
Latent channels 3
Down blocks 3
Down layers per block 2
Down channels [128, 256, 512]
Mid block attention True
Up blocks 3
Up layers per block 2
Up channels [512, 256, 128]
Normalization GroupNorm
Norm groups 32
Activation SiLU

Training steps 5× 106 3× 106 3× 106

Discriminator start step 5× 104

Batch size 16
Learning rate 4× 10−5

LR schedule Constant
Optimizer AdamW

Our main model follows the DiT (Peebles & Xie, 2023) and ViT (Dosovitskiy et al., 2020) architecture
families, using a unified design across all tasks. We adopt ViT-S and DiT-S configurations for the
predictive and generative streams, respectively. Patch embeddings are extracted using a minimal
PatchEmbed module that partitions inputs into non-overlapping 2× 2 patches, followed by a linear
projection. Sinusoidal positional encodings are used, with embedding dimensions partitioned in a
3:3:2 ratio among the two spatial axes and the temporal axis. Detailed block settings are shown in
Table 6. All models are trained using the AdamW optimizer with a constant learning rate of 1× 10−4

and dataset-specific training steps (see Appendix C).

Table 6: Architecture settings for ViT-S and DiT-S blocks used in ForeDiff.

ViT-S (predictive stream) DiT-S (generative stream)

Number of blocks 6 12
Hidden size 384 384
MLP ratio 4.0 4.0
Attention heads 6 6
Positional encoding Sinusoidal Sinusoidal
Normalization LayerNorm AdaLN
Activation SiLU SiLU

To construct the conditioning input, we follow the masking-based strategy introduced in prior
work (Blattmann et al., 2023). Specifically, a temporal binary mask m ∈ {0, 1}O+S is defined over
the full sequence s−O+1:S to indicate which frames are observed (condition) and which are to be
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predicted (target), where O and S denote the numbers of observed and future frames, respectively.
After encoding the full sequence into the latent space via z = E(s−O+1:S) ∈ R(O+S)×C×H×W ,
we apply the mask m along the temporal axis by computing zcond = m · z, where the mask is
broadcast across spatial and channel dimensions. To make the temporal structure explicit, we further
concatenate the binary mask itself (channel-wise) to the masked latent zcond, and feed the result into
the predictive stream.

When additional conditioning inputs such as actions or goals c are available (e.g., in RoboNet and
RT-1), we directly concatenate them with the masked latent zcond along the channel axis. This enables
the model to jointly reason over visual history and auxiliary task-specific signals.

Overall, this masking-based design supports a unified conditioning mechanism for both video-
only and video+action tasks. The masked latent input, along with any auxiliary information (e.g.,
actions), is processed by the predictive stream to produce intermediate features gM , which serve as
conditioning signals for the generative stream.

To inject this condition information into the generative stream, we use a lightweight Fusion module
composed of an adaptive layer normalization (AdaLN) layer followed by a two-layer MLP with
GELU activation. The fusion operation is defined as:

h1 = MLP(AdaLN([h0;gM ], t)), (8)

where h0 denotes the noisy target, gM is the output of the predictive stream (prior to the PredHead
module), and t is the diffusion timestep. We first concatenate h0 and gM , apply AdaLN conditioned
on t, and then pass the normalized features through the MLP to obtain the fused representation.

C EXPERIMENTAL SETUP

We evaluate ForeDiff on three benchmark datasets covering both real-world and simulated spa-
tiotemporal dynamics: RoboNet (Dasari et al., 2019), RT-1 (Brohan et al., 2022), and HeterNS (Li
et al., 2021; Zhou et al., 2025). This section provides additional details on dataset setups, task
configurations, and evaluation metrics. All experiments are conducted in a single NVIDIA-A100
40G GPU.

RoboNet. RoboNet is a large-scale real-world video dataset for vision-based robotic manipulation,
consisting of approximately 162,000 trajectories collected across seven different robot platforms
from four institutions. Each trajectory includes RGB video frames and associated action sequences,
all represented in a unified end-effector control space. The dataset captures a wide range of variations
in robot embodiment (e.g., Sawyer, Kuka, Franka), gripper design, camera viewpoints, surfaces, and
lighting conditions.

Following prior works (Babaeizadeh et al., 2021; Wu et al., 2024), we resize all frames to 64× 64
and predict 10 future frames based on 2 observed frames and corresponding actions. All models
are trained on RoboNet for 1× 106 steps with a batch size of 16. We report PSNR, SSIM, LPIPS,
and FVD as evaluation metrics. In addition, we compute standard deviation (STD) across multiple
samples to quantify sampling consistency.

RT-1. RT-1 is a large-scale real-world robotics dataset comprising over 130,000 episodes collected
from a fleet of 13 mobile manipulators performing diverse manipulation tasks in office kitchen
environments. Each episode includes an RGB video sequence, a natural language instruction, and
the executed robot actions. The dataset covers over 700 distinct tasks involving object interaction,
long-horizon manipulation, and routine execution.

We formulate the prediction task by conditioning on 2 observed frames and a task instruction, and
predicting the next 14 frames. All frames are resized to 64× 64. Training on RT-1 is conducted for
5× 105 steps with a batch size of 16, and the evaluation protocol matches that of RoboNet, using
PSNR, SSIM, LPIPS, FVD, and STD of these metrics across samples.

HeterNS. HeterNS is a synthetic dataset generated by numerically solving the two-dimensional
incompressible Navier–Stokes equations in vorticity formulation over a periodic domain. The
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governing system is defined as:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ], (9a)

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ], (9b)

w(x, 0) = w0(x), x ∈ (0, 1)2, (9c)

where w is the vorticity field, u is the divergence-free velocity field recovered via the stream function
ψ satisfying ∆ψ = −w, ν is the viscosity coefficient, and f(x) is a time-invariant external forcing
term.

To construct a diverse collection of PDE instances, we vary two key physical parameters: the viscosity
ν and the structure of the forcing term f(x). Specifically, the training set is constructed from a
Cartesian grid of parameter configurations:

ν ∈ {1× 10−5, 1× 10−4, 1× 10−3}, f(x) ∈ {5 distinct variants},

yielding a total of 3× 5 = 15 unique PDE settings.

Among the forcing terms, three are defined as:

f(x) = 0.1 (sin(ω1π(x1 + x2)) + cos(ω2π(x1 + x2))) ,

with frequency pairs (ω1, ω2) ∈ {(2, 2), (2, 4), (4, 4)}. The fourth variant is defined as:

f(x) = 0.1 (sin(2π(x1 − x2)) + cos(2π(x1 − x2))) ,

and the fifth as:
f(x) = 0.1

(
sin(2π(x21 + x22))− cos(2π(x21 + x22))

)
.

These five variants cover a range of spatial patterns, including directional, cross-diagonal, and radially
symmetric forcings.

For each of the 15 configurations, we simulate 1000 trajectories, resulting in a total of 15,000 samples.
Each trajectory consists of 20 vorticity fields at a spatial resolution of 64× 64. The prediction task
involves forecasting the final 10 frames given the first 10 as context. Each model is trained for 5×105

steps using a batch size of 16.

Evaluation metrics. We adopt a suite of evaluation metrics to assess model performance across
multiple dimensions, including visual quality, perceptual fidelity, predictive accuracy, and sampling
consistency. These include PSNR, SSIM, LPIPS, FVD, Relative L2, and STD, described as follows:

• Peak Signal-to-Noise Ratio (PSNR) (Huynh-Thu & Ghanbari, 2008) quantifies the ratio be-
tween the maximum possible pixel intensity and the distortion introduced by reconstruction
errors. It is defined in logarithmic scale (dB) and commonly used to evaluate frame-wise
reconstruction quality. A higher PSNR value indicates less pixel-level distortion and better
fidelity to the original ground truth frame.

• Structural Similarity Index Measure (SSIM) (Wang et al., 2004) measures perceptual
similarity by comparing luminance, contrast, and structural information between images.
Unlike PSNR, SSIM better correlates with human visual perception. The SSIM score ranges
from -1 to 1, where 1 denotes perfect structural similarity. For better readability, we scale
SSIM scores by a factor of 100 in all reported results.

• Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) evaluates
perceptual similarity using deep features extracted from a pretrained neural network (e.g.,
VGG or AlexNet). It computes the L2 distance between feature representations of two
images, capturing differences beyond pixel values. Lower LPIPS values indicate better
perceptual quality. Similar to SSIM, LPIPS scores are multiplied by 100 for display.

• Fréchet Video Distance (FVD) (Unterthiner et al., 2018) extends the Fréchet Inception
Distance (FID) to video generation by considering temporal dynamics. It compares the
distributions of real and generated videos in a feature space extracted from a pretrained
video recognition model. FVD is sensitive to both spatial quality and temporal consistency,
making it a strong indicator of overall generative performance.
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• Relative L2 Distance (Li et al., 2021) captures normalized regression error in pixel or
field-level prediction tasks. It is computed as:

Relative L2 =
∥x̂− x∥2
∥x∥2

,

where x̂ and x denote the prediction and ground truth, respectively. A lower relative L2
value implies that the model produces more accurate outputs with respect to both magnitude
and structure. This metric is particularly suited for scientific forecasting tasks such as fluid
dynamics.

• Standard Deviation (STD) of metrics is used to evaluate sampling consistency across
multiple generations from the same condition. For each condition input (e.g., past frames
and action/instruction), we generate N samples (typically N = 100), compute a chosen
metric M (e.g., PSNR, SSIM, LPIPS) for each sample, and calculate the standard deviation
of these scores. Let M(i)

1 , . . . ,M(i)
N denote the metric values for the i-th condition, the

per-condition standard deviation is:

STD(i) =

√√√√ 1

N

N∑
j=1

(
M(i)

j − M̄(i)
)2

, where M̄(i) =
1

N

N∑
j=1

M(i)
j .

The final STD score is then averaged over all C conditions:

STD =
1

C

C∑
i=1

STD(i).

Lower STD indicates that the model produces more consistent outputs across stochastic
samples, reflecting stronger reliability under the same input condition.

D MORE EXPERIMENTAL RESULTS

This section provides the full numerical results corresponding to the analyses discussed in Section 4.3.
While the main paper focuses on reporting key trends and visualizations, the tables below include
complete metric values across datasets and variants, serving as a quantitative supplement.

In addition, we include the extended experiments covering: (i) the effect of architectural decoupling,
(ii) the sensitivity of ForeDiff to predictor quality, (iii) the necessity of the two-stage training scheme,
and (iv) calibration-oriented evaluation (CRPS, NLL, and coverage curves). These results further
support the conclusions drawn in the main text.

Effect of PredHead module. Table 7 reports the full numerical results for the PredHead ablation
across all datasets.

Table 7: Ablation results on the PredHead module. Across datasets, removing PredHead consis-
tently improves both perceptual and pixel-wise metrics. SSIM, LPIPS, L2, and Relative L2 are scaled
by 100.

Dataset Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

RoboNet ForeDiff 51.5 27.4 88.8 5.25
ForeDiff (with PredHead) 53.7 27.3 88.7 5.35

RT-1 ForeDiff 12.0 31.2 94.4 3.42
ForeDiff (with PredHead) 12.4 31.0 94.1 3.60

Dataset Method L2 ↓ Relative L2 ↓

HeterNS ForeDiff 0.19 0.18
ForeDiff (with PredHead) 0.23 0.20

Effect of ViT block number. Table 8 presents detailed results of varying the number of predictive
(ViT) blocks, while keeping the number of generative (DiT) blocks fixed.
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Table 8: Effect of varying ViT block number (denoted by M ) on performance, with DiT blocks fixed
to 12. Adding a moderate number of predictive blocks improves performance, while further increases
yield diminishing returns. SSIM and LPIPS are scaled by 100.

Dataset Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

RoboNet

M=0 (vanilla) 53.8 27.1 88.2 5.65
M=3 53.3 27.1 88.3 5.51
M=6 (default) 51.5 27.4 88.8 5.25
M=9 50.8 27.5 89.0 5.17
M=12 52.1 27.5 89.1 5.14

RT-1

M=0 (vanilla) 11.7 30.4 93.6 3.79
M=3 11.8 31.0 94.2 3.49
M=6 (default) 12.0 31.2 94.4 3.42
M=9 12.4 31.3 94.4 3.41
M=12 12.4 31.3 94.4 3.41

Effect of design beyond parameter scaling. Table 9 provides the complete quantitative results for
the ablation study on HeterNS dataset, used to isolate the effect of architectural design from mere
parameter scaling.

Table 9: ForeDiff clearly outperforms both deterministic-only and extended vanilla diffusion models,
confirming that its improvements stem from architectural design rather than model size alone. Metrics
are scaled by 100.

Method L2 ↓ Relative L2 ↓
Deterministic Prediction 1.06 0.97
Vanilla Diffusion 1.73 1.50
Vanilla Diffusion (extended) 1.29 1.14
ForeDiff-Zero 1.03 0.83
ForeDiff 0.19 0.18

Effect of architectural decoupling. We examine whether training-scheme decoupling alone,
without architectural separation, is sufficient to disentangle condition understanding from target
denoising. To this end, we first trained a diffusion model exclusively at timestep t = 1, enabling it
to mimic the behavior of a deterministic predictor (see Lemma 3.1), and then fine-tuned it across
all timesteps with uniform weighting. We refer to this variant as training-only decoupling, since
its architecture remains unchanged while the training procedure is modified through pretraining at
t = 1 followed by fine-tuning. Table 10 reports the quantitative results on RoboNet. Such pretraining
improves sampling consistency but still falls short of ForeDiff in both consistency and overall quality,
most notably yielding worse FVD than vanilla diffusion. These findings align with our discussion in
Section3.2, showing that parameter sharing between condition understanding and target denoising
imposes an unavoidable dual-role constraint, thereby further validating the necessity of our joint
decoupling design.

Table 10: Effect of architectural decoupling. Results comparing (1) Vanilla Diffusion, (2) Vanilla Dif-
fusion with training-only decoupling (pretraining at t = 1 followed by fine-tuning across timesteps),
and (3) ForeDiff with both training- and architectural decoupling.

Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ STDPSNR ↓ STDSSIM ↓ STDLPIPS ↓
Vanilla Diffusion 53.8 27.1 88.2 5.65 0.66 1.33 0.65
+ Pretraining at t = 1 58.2 27.3 88.5 5.53 0.51 0.98 0.48

ForeDiff 51.5 27.4 88.8 5.25 0.37 0.70 0.35

Sensitivity to predictor quality. To assess how sensitive ForeDiff is to the quality of the predictive
stream, we retrained the generative stream using predictive streams saved at 0.5M and 0.8M iterations
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(instead of the final 1.0M model). Table 11 reports the quantitative results on RoboNet. Interestingly,
even 50% of the predictor’s training already provides clear improvements over vanilla diffusion, and
the 0.8M predictor performs even slightly better than our default 1.0M configuration. This suggests
two things:

• ForeDiff does not place strict requirements on predictor quality. Even a not-fully-converged
predictor produces sufficiently structured intermediate representations to yield substantial
gains.

• The default 1.0M predictor may be mildly overfitted; more careful tuning could unlock
additional gains. However, to minimize implementation complexity and ensure consistency
across datasets, we deliberately adopt a single, unified configuration without fine-grained
tuning.

Table 11: Sensitivity to predictor quality. ForeDiff’s two-stage design yields consistent improvements
and imposing no critical requirements on the predictive pretraining phase.

Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ STDPSNR ↓ STDSSIM ↓ STDLPIPS ↓
Vanilla Diffusion 53.8 27.1 88.2 5.65 0.66 1.33 0.65
ForeDiff-zero 52.7 27.2 88.4 5.54 0.68 1.36 0.66
ForeDiff (predictive stream at 0.5M) 51.5 27.2 88.6 5.35 0.48 0.91 0.45
ForeDiff (predictive stream at 0.8M) 50.9 27.3 88.8 5.26 0.39 0.74 0.37
ForeDiff (predictive stream at 1M) 51.5 27.4 88.8 5.25 0.37 0.70 0.35

Necessity of two-stage training. We believe that jointly training the full architecture with a com-
posite loss but not two-stage will reintroduces the entanglement problem that ForeDiff is designed to
resolve. When the predictive and generative objectives are optimized simultaneously, gradients from
the denoising loss interfere with the formation of stable foresight representations in the predictive
stream, while the continuously shifting predictor prevents the generative stream from reliably extract-
ing information from its intermediate representations. This coupling counteracts the core motivation
behind our two-stage scheme.

To validate this empirically, we implemented the joint training variant using Ljoint = Ldenoise+λLdeter,
and trained models on RoboNet with λ = 0.1 and λ = 1. The results in Table 12 reveal a clear
pattern. With λ = 0.1, joint training brings only mild gains, but both the overall fidelity and the
reduction of sample variance remain noticeably weaker than ForeDiff. Increasing the weight to λ = 1
strengthens variance suppression but begins to harm generative quality, as reflected by the increased
FVD—showing that the predictive and generative gradients start to interfere with one another. In
contrast, the full ForeDiff design consistently achieves the strongest performance across all metrics,
indicating that only the two-stage architectural and training decoupling can simultaneously stabilize
predictive representations and support effective denoising.

Table 12: Necessity of two-stage training. While joint training can offer mild gains, it ultimately
converges to a compromised middle ground. The two-stage decoupled design of ForeDiff remains the
most effective and stable solution for leveraging deterministic foresight while preserving diffusion’s
generative strengths.

Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ STDPSNR ↓ STDSSIM ↓ STDLPIPS ↓
Vanilla Diffusion 53.8 27.1 88.2 5.65 0.66 1.33 0.65

ForeDiff-zero 52.7 27.2 88.4 5.54 0.68 1.36 0.66
+ joint training ( λ = 0.1 ) 51.6 27.3 88.6 5.40 0.66 1.29 0.63
+ joint training ( λ = 1 ) 52.7 27.3 88.6 5.36 0.48 0.92 0.44

ForeDiff 51.5 27.4 88.8 5.25 0.37 0.70 0.35

Calibration-oriented evaluation. To further verify ForeDiff’s reduced variability corresponds to
better probabilistic modeling, rather than just collapsing to a single mode, we computed calibration-
oriented metrics including CRPS, NLL and coverage curves, as shown in Table 13 and Figure 9.
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We observe that ForeDiff achieves lower CRPS and NLL, indicating that the samples become both
more consistent and better calibrated. In other words, ForeDiff’s reduced variance is not due to mode
collapse but to more accurate conditional alignment. For coverage, vanilla diffusion appears closer to
the ideal y = x line, but this largely arises from inflated uncertainty: when the conditional mean is
biased, a larger variance (directly reflected by larger STD) artificially improves coverage. In contrast,
ForeDiff yields narrower yet better-centered predictive distributions, leading to lower CRPS/NLL
and more faithful calibration.

Table 13: Calibration evaluation. ForeD-
iff achieves improvement in both consis-
tency and sample/distribution similarity,
confirming that ForeDiff enhances pre-
dictive reliability without collapsing to a
single deterministic mode.

Dataset Method CRPS ↓ NLL ↓

RoboNet Vanilla Diffusion 0.0175 2.58
ForeDiff 0.0173 2.30

RT-1 Vanilla Diffusion 0.0157 -0.96
ForeDiff 0.0128 -1.19
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Figure 9: Coverage calibration curves.

E LIMITATIONS AND FUTURE WORK

While Foresight Diffusion demonstrates improvements in both predictive accuracy and sampling
consistency, several avenues remain open for further exploration and could inspire future work:

Lack of large-scale validation. We did not perform large-scale experiments involving substantially
larger models or training datasets. This choice is primarily due to the substantial computational cost
of scaling diffusion models, which often exceeds the capacity of academic research teams. Despite
this, our setup follows established practices in prior work, and we believe the proposed method
provides a fair and meaningful evaluation under moderate-scale settings. Importantly, our approach
introduces algorithmic innovations that are orthogonal to scaling laws: ForeDiff does not alter the
underlying generative paradigm, and thus its benefits should be complementary to improvements
from scaling. A systematic study of scaling remains a valuable direction for future work.

Focus on DiT-based architectures. Our experiments focus on DiT-based diffusion backbones,
which currently represent the state of the art in video modeling and offer a natural foundation
for validating new ideas. Nevertheless, ForeDiff is not tied to DiT-specific components; its de-
sign—decoupling condition understanding from denoising—should in principle extend to alternative
backbones such as CNN- or hybrid-based diffusion models. Exploring these directions may further
broaden the applicability of our approach.

Scope restricted to diffusion models. This study centers on predictive diffusion models, which
currently achieve state-of-the-art results on standard benchmarks. While alternative model families
(e.g., auto-regressive or energy-based models) have demonstrated strengths in specific aspects,
diffusion remains the most competitive framework in terms of overall predictive quality. Our work
enhances diffusion further by improving both accuracy and consistency, ensuring it does not lag
behind other approaches in robustness. We expect that the key insights of ForeDiff—particularly the
disentanglement of condition understanding and target denoising—may generalize beyond diffusion,
and extending similar architectural and training decoupling strategies to other generative paradigms
is an exciting avenue for future research.

Taken together, these limitations highlight promising directions for scaling, architectural diversity,
and model family generalization, which we hope will guide future advances in consistent predictive
modeling.
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