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Abstract

We introduce the first continuous-time score-
based generative model that leverages fractional
diffusion processes for its underlying dynamics.
Although diffusion models have excelled at cap-
turing data distributions, they still suffer from var-
ious limitations such as slow convergence, mode-
collapse on imbalanced data, and lack of diver-
sity. These issues are partially linked to the use
of light-tailed Brownian motion (BM) with in-
dependent increments. In this paper, we replace
BM with an approximation of its non-Markovian
counterpart, fractional Brownian motion (fBM),
characterized by correlated increments and Hurst
index H ∈ (0, 1), where H = 1/2 recovers
the classical BM. To ensure tractable inference
and learning, we employ a recently popularized
Markov approximation of fBM (MA-fBM) and
derive its reverse time model, resulting in gener-
ative fractional diffusion models (GFDMs). We
characterize the forward dynamics using a contin-
uous reparameterization trick and propose an aug-
mented score matching loss to efficiently learn the
score-function, which is partly known in closed
form, at minimal added cost. The ability to drive
our diffusion model via fBM provides flexibil-
ity and control. H ≤ 1/2 enters the regime of
rough paths whereas H > 1/2 regularizes dif-
fusion paths and invokes long-term memory as
well as a heavy-tailed behaviour (super-diffusion).
The Markov approximation allows added control
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by varying the number of Markov processes lin-
early combined to approximate fBM. Our eval-
uations on real image datasets demonstrate that
GFDM achieves greater pixel-wise diversity and
enhanced image quality, as indicated by a lower
FID, offering a promising alternative to traditional
diffusion models.

1. Introduction
Recent years have witnessed a remarkable leap in generative
diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song and Ermon, 2019), celebrated for their ability
to accurately learn data distributions and generate high-
fidelity samples. These models have made significant impact
across a wide spectrum of application domains, including
the generation of complex molecular structures (Avdeyev
et al., 2023; Hoogeboom et al., 2022) for material (Manica
et al., 2023) or drug discovery (Corso et al., 2022), realistic
audio samples (Copet et al., 2023; Kreuk et al., 2022), 3D
objects (Zeng et al., 2022), medical images (Aversa et al.,
2023) and aerospace (Espinosa and Crowley, 2023).

Despite these successes, modern score-based generative
models (SBGMs) formulated in continuous time (Song
et al., 2021) face limitations due to their reliance on a sim-
plistic driving noise, the Brownian motion (BM) (Brown,
1828; Einstein, 1905; Wiener, 1923). As a light-tailed pro-
cess, using BM often results in slow convergence rates
and susceptibility to mode-collapse, especially with im-
balanced data (Yoon et al., 2023). Additionally, it’s purely
Markovian nature may also make it hard to capture the full
complexity and richness of real-world data. All these at-
tracted a number of attempts for involving different noise
types (Yoon et al., 2023; Ma et al., 2023). In this pa-
per, we propose leveraging fractional noises, particularly
the renowned non-Markovian fractional BM (fBM) (Lévy,
1953; Mandelbrot and Van Ness, 1968) to drive diffusion
models. fBM extends BM to stationary increments with a
more complex dependence structure, i.e., long-range depen-
dence vs. roughness/regularity controlled by a Hurst index,
a measure of "mild" or "wild" randomness (Stinson, 2005).
This all come at the expense of computational challenges

1



Generative Fractional Diffusion Models

0 T

H = 0.15

H = 0.25

H = 0.5

H = 0.75

H = 0.85

X0 XT

X0 XT

dXt = µ(t)Xtdt + g(t)dB̂H
t

dZt =
[
F(t)Zt − G(t)G(t)T∇z log pt(Zt)

]
dt + G(t)dBt

Y0 YT

Y0 YT
dYt = [−γYt − 1T∇y log qt(Yt)]dt + dBt

dYt = −γYtdt + dBt

Known guiding score function

Figure 1: The score function of the augmenting processes is known in closed form and serves as guidance for the unknown
score function. A weighted sum of the correlated augmenting processes approximates a driving fractional diffusion process.

and intractability of inference, mostly stemming from its
non-Markovian nature. To overcome these limitations, we
leverage the recent works in Markov approximations of fBM
(MA-fBM) (Daems et al., 2024; Harms and Stefanovits,
2019) and establish a framework for training continuous-
time score models using an approximate fractional diffusion
process, as well as generating samples from the correspond-
ing tractable reverse process. Notably, our method maintains
the same number of score model evaluations during both
training and data generation, with only a minimal increase
in computational load. Our contributions are:

• We analytically derive the time-reversal of forward dy-
namics driven by Markov-approximate fractional Brown-
ian motion in a way that the dimensionality of the score
matches that of the data.

• We derive an explicit formulae for the marginals of the
conditional forward process via a continuous reparame-
terization trick.

• We introduce a novel augmented score matching loss for
learning the score function in our fractional diffusion
model, which can be minimized by a score model of
data-dimension.

Our experimental evaluation validates our contributions,
showing the gains brought by opting for a correlated-noise
with long-term memory, approximated by a combination
of a number of Markov processes, where the amount of
processes further control the diverstiy.

Differentiation from existing work. Yoon et al. (2023) gen-
eralizes SBGM from an underlying BM to a driving Lévy
process, a stochastic process with independent and station-
ary increments. A driving noise with correlated increments
is not included in the framework of Yoon et al. (2023). Con-
ceptually, every Lévy process is a semimartingale (Protter,
2013) and hence fBM is not a Lévy process. As far as we
know, we are the first to build a SBGM with driving noise
converging to non-Markovian process of infinite quadratic
variation.

The closest work to ours is Tong et al. (2022) construct-
ing a neural-SDE based on correlated noise and using the

neural SDE as a forward process of a SBGM. Our frame-
work with exact reverse time model is based on the integral
representation of fBM derived in Harms and Stefanovits
(2019) and the optimal approximation coefficients of Daems
et al. (2024), while the fractional noise in (Tong et al., 2022)
is sparsely approximated by a linear combination of inde-
pendent standard normal random variables without exact
reverse time model. Moreover, the framework of Tong et al.
(2022) is limited to H > 1/3 and only compatible with the
Euler-Maruyama sample schema (Cohen and Elliott, 2015)
while our framework is up to numerical stability applicable
for any H ∈ (0, 1) and compatible with any suitable SDE
or ODE solver. To the best of our knowledge, we are the
first to build a SBGM in continuous time converging to a
fractional diffusion process.

2. Background
Modeling the distribution transforming process of a SBGM
through stochastic differential equations (SDEs) (Song et al.,
2021) offers a unifying framework to generate data from
an unknown probability distribution. Instead of injecting
a finite number of fixed noise scales via a Markov chain,
infinitely many noise scales tailored to the continuous dy-
namics of the Markov process X = (Xt)t∈[0,T ] are utilized
during the distribution transformation, offering considerable
practical advantages over discrete time diffusion models
(Song et al., 2021). The forward dynamics, transitioning
from a data sample X0 ∼ p0 to a tractable noise sample
XT ∼ pT are specified by a continuous drift function f and
a continuous diffusion coefficient g. These dynamics define
a diffusion process that solves the SDE

dXt = f(Xt, t)dt+ g(t)dBt, X0 ∼ p0 (1)

driven by a multivariate BM B. To sample data from noise,
a reverse time model is needed that defines the backward
transformation from the tractable noise distribution to the
data distribution. Whenever X = (Xt)t∈[0,T ] is a stochastic
process and g is a function on [0, T ], we write Xt = XT−t

for the reverse time model and ḡ(t) = g(T − t) for the
reverse time function. The marginal density of the stochas-
tic process X at time t is denoted by pt throughout this
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work1. Remarkably, an exact reverse time model to the for-
ward model in eq. (1) is given by the backward dynamics
(Stratonovich, 1960; Anderson, 1982; Föllmer, 1986)

dXt =
[
f̄(Xt, t)− ḡ2(t)∇x log p̄t(Xt)

]
dt+ ḡ(t)dBt,

(2)
where the only unknown is the score-function ∇x log pt,
inheriting the intractability from the unknown initial distri-
bution p0. In addition to the stochastic dynamics, the reverse
time model provides deterministic backward dynamics via
an ordinary differential equation (ODE) by the so called
probability flow ODE (PF ODE) (Song et al., 2021)

dx̄t =

[
f̄(x̄t, t)−

1

2
ḡ2(t)∇x log p̄t(x̄t, t)

]
dt. (3)

Stochasticity is only injected into the system through the
random initialization xT ∼ pT , implying a deterministic
and bijective map from noise to data (Song et al., 2021).
Conditioning the forward process on a data sample x0 ∼
p0 results for linear f(·, t) in a tractable Gaussian forward
process with conditional score function ∇x log p0t(x|x0) in
closed form. To approximate the exact reverse time model,
this tractable score function is used to train a time-dependent
score-model Sθ via score matching (Hyvärinen, 2005; Song
et al., 2019). Upon training, any solver for SDEs or ODEs
can be utilized to generate data from noise by simulating
the stochastic or deterministic backward dynamics of the
reverse time model with Sθ ≈ ∇x log p.

Simulation error of the reverse time model. The two main
sources of error when simulating the reverse time model
are the approximation error due to Sθ only approximating
∇x log p, and the discretization error, which arises from
transitioning from continuous time to discrete steps. Sim-
ulating the PF ODE with the Euler method over N ∈ N
equidistant time steps results in a global error of order N−1

(Bayer et al., 2021). In contrast, the expected global error
for simulating the SDE using the Euler-Maruyama method
is of a lower order N− 1

2 , indicating a larger error for the
same number of steps (Cohen and Elliott, 2015; Bayer et al.,
2021). From this perspective it is reasonable that sampling
from the PF ODE requires fewer steps. Yet, the source of
qualitative differences between sampling from the ODE and
the SDE (Song et al., 2021) remains unclear.

A pathwise perspective on sampling. The roughness of
a path can be measured by its Hölder exponent 0 < δ ≤ 1
(Lyons, 1998). For example, BM as the integrator in the
backward dynamics eq. (2) has δ-Hölder continuous paths
for any 0 < δ < 1

2 , whereas the integrator t 7→ t of the
PF ODE eq. (3) can be regarded as a Hölder continuous
path with exponent δ = 1. Therefore, from a pathwise
perspective, we move away from a rough path when we

1See Appendix G for the notational conventions of this work.

sample using the PF ODE. An unexplored topic in SGBMs
is the interpolation between the SDE and the PF ODE in
terms of the Hölder exponent. It remains to be examined
whether there is, to some extent, an optimal degree of Hölder
continuity in between, or if an even rougher path with δ <<
1
2 could yield an advantageous data generator.

The process that naturally arises from this line of thought is
fractional BM with Hurst index H ∈ (0, 1), where almost
all paths are Hölder continuous for any exponent δ < H ,
controlled by H . In terms of roughness, the Hurst index
interpolates between the paths of Brownian-driven SDEs
and those of the underlying integration in PF ODEs, while
also offering the potential for even rougher paths. Motivated
by these observations we define a new SBGM converging
to a fractional diffusion process, generalizing SBGMs from
an underlying BM (Brown, 1828; Einstein, 1905; Wiener,
1923) to a fractional BM (Lévy, 1953; Mandelbrot and
Van Ness, 1968).

3. Fractional driving noise
Before describing the challenges in defining a score-based
generative model with control over the roughness of the
distribution-transforming path, we introduce fractional
Brownian motion (fBM). The literature distinguishes be-
tween “Type I” fBM and “Type II” fBM (Davidson and
Hashimzade, 2009) having stationary and non-stationary
increments, respectively. The type II fBM, also called
Riemann-Liouville fBM, possesses smaller deviations from
its mean, potentially an advantageous property for a driving
noise of a score-based generative model, since large devi-
ations of the sampling process to the data mean can lead
to sample artifacts (Lou and Ermon, 2023). Here and in
the experiments we focus on type II fBM. However, our
theoretical framework generalizes to both types as detailed
in Appendix A. The empirical study of a score-based gen-
erative model with driving noise converging to type I fBM
is dedicated to future work. We begin with the definition of
Riemann-Liouville fBM (Lévy, 1953), a generalization of
BM permitting correlated increments.
Definition 3.1 (Type II Fractional Brownian Motion (Lévy,
1953)). Let B = (Bt)t≥0 be a standard BM and Γ the
Gamma function. The centered Gaussian process

BH
t =

1

Γ(H + 1
2 )

∫ t

0

(t− s)H− 1
2 dBs, t ≥ 0, (4)

uniquely characterized in law by its covariances

1

Γ2(H + 1/2)

∫ min{t,s}

0

((t− u)(s− u))H− 1
2 du, (5)

is called type II fractional Brownian motion (fBM) with
Hurst index H ∈ (0, 1).

BM being the unique continuous and centered Gaussian
process with covariance min{t, s} is recovered for H =
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1/2, since Γ(1) = 1. In comparison to the purely Brownian
setting of H = 1

2 with independent increments (diffusion),
the path of BH becomes more smooth for H > 1

2 due to
positively correlated increments (super-diffusion) and more
rough for H < 1

2 due to negatively correlated increments
(sub-diffusion). These three regimes are reflected in the
Hölder exponent of δ < H for almost all paths.

Generalization challenges. The most challenging part in
defining a score-based generative model driven by fBM is
the derivation of a reverse time model. Due to its covariance
structure, fBM is not a Markov process (Huy, 2003) and the
shift in the roughness of the sample path leads to changes in
its quadratic variation: from t in the purely Brownian (diffu-
sion) regime to zero in the smooth regime, and to infinite in
the rough regime (Cohen and Elliott, 2015). For that reason
fBM is neither a Markov process nor a semimartingale (Bi-
agini et al., 2008) for all H ̸= 1

2 . Hence, we cannot make
use of the Markov property or the Kolmogorov equations
(Fokker-Planck) that are used to derive the reverse time
model of BM-driven SDEs (Stratonovich, 1960; Anderson,
1982; Föllmer, 1986). See Appendix F for a more detailed
illustration of the problem. The existence of a reverse time
model can be proven in the smooth regime of fBM (Darses
and Saussereau, 2007). However, due to the absence of an
explicit score function in Darses and Saussereau (2007) it
does not provide a sufficient structure to train a SBGM.

To overcome this difficulty we follow (Daems et al., 2024;
Harms and Stefanovits, 2019) and define the driving noise of
our generative model by a linear combination of Markovian
semimartingales converging to fBM. The approximation is
based on the exact infinite-dimensional Markovian represen-
tation of fBM given in Theorem A.2.

Definition 3.2 (Markov approximation of fBM (Daems
et al., 2024; Harms and Stefanovits, 2019)). Choose K ∈ N
Ornstein–Uhlenbeck (OU) processes with speeds of mean re-
version γ1, ..., γK and dynamics dY k

t = −γkY
k
t dt+ dBt:

Y k
t =

∫ t

0

e−γk(t−s)dBs, k ∈ N, t ≥ 0, (6)

Given a Hurst index H ∈ (0, 1) and a geometrically spaced
grid γk = rk−n with r > 1 and n = K+1

2 we call the
process

B̂H
t :=

K∑
k=1

ωkY
k
t , H ∈ (0, 1), t ≥ 0, (7)

Markov-approximate fractional Brownian motion (MA-fBM)
with approximation coefficients ω1, ..., ωK ∈ R and denote
by B̂H = (B̂H

1 , ..., B̂H
D ) the corresponding D-dimensional

process where B̂H
i and B̂H

j are independent for i ̸= j
inheriting independence from the underlying standard BMs
Bi and Bj .

While Harms (2019) defines the above approximation co-
efficient aiming for strong convergence rates of high poly-
nomial order in K, we follow the approach of Daems et al.
(2024) to choose the L2(P) optimal approximation coeffi-
cients for a given K.

Proposition 3.3 (Optimal Approximation Coefficients
(Daems et al., 2024)). The optimal approximation coef-
ficients ω = (ω1, ..., ωK) ∈ RK for a given Hurst index
H ∈ (0, 1), a terminal time T > 0 and a fixed geometrically
spaced grid to minimize the L2(P)-error

E(ω) :=

∫ T

0

E
[(

BH
t − B̂H

t

)2]
dt (8)

are given by the closed-form expression Aω = b with

Ai,j :=
2T + e−(γi+γj)T−1

γi+γj

γi + γj
, (9)

bk :=
T

γ
H+1/2
k

P (H + 1/2, γkT )−
H + 1/2

γ
H+3/2
k , γkT

and where P (z, x) = 1
Γ(z)

∫ x

0
tz−1e−tdt is the regularized

lower incomplete gamma function.

MA-fBM serves as the driving noise of our generative
model, replacing BM in the distribution transforming pro-
cess solving eq. (1). See Figure 1 for an illustration of the
underlying processes.

4. A score-based generative model based on
fractional noise

In this section, we define a continuous-time SBGM driven
by MA-fBM. A detailed treatment of the theory can be
found in Appendix A. We begin with the forward dynamics,
transitioning data to noise.

Definition 4.1 (Forward process). Let B̂H be a D-
dimensional MA-fBM with Hurst index H ∈ (0, 1). For
continuous functions µ : [0, T ] → R and g : [0, T ] → R we
define the forward process X = (Xt)t∈[0,T ] of a generative
fractional diffusion model (GFDM) by

dXt = µ(t)Xtdt+ g(t)dB̂H
t , X0 = x0 ∼ p0, (10)

where p0 is the unknown data distribution from which we
aim to sample from.

The forward process converges to a fractional diffusion pro-
cess (Daems et al., 2024), and yields empirically good re-
sults even for a small number of OU processes (Daems
et al., 2024). Considering both the forward process as
well as the OU processes defining the driving noise B̂H ,
we have for every data dimension an augmented vector
of correlated processes (X,Y 1, . . . , Y K), driven by the
same BM, approximating the time-correlated behavior of
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a one-dimensional forward process driven by fBM. We de-
note the stacked process of the D augmented vectors as
Z ≡ (X,Y1, . . . ,YK) = (Zt)t∈[0,T ] and refer to the re-
sulting D(K + 1)-dimensional process as the augmented
forward process. Rewriting the dynamics of the forward
process we observe that the augmented forward process Z
solves a linear SDE

dZt = F(t)Ztdt+G(t)dBt, t ∈ [0, T ], (11)

where F and G are the matrix valued functions defined
in Appendix A.2. Hence, Z|x0, the augmented forward
process conditioned on a data sample x0 ∼ p0, is a linear
transformation of BM. Thus Z|x0 is a Gaussian process
and so is X|x0 (Särkkä and Solin, 2019). To efficiently
sample for every t ∈ (0, T ] from the conditional augmented
forward distribution during training, we characterize its
marginal statistics.

Derivation of marginal statistics. The marginal mean
E[Xt|x0] = x0 exp(

∫ t

0
µ(s)ds) of the conditional forward

process is not affected by changing the driving noise to
MA-fBM. Since the integral with respect to BM has zero
mean, the mean vector of the augmenting OU processes is
zero. Additionally, Itô isometry provides a complete char-
acterization of their covariances. See Appendix A.2 for a
detailed derivation of the marginal statistics of the augment-
ing processes. The missing components in the conditional
covariance matrix Σt of the augmented forward process are
the conditional marginal variance of the forward process
and the conditional marginal correlation between the for-
ward process and the augmenting processes. In compliance
with the reparameterization trick Xt =

√
ᾱtx0+

√
1− ᾱtϵ,

ϵ ∼ N (0, Id) used in discrete time (Ho et al., 2020), we
derive by reparameteriziation an explicit formula for the
marginal variance of the conditional forward process. This
generalizes the explicit formula for the perturbation kernel
p0t(x|x0) = N (x; c(t)x0, c

2(t)σ2(t)ID) given in Karras
et al. (2022).

Proposition 4.2 (Continuous Reparameterization Trick).
The forward process X of GFDM conditioned on x0 ∈ Rd

admits the continuous reparameterization

Xt = c(t)

(
x0 +

∫ t

0

α(t, s)dBs

)
(12)

such that Xt ∼ N (c(t)x0, c
2(t)σ2(t)Id) with c(t) =

exp
(∫ t

0
µ(s)ds

)
and σ2(t) =

∫ t

0
α2(t, s)ds where α is

given by

α(t, s) =

K∑
k=1

ωk

[
g(s)

c(s)
− γk

∫ t

s

fk(u, s)du

]
. (13)

Sketch of Proof. Reparameterization of the forward dynam-
ics in Equation (10) and the Stochastic Fubini Theorem

yields the Gaussian process Xt = c(t)(x0+
∫ t

0
α(t, s)dBs)

with variance V [Xt] = c2(t)
∫ t

0
α2(t, s)ds by Itô isometry.

See Proposition A.3 for the proof.

For K = 1, γ1 = 0 and ω1 = 1 we retrieve by the above
definition of α the perturbation kernel of the purely Brown-
ian setting given in Karras et al. (2022, Equation 12). When,
depending on the choice of forward dynamics,

∫ t

0
α(t, s)ds

is not accessible in closed form, Σt can be described by
an ODE and solved numerically (Särkkä and Solin, 2019)
as described in Appendix B. Thus our method admits any
choice of forward dynamics in terms of µ and g.

Explicit fractional forward dynamics. Although our
framework is not bound to any specific dynamics, this
work’s empirical evaluation focuses on Fractional Variance
Exploding (FVE) dynamics given by

dXt = σmin

(
σmax

σmin

)t√
2 log

σmax

σmin
dB̂H

t , (14)

with (σmin, σmax) = (0.01, 50) and Fractional Variance
Preserving (FVP) dynamics given by

dXt = −1

2
β(t)Xtdt+

√
β(t)dB̂H

t , (15)

with β(t) = β(t) = β̄min + t
(
β̄max − β̄min

)
and

(β̄min, β̄max) = (0.1, 20) (Song et al., 2021). Leverag-
ing the continuous reparameterization trick we derive in
Appendix B the conditional marginal covariance matrix of
FVE in closed form. The integral

∫ t

s
fk(u, s)du in the set-

ting of FVP is to the best of our knowledge not accessible
in closed form and we deploy a numerical ODE solver to
estimate the same quantity corresponding to FVP dynam-
ics. See Appendix B for details on the computation of the
marginal variances and Figure 4 for an illustration of the
resulting variance schedules.

The reverse time model. We observe that the augmented
forward dynamics of GFDM are already encompassed in the
general framework presented in Song et al. (2021, Appendix
A), although they differ from the Variance Exploding (VE),
Variance Preserving (VP), and sub-VP dynamics discussed
therein. To simplify notation, we use pt here to denote the
marginal density of both Zt and Xt. The specific density
referred to will be clear from the context. By the significant
results of (Stratonovich, 1960; Anderson, 1982; Föllmer,
1986), the reverse time model of GFDM is given by the
backward dynamics

dZt =
[
F(t)Zt −G(t)G(t)T∇z log pt(Zt)

]
dt+G(t)dBt.

(16)
A direct application of (Song et al., 2021) would require
to train a score-model with input and output dimension of
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D(K + 1). However, we show that a model with dimen-
sion D is sufficient to learn the augmented score function,
informed by the available score of the augmented processes.
We further show that our method requires the same number
of score model evaluations during training and data genera-
tion, incurring only minimal increase of the computational
load, due to the simulation of the additional processes dur-
ing training and sampling without increasing the necessary
score model evaluation.

Augmented score matching. We condition the score func-
tion ∇z log pt on a data sample x0 ∼ p0 and additionally
on the states of the stacked vector Y[K]

t := (Y1
t , ...,Y

K
t )

of augmenting processes. To train our time-dependent score-
model sθ we propose the augmented score matching loss

L(θ) := Et

{
E
(X0,Y

[K]
t )

E
(Xt|Y

[K]
t ,X0)

[
Lθ

(
Xt,Y

[K]
t ,X0

)]}
(17)

where Lθ

(
Xt,Y

[K]
t ,X0

)
is given by

∥sθ(Xt −
∑
k

ηk
t Y

k
t , t)−∇x log p0t(Xt|Y[K]

t ,X0)∥22. (18)

The weights η1t , ..., η
K
t arise from conditioning Zt on Y

[K]
t

and the time points t are uniformly sampled from U [0, T ].
We show in the following that the optimal sθ w.r.t. the aug-
mented score matching loss is the L2-optimal approximation
of the score function of our reverse time model.

Proposition 4.3 (Optimal Score-Model). Assume that sθ
is optimal w.r.t. the augmented score matching loss L. The
score-model defined in Proposition A.4 yields the optimal
L2(P) approximation of ∇z log pt(Zt) via

Sθ(Zt, t) +∇z log qt(Y
[K]
t ) ≈ ∇z log pt(Zt). (19)

Sketch of Proof. Using the relation ∇x log p0t =
−ηkt ∇yk log p0t and the independence of X0 and
Y

[K]
t yields the claim. See Appendix A.3 for the proof.

Remark 4.4. We show here that it suffices to approximate a
D-dimensional score to reverse the D(K + 1)-dimensional
MA-fBM driven SDE with unknown starting distribution.

Sampling from reverse time model. Once we trained our
score model Sθ via augmented score matching, we simulate
the reverse time model backward in time and sample from
the reverse time model via the SDE

dZt = {F(t)Zt −G(t)G(t)T [Sθ(Zt, t) +∇z log qt(Y
[K]
t )]}dt

+G(t)dBt, (20)

or the corresponding augmented probability flow ODE (PF
ODE) (Song et al., 2021) by

dzt = {F(t)zt−
1

2
G(t)G(t)T [Sθ(zt, t)+∇z log qt(y

[K]
t )]}dt

(21)

where we initialize in both cases the reverse dynamics with
the centered (non-isotropic) Gaussian Z0 with covariance
matrix ΣT . To traverse backward from noise to data, we
may deploy any suitable SDE or ODE solver. The PF ODE
enables in addition negative log-likelihoods (NLLs) estima-
tion of test data under the learned density (Song et al., 2021).
See Appendix E for the computation details of NLLs.

5. Experiments
We conduct two rounds of experiments. First, we train a
on CIFAR and MNIST without using an exponential mov-
ing average (EMA) (Song et al., 2021) to ensure the fairest
possible comparison between different SDE dynamics and
avoid favoring one dynamic over another. Secondly we use
the most promising configurations to train with EMA on
CIFAR to achieve good qualitative results. We evaluate
GFDM on three different axis: image quality, test distri-
bution coverage and pixel-wise diversity of the generated
data. To measure the quality of generated images we use the
two most common metrics: the Frechét-Inception Distance
(FID) (Heusel et al., 2017) and the Inception Score (IS) (Sal-
imans et al., 2016). To estimate the log-likelihood of test
data under the learned density we calculate NLLs according
to Appendix E. The pixel-wise diversity is measured by the
pixel Vendi Score VSp (Friedman and Dieng, 2022) and the
minimal VSp per class denoted by VSmin

p . To clarify our
terminology, we refer to the (visual) effect of a higher VSp

or VSmin
p as “pixel-wise diversity” to distinguish it from

the general term “diversity”, thus trying to preventing a mis-
understanding or mix-up. In line with (Song et al., 2021) we
observe that choosing a good ϵ > 0 for the training and sam-
pling time interval [ϵ, T ] for the forward process makes a
difference for the measured scores. See Appendix C for the
implementation details and the full quantitative results. We
begin with the empirical evaluation of how the augmenting
processes affect performance.

Effect of augmentation on MNIST. We fix H = 0.5
throughout this experiment such that the purely BM is ap-
proximated instead of fBM by the weighted sum of the aug-
menting processes. We observe an increase of the pixel-wise
diversity for both FVE and FVP dynamics, with increasing
K. In Table 1 we see that the minimal pixel-wise diversity
observed per class VSmin

p goes from 6.46 to 13.49 for FVE
and from 6.25 to 9.23 for FVP. In terms of quality, we see
for FVE that K ∈ {2, 3} yields better FID compared to VE
and we observe a slight quality degradation for FVP and
increasing K. To summarize, the number of augmenting
processes enhances pixel-wise diversity on MNIST. How-
ever, this comes at the cost of a reduced likelihood of test
data under the learned density, indicated by a higher NLLs
for more augmenting processes.

Effect of varying Hurst index on MNIST. By varying the
Hurst index we observe in Table 2a that H > 0.5 with FVP

6
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FVE(H = 0.5) FID ↓ NLLs Test ↓ VSp ↑ VSmin
p ↑

V E (retrained) 10.82 2.73 24.20 6.46
K = 1 10.30 2.55 24.22 6.38
K = 2 9.89 3.03 24.15 6.52
K = 3 9.74 2.93 24.42 6.92
K = 4 11.25 3.10 24.54 9.81
K = 5 25.51 3.94 23.08 13.49

FVP(H = 0.5) FID ↓ NLLs Test ↓ VSp ↑ VSmin
p ↑

V P (retrained) 1.44 2.38 23.64 6.25
K = 1 2.81 3.90 23.69 6.17
K = 2 2.92 4.57 23.63 6.35
K = 3 3.51 7.02 23.78 6.35
K = 4 1.86 5.71 24.50 6.95
K = 5 4.89 7.09 24.56 9.23

Table 1: Effects of augmenting processes to FVE and FVP
dynamics trained on the MNIST dataset.

dynamics clearly performs better in terms of FID achieving
a SOTA FID of 0.72 for FVP with K = 3 and H = 0.9.
We conjecture that this is due to the long-term memory
regime, smoothing the sample paths, making the dynamics
easier to learn. The augmenting processes increase the
pixel-wise diversity in terms of VSp and VSmin

p as well
for H ∈ {0.9, 0.7} compared to the original VP dynamics,
again at the cost of a higher NLLs for more augmenting
processes. We conjecture that the increase in VSmin

p is
a consequence of the heavy-tailed behaviour, which may
further enhance robustness to data imbalance, similar to the
findings of Yoon et al. (2023).

Effect of augmentation on CIFAR10. For FVE dynamics
we empirically observe in Table 6 that K = 1 with H = 0.1
and K = 2 with H = 0.9 slightly increases the performance
in terms of FID compared to the original VE dynmaics. For
FVP dynamics we observe better performance in terms of
quality and pixel-wise diversity across all considered Hurst
indices H ∈ {0.9, 0.7, 0.1} in Table 2b.

Qualitative results on CIFAR10. Training with EMA on
CIFAR10 according to Appendix C we observe a slightly
higher pixel-wise diversity score across all H comparing
FVP to the original VP dynamics in Table 3a. For FVE the
best pixel-wise diversity scores are achieved for K = 1 and
H = 0.7. In line with out results on the MNIST dataset we
achieve the best quality results in the sub-diffusion regime
of fBM with a FID of 5.52 for H = 0.9 and K = 2. Re-
markably, when we sample with the PF ODE for FVP dy-
namics GFDM achieves VSp = 4.55 and a VSmin

p = 3.10
for H = 0.7 and K = 3. The quantitatively superior VSp

index is reflected also in the perceptual quality in Figure 2.

6. Related work
Diffusion models in continuous time. The seminal work of
Song et al. (2021) offers a unifying framework modeling the
distribution transforming process by a stochastic processes
in continuous time with exact reverse time model. Exten-
sive research has been carried out to examine (Karras et al.,

FVP H = 0.9 H = 0.7

FID ↓ NLLs Test ↓ VSp ↑ VSmin
p ↑ FID ↓ NLLs Test ↓ VSp ↑ VSmin

p ↑

K = 2 1.93 2.24 24.00 6.21 2.30 2.95 23.82 6.22
K = 3 0.72 4.58 24.18 6.53 2.67 5.77 23.96 6.40
K = 4 1.22 4.09 24.76 7.31 0.86 4.85 24.39 6.71
K = 5 2.17 5.38 25.15 8.67 1.36 5.13 24.63 7.89

(a)
FVP dynamics FID ↓ IS ↑ VSp ↑ VSmin

p ↑

VP (retrained) 17.29 8.74 2.24 1.8
K = 3, H = 0.9 12.63 8.34 3.23 2.42
K = 3, H = 0.7 8.72 8.86 3.11 2.32
K = 3, H = 0.5 9.94 8.87 3.03 2.24
K = 3, H = 0.1 9.51 8.54 3.01 2.27

(b)

Table 2: (a) Quantitative results for FVP dynamics in the
smooth sub-diffusion regime H > 0.5 on the MNIST
dataset. (b) Quantitative results for FVP dynamics and
varying Hurst index on CIFAR10.

Euler-Maruyama SDE FID ↓ IS ↑ NLLs Test ↓ VSp ↑ VSmin
p ↑

VE (retrained) 6.70 9.71 3.75 3.98 2.36
VP (retrained) 11.74 9.13 3.56 2.50 1.93
FVE(K = 1, H = 0.7) 7.93 8.91 3.78 4.06 2.4
FVP(K = 2, H = 0.7) 6.51 9.46 3.37 3.00 2.22
FVP(K = 2, H = 0.9) 5.52 9.50 3.43 3.07 2.21
FVP(K = 3, H = 0.7) 7.10 9.07 3.91 3.18 2.39

(a) Sampled from the SDE.
Euler PF ODE FID ↓ IS ↑ VSp ↑ VSmin

p ↑

VE (retrained) 7.23 9.39 2.97 2.32
VP (retrained) 11.10 8.98 2.7 2.09
FVE(K = 1, H = 0.7) 8.04 8.77 3.15 2.4
FVP(K = 2, H = 0.7) 17.74 9.51 3.89 2.60
FVP(K = 2, H = 0.9) 16.38 9.36 4.10 2.79
FVP(K = 3, H = 0.7) 26.76 9.51 4.55 3.10

(b) Sampled from the PF ODE.

Table 3: Quantitative results on CIFAR10 for different Hurst
indices compared to the purely Brownian dynamics.

2022; Chen et al., 2023; Singhal et al., 2023) and extend
(Lou and Ermon, 2023; Jing et al., 2022; Kim et al., 2022;
Huang et al., 2022; Bunne et al., 2023; Song et al., 2023) the
continuous time view on generative models through the lens
of SDEs, including deterministic corruptions (Daras et al.,
2023) and blurring diffusion (Hoogeboom and Salimans,
2023). While critic on this view question the usefulness of
the theoretical superstructure (Bansal et al., 2023), others
extend in line with our work the theoretical framework to
new types of underlying diffusion processes (Rissanen et al.,
2023). Conceptually similar to our work,Yoon et al. (2023)
generalizes the score-based generative model from an under-
lying Brownian motion to a driving Lévy process, thereby
dropping the Gaussian assumptions on the increments. In
contrast to our work, the framework of Yoon et al. (2023)
does not include correlated increments. Importantly, every
Lévy process is a semimartingale, which means that fBM is
not a Lévy process.

Fractional noises in machine learning. Recently, Hayashi
and Nakagawa (2022) considered neural-SDEs driven by

7
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fractional noise. Yet they do not study diffusion models. The
closest work to our work, Tong et al. (2022) approximated
the type-II fBM with sparse Gaussian processes constructing
a neural SDE as a forward process of a score-based genera-
tive model, without exact reverse time model. Unfortunately,
they are also limited to Euler-Maruyama solvers and to the
case of H > 1/3, while our framework is up to numerical
stability applicable for any H ∈ (0, 1) and compatible with
any suitable SDE or ODE solver. Daems et al. (Daems
et al., 2024), who inspired our Markov-approximate noise,
includes a more elaborate discussion as well as a variational
inference framework for MA-fBM.

Rough path theory. The pathwise analysis of SDEs driven
by processes with a Hölder exponent less than 1/2, includ-
ing fBM for H < 1/2 and BM, is encompassed by rough
path theory (Lyons, 1998). Rough path theory is applied in
machine learning (i) to derive stability bounds for the trained
weights of a residual neural network (Bayer et al., 2023), (ii)
for rough control of neural ODEs (Kidger, 2021), and (iii)
to model long time series behavior via neural rough differen-
tial equations (Liao et al., 2019; Morrill et al., 2021). In fi-
nance the famous Black-Scholes model (Black and Scholes,
1973) is driven by BM, while more recent continuous-time
models employ fractional noise to model price processes
(Czichowsky et al., 2018; Guasoni et al., 2019) or rough
volatility (Bayer et al., 2016; Gatheral et al., 2022).

7. Conclusion
In this work, we determined the extent to which the con-
tinuous time framework of score-based generative models
can be generalized to an underlying fBM, introducing a
novel generative model driven by MA-fBM with control
over the roughness of distribution transformation paths via
augmenting processes. We show that despite the increased
dimensionality of the forward process, it is sufficient to
learn a score model with the dimensionality of the data
distribution. The resulting score function is guided by the
marginal score of the augmenting processes, achieving bet-
ter performance in terms of pixel-wise diversity measured
by the vendi score and a lower FID, indicating better image
quality.

Limitations & future work. Our work offers a new frame-
work for using fractional noises within diffusion models.
With that, several practical and theoretical issues remain
open. Our future work will aim to empirically and theoret-
ically characterize the optimal degree of correlated noise
during the training and sampling of continuous time SBGMs.
It also remains open to examine the extent to which our re-
verse time model converges to the backward SDE driven
by time-reversed fBM. An interesting potential application
would be to leverage the augmented probability flow ODE
of GFDM directly to train a one-step diffusion model or to
use GFDM to generate rough time-series data.

(a) Purely Brownian VE samples.

(b) Positively correlated regime of MA-fBM.

Figure 2: (a) Randomly chosen images generated by the
PF ODE corresponding to the purely Brownian VE dynam-
ics with a pixel diversity of VSp = 2.97. (b) randomly
chosen images generated by our GFDM PF ODE in the
sub-diffusion regime of H = 0.7 with K = 3 augmenting
processes and a higher pixel-wise diversity of VSp = 4.55
confirmed perceptually.
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A. The mathematical framework of generative fractional diffusion models
In this section we provide the mathematical details of the score-based generative model defined in the main paper. The
driving noise of the underlying stochastic process is based on the affine representation of fractional processes from Harms
and Stefanovits (2019) and further simplified by the closed-form expression to determine optimal approximation coefficients
of Daems et al. (2024).

A.1. A Markovian representation of fractional Brownian motion

We begin with the definition of type I fractional Brownian motion, defined on the whole real line, possessing correlated
increments that are in contrast to type II fractional Brownian motion stationary.

Definition A.1 (Type I Fractional Brownian Motion (Mandelbrot and Van Ness, 1968)). Let (Ω,F ,P) be a complete
probability space equipped with a complete and right continuous filtration {Ft} and Γ the Gamma function. For two
standard independent {Ft}-Brownian motions (BMs) B̃ and B the centered Gaussian process WH = (WH

t )t∈R with

WH
t :=

1

Γ(H + 1
2 )

∫ 0

−∞
((t− s)H− 1

2 − (−s)H− 1
2 )dB̃s +

1

Γ(H + 1
2 )

∫ t

0

(t− s)H− 1
2 dBs (22)

uniquely characterized in law by its covariances

E
[
WH

t WH
s

]
=

1

2

[
t2H + s2H − (t− s)2H

]
, t ≥ s > 0 (23)

is called type I fractional Brownian motion (fBM) with Hurst index H ∈ (0, 1).

Type II fBM from the main paper is retrieved by setting the additionally defined BM B̃ on the negative real line to zero.
Therefore, the difference to type II fBM is the stochastic integral w.r.t. B̃ that yields stationary increments and a non trivial
distribution at t = 0. For H = 1

2 , the process is a BM and has thus independent increments. For H ∈ (0, 1) \ { 1
2}, the

process possesses correlated increments and, compared to BM, smoother paths for H > 1
2 due to positively correlated

increments (super-diffusion) and rougher paths for H < 1
2 due to negatively correlated increments (sub-diffusion). These

three regimes reflect for type I fBM in the same change of quadratic variation from t (Cohen and Elliott, 2015) to zero
quadratic variation in the smooth regime and to infinite quadratic variation in the rough regime. To prepare the approximation
of the non-Markovian and non-semimartingale fBM (Biagini et al., 2008) via Markovian semimartingales, define for every
γ ∈ (0,∞) the Ornstein-Uhlenbeck process Y γ given by

Y γ
t := Y γ

0 e−tγ +

∫ t

0

e−γ(t−s)dBs, t ≥ 0, Y0 :=

∫ 0

−∞
esγdWs, (24)

with speed of mean reversion γ and non trivial starting value in contrast to the OU processes defined in eq. (6) of the main
paper. By Itô’s product rule (Cohen and Elliott, 2015), the process Y γ solves the same SDE

dY γ
t = −γY γ

t dt+ dWt, Y0 =

∫ 0

−∞
esγdWs, (25)

with different starting value. According to Harms and Stefanovits (2019) we represent fBm by an integral over the predefined
family of Ornstein-Uhlenbeck processes.

Theorem A.2 (Markovian Representation of fBM (Daems et al., 2024; Harms and Stefanovits, 2019)). The non-Markovian
process WH permits the infinite-dimensional Markovian representation

WH
t =

{∫∞
0

(Y γ
t − Y γ

0 ) ν1(γ)dγ, H ≤ 1
2

−
∫∞
0

∂γ (Y
γ
t − Y γ

0 ) ν2(γ)dγ, H > 1
2

(26)

where ν1(γ) = γ−(H+1/2)/Γ(H + 1/2)Γ(1/2−H) and ν2(γ) = γ−(H−1/2)/(Γ(H + 1/2)Γ(3/2−H)).

Note that we follow Daems et al. (2024) in replacing the process Zγ
t := Zγ

0 e
−tγ +

∫ t

0
e−(t−s)γY γ

s ds from the original
theorem throughout this work by Zγ

t = −∂γY
γ
t + (∂γY

γ
0 + Zγ

0 ) e
−tγ . This is justified by Harms and Stefanovits (2019,
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Remark 3.5) and simplifies for H > 1
2 the approximation of fBM and the definition of our generative model, since we

only have to reverse the Y γ processes instead of the pairs (Y γ , Zγ). For Y γ
0 = 0 eq. (26) yields an infinite-dimensional

Markovian representation of type II fBM (Daems et al., 2024). The MA-fBM from the main paper becomes for type I fBM

B̂H
t =

K∑
k=1

ωk

(
Y k
t − Y k

0

)
, H ∈ (0, 1), t ≥ 0 (27)

with non trivial Y0 = (Y 1
0 , ..., Y

1
0 ) that is a centered multivariate Gaussian with covariances E

[
Y k
0 Y l

0

]
= 1/(γk + γl)

(Daems et al., 2024). Proposition 3.3 holds true for type I fBM as well with optimal approximation coefficients given in
Daems et al. (2024, Proposition 5). For more details on the properties and distinction of type I and type II fBM we refer the
reader to Daems et al. (2024).

A.2. The forward model

We define in the following a score-based generative model (SBGM) converging to a fractional diffusion process driven
by type I fBM. For the remainder of Appendix A we assume Y k

0 =
∫ 0

−∞ esγkds for all 1 ≤ k ≤ K where the setting
from the main paper with type II fBM is recovered by choosing Y k

0 = 0 instead. Let B̂H be a d-dimensional MA-fBM
with Hurst index H ∈ (0, 1). For continuous functions µ : [0, T ] → R and σ : [0, T ] → R we define the forward process
X = (Xt)t∈[0,T ] by

dXt = µ(t)Xtdt+ g(t)dB̂H
t , X0 = x0 ∼ p0, t ∈ [0, T ] (28)

where p0 is an unknown data distribution from which we aim to sample from. Using eq. (25) we note

dB̂H
t = −

K∑
i=1

ωkγkY
k
t dt+

K∑
k

ωkdBt, (29)

where B = (B1, ..., Bd) is a multivariate BM. With ω̄ :=
∑K

k=1 ωk we rewrite the dynamics of the forward process as

dXt =

[
µ(t)Xt − g(t)

K∑
k=1

ωkγkY
k
t

]
dt+ ω̄g(t)dBt, t ∈ [0, T ], (30)

Taking into account the dynamics of the OU processes, we define the augmented forward process Z = (Zt)t∈[0,T ] by

Zt = (Xt,1, Y
1
t,1, ..., Y

K
t,1, Xt,2, Y

1
t,2, ..., Y

K
t,2, ..., ..., ..., Xt,D, Y 1

t,D, ...Y K
t,D) ∈ RD(K+1) (31)

following the dynamics
dZt = F(t)Ztdt+G(t)dBt (32)

with F(t) = diag(D(t), ...,D(t)) ∈ Rd(K+1),d(K+1),

D(t) =

(
µ(t) −g(t)ω1γ1 . . . −g(t)ωKγK
0K −diag(γ1, ..., γK)

)
∈ RK+1,K+1 (33)

and
G(t) =

(
ω̄g(t)Id Id . . . Id

)T ∈ Rd(K+1),d (34)

The augmented forward process Z conditioned on y1
0, ...,y

K
0 and a data sample x0 ∼ p0 is a linear transformation of BM

and hence a Gaussian process and so is X (Särkkä and Solin, 2019). Since the integral w.r.t BM has zero mean, the mean
vector of the augmenting processes is E

[
Yk

t

]
= 0d for all 1 ≤ k ≤ K and the mean of the conditional forward process is

the solution of the ODE
∂tE [Xt|x0] = µ(t)E [Xt|x0] (35)

and hence the marginal mean

E [Xt|x0] = c(t)x0 with c(t) = exp

(∫ t

0

µ(s)ds

)
(36)
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is not affected by changing the driving noise to MA-fBM. The marginal covariance matrix Σt of the conditional augmented
forward process can be approximated numerically by solving an ODE, see Appendix B for details. In addition we present
a continuous reparameterization of the forward process, resulting for some forward dynamics in a closed form solution
of the marginal covariance matrix. Our result generalizes the explicit formula for the perturbation kernel p0t(x|x0) =
N (x; c(t)x0, c

2(t)σ2(t)Id) given in (Karras et al., 2022).
Proposition A.3 (Continuous Reparameterization Trick). Let x0 be a fixed realisation drawn from p0. The forward process
X = (Xt)t∈[0,T ] conditioned on x0 admits the continuous reparameterization

Xt = c(t)

(
x0 +

∫ t

0

α(t, s)dBs

)
+ c(t)

K∑
k=1

ωkγk

∫ t

0

g(s)

c(s)
e−sγkdsYk

0︸ ︷︷ ︸
=0 for type II fBM since Yk

0=0

(37)

with c(t) = exp
(∫ t

0
µ(s)ds

)
and

α(t, s) = −
K∑

k=1

ωkγk

∫ t

s

g(u)

c(u)
e−γk(u−s)du+ ω̄

g(s)

c(s)
(38)

such that Xt|x0 ∼ N
(
c(t)x0,

[
c2(t)σ2(t) + σ2

K(t)
]
Id
)

is a Gaussian random vector for all t ∈ (0, T ] with

σ2(t) =

∫ t

0

α2(t, s)ds (39)

and

σ2
K = c2(t)

K∑
k=1

γk
2

[
ωk

∫ t

0

g(s)

c(u)
du

]2
(40)

+ 2c2(t)
∑
k<l

ωkωlγkγl
γk + γl

∫ t

0

g(s)

c(s)
e−sγkds

∫ t

0

g(s)

c(s)
e−sγlds (41)

vanishing for an underlying type II fBM.

Proof. By continuity, the functions µ and σ are bounded. Moreover, the processes Y 1
j , ..., Y

K
j posses continuous, hence

bounded, paths and thus∫ t

0

|µ(u)|du < ∞,

∫ t

0

σ2(u)du < ∞ and
∫ t

0

|
K∑
k

ωkγkY
k
t |du < ∞ P− a.s., (42)

where the last integral is understood entrywise. Hence, by Theorem 16.6.1 in (Cohen and Elliott, 2015), the unique solution
of the SDE eq. (30) is given explicitly as

Xt = c(t)

(
x0 −

∫ t

0

g(u)

c(u)

[
K∑

k=1

ωkγkY
k
u

]
du+ ω̄

∫ t

0

g(u)

c(u)
dBu

)
, (43)

with c(t) = exp
(∫ t

0
µ(s)ds

)
. Define

J
(
Y

[K]
0 , t

)
:=

K∑
k=1

ωkγk

∫ t

0

g(s)

c(s)
e−sγkdsYk

0 (44)

and by the definition of Y k
j in (24) we calculate using the Stochastic Fubini Theorem (Harms and Stefanovits, 2019)∫ t

0

g(u)

c(u)

[
K∑

k=1

ωkγkY
k
u

]
du =

K∑
k=1

ωkγk

∫ t

0

∫ u

0

g(u)

c(u)
e−γk(u−s)dBsdu+ J(Y

[K]
0 , t) (45)

=

∫ t

0

K∑
k=1

ωkγk

∫ t

s

g(u)

c(u)
e−γk(u−s)dudBs + J

(
Y

[K]
0 , t

)
(46)
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and hence

Xt = c(t)

(
x0 −

∫ t

0

g(u)

c(u)

[
K∑

k=1

ωkγkY
k
u

]
du+ ω̄

∫ t

0

g(u)

c(u)
dBu

)
(47)

= c(t)

(
x0 −

∫ t

0

K∑
k=1

ωkγk

∫ t

s

g(u)

c(u)
e−γk(u−s)dudBs + ω̄

∫ t

0

g(u)

c(u)
dBu − J

(
Y

[K]
0 , t

))

= c(t)

(
x0 +

∫ t

0

[
−

K∑
k=1

ωkγk

∫ t

s

g(u)

c(u)
e−γk(u−s)du+ ω̄

g(s)

c(s)

]
dBs − J

(
Y

[K]
0 , t

))

= c(t)x0 + c(t)

∫ t

0

∫ t

0

α(t, s)dBs − c(t)J
(
Y

[K]
0 , t

)
(48)

with

α(t, s) = −
K∑

k=1

ωkγk

∫ t

s

g(u)

c(u)
e−γk(u−s)du+ ω̄

g(s)

c(s)
. (49)

Since α(t, ·) is continuous for every fixed t ∈ [0, T ] we have
∫ t

0
α2(t, s)ds < ∞. Using that the integral of a bounded

deterministic function w.r.t. Brownian motion is a Gaussian process we have by Itô’s isometry∫ t

0

α(t, s)dBs ∼ N
(
0d, σ

2(t)Id
)

with σ2(t) =

∫ t

0

α2(t, s)ds. (50)

Therefore, conditional on x0, the random vector Xt is Gaussian with mean vector

mx
t = c(t)x0 + E

[
J(Y

[K]
0 )

]
︸ ︷︷ ︸

=0

= x0 exp

(∫ t

0

µ(s)ds

)
. (51)

Moreover, B̃j and Bj corresponding to the entries of B̃ = (B̃1, ..., B̃d) and B = (B1, ..., Bd) are independent by
Definition A.1 resulting in the entrywise variance

Σx
t,j,j = c2(t)

∫ t

0

α2(t, s)ds+ σ2
K(t) (52)

with

σ2
K(t) = V

[
J(Y

[K]
0 )j

]
= c2(t)

K∑
k=1

γk
2

[
ωk

∫ t

0

g(s)

c(u)
du

]2
(53)

+ 2c2(t)
∑
k<l

ωkωlγkγl
γk + γl

∫ t

0

g(s)

c(s)
e−sγkds

∫ t

0

g(s)

c(s)
e−sγlds, (54)

where we used again Itô’s isometry to calculate

E
[
Y k
0,jY

l
0,j

]
= E

[∫ 0

−∞
eγksdB̃s,j

∫ 0

−∞
eγlsdB̃s,j

]
=

∫ 0

−∞
e(γk+γl)sds =

1

γk + γl
. (55)

Since the entries of B are independent, we find the covariance matrix

Σx
t =

[
c2(t)σ2(t) + σ2

K(t)
]
Id. (56)

The preceding proposition generalizes the “reparameterization trick”2 from discrete time to continuous time in the sense that

Xtn =
√
ᾱtnx0 +

√
1− ᾱtnϵ, ϵ ∼ N (0d, Id) (57)

2See https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ for the derivation in discrete
time.
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used in discrete time (Ho et al., 2020) with time steps 0 = t0 < ... < tN = T is replaced by our continuous time
reparameterization

Xt = c(t)

(
x0 +

∫ t

0

α(t, s)dBs

)
+ c(t)

K∑
k=1

ωkγk

∫ t

0

g(s)

c(s)
e−sγkdsYk

0 , (58)

enabling to directly sample Xt|x0 ∼ N (c(t)x0 +
[
c2(t)σ2(t) + σ2

K(t)
]
ID) for a given data sample x0 and time point

t ∈ (0, T ], in case that σ2(t) and σ2
K(t) have a closed form solution. For a complete characterization of the marginal

covariance matrix Σt of the conditioned augmented forward process we calculate by Itô isometry with X = Xj and
Y l = Y l

j for all 1 ≤ j ≤ D, 1 ≤ l ≤ K and any t ∈ [0, T ]

E
[
XtY

l
t

]
= c(t)

∫ t

0

α(t, s)e−γk(t−s)ds+ c(t)

K∑
l=1

ωkγk
γk + γl

e−γlt

∫ t

0

g(s)

c(s)
e−sγkds (59)

and

E
[
Y k
t Y l

t

]
=

e−(γk+γl)s

γk + γl
+

1− e−(γk+γl)t

γk + γl
=

1

γk + γl
(60)

reducing for type II fBM to

E
[
XtY

l
t

]
= c(t)

∫ t

0

α(t, s)e−γk(t−s)ds and E
[
Y k
t Y l

t

]
=

1− e−(γk+γl)t

γk + γl
. (61)

We denote in the following the stacked vector of the augmenting processes by

Y
[K]
t = (Y 1

t,1, Y
2
t,1, ..., Y

K
t,1, Y

1
t,2, Y

2
t,2, ..., Y

K
t,2, ...., Y

1
t,D, Y 2

t,D, ..., Y K
t,D) ∈ RD(K+1). (62)

The random vector Y[K]
t is a centered Gaussian process with covariance matrix

Λt = diag(Σy
t , ...,Σ

y
t ) ∈ RD·K,D·K , Σy

t ∈ RK,K , [Σy
t ]k,l = E

[
Y k
t Y l

t

]
(63)

where Σy
t does not depend on the dimension 1 ≤ j ≤ D and we write qt for the multivariate Gaussian density of Y[K]

t .
Since we know the distribution of Y[K]

0 , we can directly calculate the corresponding score-function by

∇y[K] log qt

(
Y

[K]
t

)
= −ΛtY

[K]
t . (64)

A.3. Estimating the score via augmented score matching loss

Conditioning Zt on x0 ∼ p0 and a realisation y
[K]
t of the stacked augmenting processes Y[K]

t defined in eq. (62) at fixed
time t ∈ [0, T ] results in the Gaussian vector X̃t ∼ N (m̃t, Σ̃t) with mean

m̃t = c(t)x0 +

K∑
k=1

ηkt y
k
t , where ηkt =

K∑
l=1

E
[
XtY

l
t

] [
(Σy

t )
−1
]
l,k

(65)

and covariance

Σ̃t =
(
c2(t)σ2(t)− τ2t

)
Id, where τ2t =

K∑
k=1

ηkt E
[
XtY

k
t

]
. (66)

We denote with ∇x log p0t the conditional score-function of X̃t and calculate for the gradient w.r.t. x = (x1, ..., xD)∈ RD

∇x log p0t(x|y[K]
t ,x0) = −Σ̃−1

t (x− m̃t) = − (x− m̃t)

(c2(t)σ2(t)− τ2t )
. (67)

and for the gradient w.r.t. yk = (yk1 , ..., y
k
D)∈ RD

∇yk log p0t(x|y[K]
t ,x0) = −1

2
∇yk

[
(x− m̃t)

T Σ̃−1
t (x− m̃t)

]
(68)

= −ηkt ∇x log p0t(x|y[K]
t ,x0). (69)
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Deploying this relation of ∇x log p0t and ∇yk log p0t we derive the augmenting score matching loss that reduces the
dimensionality of the score-model we have to learn to the dimensionality of the data distribution and results in a score-model
guided by the the known score-function ∇y[K] log qt.

Proposition A.4 (Optimal Score-Model). Assume that sθ is optimal w.r.t. the augmented score matching loss L. The
score-model

Sθ(Zt, t) :=

(
sθ(Xt −

∑
k

ηk
t Y

k
t , t),−η1

t sθ(Xt −
∑
k

ηk
t Y

k
t , t), ...,−ηK

t sθ(Xt −
∑
k

ηYk
t , t)

)

yields the optimal L2(P) approximation of ∇z log pt(Zt) via

Sθ(Zt, t) +∇z log qt(Y
[K]
t ) ≈ ∇z log pt(Zt). (70)

Proof. Fix t ∈ [0, T ]. We write paugt for the density of Zt, p
aug
0t for the conditional density of Zt on X0, p0t for the density

of X̃t and q0t for the conditional density of Y[K]
t on X0. First note that Y[K]

t and X0 are independent by assumption and
hence qt = q0t. By direct calculations we find

∇x log p
aug
t (Zt) = E

(X0|Xt,Y
[K]
t )

[∇x log p
aug
0t (Zt|X0)] (71)

= E
(X0|Xt,Y

[K]
t )

[
∇x log

(
p0t(Xt|Y[K]

t ,X0)q0t(Y
[K]
t |X0)

)]
(72)

= E
(X0|Xt,Y

[K]
t )

∇x log p0t(Xt|Y[K]
t ,X0) +∇x log qt(Y

[K]
t )︸ ︷︷ ︸

=0d

 (73)

= E
(X0|Xt,Y

[K]
t )

[
∇x log p0t(Xt|Y[K]

t ,X0)
]

(74)

(67)
= E

(X0|Xt,Y
[K]
t )

[
Xt −

∑
k η

k
t Y

k
t − c(t)X0

c2(t)σ2(t)− τ2t

]
. (75)

Hence the best L2(P)-approximation of ∇x log p
aug
t (Zt) is a minimizer of the augmented score matching loss by

∇x log p
aug
t (Zt)

(75)
= E

(X0|Xt,Y
[K]
t )

[
Xt −

∑
k η

k
t Y

k
t − c(t)X0

c2(t)σ2(t)− τ2t

]
(76)

= argmin
sθ

E
(X0,Y

[K]
t )

E
(Xt|Y[K]

t ,X0)

∥∥∥∥∥sθ(Xt −
K∑

k=1

ηkt Y
k
t , t)−

Xt −
∑

k η
k
t Y

k
t − c(t)X0

c2(t)σ2(t)− τ2t

∥∥∥∥∥
2
 (77)

(67)
= argmin

sθ

E
(X0,Y

[K]
t )

E
(Xt|Y[K]

t ,X0)

∥∥∥∥∥sθ(Xt −
K∑

k=1

ηkt Y
k
t , t)−∇x log p0t(Xt|Y[K]

t ,X0)

∥∥∥∥∥
2
 (78)

Assume now that sθ is a minimizer of the augmented score matching loss. Similar to the calculation above we have

∇yk log paugt (Zt) = E
(X0|Xt,Y

[K]
t )

[
∇yk log paug0t (Zt|X0)

]
(79)

= E
(X0|Xt,Y

[K]
t )

[
∇yk log

(
p0t(Xt|Y[K]

t ,X0)q0t(Y
[K]
t |X0)

)]
(80)

= E
(X0|Xt,Y

[K]
t )

[
∇yk log p0t(Xt|Y[K]

t ,X0) +∇yk log qt(Y
[K]
t )

]
(81)

(68)
= −ηkt E(X0|Xt,Y

[K]
t )

[
∇x log p0t(Xt|Y[K]

t ,X0)
]
+∇yk log qt(Y

[K]
t ) (82)

and hence −ηkt sθ(Xt −
∑

k η
k
t Y

k
t ) +∇yk log qt(Y

[K]
t ) is the best approximation of ∇yk log paugt (Zt) in L2(P) and the

score-model

Sθ(Zt, t) :=

(
sθ(Xt −

∑
k

ηk
t Y

k
t , t),−η1

t sθ(Xt −
∑
k

ηk
t Y

k
t , t), ...,−ηK

t sθ(Xt −
∑
k

ηYk
t , t)

)
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yields the best L2(P)-approximator of ∇z log pt via

Sθ(Zt, t) +∇z log qt(Y
[K]
t ) ≈ ∇z log pt(Zt). (83)

B. Forward sampling
We assume throughout this section type II fBM. Given the marginal covariance matrix Σt of Zt|x0 we uniformly sample
first a time point t ∈ (0, T ] and second Zt ∼ N (ẑt,Σt) with

ẑt = (c(t)x0,1, 0, ..., 0, c(t)x0,2, 0, ..., 0, ..., ..., ..., c(t)x0,D, 0, ...0) ∈ RD(K+1) (84)

where we use E [Xt|x0] = c(t)x0 and E
[
Yk

t

]
= 0D. In the following we derive the entries of the marginal covariance

matrix Σt using the dynamics
dY k

t = −γkY
k
t dt+ dBt, (85)

dB̂H
t = d

(
K∑

k=1

ωkY
k
t

)
= −

K∑
i=1

ωkγkY
k
t dt+ ω̄dBt, ω̄ =

K∑
k

ωk, (86)

dXt = µ(t)Xtdt+ g(t)dB̂H
t =

[
µ(t)Xt − g(t)

K∑
k=1

ωkγkY
k
t

]
dt+ ω̄g(t)dBt, (87)

and the continuous reparameterization

Xt = c(t)

(
x0 +

∫ t

0

α(t, s)dBs

)
, c(t) = exp

(∫ t

0

µ(s)ds

)
(88)

with

α(t, s) = ω̄
g(s)

c(s)
−

K∑
k=1

ωkγk

∫ t

s

g(u)

c(u)
e−γk(u−s)du =

K∑
k=1

ωk

(
g(s)

c(s)
− γk

∫ t

s

g(u)

c(u)
e−γk(u−s)du

)
︸ ︷︷ ︸

=αk(t,s)

. (89)

With

fk(u, s) =
g(u)

c(u)
e−γk(u−s) and Ik(t, s) =

∫ t

s

fk(u, s)du (90)

we have

σ2
t = c2(t)

∫ t

0

α2(t, s)ds (91)

= c2(t)

∫ t

0

[
K∑

k=1

ωk

(
g(s)

c(s)
− γk

∫ t

s

fk(u, s)du

)]2
ds (92)

= c2(t)

∫ t

0

(
K∑

k=1

ωkαk(t, s)

)2

ds (93)

= c2(t)

∫ t

0

K∑
i=1,j=1

ωiωjαi(t, s)αj(t, s)ds (94)

=

K∑
i=1,j=1

ωiωjc
2(t)

∫ t

0

αi(t, s)αj(t, s)ds (95)

=

K∑
i=1,j=1

ωiωjc
2(t)

∫ t

0

(
g(s)

c(s)
− γiIi(t, s)

)(
g(s)

c(s)
− γjIj(t, s)

)
ds (96)

=

K∑
i,j=1

ωiωj

{
varB(t)− c2(t)

∫ t

0

[
g(s)

c(s)

(
γiIi(t, s) + γjIj(t, s)

)
− γiγjIi(t, s)Ij(t, s)

]
ds

}
, (97)
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where

varB(t) = c2(t)

∫ t

0

g2(s)

c2(s)
ds (98)

corresponds to the purely Brownian marginal variance, explicitly calculated for VE and VP in (Song et al., 2021). Using the
above derivation, we derive the closed-form variance schedule for FVE dynamics.

Fractional Variance Exploding Fix σmax > σmin > 0 and define r := σmax

σmin
. Following (Song et al., 2021) we set

µ(t) ≡ 0 and g(t) = art with a = σmin

√
2 log(r) (99)

such that c(t) = exp(0) = 1 and calculate

Ik(t, s) =

∫ t

s

fk(u, s)du =

∫ t

s

arue−γk(u−s)du = F (t)− F (s) (100)

=
a

ln(r)− γk︸ ︷︷ ︸
ak

(
eln(r)t−γkt+γks − eln(r)s

)
= ak

(
rte−γk(t−s) − rs

)
, (101)

since the derivative of F (u) = akr
ue−γk(u−s) is given by

d

du
F (u) =

d

du

[
akr

ue−γk(u−s)
]
= akr

u ln(r)e−γk(u−s) + akr
ue−γk(u−s)(−γk) (102)

=
a

ln(r)− γk
(ln(r)− γk)(r

ue−γk(u−s)) = arue−γk(u−s). (103)

Covariance for Zt = (Xt,1, Y
1
t,1, ..., Y

K
t,1, Xt,2, Y

1
t,2, ..., Y

K
t,2, ..., Xt,d, Y

1
t,d, ..., Y

K
t,d): We calculate

⟨X,X⟩t = σ2
t =

K∑
i,j=1

ωiωj

varB(t)− aγi

∫ t

0

rsIi(t, s)ds︸ ︷︷ ︸
Ji(t)

−aγj

∫ t

0

rsIj(t, s)ds︸ ︷︷ ︸
Jj(t)

+γiγj

∫ t

0

Ii(t, s)Ij(t, s)ds︸ ︷︷ ︸
=Ji,j(t)

 (104)

with

Jk(t) = ak

∫ t

0

rs
(
rte−γk(t−s) − rs

)
ds = ak

∫ t

0

rt+se−γk(t−s)ds− ak

∫ t

0

r2sds (105)

= ak [F1(t)− F1(0)]− ak [F2(t)− F2(0)] = ak

[
r2t − rte−γkt

ln (r) + γk
− r2t − 1

2 ln(r)

]
, (106)

since

d

ds
F1(s) =

d

ds

[
1

ln(r) + γk
rt+se−γk(t−s)

]
=

(
rt+s ln(r)e−γk(t−s) + rt+se−γk(t−s)(γk)

)
ln(r) + γk

= rt+se−γk(t−s) (107)

d

ds
F2(s) =

d

ds

[
r2s

2 ln(r)

]
=

r2s ln(r)2

2 ln(r)
= r2s. (108)

Finally

Ji,j(t) = aiaj

∫ t

0

(
rte−γi(t−s) − rs

)(
rte−γj(t−s) − rs

)
ds (109)

= aiaj

(
r2te−t(γi+γj)

∫ t

0

es(γi+γj)ds− rte−γit

∫ t

0

eγisrsds− rte−γjt

∫ t

0

eγjsrsds+

∫ t

0

r2sds

)
(110)

= aiaj

[(
r2te−t(γi+γj)

(
et(γi+γj) − 1

)
γi + γj

)
− rte−γit

(eγitrt − 1)

γi + ln(r)
− rte−γjt

(eγjtrt − 1)

γj + ln(r)
+

r2t − 1

2 ln(r)

]
(111)

= aiaj

[(
r2t
(
1− e−t(γi+γj)

)
γi + γj

)
− r2t − rte−γit

γi + ln(r)
− r2t − rte−γjt

γj + ln(r)
+

r2t − 1

2 ln(r)

]
. (112)
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Figure 3: Analytical solution (blue) used by our method for FVE dynamics with K = 5 and H = 0.5 compared to the
approximated solution (dashed red) resulting from solving ODE (121).

We calculate the covariance of X and Y l

⟨X,Y l⟩t = c(t)

∫ t

0

α(t, s)e−γl(t−s)ds =

∫ t

0

K∑
k=1

ωk

[
g(s)

c(s)
− γk

∫ t

s

fk(u, s)du

]
e−γl(t−s)ds (113)

=

K∑
k=1

ωk

[
a

∫ t

0

rse−γl(t−s)ds− γk

∫ t

0

∫ t

s

fk(u, s)due
−γl(t−s)ds

]
(114)

=

K∑
k=1

ωk

[
a

∫ t

0

rse−γl(t−s)ds− γkak

∫ t

0

(
rte−γk(t−s) − rs

)
e−γl(t−s)ds

]
(115)

=

K∑
k=1

ωk

[
ae−γlt

∫ t

0

rseγlsds− γkak

∫ t

0

(
rte−γk(t−s) − rs

)
e−γl(t−s)ds

]
(116)

=

K∑
k=1

ωk

[
ae−γlt

∫ t

0

rseγlsds− γkak

∫ t

0

rte−γk(t−s)e−γl(t−s)ds+ γkak

∫ t

0

rse−γl(t−s)ds

]
(117)

=

K∑
k=1

ωk

[
a

ln(r) + γl
(rt − e−γlt)− γkak

rt(1− e−t(γk+γl))

γk + γl
+ γkak

(rt − e−γlt)

ln(r) + γl

]
(118)

=

K∑
k=1

ωk

[
(a+ akγk)

(rt − e−γlt)

γl + ln(r)
− γkak

rt
(
1− e−t(γk+γl)

)
γk + γl

]
. (119)

Fractional Variance Preserving To the best of our knowledge, there is no closed form solution for
∫ t

s
fk(u, s)du for the

dynamics of FVP. In this case, we numerically solve an ODE to determine the marginal covariance matrix of the conditional
augmented forward process.

General Dynamics. The covariance matrix of the conditional augmented forward process with dynamics

dZt = F(t)Ztdt+G(t)dBt, (120)

solves the ODE
∂tΣt = F(t)Σt +ΣtF(t)

T +G(t)G(t)T , (121)

lacking in general a closed form solution (Särkkä and Solin, 2019) in contrast to the setting of Song et al. (2021). This
approach is applicable for any choice of µ and g in the forward dynamics, but depending on the choice of drift and diffusion
function it might not yield a stable solution. We empirically observe in Figure 3 that the analytical solution for FVE and the
numerical approximation of the variance schedule, determined by solving eq. (121) do not differ significantly.
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Figure 4: Normalized variance schedules for K = 5 over time. (a) Variance schedules of FVE dynamics, calculated in
closed form according to the derived formulas. The shape of the schedule is preserved throughout different values of H . (b)
Variance schedules of FVP dynamics numerically approximated. The shape of the schedule is shifted for different values of
H .

Variance schedules. We normalize the variance schedule of FVE and FVP dynamics such that the variance at t = 0 and
at t = T is equal to the variance used in the purely Brownian setting of VE and VP dynamics. For both FVE and FVP
dynamics we calculate ω̃ according to Proposition 3.3 and determine σ̃2

T and define ω = ω̃/σ̃2
T to weight the OU-processes.

By doing so, the terminal variance remains the same throughout different choices of H , as empirically confirmed in Figure 4.
In Figure 4 we observe for FVE dynamics that not only the terminal variance is the same across different choices of H but
also the shape of the variance schedule. For FVP dynamics, the shape of the variance schedule shifts with different values of
H , approaching a nearly linear schedule for H = 0.1, while H = 0.9 offers a decreasing variance towards the end near
t = T .

C. Experimental results
We used for all experiments a conditional U-Net (Ronneberger et al., 2015) architecture and the Adam optimizer (Kingma
and Ba, 2014) with PyTorchs OneCylce learning rate scheduler (Smith and Topin, 2018). On CIFAR we trained first without
exponential moving average (EMA) and second with EMA.

Set up on MNIST. We used an attention resolution of [4, 2], 3 resnet blocks and a channel multiplication of [1, 2, 2, 2, 2]
and trained with a maximal learning rate of 10−4 for 50k iterations and a batch size of 1024. For all MNIST training runs
we used one A100 GPU per run, taking approximately 17 hours.

Set up on CIFAR. We used an attention resolution of [8], 4 resnet blocks and a channel multiplication of [1, 2, 2, 2, 2]. For
the experiments without EMA, we used the same setup as with MNIST, but trained the models in parallel on two A100
GPUs for 300k iterations with an effective batch size of 1024. When training with EMA, we followed the set up of Song
et al. (2021) using an EMA decay of 0.9999 for all FVP dynamics and an EMA decay of 0.999 for all FVE dynamics.
In contrast to Song et al. (2021) we used PyTorchs OneCycleLR learning rate scheduler with a maximal learning rate of
2 · 10−4 and trained only for 1mio iterations instead of the 1.3mio iterations in Song et al. (2021).

For the quantitative results on the MNIST dataset see Table 4 for FVP dynamics and Table 5 for FVE dynamics. For the
results on CIFAR without EMA see Table 6 for training with FVE dynamics and Table 2a for training with FVP dynamics.
For all quantitaitve results using EMA see Table 7 and Table 8.

Evaluation of different Hurst indices on CIFAR10. We trained for 1mio iterations with EMA and ema decay of 0.9999
for the FVP dynamics and an ema decay of 0.999 for VP dynamics.
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Table 4: Quantitative results for FVP dynamics on the MNIST dataset.

FVP H = 0.9 H = 0.7 H = 0.5 H = 0.3 H = 0.1

FID ↓ VSp ↑ FID ↓ VSp ↑ FID ↓ VSp ↑ FID ↓ VSp ↑ FID ↓ VSp ↑

VP (retrained) - - - - 1.44 23.64 - - - -
K = 1 - - - - 2.81 23.69 2.94 23.55 - -
K = 2 1.93 24.00 2.30 23.82 2.92 23.63 6.04 23.32 2.56 23.82
K = 3 0.72 24.18 2.67 23.96 3.51 23.78 54.48 26.32 4.87 23.60
K = 4 1.22 24.76 0.86 24.39 1.86 24.50 10.23 24.37 6.25 23.89
K = 5 2.17 25.15 1.36 24.63 4.89 24.56 7.44 24.71 9.57 23.70

Table 5: Quantitative results for FVE dynamics on the MNIST dataset.

FVE H = 0.9 H = 0.7 H = 0.5 H = 0.3 H = 0.1

FID ↓ VSp ↑ FID ↓ VSp ↑ FID ↓ VSp ↑ FID ↓ VSp ↑ FID ↓ VSp ↑

VE (retrained) - - - - 10.82 24.20 - - - -
K = 1 10.06 24.05 9.95 24.24 10.30 24.22 9.91 24.19 9.98 24.20
K = 2 9.82 24.07 9.73 24.13 9.89 24.15 230.56 13.10 9.42 24.28
K = 3 11.02 24.53 9.96 24.37 9.74 24.42 31.86 20.29 10.12 24.44
K = 4 31.67 22.44 11.37 24.34 11.25 24.54 284.68 25.77 9.56 24.58
K = 5 50.42 23.74 22.03 22.09 25.51 23.08 260.38 14.56 10.39 24.33

Table 6: Quantitative results for FVE dynamics and varying Hurst index on CIFAR10. Original VE model compared to
augmented FVE dynamics. We observe a slightly better performance with 1 or 2 augmenting processes in terms of quality
and pixel-wise diversity and degrading performance for K > 2.

FVE H = 0.9 H = 0.5 H = 0.1

FID ↓ IS ↑ VSp ↑ FID ↓ IS ↑ VSp ↑ FID ↓ IS ↑ VSp ↑

VE (retrained) - - - 9.38 9.47 3.21 - - -

K = 1 9.52 9.17 3.22 9.46 9.18 3.22 8.93 9.26 3.26
K = 2 8.99 8.95 3.26 9.62 8.82 3.22 10.23 8.7 3.09
K = 3 16.67 2.68 2.175 13.41 8.28 2.94 16.54 7.81 2.62
K = 4 40.03 7.25 1.41 17.74 7.94 2.26 14.49 8.14 2.46

Sampled from SDE dynamics FID ↓ IS ↑ NLLs Test ↓ VSp ↑ VSmin
p ↑

V E (retrained) 6.70 9.71 3.75 3.98 2.36
V P (retrained) 11.74 9.13 3.56 2.50 1.93

FV E(K = 1, H = 0.7) (our) 7.93 8.91 3.78 4.06 2.4
FV E(K = 1, H = 0.1) (our) 8.17 8.84 3.30 3.98 2.36
FV E(K = 2, H = 0.9) (our) 8.13 8.86 3.61 3.33 2.42
FV P (K = 2, H = 0.7) (our) 6.51 9.46 3.37 3.00 2.22
FV P (K = 2, H = 0.9) (our) 5.52 9.50 3.43 3.07 2.21
FV P (K = 3, H = 0.7) (our) 7.10 9.07 3.91 3.18 2.39

Table 7: Quantitative results on CIFAR10 for different Hurst indices compared to the purely Brownian dynamics V E and
V P . Sampled from the SDE.

Euler PF ODE FID ↓ IS ↑ VSp ↑ VSmin
p ↑

V E (retrained) 7.23 9.39 2.97 2.32
V P (retrained) 11.10 8.98 2.7 2.09

FV E(K = 1, H = 0.7) (our) 8.04 8.77 3.15 2.4
FV E(K = 1, H = 0.1) (our) 8.39 8.65 3.17 2.37
FV E(K = 2, H = 0.9) (our) 37.10 7.63 4.83 3.05
FV P (K = 2, H = 0.7) (our) 17.74 9.51 3.89 2.60
FV P (K = 2, H = 0.9) (our) 16.38 9.36 4.10 2.79
FV P (K = 3, H = 0.7) (our) 26.76 9.51 4.55 3.10

Table 8: Quantitative results on CIFAR10 for different Hurst indices compared to the purely Brownian dynamics V E and
V P . Sampled from the PF ODE
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D. Illustration of generated data

Comparing visually the pixel-wise diversity of generated data.

(a) Purely Brownian VE sample (b) Positively correlated fBM regime

Figure 5: (LHS) randomly choosen images generated with GFDMs PF ODE for smooth H = 0.7 and K = 3 augmenting
processes, corresponding to the trained model with the highest pixel-wise diversity. (RHS) randomly choosen images
generated with the original model and the PF ODE corresponding to the purely Brownian VE dynamics. The higher
pixel-wise vendi score is visually noticeable.

E. Likelihood computation
Given the approximate probability flow ODE corresponding to the augmented forward process

dzt =

{
F(t)zt −

1

2
G(t)G(t)T

[
Sθ(zt, t) +∇z log qt(y

[K]
t )

]}
︸ ︷︷ ︸

:=f̃θ(zt,t)

dt, t ∈ [0, T ] (122)

we estimate according to Song et al. (2021) the log-likelihoods of test data z0 under the learned density p̃aug0 via

log p̃aug0 (z0) = log p̃augT (zT ) +

∫ T

0

∇f̃θ(zt, t)dt. (123)

According to Song et al. (2021), we integrate over [ϵ, T ] rather than [0, T ], using the same value of ϵ = 10−3, which has
been empirically shown to yield the best performance when simulating the SDE. For ϵ ̸= 0 and type II fBM we need to
adjust the starting value of the augmenting processes from zero to a jointly sampled vector yϵ = (y1ϵ , ..., y

K
ϵ ) ∼ N (0K ,Λϵ)

with

(Λϵ)k,l = E
[
ykϵ y

l
ϵ

]
=

∫ ϵ

0

e−(γk+γl)(ϵ−s)ds =
1− e−(γk+γl)ϵ

γk + γl
. (124)

Using the exact likelihood of yϵ and the independence of yϵ and x0 we have

log p̃aug0 (zϵ) = log p̃0(x0) + log qϵ(yϵ) (125)
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(a) FVP(K = 3, H = 0.9) with FID = 0.72 and VSp = 24.18.

(b) FVP(K = 5, H = 0.9) with FID = 2.17 and VSp = 25.15.

(c) FVP(K = 1, H = 0.3 with FID = 2.94 and VSp = 23.55.

(d) F(K = 3, H = 0.3) with FID = 54.48 and VSp = 26.32.

Figure 6: Diversifying effect of the augmenting processes with FVP dynamics on MNIST. (LHS) smooth regime with
H = 0.9: For K = 5 instead of K = 5 augmenting processes the pixel VS increases from 24.18 to 25.15. (RHS) Rough
regime with H = 0.3: Having K = 3 instead of K = 1 augmenting processes increases the pixel VS from 23.55 to 26.32,
while degrading the FID from 2.94 to 54.48, a deterioration that is visually apparent.

where p̃0 is the learned density of x0 corresponding to θ. Hence in total

log p̃0(x0)
(123)
= log p̃augT (zT ) +

∫ T

0

∇f̃θ(zt, t)dt− log qϵ(yϵ) (126)

and we define the negative log-likelihoods NLLs of test data x0 under the learned density by

NLLs(x0,θ) := − log p̃aug0 (z0) + log qϵ(yϵ). (127)

F. Challenges in the attempt to generalize
In this work, we seek to determine the extent to which the continuous time framework of a SBGM can be generalized from
an underlying BM to an underlying fBM. For a fBM WH it is not straightforward to define the forward process

Xt = X0 +

∫ t

0

f(Xs, s)ds+

∫ t

0

g(Xs, s)dW
H
s , t ∈ [0, T ] (128)

driven by fBM, since fBM is neither a Markov process nor a semimartingale (Biagini et al., 2008), and hence Itô calculus
may not be applied, to define the second integral. However, a definition of the integral w.r.t. fBM is established (Biagini
et al., 2008; Hahn et al., 2011) such that the remaining problem is the derivation of the reverse time model. Following the
second and more intuitive derivation of the reverse time model for BM from Anderson (1982), the conditional backward
Kolmogorov equation and the unconditional forward Kolmogorov equation are applied. Starting point of the derivation is to
rewrite p(xt, t, xs, s) = p(xs, s|xt, t)p(xt, t) with Bayes theorem to calculate with the product rule

∂p(xt, t, xs, s)

∂t
=

∂p(xs, s|xt, t)

∂t
p(xt, t) +

∂p(xt, t)

∂t
p(xs, s|xt, t), s ≥ t. (129)

Replacing ∂p(xt,t)
∂t with the RHS of the unconditional forward Kolmogorov equation and ∂p(xs,s|xt,t)

∂t with the RHS of the
conditional backward Kolmogorov equation one derives an equation that only depends on the joint density p(xt, t, xs, s).
Using Bayes theorem again leads to a conditional backward Kolmogorov equation for p(xt, t|xs, s) that defines the dynamics
of the reverse process by the one-to-one correspondence between the conditional backward Kolmogorov equation and the
reverse time SDE (Anderson, 1982). Following these steps for fBM, starting from eq. (129) and deploying the one-to-one
correspondence of fBM and the evolution of its density (Hahn et al., 2011), we could replace ∂p(xt,t)

∂t in (129) by the RHS of

∂p(x, t)

∂t
=

d∑
i=1

fi(t, x)
∂p(t, x)

∂xi
+Ht2H−1

d∑
i,j=1

gij(x, t)
∂2p(t, x)

∂xi∂xj
. (130)

The missing part is however an analogous to the conditional backward Kolmogorov equation to replace ∂p(xs,s|xt,t)
∂t in

eq. (129). The derivation of such an equation is to the best of our knowledge yet unsolved problem and hence the limiting
factor in the generalization of continuous time SBGM from an underlying BM to an underlying fBM.

26



Generative Fractional Diffusion Models

G. Notational conventions

[0, T ] Time horizon with terminal time T > 0

X = (Xt)t∈[0,T ] Stochastic forward process taking values in R

D ∈ N Data dimension

X Vector valued stochastic forward process X = (Xt)t∈[0,T ] with Xt = (Xt,1, ..., Xt,D)

X Reverse time stochastic process with Xt = XT−t

f Function f : RD × [0, T ] → RD

µ, g Functions µ, g : [0, T ] → R

f Reverse time function with f(x, t) = f(x, T − t)

µ̄, ḡ Reverse time functions with µ̄(t) = µ(T − t) and ḡ(t) = g(T − t)

p0 Data distribution

pt Marginal density of (augmented) forward process at t ∈ [0, T ]

B Brownian motion (BM)

H Hurst index H ∈ (0, 1)

WH Type I fractional Brownian motion (fBM)

BH Type II fractional Brownian motion (fBM)

Y γ = (Y γ
t )t∈[0,T ] Ornstein–Uhlenbeck (OU) process with speed of mean reversion γ ∈ R

K ∈ N Number of approximating processes

γ1, ..., γK Geometrically spaced grid

ω1, ..., ωK Approximation coefficients

ω Optimal approximation coefficients ω = (ω1, ..., ωK)

ω̄ Sum of optimal approximation coefficients

B̂H Markov-approximate fractional Brownian motion (MA-fBM)

Y1, ...,YK Augmenting processes with Yk = (Y k, ..., Y k)

F,G Vector valued functions F,G : [0, T ] → RD·(K+1)

Z By Y1, ...,YK augmented forward process

Y[K] Stacked vector of augmenting processes

qt Marginal density of Y[K] at t ∈ [0, T ]

θ Weight vector of a neural network
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