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Abstract

Deep graph generative modeling has proven capa-
ble of learning the distribution of complex, multi-
scale structures characterizing real-world graphs.
However, one of the main limitations of existing
methods is their large output space, which limits
generation scalability and hinders accurate mod-
eling of the underlying distribution. To overcome
these limitations, we propose a novel approach
that significantly reduces the output space of exist-
ing graph generative models. Specifically, starting
from the observation that many real-world graphs
have low graph bandwidth, we restrict graph band-
width during training and generation. Our strategy
improves both generation scalability and quality
without increasing architectural complexity or re-
ducing expressiveness. Our approach is compati-
ble with existing graph generative methods, and
we describe its application to both autoregressive
and one-shot models. We extensively validate our
strategy on synthetic and real datasets, including
molecular graphs. Our experiments show that, in
addition to improving generation efficiency, our
approach consistently improves generation quality
and reconstruction accuracy. The implementation
is made available'.

1. Introduction

Learning the underlying distribution of graphs for genera-
tive purposes finds important applications in diverse fields,
where objects can be naturally described through their struc-
tures (Hamilton et al., 2017). Computational approaches
to capture graph statistical properties have long been es-
tablished (Albert & Barabdsi, 2002), whereas deep genera-
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tive modeling has recently been proven capable of learning
both global and fine-grained structural properties, along
with their complex interdependencies (Guo & Zhao, 2023).
These results suggest many promising applications for deep
graph generative modeling, which include the biomedical
and pharmaceutical domains, where essential objects such
as molecules, gene networks, and cell-level tissue organiza-
tion can be represented as graphs (Li et al., 2022). Despite
these promises, several open challenges remain.

Applications in these domains require modeling graphs with
a high number of nodes N that leads to a large output space,
where the number of possible edges is in O(N?). At the
same time, many real-world graphs are sparse, and they
are characterized by a small number of semantically rich
connections which need to be accurately modeled (e.g., a
small subset of chemical bonds can confer radically different
properties in a molecular graph).

Recent research has focused on accurately learning complex
dependencies leveraging generative models such as varia-
tional autoencoders (VAEs) (Grover et al., 2019), recurrent
neural networks (RNNs) (You et al., 2018), normalizing-
flow models (Shi et al., 2020) and score-based models (Niu
et al., 2020). A general limitation of these approaches is
their high time complexity and output space O(N?). This
limits both their scalability and makes accurate prediction
of sparse connections challenging, as the ratio of observed
to possible edges can be extremely small.

For this reason, more tractable methods have been proposed,
which leverage different architectures (Li et al., 2018; Liu
etal., 2018; Dai et al., 2020), generate coarse-grained motifs
(Jin et al., 2018; Liao et al., 2019), or change the output
representation, such as transforming graphs to sequences
(Goyal et al., 2020) or using domain-specific encodings such
as molecular SMILES (G6émez-Bombarelli et al., 2018).
Although these approaches are more scalable, they trade-off
efficiency with model complexity, expressiveness, or have
limited applicability because of domain-specific choices.

To overcome the limitations of existing approaches, we
propose a novel strategy: BwR (Bandwidth-Restricted)
graph generation. BWR leverages a permutation of the ad-
jacency matrix to restrict the graph bandwidth, reducing
both the time complexity and the output space from O(N?)
to O(N - ¢), where ¢ is the estimated bandwidth. As will
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be shown, ¢ is low for many classes of real-world graphs,
such as those characterizing the biomedical domain. During
training, BWR leverages bandwidth-restricted adjacency ma-
trices; during sampling, it constrains the generation within
a bandwidth-restricted space, which reduces both time com-
plexity and output space without losing expressiveness.

This strategy brings two key advantages. First, reducing
time complexity improves generation scalability (i.e., time
and memory requirements). Second, reducing the output
space simplifies learning the underlying data distribution,
while also making the ratio of observed to possible edges
less imbalanced, with a positive impact on generation qual-
ity. Importantly, BWR can be easily integrated into virtually
all existing graph generative methods, as it is orthogonal
to the generative model architecture. Therefore, it does not
increase model complexity nor add domain-specific con-
straints. We describe our strategy in the context of three re-
cent models: an autoregressive model based on GraphRNN
(You et al., 2018), a one-shot VAE-based model based on
Graphite (Grover et al., 2019), and a one-shot score-based
model based on EDP-GNN (Niu et al., 2020).

We experimentally validate BwR by evaluating the recon-
struction accuracy and generation quality on both syn-
thetic and real datasets. Additionally, we analyze memory
and time improvements. We include molecular datasets—
spanning both small molecules and larger peptides—to eval-
uate the advantages of BWR for de novo molecular gen-
eration. Our results show that BWR consistently achieves
superior or competitive generative performance to the stan-
dard baselines, at a fraction of the time/space complexity.

Contributions. We summarize our main contributions as
follows:

* We show that many real-world classes of graphs, such
as molecules, have low graph bandwidth.

e Building on this property, we propose BwR
(Bandwidth-Restricted) graph generation, a novel strat-
egy for graph generation that constrains the bandwidth,
drastically reducing time complexity and output space.

* BwR can be applied to virtually all existing graph gen-
eration methods. We describe its application to an
autoregressive method, GraphRNN (You et al., 2018);
a one-shot VAE-based method, Graphite (Grover et al.,
2019); and a one-shot score-based method, EDP-GNN
(Niu et al., 2020).

* We validate BWR on both synthetic and real-world
datasets, with a focus on real-world molecular datasets.
Our results show that, in addition to being more effi-
cient in terms of time and memory used, BwR consis-
tently improves reconstruction accuracy and generative
quality across datasets and methods.

2. Related Work
2.1. Graph Generative Models

Graph generative models seek to learn the underlying dis-
tribution of graph datasets. A model is trained on a set
of observed graphs G = {G1,...,Gs} ~ p(G), where
each graph G; = (V;,&;) is defined by its set of nodes
V; = (v1,...,vn) and edges & C V; x V;. The model
learns the distribution pmeder (G) = p (G) that allows sam-
pling new graphs. Broadly, graph generative models can be
categorized as autoregressive (You et al., 2018; Shi et al.,
2020; Goyal et al., 2020; Li et al., 2018; Liu et al., 2018)
or one-shot (Kipf & Welling, 2016; Ma et al., 2018; Grover
et al., 2019; Niu et al., 2020) models. A common way
to represent the graph topology is through its adjacency
matrix A™ € N x N. The adjacency matrix depends
on a specific node ordering 7, defined as a bijective func-
tion7 : V — [1, N].

Autoregressive models treat graph generation as a sequen-
tial decision process, factorizing pmodel (G) into the joint
probability of its components (e.g., nodes or motifs). Node-
based autoregressive methods (You et al., 2018; Shi et al.,
2020) generate each node and its edges in a predefined or-
der, conditioning each new node on the already-generated
graph, with time complexity and output space in O(N?).
Solutions have been proposed to separately output actions
corresponding to the number of new edges and their identi-
ties for each new node, reducing time complexity (Li et al.,
2018; Liu et al., 2018). However, these methods increase
model complexity without reducing the output space. In
contrast, BWR reduces both the time complexity and out-
put space of existing node-based autoregressive models to
be in O(N - ¢). This reduction is achieved without losing
expressiveness and without increasing model complexity.

One-shot models sample the whole topology of the graph
from a latent distribution. Many one-shot models use
permutation-invariant functions to output the graph topology.
This class of generative models can be split into two main
categories: adjacency-matrix-based models (Ma et al., 2018;
Niu et al., 2020) directly output A™, while node-embedding-
based models (Kipf & Welling, 2016; Grover et al., 2019)
sample node embeddings from the latent distribution and
compute A™ based on pairwise relationships between them.
In both cases, these methods have time complexity and out-
put space in O(NN?), as they need to consider edges between
every pair of nodes. In contrast, BwR allows reducing both
the time complexity and output space to be in O(N - @),
with no loss of expressiveness.

Last, we notice how our approach is orthogonal and com-
patible with other methods proposed to increase GNN
efficiency—such as graph partitioning (Jia et al., 2020)—as
it is largely independent of the generative method. For the
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Figure 1. Overview of our strategy and comparison with standard generation methods. (Top) In a standard graph generative method,
the model is trained on adjacency matrices A derived through a specific canonical ordering on the graph (e.g., BFS or DFS). During
sampling, the model needs to predict edges from a space in O (N 2). (Bottom) Our bandwidth-restricted graph generation leverages the
Cuthill-Mckee (C-M) ordering (Cuthill & McKee, 1969) to reduce the bandwidth ¢(A) of each adjacency matrix. The C-M order results
in an adjacency matrix that is a band matrix, with all-zero entries outside a ¢(A)-sized band. A is re-parameterized as A™ € N X ¢(A),
which is used for training. During sampling, only edges in an N X ¢(A) space (yellow) are considered as candidates, thus drastically

reducing the output space to O (N x p(A)).

present work, we focus on node-based generation, but our
approach can be extended to coarser motif-based generation
(Liao et al., 2019).

2.2. Graph Ordering

A unique challenge of graph generative models is that the
set of all possible orderings leads to up to N! different
adjacency matrices for the same graph (Liao et al., 2019).
Given that our method imposes a specific node ordering, it
is related to other works that have investigated ordering in
graph generation.

Ordering is crucial in autoregressive models. For any par-
ticular ordering 7, if the index distance |7 (v;) — 7 (v;)]| be-
tween two connected nodes (v;, v;) € £ is high, the model
is required to handle long-term dependencies. This issue
can be addressed by choosing a specific canonical ordering.
For example, GraphRNN (You et al., 2018) is trained us-
ing random breadth-first-search (BFS) node orderings for
each graph, such that new nodes can only be connected to
existing nodes at the frontier of the BFS. GraphRNN and
its comparison with our bandwidth-restricted version are
further discussed in Section 4.2.

It has been shown that the choice of node ordering impacts
graph generation for specific applications. For example, in
the context of autoregressive molecular generation, BFS had

clear advantages over depth-first-search (DFS), even though
the latter is more often used to define a canonical order for
molecular structures (Mercado et al., 2021).

A more fundamental issue raised by non-unique graph rep-
resentations is that choosing a specific ordering 7 does not
rigorously correspond to maximum-likelihood estimation
(MLE), thus preventing exact likelihood evaluation (Liao
etal., 2019; Chen et al., 2021). Additionally, it can make the
reconstruction loss ambiguous. As discussed by Liao et al.
(2019), training on random orderings in a specific canonical
family (e.g., BFS) optimizes a variational lower bound of
the true log-likelihood tighter than any single arbitrary or-
dering. For autoregressive models, a tighter lower bound is
derived by Chen et al. (2021) by performing approximate
posterior inference over the node ordering. For one-shot
models, Winter et al. (2021) addresses reconstruction am-
biguity by training a permuter model to reorder generated
graphs alongside a standard encoder/decoder architecture.
We notice how these works are orthogonal with respect
to our contribution. Indeed, bandwidth-optimized graphs
define a canonical family of node orderings, and existing
methods could be used to improve likelihood estimation.
This integration will be investigated in future work.
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Figure 2. Bandwidth of two adjacency matrices of the same molec-
ular graph. The left adjacency matrix is given by a BFS ordering,
the right adjacency matrix is given by a Cuthill-McKee ordering.

3. Graph Bandwidth Background

We start providing a definition of bandwidth through the
graph bandwidth problem (Unger, 1998). Intuitively, the
graph bandwidth problem can be seen as placing the nodes
of a graph on a line such that the “length” of the longest
edge in the graph is minimized. The bandwidth of the graph
is then simply the length of the longest edge.

Given a graph G = (V,€) on N vertices, each ordering
7V — [1,N] defines a graph linearization. We define
the distance between nodes v; and v; in the ordering 7
as dist, (v;,v;) = |7 (v;) — 7 (v;)|. The bandwidth of the
ordering 7 is defined as the maximum stretch of any edge on
the linearization, i.e. ¢ (7) = max(y, v,)ee distr (v, ;).
The bandwidth of a graph G is the minimum bandwidth
across all possible orderings, i.e.:

p(G)= min (). )

m:V—[1,N]

Importantly, an ordering that minimizes ¢ results in an ad-
jacency matrix where all non-zero entries lie in a narrow
band along the diagonal (hence the term “bandwidth”). This
enables a compact matrix representation of N x ¢ instead
of N2 (Figure 1) and drastically reduces the space required
to represent the graph when ¢ < N. The maximum size of
the off-diagonal band of the adjacency matrix is known as
the matrix’s bandwidth, which we denote as ¢(A). Figure 2
shows the bandwidth of two adjacency matrices of a molec-
ular graph. We note that for an ordering 7, p(7m) = @(A™).

The graph bandwidth problem has been shown to be
NP-hard for general graphs (Papadimitriou, 1976), and also
for simpler classes of graphs such as trees and even caterpil-
lar trees (Monien, 1986). Exact polynomial solutions exist

for very restricted classes of graphs, and approximate super-
polynomial solutions have been proposed for general graphs
(Feige, 2000; Cygan & Pilipczuk, 2010). However, in prac-
tice, efficient heuristic approaches work well for general
graphs and are routinely leveraged in applications.

One such heuristic is the Cuthill-McKee (C-M) algorithm
(1969), which is based on a variation of BFS search, has
linear time complexity O(|€]) (Chan & George, 1980), and
has been extensively studied from a theoretical perspec-
tive (Turner, 1986). Extensions of this algorithm and other
heuristics have been proposed that improve efficiency and/or
theoretical guarantees, though results are dataset depen-
dent (Gonzaga de Oliveira et al., 2018). For the present
work, we leverage the C-M algorithm initialized to start at
a pseudo peripheral node (Gibbs et al., 1976). However,
our proposed strategy is independent of the choice of the
bandwidth-minimization algorithm, and other approaches—
potentially even learned—will be explored in future work.
Interestingly, as discussed in Section 2, BFS has been shown
to be superior to DFS for autoregressive molecular genera-
tion. Given that C-M can be seen as a special case of BFS,
using C-M allows us to retain the benefits of BFS, while
also further reducing max,, ,,,)ee distr (vi, v;). We define
the bandwidth of the adjacency matrix derived with the C-M
algorithm as ¢.

A key observation that motivates the present work is that
many real-world graphs, such as those characterizing the
biomedical domain, have low ¢. Table 1 shows the em-
pirical bandwidth computed with the C-M algorithm for
a diverse set of chemical and biological datasets (see Ap-
pendix C for more details on the datasets). For each dataset,
a savings factor summarizes the space reduction. The sav-
ings factor is calculated as the ratio of the number of edges in
the bandwidth-restricted graph to the number of edges in the
complete graph (i.e. the size of a non-bandwidth-restricted
adjacency matrix). As shown, a bandwidth reparameteriza-
tion leads to a savings factor > 3 for most small-molecule
datasets (e.g., 3.8 £ 1.0 for ZINC250k). The savings factor
is even higher for datasets including larger molecules (e.g.,
13.5£6.5 for the Peptides-func dataset). Significant savings
are also confirmed on non-molecular datasets, such as brain
networks (KKI, OHSU). The high savings factor of molec-
ular datasets is due to the existence of an intrinsic upper
bound on the bandwidth of molecule-like graphs, which we
derive and further discuss in Appendix E.

The C-M algorithm consistently reduces ¢(7) compared
to the orderings routinely used in graph generation (BFS,
DFS, etc.). Figure 2 compares the adjacency matrices of a
molecular graph given by BFS and C-M, and their respective
bandwidths. The bandwidth decreases from 8 to 3, which
translates into a two-fold reduction of the output space.
Additional examples of adjacency matrices for molecular
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Table 1. Number of nodes, C-M bandwidth, and savings factor of
a set of chemical and biological datasets. The first section of the
table consists of small molecules, the second section consists of
large molecules, and the third section consists of brain networks.
See Appendix C for more details on the datasets. Average and
standard deviation calculated across graphs for each dataset.

. Savings

Dataset N %) Factor
ZINC250k 23.24+4.5 3.3+0.8 39+£1.0
AIDS 14.0+ 104 3.1+1.1 24+1.0
Alchemy 10.1 £ 0.7 2.8+£0.7 21+£04
MCF-7 26.1 +10.7 41+1.3 3.5+£1.2
MOLT-4 25.8 +10.3 40+1.3 3.5+1.2
Mutagenicity 28.5+14.1 5.5+£2.2 29+1.1
NCI1 29.3+ 134 43+15 3.7+£1.3
NCI-H23 25.8 +10.3 40+1.3 3.5+1.2
OVCAR-8 25.8+10.3 40+1.3 3.5£1.2
PC-3 26.1 +10.6 41+14 3.5+£1.2
QM9 18.0£2.9 53+1.5 20+£04
SF-295 25.8+10.3 40+1.3 3.5£1.2
SN12C 25.8+10.3 40+1.3 3.5+1.2
Tox21 16.8 +£10.1 3.0+1.2 3.0£1.3
UACC257 25.8+10.3 40+1.3 3.5+£1.2
Yeast 21.1+8.8 3.6+1.2 3.3+1.1
Peptides-func ~ 150.9 + 84.5 5.7+2.6 13.5+£6.5
DD 277.7+£2173 36.0+207 41+£14
ENZYMES 31.7+13.3 5.4+2.2 3.3+£1.2
KKI 27.0+19.5 72+5.1 2.2+0.6
OHSU 82.0 =43.7 20.0+13.2 24+£0.7

graphs given by BFS, DFS, RDKit (Landrum, 2006), and
C-M orderings are presented in Figure 4 (Appendix). As
shown, the C-M ordering consistently leads to the lowest ¢.
Overall, the C-M algorithm allows reducing the bandwidths
of all the considered datasets. For example, 95% of the
molecules in ZINC250k have ¢ < 4 (Figure 5, Appendix).

To the best of our knowledge, the concept of graph band-
width has been used in the context of GNNs only by Balog
et al. (2019), with the explicit purpose of improving dense
implementations on custom hardware. Their work does not
leverage the bandwidth in the model itself and does not
target graph generation.

4. Bandwidth-Restricted Graph Generation

In this section we describe BWR, our novel approach for
improving graph generation. As BwR can be combined with
different existing generative methods, we first describe its
general strategy and principles in Section 4.1. Then, we de-
tail the strategies for bandwidth-restricted graph generation
applied to an autoregressive model based on GraphRNN
(You et al., 2018) in Section 4.2, and two distinct one-shot
models based on Graphite (Grover et al., 2019) and EDP-
GNN (Niu et al., 2020) in Section 4.3.

4.1. Restricting Graph Bandwidth

Starting from the observation that many real-world graphs
have low bandwidth (Section 3), we propose to reduce the
output space of a graph generative model from N x N
to N x $%. As the goal of graph generation is to learn a
distribution of the data p (G), we assume that, given Gga
the maximum empirical bandwidth on the training set Gy,
we can reduce the output space of the generative model
to N X (daa Without losing expressiveness (i.e., without
losing the ability to generate in-distribution graphs). In
general, we achieve this reduction through two comple-
mentary mechanisms: (1) imposing a bandwidth-reducing
ordering and (2) restricting the output space to a dataset-
specific bandwidth 4., or a graph-specific bandwidth ¢
(Figure 1, bottom).

During training, for each graph we use the precomputed ad-
jacency matrix A™ with the ordering 7* computed through
the previously introduced C-M algorithm. We remark that,
given the linear time complexity of the C-M algorithm, our
preprocessing does not introduce any additional overhead
compared to using standard orderings such as BFS/DFS. No-
tably, just restricting training examples to a specific canoni-
cal ordering does not guarantee that such an ordering will
be respected during generation (Chen et al., 2021), and does
not provide any advantage in time complexity or output
space reduction, since the complete adjacency matrix needs
to be generated. Therefore, we also re-parameterize the
adjacency matrix as Ag;l; € N X Qgaa (or N x ¢ for each
graph), dropping the zeros outside the bandwidth. During
sampling, only edges belonging to the reduced matrix are
considered as candidates, thus constraining the output space
and reducing the time complexity, without losing expres-
siveness.

Below, we discuss the details of our strategy applied to
different models and highlight model-specific choices and
advantages.

4.2. Autoregressive Graph Generation

Autoregressive graph generation approaches recursively gen-
erate the edges of a single node (You et al., 2018) or a group
of nodes, (Liao et al., 2019) conditioned on the previously
generated subgraph. This can be viewed as generating the
adjacency matrix row-by-row or block-by-block. We will
focus on GraphRNN (You et al., 2018), although a similar
approach could be applied to virtually any autoregressive
graph generative model.

In GraphRNN, the probability of node v; being connected
to node v;, with w(v;) < m(v;), is parameterized by an

Technically, as the adjacency matrix is symmetric, only a
triangular matrix is generated both in the standard formulation and
in our bandwidth-restricted re-parameterization.



Bandwidth-Restricted Graph Generation

output function fy applied to the hidden state of an RNN
over the previous rows of the adjacency matrix:

pl(vi,vj) € €] = fo(RNNy(AT,;_1));,

where 6 and ¢ are parameters learned to maximize the
likelihood of the data. In particular, we focus on the
GraphRNN-S variant (additional model details are provided
in Appendix B.3).

We note that a d-unit fy can generate graphs with at most
bandwidth d. Potentially, we could set d to be the maximum
number of nodes N of any graph we want to generate, which
would ensure maximum expressiveness. Instead, we set d
equal to the maximum bandwidth of any A™ we would
want to generate, greatly increasing efficiency and reducing
training signal sparsity for low bandwidth graphs. We find
the order 7 for each graph G by using the C-M algorithm
and set d = Pgy, as the maximum bandwidth across all the
AT in the training data. Compared to generating N rows of
length d = N, we generate O(N/Pqan )-times fewer edges
(corresponding to the savings factor, Table 1).

In the original GraphRNN model, You et al. (2018)
used a random BFS ordering during training, and set
d = Mgaa < N, with My, defined as the maximum num-
ber of nodes in the BFS queue at any time in the training
data. Mgy, is estimated empirically by sampling 100,000
BFS orderings per dataset and setting Mgy, to be roughly
the 99.9 percentile of the empirical distribution of maxi-
mum queue sizes. Critically, we observe that M., derived
in You et al. (2018) approximates the maximum bandwidth
across all possible BFS orderings. In contrast, Qg,, is de-
rived by explicitly reducing the bandwidth. Notably, our
approach allows significantly shrinking d, thus directly re-
ducing the output space and the time complexity. For ex-
ample, on the DD dataset (Dobson & Doig, 2003) of 918
protein graphs, the authors set d = My,, = 230, whereas
we derive d = Qgun = 122, a nearly two-fold reduction.

4.3. One-shot Graph Generation

One-shot graph generative models sample the entire graph
topology simultaneously. Typically the topology is repre-
sented by putting edge probabilities on each pair of nodes,
resulting in a complete graph with a probability placed on
each edge by the generative model (Simonovsky & Ko-
modakis, 2018; Grover et al., 2019; Kipf & Welling, 2016).
We will call this graph the edge-probability graph. Our key
insight is that the complete edge probability graph can be
replaced with a bandwidth-restricted edge-probability graph
(Figure 1, bottom).

One-shot models can be divided into two main categories:
(1) Node-embedding-based models sample node embed-
dings from the latent distribution and compute the edge-
probability graph based on pairwise relationships, and

(2) Adjacency-matrix-based models directly output the edge-
probability graph. We focus on both categories, considering
a model based on Graphite (Grover et al., 2019) and a model
based on EDP-GNN (Niu et al., 2020).

Node-embedding-based one-shot generation. Graphite
(Grover et al., 2019) is a VAE-based approach with one
latent vector z; € R? per node with standard Gaussian
prior. The encoder network uses graph convolution layers
(Kipf & Welling, 2017) on the input adjacency matrix A €
RM>N and node features X € RYV** to derive the mean
and standard deviation of the variational marginals:

p, 0 = GNN4(4, X), )

where p, 0 € RV*?. We will focus on the case without
additional node features, so X can be a positional encod-
ing dependent on the node ordering. The decoder network
outputs edge probabilities:

pl(vi,v;) € E] = GNNy(A, X, Z), ;, 3)

where A is fully-connected and Z are samples from
N (u, o). Further architectural details are described in Ap-
pendix B.4. In our bandwidth-restricted version of Graphite,
we constrain the bandwidth of A. For a graph G, we get the
bandwidth ¢ (A™) for 7 found using the C-M algorithm and
build a new edge set:

E={(i,5) | 1< i —j| < p(A™)}, (4)

where 1 < ¢,7 < N. With the new edge set, the decoder
message passing steps are reduced from complexity O(N?)
to O(N - ¢). During generation, the standard Graphite
model samples the number of nodes from the empirical
distribution of the training data. In our bandwidth-restricted
version, both the number of nodes and the bandwidth @,
are sampled from the empirical distribution of the training
data, thus further reducing the output space.

Adjacency-matrix-based one-shot generation. EDP-GNN
(Niu et al., 2020) is a score-based model in which a GNN is
trained to match the score function of the data distribution.
Intuitively, EDP-GNN learns to denoise the upper-right tri-
angle of the adjacency matrix. Our modification denoises
the bandwidth-restricted upper-right triangle, thus reducing
the modeled output space (Figure 6, Appendix). In EDP-
GNN, a multi-layer perceptron (MLP) predicts the final
edge features from intermediate edge features A built by
message passing layers and edge-update layers:

Sg(A)iyj = MLP(A”) (5)

To constrain the bandwidth, we restrict (i, ) € € (Eq. 4)
in the final MLP and in all of the message passing and
edge-update layers using the same approach described for
Graphite. This drastically reduces the time complexity and
output space. Further details are included in Appendix B.5.
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5. Experiments

We experimentally validate our method on both synthetic
and real graphs, comparing bandwidth-constrained architec-
tures and non-constrained baselines.

5.1. Metrics

We measure two goals of the models: closeness of the sam-
ple distribution to the true distribution of graphs, and recon-
struction quality.

To measure the quality of the sample distribution, we use
two metrics. First, consistently with the recent literature,
we use the Maximum Mean Discrepancy (MMD) between
sampled and test graph statistics (You et al., 2018). The
graph statistics we compare are degree, clustering coeffi-
cient, node orbit counts following You et al. (2018), and
spectrum following Liao et al. (2019). To track overall sam-
ple quality, we compute the mean MMD? across all four
MMD metrics®. Additionally, as recommended by recent
work on evaluation metrics for graph generative modeling
(Thompson et al., 2022), we use a precision—recall metric
(Kynkéddnniemi et al., 2019) which accounts for both sam-
ple quality and variety. We report the harmonic mean of
precision and recall as F1-PR.

Reconstruction quality is measured by comparing the recon-
structed graph and the original test graph using the Area Un-
der the Precision—Recall Curve (AUPRC). For GraphRNN,
we compare the reconstructed row and the original row;
for Graphite, we compare the reconstructed graph and the
original graph*. We chose to use AUPRC because it does
not depend on true negatives and because it is well suited to
class imbalance (Davis & Goadrich, 2006). Additionally, we
report the estimated log-likelihood for test graphs. Although
log-likelihood has known limitations for evaluating (graph)
generative models (Thompson et al., 2022), it is well suited
(in combination with the other metrics) to demonstrating
the benefits of BWR ’s reduced output space.

5.2. Experimental Setup

We compare our bandwidth-restricted versions (+BwR) of
the models based on GraphRNN (You et al., 2018), Graphite
(Grover et al., 2019), and EDP-GNN (Niu et al., 2020) to
their standard baselines (i.e. without BWR). Our models are
described in Section 4 and additional details are provided in
Appendix B. Each model architecture is individually hyper-
optimized (details in Appendix B.2). All the experiments
are repeated five times and significance is determined by
Welch’s t-test (models are considered comparable when

3We note that previous works usually report MMD? but they
indicate MMD in the results.

*Reconstruction quality is less easily definable for score-based
models. Therefore, we omit AUPRC in EDP-GNN evaluation.

p-value > 0.05).

5.3. Generic Graph Generation

Datasets. We evaluated our models on six standard graph
generation datasets, including both synthetic and real-world
graphs: (1) Community2, 1500 two-community graphs gen-
erated using an Erdos—Renyi model with 60—160 nodes; (2)
Planar, 1500 random planar graphs with 64 nodes made
using Delaunay triangulation; (3) Grid2d, 66 distinct two-
dimensional grids with side lengths between 10 and 20; (4)
DD, 918 protein graphs with amino acids as nodes (Dobson
& Doig, 2003); (5) Enzymes, 556 protein graphs of enzyme
tertiary structures from the BRENDA database (Schomburg
et al., 2004); and (6) Proteins, 904 protein graphs from
the Protein Data Bank (Dobson & Doig, 2003). Additional
details on the datasets are provided in Appendix C.2.

Results. Table 2 summarizes the results for generic graph
generation. As shown, our approach consistently achieves
superior or competitive performance across datasets and
methods as measured by mean MMD, FI-PR and/or
AUPRC. GraphRNN+BwR and Graphite+BwR outperform
their standard counterparts in five out of six datasets, with
comparable performance (i.e., not statistically significant or
mixed) on the sixth. BWR improves EDP-GNN generation
quality in four out of six datasets, with comparable perfor-
mance on the others. Notably, the dataset with the largest
graphs, DD (mean 277.7 nodes per graph), could not be
trained using standard EDP-GNN due to out-of-memory is-
sues. In contrast, we are able to train our EDP-GNN+BwR,
thus highlighting its lower memory complexity. We observe
a statistically significant improvement in AUPRC given by
BwR in almost all the experiments, thus showing how our
approach improves the accuracy of the reconstructed graphs
even when bulk statistical distributions are comparable. Still,
BwR results in an improvement in the quality of the sam-
ple distribution (MMD and/or F1-PR) in the majority of
the experiments, with comparable performance in the oth-
ers. We observe a significant improvement in log-likelihood
compared to standard models across all the experiments.

We show examples of reconstructed adjacency matrices in
Figure 3. In the PROTEINS example (left), the standard
model must predict edges in a much larger and imbalanced
output space. In the Grid2d example (right), the standard
model predicts edges far outside the bandwidth, which is
inherently impossible with BwWR. Overall, results show that
BwR consistently improves or matches generation quality
at a fraction of the time/memory cost.

5.4. Molecular Generation

Datasets. We evaluate our models on real-world molecular
datasets to show the benefits of BWR for de novo molecular
generation. We consider two datasets:
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Table 2. Graph generation results on generic datasets. Bold indicates best results compared to the other model of the same type and
dataset. Significance was determined by Welch’s t-test with five replicates per model. Models are considered comparable when p > 0.05.
MMD? denotes average MMD? across four metrics (degree, cluster, orbit, spectra). Due to space limitations, we provide all the individual
metrics in Table 5 (Appendix). OOM denotes out-of-memory issues. Hyphen (-) denotes not applicable metric/model.

COMMUNITY?2 PLANAR GRID2D
I MMD?  +FI-PR T 1+ AUPRC | MMD? +FI-PR T 1 AUPRC | MMD? 1 FI-PR T 1 AUPRC
GraphRNN Standard 0.028 0.648 -1990 0.376 0.265 0.029 -400.0 0.545 0.323 0.250 -540.0 0.642
P BwR [ours] 0.024 0.729 -1940 0.421 0.233 0.139 -309.0 0.652 0.240 0.909 -36.4 0.999
Graphite Standard 0.055 0.507 -3560 0.706 0.361 0.010 -595.0 0.975 0.649 0.051 -2320 0.453
P BwR [ours] 0.047 0.423 -3450 0.747 0.468 0.023 -554.0 0.990 0.528 0.666 -358.0 0.915
EDP-GNN Standard 0.030 0.621 -211000 - 0.459 0.172 -57800 - 0.645 0.548 -622000 -
BwR [ours] 0.040 0.581 -168000 - 0.474 0.450 -36400 - 0.590 0.528 -97900 -
DD ENZYMES PROTEINS
I MMD? 4 FI-PR T 1 AUPRC | MMD? 1FI-PR T 4+ AUPRC | MMD? 1 FI-PR R4 1 AUPRC
GraphRNN Standard 0.174 0.426 -1460 0.299 0.023 0.948 -199.0 0.445 0.017 0.971 -173.0 0.533
P BwR [ours] 0.234 0.579 -1400 0.318 0.016 0.963 -177.0 0.602 0.020 0.964 -117.0 0.716
Graphite Standard 0.368 0.003 -4360 0.804 0.107 0.459 -204.0 0.925 0.153 0.523 -220.0 0.950
P BwR [ours] 0.273 0.008 -3430 0.840 0.038 0.916 -164.0 0.950 0.037 0.889 -166.0 0.933
EDP-GNN Standard OOM OOM OOM OOM 0.092 0.726 -18000 - 0.077 0.782 -23400 -
BWwR [ours] 0.299 0.106 -269000 - 0.027 0.914 -7320 - 0.024 0.944 -7590 -

Table 3. Graph generation results on molecular datasets. Bold indicates best results compared to the other model of the same type and
dataset. Significance was determined by Welch’s t-test with five replicates per model. Models are considered comparable when p > 0.05.
MMD? denotes average MMD? across four metrics (degree, cluster, orbit, spectra). Due to space limitations, we provide all the individual
metrics in Table 5 (Appendix). Hyphen (-) denotes not applicable metric/model.

ZINC250K PEPTIDES-FUNC
IMMD? 4+FI-PR 14 1AUPRC |MMD? +FI-PR T 1T AUPRC

GraphRNN Standard 0.038 0.803 -38.9 0.668 0.031 0.477 -168.0 0.809
P BwR [ours] 0.029 0.900 -31.0 0.783 0.033 0.526 -112.0 0.903
Graphite Standard 0.153 0.178 -57.0 0.999 0.182 0.031 -742.0 0.987
P BwR [ours] 0.084 0.511 -39.4 0.995 0.120 0.186 -362.0 0.993

Standard 0.106 0.172 -7510 - 0.115 0.041 -634000 -

EDP-GNN BwR [ours] 0.143 0.750 -3180 - 0.143 0.109 -32200 -

(1) ZINC250k (Irwin et al., 2012) includes 249,455 drug-like
small molecules extracted from the ZINC database, averag-
ing 23.14 heavy atoms (nodes) each.

(2) Peptides-func (Dwivedi et al., 2022) is a recently pub-
lished dataset of peptide structures that includes 15,535
molecules, averaging 150.94 heavy atoms (nodes) each.
Compared to common small-molecule benchmarks, this
dataset includes significantly larger molecular graphs and
functional motifs (amino acids). Therefore, it allows us to
test the advantages of a reduced time complexity and output
space given by our bandwidth-constrained generation.
Additional datasets detailes are provided in Appendix C.3.

Results. Table 3 shows the results on molecular graph gen-
eration. BwR achieves superior or competitive performance
on both datasets across all methods. GraphRNN+BwR sig-
nificantly improves reconstruction accuracy with a compa-
rable generation quality with respect to the standard base-

line. Graphite+BwR leads to a significantly better gen-
eration quality with comparable or better reconstruction
accuracy with respect to the standard baseline. Finally,
EDP-GNN+BwR, achieves significantly improved gener-
ation quality on ZINC250k, and comparable results on
Peptides-func. We observe a significant improvement in
log-likelihood compared to standard models across all the
experiments. We remark that, even when generation qual-
ity is comparable, our approach still significantly reduces
time/memory complexity.

5.5. Memory and Time Efficiency

We evaluate whether the lower time complexity and out-
put space reduction actually translate into reduced time and
memory footprint. For this analysis, we consider all the
datasets and models previously introduced, for a total of 24
experiments. We measure the following metrics: (1) Mem-
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Ground truth Predicted (AUPRC = 0.74) Ground truth Predicted (AUPRC = 0.82)

Ground truth Predicted (AUPRC = 0.17) Ground truth Predicted (AUPRC = 0.89)
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Figure 3. Comparison of Graphite reconstructions with and without BwR on samples from PROTEINS (left) and Grid2D (right).

Table 4. Computational cost results. Bold indicates best results compared to the other model of the same type and dataset. Significance
was determined by Welch’s t-test with five replicates per model. Models are considered comparable when p > 0.05. OOM denotes

out-of-memory issues.

COMMUNITY?2 PEPTIDES-FUNC GRID2D DD

J sample (s) | mem. (GB) | sample(s) | mem.(GB) | sample(s) | mem.(GB) |sample(s) | mem.(GB)
GraphRNN Standard 0.673 0.059 7.690 0.082 0.490 0.115 1.470 0.142
ap BwR [ours] 0.538 0.061 7.680 0.080 0.520 0.112 1.500 0.149
Graphite Standard 1.460 0.805 3.520 1.740 6.400 3.270 10.90 5.870
P BWR [ours] 1.050 0.553 0.268 0.170 0.842 0.447 2.380 1.510
EDP-GNN Standard 12.50 1.600 69.80 6.280 50.80 6.730 OOM OOM
BWwR [ours] 8.410 1.080 4.880 0.547 6.550 0.837 19.90 2.620

ory usage, as the maximum GPU utilization during a train-
ing batch; (2) Training time, as the average wall time to train
on one batch; (3) Sample time, as the average wall time to
sample 256 graphs from the generative model.

Table 4 shows memory usage and sample time for four
datasets. The remaining results are included in Table 6 (Ap-
pendix). As shown, BwR significantly reduces memory us-
age across all datasets and all methods besides GraphRNN?,
up to a factor of 11x for larger graphs. Additionally, it im-
proves sample time (up to a factor of 13x-14x) in 14 out of
24 experiments (with comparable results in the others) and
training time in 8 out of 24 experiments (with comparable
results in the others). Overall, BWR achieves a consistent
reduction in computational costs.

5.6. Impact of Output Space Reduction to Performance

We analyze the relationship between the savings factor,
which summarizes the space reduction given by the C-M
bandwidth reparameterization (Table 1), and the perfor-
mance/computational improvement. Results are included
in Appendix D.3. Results suggest that we can estimate the
empirical improvement given by BwR for a specific dataset
in advance, without actually training a model, by computing
simple statistical properties of the dataset.

SWe believe that GraphRNN has close to the same time/memory
usage with and without BWR because most of the computation
happens in the hidden layers of the GRU as opposed to the single
linear readout layer which predicts the next row.

6. Conclusion

We presented BwR, a novel approach to reduce the
time/space complexity and output space of graph generative
models. Leveraging the observation that many real-world
graphs have low graph bandwidth, our method restricts the
bandwidth of the adjacency matrices during training and
generation. Our method is compatible with virtually all
existing graph generative models, and we described its ap-
plication to autoregressive, VAE-based, and score-based
models. Our extensive results on both synthetic, biological,
and chemical datasets showed that our strategy consistently
achieves superior or comparable generation quality com-
pared to the standard methods, while significantly reducing
time/space complexity. Currently, our strategy leverages
random Cuthill-McKee orderings to reduce the bandwidth.
Future work will explore other—potentially even learned—
bandwidth-minimizing orderings, while further theoretically
studying the distribution of orderings induced by our ap-
proach. Future work will also extend our strategy to addi-
tional settings, such as conditional generation, larger graphs,
and new state-of-the-art models.
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A. Bandwidth Visualization

In Figure 4, we show the adjacency matrix A and the bandwidth ¢ (A) for a random set of 10 molecules from ZINC250k.
The RDKit ordering is computed using the canonical atom ranking provided by the RDKit library. For the BFS, DFS and
C-M, we randomly sample 100 orderings and plot the one with the highest  (this approximates the output space needed to
correctly model the graph for each ordering).

In Figure 5, we show the distribution of bandwidth of ZINC250k adjacency matrices using the C-M algorithm and the
canonical SMILES order.

B. Model Details

Each model was re-implemented and somewhat modified to facilitate the pairwise comparison with and without the BwR
modification.

B.1. Optimization

All models were trained for 100 epochs of 30 training batches and nine validation batches. The batch size was fixed at 32.
The AdamW optimizer (Loshchilov & Hutter, 2019) was used with a cosine annealed learning rate (Loshchilov & Hutter,
2017). The initial learning rate was hyperoptimized (Appendix B.2), and the weight decay parameter was either set to zero
or hyperoptimized. GraphRNN and Graphite were trained using binary cross entropy to measure reconstruction accuracy.
EDP-GNN was trained using mean squared error loss.

B.2. Hyperoptimization

Hyperparameters were separately optimized for each combination of node order, model, and dataset. The hyperparameters
for MMD and AUPRC results were chosen to minimize mean validation MMD? in the case of GraphRNN and EDP-GNN,
and MMD? — AUPRC in the case of Graphite. The hyperparameters for log-likelihood and F1-PR results were chosen to
maximize F1-PR. All hyperoptimizations used 20 outer-loop steps of the Weights and Biases (Biewald, 2020) Bayesian
hyperoptimizer. For the specific hyperparameter ranges, see the model details below.

B.3. GraphRNN

GraphRNN (You et al., 2018) is an autoregressive model for generating adjacency matrices. We used the GraphRNN-S
variant which uses an MLP to predict a whole row at once of the adjacency matrix from the RNN’s hidden state.

GraphRNN data pre-processing. GraphRNN was trained using teacher forcing to autogressively predict the next row of
the re-parameterized adjacency matrices A" € N X (Pgaa (Figure 1, bottom). In order to prepare the data, a row of zeros
was prepended and appended to each A°" to serve as the initial inputs and final outputs for the model. Next, a column with
an indicator for whether the row was the first or last was prepended. This resulted in training data of the form:

1 0 - 0
opt opt
0 Agy - Al
D - f ©)
0 A(])\lf)fo e A(J)\I;f@dum
1 0

In order to train the model, the data were placed into PackedSequence objects in PyTorch (Paszke et al., 2019), enabling
batched training with variable sequence lengths.

GraphRNN architecture. The architecture is a two layer MLP followed by a four layer GRU followed by two layer MLP:

GraphRNN layers
1. Linear(Pdaa + 1 — 128)
2. BatchNormlD

13
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RelLU

Linear(128 — 128)
GRU(4 layers, 128 — 128)
Linear(128 — 128)
BatchNormlD

RelU

o x®» N o N kW

Linear(128 +— Qgaa + 1)
GraphRNN hyperoptimization. The GraphRNN hyperparameter ranges were:

* Learning rate ~ Log Uniform [107%,1072]

 Weight decay ~ Log Uniform [10=°,1071].

GraphRNN sampling. Rows of the data matrix constructed in Eq. 6 were sampled according to the logits ¢ output at the
last layer of the model adjusted by a temperature parameter, 7. That yielded row ¢ edge probabilities:

1

p[(’()i,’l)j) € g] ~ Bernoulli (éi,j+1) . (7)
T

T was selected for each model to minimize mean MMD on the validation data. The sampling process was halted when an

indicator was sampled.

B.4. Graphite

Graphite (Grover et al., 2019) is a VAE adapted for graph data with one set of latent variables per node. Graphite predicts
edge probabilities using a pairwise kernel between node representations at the end of the decoder. We kept the general
design while making a few architectural changes for simplicity and performance.

Graphite data pre-processing. For every graph G = (V, £) the node order was selected using either BFS (standard
variation) or C-M (BwR variation). In the C-M case, we also found the bandwidth resulting from the order ¢. We constructed
node features X € R™*16 using transformer-style positional encodings (Vaswani et al., 2017). In the original work, Grover
et al. (2019) used one-hot positional encodings when there were no node features. For each graph, an edge set was
constructed for the decoder model. In the BFS case, the edge set corresponding to a fully connected graph was used. In the
C-M case, the edge set for a graph with bandwidth ¢ was defined as in Eq. 4.

Graphite architecture. The architecture was implemented using PyTorch Geometric (Fey & Lenssen, 2019). With
respect to the original implementation, we used GINE layers (Hu et al., 2020) rather than graph convolutions, and GELU
activation (Hendrycks & Gimpel, 2016) rather than ReLU. Each GINE layer contained a two-layer MLP with the following
architecture:

GINE MLP layers with hidden dimension i
1. Linear(h — 2h)
BatchNormlD
GELU
Linear(2h — h)

BatchNormlD

A T i

GELU.
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We made use of a stack of GINE layers, which we refer to as GINEStack (Algorithm 1). The Graphite encoder was a
GINEStack with h = 32. The variational marginals p, o (Eq. 2) were 32-dimensional and computed using a single
linear layer each from the output of the encoder. The decoder also employed a GINEStack with h = 32 with a few
modifications (Algorithm 2). The most consequential change in our experiments was replacing the final edge probability
layer. Rather than a dot product as in the original implementation, we observed better performance and lower variance with
a two-layer MLP that takes as input concatenated pairs of node embeddings (Algorithm 2, final three lines).

Algorithm 1 GINEStack

Inputs: node features X € RV*? edge list £, edge features E € RI€/** hidden dimension &
Qutputs: updated node features X

X =Linear(d — h)(X)

X = BatchNormlD(X)

X = GELU(X)

Xo =GINE(X,E E)

X1 = GINE(X(, &, F)

X2 = GINE(X3,E, E)

X = [Xo| X1|X2]

Algorithm 2 Graphite decoder. o denotes function composition.

Inputs: node features X € RV*16 embeddings Z € RV *32, edge list £, edge features E € RI€I*k
Outputs: edge probability logits ¢ € RI€!

P =Linear(16 — 32)(X)

P = GELU(BatchNormlD)(P))

Xo=2Z+P

X1 = GINEStack(Xy,&,E)

Xy = [PX]

X3 = GELU o BatchNormlD o Linear(112 — 32)(X>)
K = [X|X3]

@%J = Linear(32+ 1) o GELU o Linear (96 — 32)[K;|Kj]
(?; =Linear(32 — 1) 0o GELU o Linear (96 — 32)[K;|K,] # j,i order to preserve symmetry
big =bi; + 4,

Grapbhite loss function. The loss was the standard VAE loss function with a hyperoptimized weight /3 on the KL divergence
term:

N
1 1
L(E 0, p,0) = é 3 (uQ + 02 — loglo] — 2) o+ g ECEE) @®)
=1 )

where ¢ denotes the model predicted edge logits and BCE is the binary cross entropy.
Graphite hyperoptimization. The Graphite hyperparameter ranges were:

* Learning rate ~ Log Uniform [10~%,1072]

* KL-divergence weight (3) ~ Log Uniform [1,107°].

Graphite sampling. The latent variables Z were sampled independently from the standard normal distribution. Edge
probabilities were then sampled from the decoder’s edge probabilities (Eq. 3, Algorithm 2). The number of nodes and
bandwidths used to construct the decoder’s message passing graph were sampled from the empirical distribution of the
training data.

15
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B.5. EDP-GNN

EDP-GNN (Niu et al., 2020) is a permutation invariant score-based generative model for graphs. Niu et al. (2020) used
annealed Langevin dynamics to sample from their model and used a variance schedule with six time steps. We switched to
the DDPM (Ho et al., 2020) framework, which we found led to more reliable results and faster sampling in preliminary
experiments.

EDP-GNN data pre-processing. For every graph G = (V, £) a node order was selected using either BFS (standard
variation) or C-M (BwR variation). In the C-M case, we also found the bandwidth . We then constructed an edge set £’
of edges not in the original graph, which the model was trained to distinguish from the real edges. In the BFS case, these
were all of the edges not in &, i.e., &' = {(i,5)Vi # j} — £. In the C-M case, these were the edges included in a graph
with (G) = ¢ (Eq. 4), and not in &, that is, £’ = E—E. Edge features ' € RI€IFIE] were constructed to encode whether
each edge is in £ or £ with 1 to indicate € £ and -1 to indicate € £’. Node features X € RV *16 were constructed using
transformer-style positional encodings (Vaswani et al., 2017). Time embedding features 7" used for time conditioning were
constructed using 128-dimensional positional encodings.

EDP-GNN diffusion hyperparameters. We used a cosine variance schedule (Nichol & Dhariwal, 2021) with 200 steps.
The effect of this schedule on a restricted adjacency matrix of a planar graph is shown in Figure 6. We used the noise
predicting parameterization €y introduced by Ho et al. (2020).

EDP-GNN architecture. Our implementation of EDP-GNN was built using the previously introduced GINEStack
(Algorithm 1) followed by a two layer MLP operating on edge features pairs of node representations to predict the sampled
noise €. The resultant architecture for the molecular datasets is shown in Algorithm 3. We used a node embedding size of 64
for the generic datasets instead of 128.

Algorithm 3 Modified EDP-GNN architecture. o denotes function composition.

Inputs: node features X € RV*16 edge list £, = £ U &', edge features F € RI®|, time embeddings T € R'?8
Outputs: noise predictions €5 € RI€VE’]

P =GELU o Linear(16 — 128)(X)

To = GELU o Linear (128 — 128)(T) Xo =T + P

X1 = GINEStack(Xy, &y, F)

Xy = [P|To| X4]
X3 = GELU o BatchNormlD o Linear(768 — 128)(X5)
K = [X]X3]

E° = GELU o Linear(1 — 128)(FE)

€ ; = Linear(128 — 1) 0 GELU o Linear(384 — 128)[K;|K;|E} ]

€;; = Linear(128 — 1) 0 GELU o Linear(384 — 128)[K;|K;|ES,;| # j,i order to preserve symmetry
€0,i,5 = 6117]- + 612,]4

EDP-GNN hyperoptimization. The learning rate was hyperoptimized with a distribution ~ Log Uniform [10~%,1072).

EDP-GNN sampling. We used the DDPM sampling algorithm (Ho et al., 2020).

B.6. Likelihood Evaluation

To compute the likelihood of test set graphs as an evaluation metric, we use the following strategies. For GraphRNN, we use
the auto-regressive log-likelihood. For Graphite, we use the variational ELBO as a lower bound. For EDP-GNN, we use the
ELBO for diffusion models, as shown in (Ho et al., 2020).

C. Datasets

All datasets were filtered so that there was one connected component per example.
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C.1. Example Datasets for Table 1

All datasets, except Peptides-func, are available through the TUDataset collection (Morris et al., 2020). Peptides-func is
available in the Long Range Graph Benchmark (Dwivedi et al., 2022).

C.2. Generic Datasets

Community2. For each graph the number of nodes /N was sampled uniformly between 60 and 160. Each community
was then generated using an Erdos-Renyi model with edge probability 0.3. Then edges between the two communities were
sampled with probability 0.05. Finally, the largest connected component of the resultant graph was selected.

Planar. For each graph 64 2D node coordinates were sampled uniformly between zero and one. A Delaunay triangulation
was performed on these coordinates. Two nodes were considered adjacency if they shared a vertex in the triangulation.

Grid2d. All unique pairs of side lengths between 10 and 20 were enumerated. For each side length pair, a 2D grid graph
was generated. Since this yielded only 66 graphs, each graph in the training and validation sets were included five times
with different random BFS and C-M orders each time.

DD. The DD graphs were filtered so that each had between 100 and 500 nodes as in (You et al., 2018), going from 1178 to
918 graphs.

Enzymes. The enzymes graphs were filtered so that each had 10 < N < 125 going from 600 to 556 graphs.

Proteins. The proteins graphs were filtered so that each had 10 < N < 125 going from 1113 to 904 graphs.

C.3. Molecular Datasets
ZINC250k. No filtering was required.

Peptides-func. Removing graphs with more than one connected component filtered 15535 graphs down to 15375.

D. Additional Experimental Results
D.1. MMD Metrics

We include the individual MMDs results (summarized by the mean MMD in the main text) in Table 5.

D.2. Computational Metrics

We include computational metrics for all datasets in Table 6.

D.3. Impact of Output Space Reduction to Performance Improvements

We study whether the theoretical improvement in space/time complexity given by BwR translates well into an empirical
improvement in generation quality and computational complexity. To do this, we analyze the relationship between the
savings factor, which summarizes the space reduction given by the C-M bandwidth reparameterization (Table 1), and the
performance improvement, measured as the ratio between standard models’ metrics and their +BwR extensions. Interestingly,
we observe a high correlation (Spearman-r of 0.90 for Graphite, 0.89 for EDP-GNN, and 0.62 for GraphRNN) between
the savings ratio and the log-likelihood improvement across the 8 datasets. Additionally, we observe a high correlation
(Spearman-r of 0.97 for Graphite and 0.96 for EDP-GNN) between the savings ratio and the improvement in GPU memory
usage (Figure 7) across the 8 datasets. This analysis suggests that (1) the theoretical improvement correlates with the
empirical advantage, and (2) we can get an estimate of the expected empirical improvement for a specific dataset in advance,
without actually training a model.
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E. Why Molecular Graphs Have Low Bandwidth?

In this section, we discuss the bandwidth of molecular graphs, i.e. graphs whose nodes and edges describe atoms and bonds,
respectively. As shown in Table 1, all the considered molecular datasets have low average empirical bandwidth (in particular,
the first section of Table 1 and Peptides-func correspond to molecular graphs). Additionally, the average bandwidth increases
slowly as the average number of nodes NN in the datasets increases (for the considered datasets, the average bandwidth ¢
varies between 2.8 + 0.7 and 5.7 £ 2.6, while the average number of nodes IV varies between 10.1 & 0.7 and 150.9 4 84.5).
Furthermore, given that the empirical bandwidth is estimated through a heuristic algorithm, part of the increase in ¢ for
higher N can be explained by a slightly reduced algorithm efficacy for larger graphs.

All these empirical observations motivate more theoretical research on why all molecular graphs seem to have restricted
bandwidth. To investigate this question, we have derived several upper bounds on the bandwidth of molecular graphs.
These bounds show that, indeed, the inherent properties of molecular graphs confer low bandwidth. These results further
strengthen the universal validity of BWR, beyond the datasets considered in this paper.

Several bounds to the graph bandwidth for molecular graphs are discussed in the following:

Molecules have planar graphs and bounded max degree. As highlighted in the cheminformatics literature, molecules
with non-planar graphs are extremely rare (Wester et al., 2008). In practice, all molecules included in drug-like libraries
(e.g., ZINC250k dataset) have planar graphs. Additionally, because of chemical bonding rules, all molecular graphs
have a bounded maximum degree (4-6, depending on the atom types in the molecule). The combination of these

), with A being the

two properties (bounded degree and planarity) guarantees sub-linear bandwidth, in O (b%%

maximum degree, as proved by Bottcher et al. (2010).

Molecules as combination of meotifs. A less rigorous and more intuitive explanation comes from the fact that synthesizable
molecules tend to consist of small components connected in a few (typically, one to three) places. Under the (simplified)
assumption that a molecular graph is a string of connected components, the graph’s bandwidth is upper-bounded by
the size of the largest component. This can be seen by considering the resulting block-diagonal adjacency matrix:
each component corresponds to a block in the adjacency matrix, and the bandwidth of the graph corresponds to the
bandwidth of the largest block/component. For example, in a linear molecule (like a long alkane chain), the bandwidth
is one (independent of the length of the chain) because each carbon (individual node) is only directly connected to its
neighbors.

Crystal structure as molecular upper bound. Another chemistry-inspired upper bound can be derived by considering

regular chemical graphs with degree four. If we allow all 4-regular graphs, this is insufficient to constrain the bandwidth

since random 4-regular graphs are expander graphs and have bandwidth in O (%) . Instead, we consider the most
densely packed form of carbon, diamond, which is formed by a 3D lattice. The graph of diamond’s structure is a

subgraph of the 3D grid graph (Eppstein, 2009). Interestingly, the 3D grid graph has bandwidth that scales with the
square root of the number of nodes (Otachi & Suda, 2011), providing a tighter upper bound in O (\/N )

Further research on theoretical upper bounds on the bandwidth of graphs occurring in common domains, such as molecules
and other biological objects, will be the subject of future work.
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Table 5. Graph generation results with individual MMD values. Bold indicates best results compared to the other model of the same type
and dataset. Significance was determined by Welch’s t-test with five replicates per model. Models are considered comparable when
p > 0.05. Graph statistics (degree, cluster, orbit, spectra) are reported as MMD?. Mean computed across individual statistics for each
model/dataset. OOM denotes out-of-memory issues. Hyphen (-) denotes not applicable metric/model.

COMMUNITY?2 PLANAR GRID2D
} Deg. | Cluster | Orbit | Spectra | Deg. | Cluster | Orbit | Spectra | Deg. | Cluster | Orbit | Spectra
Standard 0.016 0.046 0.024 0.024 0.056 0.309 0.617 0.080 0.403 0.000 0.714 0.174

GraphRNN BwR [ours]  0.034 0.041 0.017 0.006 0.060 0.311 0.481 0.079 0.037 0.797 0.066 0.061
Graphite Standard 0.146 0.047 0.015 0.011 0.289 0.304 0.749 0.104 0.500 1.300 0.601 0.198
P BwR [ours]  0.114 0.047 0.015 0.013 0.311 0.323 1.110 0.128 0.069 1.970 0.038 0.035
EDP-GNN Standard 0.037 0.056 0.020 0.008 0.229 0.400 1.120 0.086 0.428 1.380 0.661 0.113
BwR [ours]  0.066 0.048 0.032 0.014 0.179 0.377 1.250 0.092 0.415 1.450 0.392 0.101
DD ENZYMES PROTEINS
JDeg. | Cluster | Orbit | Spectra | Deg. | Cluster | Orbit | Spectra | Deg. | Cluster | Orbit | Spectra
GraphRNN Standard 0.066 0.155 0.410 0.065 0.011 0.045 0.021 0.018 0.004 0.040 0.015 0.010
P BwR [ours]  0.092 0.229 0.489 0.125 0.003 0.039 0.010 0.014 0.012 0.045 0.011 0.013
Graphite Standard 0.316 0.316 0.656 0.186 0.204 0.046 0.099 0.078 0.293 0.096 0.111 0.114
P BwR [ours]  0.239 0.245 0.492 0.118 0.042 0.039 0.052 0.018 0.037 0.043 0.052 0.016
EDP-GNN Standard OOM OOM OOM OOM 0.098 0.069 0.159 0.042 0.119 0.064 0.082 0.045
BwR [ours]  0.184 0.208 0.738 0.065 0.027 0.033 0.036 0.013 0.027 0.038 0.021 0.012
ZINC250K PEPTIDES-FUNC
} Deg. | Cluster | Orbit | Spectra | Deg. | Cluster | Orbit | Spectra
GraphRNN Standard 0.025 0.045 0.012 0.071 0.009 0.004 0.000 0.108
P BwR [ours]  0.011 0.044 0.005 0.057 0.008 0.001 0.001 0.123
Graphite Standard 0.049 0.516 0.005 0.044 0.169 0.235 0.030 0.293
P BwR [ours]  0.009 0.307 0.002 0.019 0.056 0.216 0.011 0.198
EDP-GNN Standard 0.174 0.055 0.024 0.170 0.159 0.041 0.047 0.213

BwWR [ours]  0.015 0.528 0.004 0.023 0.050 0.371 0.007 0.144

Table 6. Computational cost results. Bold indicates best results compared to the other model of the same type and dataset. Significance
was determined by Welch’s t-test with five replicates per model. Models are considered comparable when p > 0.05.

COMMUNITY2 PLANAR GRID2D DD

J sample (s) | mem. (GB) | batch(s) | sample(s) | mem.(GB) |batch(s) |sample(s) | mem.(GB) |batch(s) |sample(s) J|mem.(GB) | batch (s)
GraphRNN Standard 0.673 0.059 0.008 0.095 0.036 0.007 0.490 0.115 0.016 1.470 0.142 0.015
P BwR [ours] 0.538 0.061 0.009 0.094 0.036 0.007 0.520 0.112 0.018 1.500 0.149 0.016
Graphite Standard 1.460 0.805 0.012 0.513 0.266 0.010 6.400 3.270 0.022 10.90 5.870 0.028
P BwR [ours] 1.050 0.553 0.010 0.242 0.135 0.009 0.842 0.447 0.012 2.380 1.510 0.013
EDP-GNN Standard 12.50 1.600 0.006 4.300 0.526 0.004 50.80 6.730 0.016 OOM OOM OOM
BwR [ours] 8.410 1.080 0.005 2.260 0.255 0.003 6.550 0.837 0.004 19.90 2.620 0.007

ENZYMES PROTEINS ZINC250K PEPTIDES-FUNC

J sample (s) | mem. (GB) | batch(s) | sample(s) | mem.(GB) |batch(s) |sample(s) | mem.(GB) |batch(s) |sample(s) | mem.(GB) | batch (s)
GraphRNN Standard 0.129 0.019 0.011 0.333 0.023 0.007 0.080 0.014 0.004 7.690 0.082 0.014
P BwR [ours] 0.239 0.019 0.014 0.533 0.021 0.009 0.080 0.014 0.004 7.680 0.080 0.013
Graphite Standard 0.450 0.085 0.014 0.227 0.105 0.008 0.071 0.040 0.008 3.520 1.740 0.015
P BWwR [ours] 0.050 0.035 0.010 0.056 0.031 0.010 0.083 0.016 0.010 0.268 0.170 0.008
EDP-GNN Standard 1.590 0.178 0.004 2.040 0.211 0.003 1.620 0.145 0.003 69.80 6.280 0.024
BWwR [ours] 0.981 0.066 0.003 1.040 0.056 0.003 0.809 0.050 0.004 4.880 0.547 0.004
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Molecule Graph RDKit canonical ordering BFS ordering DFS ordering C-M ordering
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Figure 4. Adjacency matrix and bandwidth ¢ for different orderings (canonical RDKit, BFS, DFS and Cuthill-McKee) for a random set of
10 molecules from ZINC250k.
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Figure 5. Distribution of bandwidth of ZINC250k adjacency matrices using the C-M algorithm and the canonical SMILES order.
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Figure 6. Visualization of cosine variance schedule forward diffusion with 200 steps on a planar graph with restricted bandwidth.
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Figure 7. Savings factor versus improvement in memory usage with and without BwR for different datasets, for Graphite and EDP-GNN
models.
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