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ABSTRACT

Coordinating exploration and avoiding suboptimal equilibria remain central chal-
lenges in cooperative multi-agent reinforcement learning (MARL). We introduce
BEMAS (Balancing Extremes in Multi-Agent Systems), a decentralized and
proximity-aware framework that exploits the performance spectrum that natu-
rally emerges as agents learn at different rates. During training, agents exchange
bounded local messages to identify their best and worst neighbors via phase-aware
TD-error scoring: a curiosity score to encourage coordinated exploration and a
performance score to guide exploitation. BEMAS couples two shaped signals: (i)
optimism, an intrinsic bonus equal to the optimistic action-value gap, with respect
to the best neighbor; and (ii) pessimism, a relative-entropy-based repulsion that dis-
courages imitation of the worst neighbor. A schedule down-weights optimism and
up-weights pessimism over training, and execution is fully decentralized with no
communication. We establish boundedness of the shaping terms and add a Bayesian
stability regularizer that limits policy surprise, resulting in stable updates. Across
a standard cooperative MARL benchmark, BEMAS proves superior performance
compared to baselines, with ablations isolating the contributions of optimism and
pessimism. Motivated by group learning theory, the proposed framework provides
a simple mechanism that moves toward the best peers and repels weak behaviors.

1 INTRODUCTION

Coordinating exploration while avoiding convergence to poor local equilibria is a central challenge
in cooperative multi-agent reinforcement learning, driven by non-stationarity and difficult credit
assignment. A key but under-exploited signal is the performance spectrum that naturally emerges
as agents learn at different rates, expressing tendencies such as curiosity during early discovery and
reliability during consolidation. Motivated by group-learning theory in sociology, where collectives
often imitate high performers and avoid behaviors linked to poor outcomes, we hypothesize that
agents should learn from both extremes of this spectrum, but in different ways and at different phases:
move toward what works best and move away from what works worst.

We instantiate this principle with BEMAS, Balancing Extremes in Multi-Agent Systems, a decen-
tralized, proximity-aware framework that uses only bounded local messaging during training and no
communication at execution. Agents rely on their neighborhood and score neighbors by phase: a
curiosity score to prioritize informative peers during exploration, and a performance score to identify
reliable peers during exploitation. BEMAS then couples two shaping signals, used as reshaped
reward terms that augment the environment reward: (i) Optimism as a peer-relative action-value gap
bonus that rewards an agent only when its chosen state—action outperforms the best neighbor,and
(ii) Pessimism as a behavioral repulsion that penalizes similarity to the worst neighbor, discouraging
imitation of weak and suboptimal strategies. A schedule emphasizes optimism early in training and
pessimism later.

Because repulsion against a moving reference can destabilize learning, we introduce a Bayesian
stability term that penalizes abrupt changes via Bayesian surprise, providing proximal control without
suppressing steady improvement. We establish the boundedness of the optimistic and repulsion
shaping under support conditions, and prove that the stability penalty admits a bound governed by the
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belief step size. These properties ensure well-posed reshaped returns and stable TD learning under
a decentralized framework. Empirically, we evaluate on a cooperative predator—prey grid-world,
comparing against Independent Q-Learning (IQL) and PED-DQN. Across settings, BEMAS achieves
up to +27.5% higher mean reward than PED-DQN and up to +132.5% over IQL, while reducing
variability with up to 58.5% lower standard deviation vs. IQL and 51.9% vs. PED-DQN. We include
ablations that isolate optimism and pessimism, as well as the effect of the stability term.

In summary, our contributions can be summarized as:

* We introduce a decentralized, proximity-aware framework that exploits the full performance
spectrum; learning from the best while avoiding the worst, using only local messaging
during training and no communication at execution.

* We propose a phase-aware optimistic gap and KL-based behavioral repulsion.

* We establish key properties: bounded optimistic shaping, convex/bounded KL repulsion
with strict separation, and a stable KL-proximal policy update .

* We evaluate on a cooperative MARL benchmark, comparing against IQL and PED-DQN,
and include ablations isolating optimism, pessimism, and stability effects.

2 RELATED WORK

We situate the proposed approach at the intersection of reward shaping in MARL and opti-
mism/pessimism mechanisms for directed exploration and robustness.

2.1 REWARD SHAPING IN MARL

Potential-based reward shaping (PBRS) augments environment rewards with differences of a potential
function while preserving optimal policies; later work proved PBRS is equivalent to suitable value
initialization and extended it to dynamic settings with guarantees that also apply in multi-agent
scenarios (Ng et al.l [1999; [Wiewiora, [2003; Devlin & Kudenko| 2012). In contrast to shaping-based
approaches, early multi-agent methods such as Independent Q-Learning (IQL) treat other agents as
part of the environment and learn per-agent value functions (Tan,|1993); while simple and widely
used, this perspective highlights the challenges of non-stationarity and credit assignment that reward
shaping attempts to mitigate. Unlike PBRS and its dynamic variants, we do not rely on a global
potential; instead we shape with peer-relative signals, remaining decentralized at execution and
proving boundedness of the resulting reshaped returns.

Beyond classic PBRS, multi-agent credit assignment methods such as difference rewards shape the
learning signal by measuring each agent’s marginal contribution to the team objective, and have
been combined with policy gradient methods in cooperative tasks (Castellini et al.| 2020). Closer to
our interest in socially informed incentives, peer-based reshaping has been explored in PED-DQN,
where agents exchange peer-evaluation signals to reshape local rewards so that individual updates
align better with cooperative outcomes (Hostallero et al.|[2020). A complementary direction adds
intrinsic social signals and maximizes mutual information (MI) to coordinate exploration: agents
are rewarded for causal influence on others’ actions (Jaques et al., [2019); influence-regularized
exploration (EITI) uses information-theoretic penalties (Wang et al.|2020); and VM3-AC maximizes
a variational MI bound under CTDE (Kim et al.,|2020). Lightweight architectural tweaks can also
help in sparse-reward settings (Li et al., 2023).

2.2  OPTIMISM AND PESSIMISM IN MARL

Optimism for Exploration. Optimism in the face of uncertainty encourages agents to try ac-
tions/states that might yield higher returns. Intrinsic-motivation and count-based approaches oper-
ationalize this via novelty signals (pseudo-counts) or learning progress, including density-model
based pseudo-counts (Bellemare et al., 2016} |Ostrovski et al., 2017} [Tang et al., 2017), information-
gain/curiosity methods (Houthooft et al., 2016; |[Burda et al., 2018}; [Pathak et al., 2019), and the
random-network-distillation (RND) bonus (Burda et al. [2019). In actor—critic RL, Optimistic
Actor—Critic (OAC) shows that maintaining optimistic value bounds can improve directed exploration
without destabilizing learning (Ciosek et al.l 2019). In cooperative MARL, optimism has also
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been encoded via asymmetric updates: hysteretic Q-learning down-weights negative TD errors to
stabilize coordination, while lenient learners apply decaying “leniency” to early negative feedback so
agents begin optimistic and gradually anneal (Matignon et al.l 2007; [Palmer et al., | 2018). Weighted
QMIX further introduces an optimistically weighted variant that emphasizes higher-value joint actions
during value factorization (Rashid et al.||2020). The proposed optimism is neither count-based nor
bound-propagation based; it is a local advantage-like discrepancy between the agent and its best
neighbor, shaped via an action-value gap to encourage exploration.

Pessimism. On the other side of the spectrum, pessimism is widely used to control over-estimation
and improve stability. In continuous control, TD3 forms conservative targets via the minimum of two
critics ;clipped double Q (Fujimoto et al., 2018), and Maxmin Q-learning extends this with ensembles
to control estimation bias (Lan et al.l 2020). In offline RL, CQL regularizes Q-values to discourage
out-of-distribution actions, and its penalty is often adapted to online settings (Kumar et al.,[2020).
Bridging stances, Tactical Optimism—Pessimism switches between optimistic and pessimistic quantile
critics via a bandit (Moskovitz et al., 2022). Unlike conservative targets, we impose policy-level
pessimism via Kullback-Leiber divergence to actively discourage imitation of weak peers.

Combining Optimism and Pessimism. |Yang et al.| (2024} explicitly decouple exploration and
utilization with dual actors—an optimistic actor that explores using overestimated values and a
pessimistic actor that selects safer, underestimated values—showing that alternating/scheduling
these roles can retain exploration while stabilizing policy improvement. Related ideas conditionally
introduce optimism in cooperative MARL to drive exploration when it is likely to be beneficial
(Zhao et al.| 2023). BEMAS combines both signals in a single reshaped reward with a simple phase
schedule; unlike dual-actor CTDE schemes, the proposed approach uses only local messaging during
training.

3 PRELIMINARIES

We model the cooperative multi-agent control problem as a Dec-POMDP:
M= <Va 87 {Z/{i}iEVa {Oi}iEVa P7 07 T, ’Y>a

where V = {1,..., v} is the set of agents, S the state space, I; and O, are the action and observation
spaces of agent i, P(s’ | s,u1.,) is the transition kernel, and O the observation kernel (commonly
factorized as O (0}, | s',u1.,) = [[,_; O;(0; | s')). Attime ¢, the environment is in state s* € S,
each agent 7 receives a local observation of ~O; (- | s*), selects action u! ~;(- | hl) from a stochastic
policy m; : H; — Q(U;) based on its local history h! = (of,u?, ..., ol), and the system transitions
to st ~ P(- | st u!,,) with a shared team reward r’ = r(s’,u! ,,s'™!) € R. We consider the

discount factor v € (0, 1). The joint policy factorizes as 7(u1., | h1.,) = H?Zl i (w; | hy).
Both training and execution are decentralized: there is no access to joint states/actions and no
global replay. Each agent maintains its own parameters 6; and updates them from locally available

trajectories (and, when permitted by the environment, uses peer statistics defined in Section[d) without
centralized supervision. At execution time, each agent acts using only its own history h.

Agents are embedded in a metric workspace (X, d) through a state-dependent placement map

®: S — XY, sothat ®(s) = (z1,...,x,) gives the coordinates of agents in state s. For a
communication radius p > 0, the proximity-based neighborhood of agent 7 at time ¢ is:
Ny ={jeN :d(zfa}) <p} U {i}, zh, = ®(sh). )]

All communication is local: when messaging is allowed during training, agent ¢ may receive a
bounded-size signal from agents in N}; at execution, policies depend only on h}.

4 METHODOLOGY

We propose to exploit information at both extremes of the performance spectrum in multi-agent
learning: agents should learn from the best (to accelerate exploration and propagate successful
behaviors) while simultaneously avoiding the worst (to reduce the chance of imitating sub-optimal
strategies). The proposed design remains fully decentralized at execution with no communication
and relies only on local interactions during training.
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Figure 1: Each agent : rely on its neighborhood A; for local messaging; in exploration, neighbors are
ranked by ¢! and an optimism bonus is applied, while in exploitation they are ranked by f¢ and a KL
repulsion from the worst neighbor is added.

Phase-based neighbor scoring. For each neighbor j € N, we define a phase-dependent score:
ct(j), exploration (curiosity)

n'(j) = 2)

f1(j), exploitation (performance) ,

Curiosity score. For agent j, we use a TD-error magnitude as a decentralized curiosity score:

& = rt+vn}3XQj(0§+1,a')*Qj(0§,a§), (G) = A=NTE AL G

with the exponential moving average (EMA) rate A € (0,1).

Performance score. During exploitation we favor agents with small prediction error. We define E

o 1
T = == am

“

During exploration, we instantiate ¢! as a curiosity score given by the running magnitude of the TD
error; agents with larger ¢! (i.e., larger |§!|) are regarded as more curious and thus ranked as the
“best” for this phase. Conversely, during exploitation we use a performance score f! derived from the
same signal but with the opposite preference: agents with smaller prediction error (smaller |d¢|) are
deemed more reliable and are therefore ranked as the “best” in this phase. We select the best and
worst neighbors (respectively) as: b} € argmax ;e ' (j) and w} € argmin;e e n'(5).

Communication between agents. Per step and per agent, the following are exchanged within N}
during training: (i) scalar scores (c*(+) and f*(-)) for neighbor selection; (ii) a representation of the
current policy to compute KL terms; and (iii) the Q-values of the current state and chosen action of
every agent. Now that the best and worst neighbors are defined, we introduce the proposed pessimism
and optimism reshaping mechanisms.

4.1 ACTION-VALUE GAP FOR OPTIMISTIC SHAPING

We view optimism through a discrepancy lens: the quality of agent ¢’s chosen state—action pair is
judged relative to the best local peer in its neighborhood A;. Like an advantage function, the proposed
gap is a discrepancy between two @-values: the agent’s estimate for (s!, u!) measured against a peer’s
(@ taken as the reference. The latter is selected by the curiosity-based score n' during exploration
(see Fig[T). We grant a bonus only when this discrepancy is positive; when agent ¢ outperforms the
most exploratory peer, which implements optimism and encourages exploration.

'"Empirically, f*(j) = 1/(EMA(|5;])) is more stable than 1/|5%| and aligns with the intuition that low TD
error correlates with higher performance late in training.
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Definition 4.1 (Action—value gap) Fix agent i at time t. Let S C R? be the (joint) state space with
d = dim(S), and let bt denote i’s best neighbor. We define the optimistic state—action gap as:

Al = [Q,(si,ui) — Qbi(szi,ugi)]+, []+ = max{z,0}, @Q: R*xU - R. (5

Optimism as an intrinsic reward. We shape rewards with a monotone transform of the positive
gap:
Ui = Wilsi, s b)) = vope g (A7) H{A; >0}, g(z) = log(1+2) (6)

with 1), being the optimism parameter used. When A’ = 0, the agent does not get a bonus ¥} = 0.
Otherwise, the agent is rewarded in proportion to the margin by which it outperforms its best neighbor.
Using a logarithmic transform, ¥} = 1)t log(l +A§) is monotone and concave, resulting in bounded
gradients, and robustness to reward rescaling and outliers (see Lemma [B.T]in App. [B.T).

Theorem 4.2 (Boundedness of the optimistic intrinsic reward) The environment reward is
bounded |r'| < ryax and v € (0,1). This implies that any agent’s optimal action-value is bounded:
Qi+, )| < Qmax = 722, and likewise for Qy,. Therefore:

1—

+1Qi(sh,ul)| < 2Qmax, = 0 < W) < Yopg l0g(1 + 2Qmax)

Full proof of this inequality can be found in App[B.2]

Optimistic shaping schedule. We use a shaping schedule to induce optimism during the exploration
phase. Let Ti«,, be the exploration horizon. A simple piecewise-linear schedule is:

Texp
Qmin + (@ — O'mi t < T,
Oét _ min ( max mln) Texp — ta exps

Qmin, t Z Texp7

clipped to [amin, Qmax]- @)

4.2 BEHAVIORAL REPULSION VIA RELATIVE ENTROPY

Inspired by fear and approval dynamics in group learning, we discourage agent ¢ from imitating
weak local neighbors: during exploration, it steers away from the least curious neighbor, and during
exploitation, from the least performing one.

We induce pessimism as behavioral repulsion from agent i’s worst neighbor w! using the Kull-
back-Leibler (KL) divergence. This relative entropy is the expected log-likelihood ratio of one
distribution relative to another. Let m;(- | s) be agent i’s policy and 7, (- | s) that of its worst
neighbor, the per-state KL is:

t

T\ | S;
Diafl- | 8) [ mag 1)) = 3 milu | o0) log L5
ucl

K3
— ®)
Tyt (u ‘ sfut)
This distance is equal to O if and only if the two policies coincide, and increases as m; departs from
Tyt Mmaking it a simple repulsive regularizer. The pessimistic shaping term is defined per step as:

If = Thalmt,) = Dia(rl(- ] s8) 7l | st)) ©)

The further away an agent ¢’s policy is from its worst peer’s w;, the higher its intrinsic reward.

Pessimistic shaping schedule. We smoothly increase pessimism from exploration to exploitation
using a piecewise-linear schedule, with 77, being the total number of time-steps during training:

Bmina t < Texpa

6t = t_TeXp

ﬁmin + (Bmax - Bmin) Chpped o [ﬁmina Bmax]- (10)

t> Texpa

)
Tmax - Lexp
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Figure 2: Overview of the BEMAS architecture. Agents interact with the environment by selecting
actions according to their policies. The best and worst neighbors are identified, and the reshaped
reward is computed from communicated signals. The purple circles denote the three mechanisms:
Bayesian stability, behavioral repulsion, and optimistic action-value gap.

Theorem 4.3 (Upper bound of the repulsion) For fixed m,,:(-[s), for state s, we define:

t
t mi(u | s) ‘
s) = max -1 11
Pu(s) ueU:wfuﬁ(u\s)>0’7rfu¢ (u]s) an
and we get for any state distribution pu:
2 2
Evos [ Dia(l 7)) < B[ (0h())°] < €2~ (0) (12)

with Eg {(pﬁl(s))g} =0 ((p;)z) and c; is a positive constant.
Proof of this theorem can be found in App[B.3]

Theorem 4.4 (Lower bound of the repulsion (Gibbs’ inequality)) Let m;(- | s}) and m,e (- | st),)

be action distributions over a finite action set U, with T, (u | s',) > 0 for all u € U. Then:
Dice(mil- | ) [ 7t (- | 4,e)) > 0, (13)

From equations [T2]and [I3] we get the bounds of the KL-based shaping term for behavioral repulsion:

0 < BT (nt, 7)) <er- (0h)? 14)

Assumption 4.5 (Instability risk) With a non-stationary reference Tt the repulsion bonus B'T,
if used alone, can induce unstable learning or divergent updates when the reference changes rapidly.

Following this assumption, we introduce a Bayesian inference-based intrinsic reward to induce more
stability in the policies’ updates.

4.3  STABILITY VIA A BAYESIAN POLICY BELIEF

The proposed repulsion term can destabilize learning (see Assumption [4.3): if neighbors keep
changing, penalizing divergence may make agents chase moving targets. We add a Bayesian stability
bonus that discourages sudden shifts in an agent’s own policy while still letting it move away from
bad behavior. The intuition is simple: maintain a belief over the policy and penalize the information
change, hence Bayesian surprise, in that belief.
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Bayesian policy belief and update. Let I/ be a finite action set of size K. For each agent i,
we maintain a Dirichlet belief over action probabilities with parameters &! € R];O, total mass
f0= Y ueu bty and mean 7} = &} /&) . We apply discounted soft-count updates:

wt

P+
with ¢ € (0, 1) being the forgetting factor that exponentially downweights past evidence, and w! > 0

being the evidence weight that adds the current evidence. Normalizing gives 7!, whose update in
equation is an EMA with data-dependent step size ¢ € (0, 1). It is a combination of the previous

belief mean and the current policy with step size ¢ that is reduced as the effective sample size 5;_01
increases. Updates become smaller, and the belief stabilizes while still adapting when ¢ < 1.

g pet ot nl, 7= Q- 4 rtrl, =

K2 K2

€ (0,1). (15)

Bayesian surprise and stability bonus. We measure belief change via the categorical KL between
successive means:
A} = Dy | 7), (16)

and add —A! to the reward, which allows penalizing sudden policy shifts while allowing improvement.

Theorem 4.6 (Boundedness of Bayesian surprise) For state s, let P = 7!"'(- | s) and R = 7! (- |
s) denote the Dirichlet beliefs at different time-steps. We assume P(u) > 0 for all available actions
u € U and set a constant cy > 0. We define:

t(s) = B -1 17
¢'(s) u:g(fggo\p(u) {17)

Then the Bayesian surprise satisfies:

Dxi(P || (1= 7)P +r'R) = o(gﬂt (qt(s))z) < o T2 (g(s))? (18)

Proof of this theorem can be found in App/B.3]

4.4 OVERALL FRAMEWORK

We train Q; with standard TD updates using a reshaped reward 7:

. = 2
vi =75 HymaxQi(siu), Lo, = (i — Qilsiup), (19)
where (); is a target network (see Fig. . The per-step reshaped reward for agent 1 is:
o=t + o+ BT — A (20)

where a! >0 modulates optimism and 3¢ >0 modulates pessimism.

Assumption 4.7 (Modified Dec-POMDP) Each agent i receives the reshaped reward 7t. Each term
of this reward is measurable w.r.t. the local history and in-neighborhood messages {mjt Litje Nt
Training with 7 is thus equivalent to solving the modified Dec-POMDP:

M = <V7S7 {u’b}la {Oi}i7PaO77:a ’7>

We study the boundedness of each shaping term to ensure 7 is uniformly bounded and discounted
returns are finite. Using|[7} [[2] and [I8] we get for all ¢, t:

|ff| S T'max + Qmax wopt log(l + 2Qmax> + 6max C1 (P;)z + Ccg - ET_)ft (qt(s))Za (21)

So M is well-posed and admits optimal joint policies under standard Dec-POMDP assumptions.

5 EXPERIMENTS

Baselines. Since the proposed method relies on reward reshaping in a decentralized framework, we
compare against two baselines: (i) IQL, a decentralized, no-shaping baseline; and (ii) PED-DQN, a
reward-reshaping DQN designed to promote cooperation in multi-agent settings.
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Figure 4: Learning performance of BEMAS compared to IQL and PED-DQN across different settings.

Environment Details. We evaluate in a discrete grid-world that | = = =
models predator—prey interactions and incentive mechanisms. The B
grid comprises empty cells and walls; a fixed population of preda- . . 7»l
tors and preys occupy distinct cells and move in the four cardinal

directions under boundary and collision constraints. Predators act |~ = =

under partial observability. Prey attempt to evade capture. A prey

is captured if and only if it is fully surrounded by predators (see

Fig.[3). Figure 3: Prey—predator envi-
ronment.

5.1 RESULTS

Across all three scenarios Fig. |4, BEMAS outperforms both baselines in terms of sample efficiency,
final reward, and stability. In Figs. [#a] and Ab, BEMAS begins to accelerate after only ~0.25M
episodes. In Setting (a), BEMAS reaches a reward of 20,69741,381, compared to 16,23941,075 for
PED-DQN and 8,904 +902 for IQL, corresponding to relative gains of +27.5% and +132.5% (see
App.[2). The optimistic shaping signal induces early exploration, avoiding the stagnation seen in IQL.
PED-DQN benefits from peer-evaluation rewards, but its returns remain substantially below BEMAS.

Early phase (fast lift, higher variance). During the first ~0.2-0.6M episodes, BEMAS rises
sharply but shows larger variance than PED-DQN. This behavior is expected: optimism dominates the
shaping schedule, so agents preferentially learn from the most exploratory peers, producing both rapid
learning and greater spread across seeds. Quantitatively, in Setting (b), BEMAS already surpasses
PED-DQN by +26.9% in mean return, 16,737 vs. 13,192, while maintaining a lower coefficient of
variation. IQL, lacking any shaping, improves slowly and saturates at much lower values.

Late phase (variance contracts). As training proceeds, weight shifts from optimism to pessimism,
introducing repulsion from the worst-performing neighbors and reducing imitation of poor local
minima. In Setting (a), BEMAS matches PED-DQN in variability while exceeding it in median
reward +22.3%. In Setting (c), BEMAS achieves 37,126+2,006 as a return, slightly below PED-DQN
40,473+4,169; -8.3 %, but with lower standard deviation (std): reduced by 51.9%. This demonstrates
that the pessimism phase effectively stabilizes performance across seeds.

Scaling with agent density. The densest scenario, in Fig. is substantially more challenging
due to increased agent interactions. Here, BEMAS initially leads with strong improvements and
maintains its robustness throughout training, while PED-DQN eventually catches up in mean return
but at the cost of far greater variability. Relative to IQL, BEMAS more than doubles the mean reward
+106.3%, and reduces variance by nearly half. This robustness under higher density validates the
phase-scheduled, two-sided shaping that results in both faster and more reliable convergence.

5.2 ABLATION STUDY

We isolate the two shaping components of BEMAS: (i) OMAS (Optimism in Multi-Agent Systems):
we keep only the optimistic action-value gap with the stability regularizer. This tests whether optimism
alone can drive coordinated exploration and propagate promising behaviors early in training. (ii)
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Figure 5: Ablation study of BEMAS components: optimism, pessimism, and their stabilized variants.

PEMAS (Pessimism in Multi-Agent Systems): we keep only the KL-based repulsion from the worst
neighbor with the stability regularizer. This evaluates how much of BEMAS’s final performance
comes from discouraging imitation of persistently weak local policies.

Exploration dynamics and final performance. OMAS exhibits higher variance across seeds
during the exploration phase. This is consistent with agents receiving positive intrinsic bonuses
whenever they outperform the current phase leader, encouraging broader search and more diverse
exploration trajectories. As shown in Fig[5aland Fig[5b] PEMAS consistently surpasses OMAS and
matches or approaches the full model late in training. Penalizing similarity to the worst neighbor
steers policies away from sub-optimal local equilibria, improving exploitation stability and raising
asymptotic returns; whereas, optimism’s main benefit is earlier, more adventurous exploration.

Stability and robustness. As shown in Fig. the pessimism-only variant reaches the highest
reward; max 22,268, mean 20,805, but exhibits high variability; std of 1,262. Incorporating stability
achieves comparable performance; mean reward 20,287, with reduced variance: 430, lowest overall.
In contrast, the optimism-only variant results in lower returns; mean 18,957, std 396, and the stabilized
optimism variant remains similarly limited; mean 18,148, std 485 (see App. [3). These results indicate
that A is most effective when combined with repulsion, while offering modest benefits for optimism.

6 CONCLUSION AND FUTURE WORK

We introduced BEMAS, a decentralized, proximity-aware shaping framework that exploits both
extremes of agents performance. The optimism signal W!, a peer-relative action-value gap, rewards
agent i only when its Q-value exceeds the best neighbor b, using a concave transform for bounded,
well-scaled bonuses; the pessimism signal I'? repels imitation of the weakest neighbor w!. These
signals are phase-scheduled; curiosity vs. performance leaders, and complemented by a Bayesian
stability penalty via Dirichlet updates to reduce sudden policy shifts.

The shaping is monotone and bounded under standard () limits; the repulsion admits a quadratic
control bound under absolute continuity; and the stability penalty has an explicit step-size bound,
ensuring well-posed discounted returns. Empirically, in cooperative predator—prey setting, BEMAS
outperforms baselines IQL and PED-DQN, with ablations isolating optimism, pessimism, and stability
effects. Training requires only local messaging and no execution-time communication, preserving
decentralization while encouraging exploration and avoiding suboptimal equilibria.

Limitations and Future Work. BEMAS provides a theoretically grounded shaping framework with
encouraging empirical results, but limitations remain. The proposed guarantees rely on assumptions
that suit some settings; for example, with bounded () values and reliable local messaging, but may not
extend to others. In dynamic or resource-constrained deployments, communication assumptions may
fail, calling for more adaptable support conditions. Future directions include: (i) extending evaluation
to a wider suite of MARL benchmarks to test scalability and generalization. (ii) developing adaptive
schedules for optimism and pessimism via task-dependent weighting rather than fixed phases. (iii)
relaxing the local messaging assumptions to better align with real-world multi-agent systems.
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7 REPRODUCIBILITY STATEMENT

We aim for full reproducibility and provide all components needed to reproduce the results reported in
this work. The code can be found in this anonymous GitHub repository https://github.com/
Epsilon314159/BEMAS| Algorithmic details are specified in Algorithm|I} and hyperparameters
shared across methods are listed in Table[D.3] The partial observability, capture mechanics, and grid
details appear in the Environment Details Section [5|and in the map files in the code. Proofs for the
robustness of logarithmic shaping, boundedness of the optimistic bonus, and the upper bound for the
KL repulsion are included in App[B] with explicit conditions and intermediate steps.
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A TABLE OF NOTATION

Below is a table with the mathematical notations that were used in this work.
Table 1: Mathematical notation used in BEMAS.

Symbol Description

vV Set of agents (indices 1:n).
it Proximity (radius-p) neighborhood of agent ¢ at time ¢ (time-varying local ensemble).
bt, w!  Indices of the best and worst neighbor of agent ¢ under the phase score n' ().
nt(j) Phase-based neighbor score; ¢ (j) = ¢t(j) in exploration, nt(j) = f*(j) in exploita-
tion.
ct(4) Curiosity score of j: EMA of TD-error magnitude.

1) Reliability score of j: inverse-EMA of TD-error magnitude.

Al Peer-relative positive Q-gap: [ Qi(st, uf) — Qui (she,upi) | -
vl Optimistic bonus: top; log(1 + Al). L
It Pessimism KL-based repulsion: Dgy,(m!(-|s!) || 7, (+]st,.))-
! Dirichlet belief parameters over 7; (per-agent actior;-proba:bility ensemble).
7t Dirichlet mean: 7! = &!/(17¢}).
Al Bayesian surprise (stability penalty): Dy (771 || 71).
t : fae b w'
T Belief step-size: 7 = 905;_01 o € (0,1).
Yopt Optimism scale used in the action-value gap bonus.
at, 5t Weights for optimism ¥ and pessimism I in the reshaped reward.

Qmax Uniform @ bound: Qax = Tmax/(1 — 7).
B Replay buffer used for off-policy updates.

B MATHEMATICAL PROOF

B.1 ROBUSTNESS OF LOGARITHMIC SHAPING

Lemma B.1 (Robustness to rescaling and outliers) Let
W(A) = hopt log(1 + A), A >0, Yopt >0
Then W is nonnegative, strictly increasing, and concave with globally bounded slope; it is stable

under reward rescaling, and large outliers only change it sublinearly:

wopt " wopt /
= opt_ U(A) = — 0Pt T (A)] < Yopts
1+A>07 () (1—|—A)2<0’ | ()‘—wpt

and for any ¢ > 0 and o > 1,
|\IJ(cA) — \II(A)’ < Yopt | log |, T(aA) — ¥(A) < hopt log

v'(A)

Proof The derivative and curvature are:

% t % t
"(A)=—"2->0 U'(A)=—-—L— <0
(&) 1+A ’ (4) (1+ A)2
Therefore, increases in A always result in a positive bonus (monotonicity), but with diminishing
returns (concavity).

Because 1 + A > 1 and log(1 + A) > 0 for A > 0, the slope is uniformly bounded as |¥/(A)| <
Yopt and cannot introduce arbitrarily large gradients.

Robustness to rescaling. We consider multiplying all gaps by a constant ¢ > 0. We denote
r=A>0:

14 cx

1+

U(cA) = U(A) = Pops[log(1 + cx) — log(1 + x)] = thopt log

12
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If ¢ > 1then 1 + cx < ¢(1 + ), hence:

1
0<log te
If 0 < ¢ < 1 the inequalities reverse and we get:

1
log c < log 1—:-cx <0
x

In both cases, we have:
[T (cA) = (A)] < topt | log ]
Hence, using this optimistic shaping term, rescaling rewards cannot distort the shaping by more than
a constant shift proportional to |log ¢|.
Outlier suppression. For a multiplicative amplification o > 1 of a single gap, we have:
1+ ax
1+
S wopt IOg «

l+ar<a(l4+z) = Y(ad)—T(A) = Yop; log——

Therefore, extreme gaps only increase the shaping logarithmically, preventing a few large values
from dominating the shaping signal. This sublinear growth represents the robustness property of
log(1+ A).

B.2 BOUNDEDNESS AND CONVEXITY OF THE OPTIMISTIC INTRINSIC REWARD

Theorem B.2 The environment reward is bounded |r*| < rpax and v € (0,1). This implies that any
agent’s optimal action-value is bounded by:

|QZ(7)| < Qmax = TUA

-
and likewise for Qp,. Therefore'

0 < |Qbi(sii7ub

17 u; } < QQmaxa = 0 § \Iji § wopt lOg(l + 2Qmax)

Proof For any agent ¢, any policy 7, and any (s, u), we have:

Q7 (s,u) lZW Tt4k+1 st—s U —u]

k=0
By triangle inequality and linearity of expectation, we get:

oo

k
E|Y v |7”t+k+1]

k=0
s r
S Z'Yk Pmax = max

1—7v

IN

|QF (s, a)]

Taking the supremum value over (s, a) and over all policies 7 gives:

T T'ma
[Qflloe < 7= = Q][I0 < —=
- 1—7

We define Quax = % The same argument applies and results in:
‘Q ’ < Qmax and |Qb | < Qmax

By using the optimism signal:

\I/f = Yopt | qu(silan)) Ql( Sis 1) |7 Yopt > 0,

and the reverse triangle inequality, we get:

|be(821,u21) - Q (sz’uz) |

z’z’

< ‘th (SZL y ub
< 2Qmax

Therefore:
0 < \I’z < Yopt log(1+2Qmax)-

13
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B.3 UPPER BOUND ON POLICY DIVERGENCE

Definition B.3 (Maximum relative deviation) For state s, we define the maximum relative devia-
tion between the policies of agent i and its worst neighbor w; at time-step t:

mi(u | s)

KACTO R
w (] 5)

ph(s) = max ‘
ueU: wfut (u|s)>0

Theorem B.4 (Upper bound of the repulsion) For fixed T, (+|s), for state s, we define:

py(s) = ‘7ﬁf(u‘s) —1‘
T werint, (usy>ol 7l (u | 8)
and we get for any state distribution ji:
2
B [Dia(rt )] < Eov | (7(5))
t

IN

o
R,
—
=3
3

with ¢y being a positive constant.
Proof. Letp, :=7(u|s)andq, := 7', (u|s), and set:

Ky = @—1

Qu

We have as a KL expansion:

Pu
Dxw(pllg) =D pulog "

= Z qu(1+ Ky) log(1 + Ky)

Using log(1 + ) < z for z > —1, we apply it to this equation:

DKL(qu) S un(l + K?u) Ra,

u
= D quke Y quei
u u
N—_——
=2u(Pu—qu) =0

= aqurs
u

Let p! (s) := max, |ky|. Then, we obtain:
2 2
Y oaury < (max|r])” D au = O(ph(s))” < e1-pli(s)®
u u
Combining these equations, we obtain:
Dxr(plle) < e1-py(s)?

Corollary B.5 (Bound on the weighted pessimism signal) Let T (s) := Dgy(n!(- | s) || 7. (- |
s)) and 0 < 8¢ < Bmax. Then:

0 < BouB'TLS)] < Aunax B (4(5))"] = Buax O(21)°)
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Theorem B.6 (Boundedness of Bayesian surprise) For state s, let P = #.7'(- | s) and R =
7t (- | 5). We assume P(u) > 0 for all available actions u € U. We define:
R(u)

t = - 1’
q (8) u: gl(%,})(>0‘ P(u)

Then the Bayesian surprise satisfies:

Dii(P | (1— )P +7'R) = (9(;j (qt(s))2)

with co being a positive constant.

Proof LetQ = (1—7%)P + 7' R. Using the KL—x? inequality for mixture distributions, we obtain:

t2

-
1 X2(R7 P)

Dki(P|Q) < T

where x*(R,P) =", w

Under the assumption that for all available actions u: P(u) > 0, we obtain:

P(u)
Hence:
V(R P) = Y Plu) (543 — 1)
2
< (¢'(5))" > P(u)
to0n2
= 0(d'(s))
Substituting this bound into the D, first inequality results in:
22
Dxr(PQ) < ca- P (q (5))

15



Under review as a conference paper at ICLR 2026

C BEMAS ALGORITHM

Algorithm 1: Balancing Extremes in Multi-Agent Systems

1 Inputs: Environment £; agents i € {1,...,n} with value head Q; (s, -) and policy head m;(- | s); replay
buffer B; horizon Tiax; exploration horizon Teyp; e-greedy schedule €' EMA rate \ € (0,1); Dirichlet
forgetting ¢ € (0,1) and weight w’ > 0; optimism scale 1op¢ > 0; shaping weights o*, 3" > 0.

2 Initialize: Target networks Q);; curiosity scores co(4) < 0, reliability scores fo(7) < 1; Dirichlet beliefs

0 [t _
& € R (all-ones).
fort =0,1,...,Tmax — 1 do

B Observe & act: Each agent i receives s and selects u! by €'-greedy from Q; (s, -).

4 Environment step: Receive (s°! and the reward from the environment 7.

5 Phase-based neighbor scoring, Calculate agents’ Phase score:

J7G), t2Texp
for agenti € V do
’ Select best and worst neighbors:
b; € arg max 0,  wi€ arg min 1" (j)
7 Obtain 7} (- | s!) and ﬂfvi(' | squt) :
I = Dxr(m(- | si) || qug(' \ Sfﬂg))
8 Query Qy: (OZE, aiﬁ) from the best neighbor:

U, = Yopt g (A]) 1{A] > 0},
9 Calculate Bayesian surprise:
Ai = Dxu(7i || 77)

10 Shape reward:
Fi = o'W + B'TE — A
Push (s*,u’, 7, 5", done) into B.
if t is an update step then

u
Sample a minibatch {(s,u,r,s',7)} C B.
12 Get Shaped target:
yi = i+ maxQi(s’,u')
13 minimize (y; — Q:(s, u)) % and periodically update target network Q.
if done then
14

reset episode.

16
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D EXPERIMENTAL DETAILS

D.1 RESULTS

Table 2] reports the final performance of the three frameworks across different settings: Setting A: 20
predators in a 12 by 12 grid, Setting B: 20 predators in a 13 by 13 grid, and Setting C: 26 predators in
a 12 by 12 grid.

For each method, we compute the mean reward over the last 10% of training steps across seeds.
We additionally report variability measures (standard deviation, quartiles) to capture consistency in
performance.

Table 2: Final performance across seeds (mean of last 10% of reward).

Setting Framework Mean Std Min Q1 Median Q3 Max
IQL 8903.536  901.697 7346.8 8314.583 8908.320  9552.737 11027.040
Setting A PED-DQN  16239.342 1075.178 141214 15288.440 16476.220 16866.673 18469.987
BEMAS 20696.530  1380.958 17698.0 19779.210 20143.747 22375.327 23005.427
IQL 9176.154 1692.834  6729.227 7780.487 8821.020 10612.067 12185.387
Setting B PED-DQN  13191.881 844.722 11704.653 12621.837 13205.953 13763.447 14654.680
BEMAS 16736.963 702.895 15726.520 16173.253 16514.153 17421.980 18142.747
IQL 17999.944  1216.947 16555.089 17004.221 17474.827 19271.172 20244.429
Setting C  PED-DQN  40473.494 4168.849 32509.326 35551.655 42636.553 43398.694 45904.114
BEMAS 37125.758 2006.306 33570.801 34859.250 37651.824 38989.972 39896.219

D.2 ABLATION RESULTS

We present the results of the ablation study (see[5.2)) in Table[3] where each framework variant isolates
one of the two shaping terms—optimism or pessimism. The evaluation protocol is identical to that
used above.

Table 3: Final performance across seeds (mean of last 10% of reward).

Framework Mean Std Min Q1 Median Q3 Max
r+ g 20805.351 1262.095 19298.520 19803.477 20192.833 21880.835 22268.658
r+a¥ 18956.702  688.856 16609.333 18024.520 18355.073 18730.463 19597.413

r+ BT —A 20287.399  430.485 19415.680 20016.793 20266.740 20491.320 21374.680
r+a¥ —A 18147964 485444 17084.573 17907.887 18154.980 18460.967 19498.107
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D.3 HYPERPARAMETERS

Below are the hyperparameters used across baselines and the proposed BEMAS framework. N/A
indicates the item is not used by that method.

Table 4: Hyperparameters used in training.

Hyperparameter IQL PED-DQN BEMAS
Max Steps per Episode T, 100 100 100
Action Space |U| 5 5 5
Conv Filters / Kernel 32/3x%3 32/3x%3 32/3x%3
MLP Hidden Layers 64:64 64:64 64:64
Discount Factor ~y 0.99 0.99 0.99
Learning Rate 1x1074 1x1074 1x1074
Optimizer Adam Adam Adam
Minibatch Size B 32 32 32
Replay Buffer Capacity 2 x 104 2 x 104 2 x 104
Target Update (steps) 5000 5000 5000
Test Interval (steps) 4000 4000 4000
Exploration €,ip, 0.1 0.1 0.1
Exploration Denominator F 5 x 10° 5 x 10° 5 x 10°
Curiosity Smoothing A N/A N/A 0.6
Performance Smoothing A N/A N/A 0.6
Qinit / Ofinal N/A N/A 1.0/0.1
Binit / Bfinal N/A N/A 0.1/1.0
KL Epsilon ey, N/A N/A 1078
Bayesian Stability Enabled No No Yes
Stability Window W N/A N/A 10
Adaptation Rate ¢ N/A N/A 0.95
Optimism Parameter g N/A N/A 0.9

LLM USAGE DISCLOSURE

Large language models were used in this work to aid with polishing the writing and presentation.
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